|  | //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines a pattern matching instruction selector for PowerPC, | 
|  | // converting from a legalized dag to a PPC dag. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "ppc-codegen" | 
|  | #include "PPC.h" | 
|  | #include "PPCPredicates.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "PPCISelLowering.h" | 
|  | #include "PPCHazardRecognizers.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/GlobalValue.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// PPCDAGToDAGISel - PPC specific code to select PPC machine | 
|  | /// instructions for SelectionDAG operations. | 
|  | /// | 
|  | class PPCDAGToDAGISel : public SelectionDAGISel { | 
|  | PPCTargetMachine &TM; | 
|  | PPCTargetLowering &PPCLowering; | 
|  | const PPCSubtarget &PPCSubTarget; | 
|  | unsigned GlobalBaseReg; | 
|  | public: | 
|  | explicit PPCDAGToDAGISel(PPCTargetMachine &tm) | 
|  | : SelectionDAGISel(tm), TM(tm), | 
|  | PPCLowering(*TM.getTargetLowering()), | 
|  | PPCSubTarget(*TM.getSubtargetImpl()) {} | 
|  |  | 
|  | virtual bool runOnMachineFunction(MachineFunction &MF) { | 
|  | // Make sure we re-emit a set of the global base reg if necessary | 
|  | GlobalBaseReg = 0; | 
|  | SelectionDAGISel::runOnMachineFunction(MF); | 
|  |  | 
|  | InsertVRSaveCode(MF); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getI32Imm - Return a target constant with the specified value, of type | 
|  | /// i32. | 
|  | inline SDValue getI32Imm(unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, MVT::i32); | 
|  | } | 
|  |  | 
|  | /// getI64Imm - Return a target constant with the specified value, of type | 
|  | /// i64. | 
|  | inline SDValue getI64Imm(uint64_t Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, MVT::i64); | 
|  | } | 
|  |  | 
|  | /// getSmallIPtrImm - Return a target constant of pointer type. | 
|  | inline SDValue getSmallIPtrImm(unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy()); | 
|  | } | 
|  |  | 
|  | /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s | 
|  | /// with any number of 0s on either side.  The 1s are allowed to wrap from | 
|  | /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. | 
|  | /// 0x0F0F0000 is not, since all 1s are not contiguous. | 
|  | static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME); | 
|  |  | 
|  |  | 
|  | /// isRotateAndMask - Returns true if Mask and Shift can be folded into a | 
|  | /// rotate and mask opcode and mask operation. | 
|  | static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, | 
|  | unsigned &SH, unsigned &MB, unsigned &ME); | 
|  |  | 
|  | /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC | 
|  | /// base register.  Return the virtual register that holds this value. | 
|  | SDNode *getGlobalBaseReg(); | 
|  |  | 
|  | // Select - Convert the specified operand from a target-independent to a | 
|  | // target-specific node if it hasn't already been changed. | 
|  | SDNode *Select(SDNode *N); | 
|  |  | 
|  | SDNode *SelectBitfieldInsert(SDNode *N); | 
|  |  | 
|  | /// SelectCC - Select a comparison of the specified values with the | 
|  | /// specified condition code, returning the CR# of the expression. | 
|  | SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl); | 
|  |  | 
|  | /// SelectAddrImm - Returns true if the address N can be represented by | 
|  | /// a base register plus a signed 16-bit displacement [r+imm]. | 
|  | bool SelectAddrImm(SDNode *Op, SDValue N, SDValue &Disp, | 
|  | SDValue &Base) { | 
|  | return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG); | 
|  | } | 
|  |  | 
|  | /// SelectAddrImmOffs - Return true if the operand is valid for a preinc | 
|  | /// immediate field.  Because preinc imms have already been validated, just | 
|  | /// accept it. | 
|  | bool SelectAddrImmOffs(SDNode *Op, SDValue N, SDValue &Out) const { | 
|  | Out = N; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectAddrIdx - Given the specified addressed, check to see if it can be | 
|  | /// represented as an indexed [r+r] operation.  Returns false if it can | 
|  | /// be represented by [r+imm], which are preferred. | 
|  | bool SelectAddrIdx(SDNode *Op, SDValue N, SDValue &Base, | 
|  | SDValue &Index) { | 
|  | return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG); | 
|  | } | 
|  |  | 
|  | /// SelectAddrIdxOnly - Given the specified addressed, force it to be | 
|  | /// represented as an indexed [r+r] operation. | 
|  | bool SelectAddrIdxOnly(SDNode *Op, SDValue N, SDValue &Base, | 
|  | SDValue &Index) { | 
|  | return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG); | 
|  | } | 
|  |  | 
|  | /// SelectAddrImmShift - Returns true if the address N can be represented by | 
|  | /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable | 
|  | /// for use by STD and friends. | 
|  | bool SelectAddrImmShift(SDNode *Op, SDValue N, SDValue &Disp, | 
|  | SDValue &Base) { | 
|  | return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG); | 
|  | } | 
|  |  | 
|  | /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for | 
|  | /// inline asm expressions.  It is always correct to compute the value into | 
|  | /// a register.  The case of adding a (possibly relocatable) constant to a | 
|  | /// register can be improved, but it is wrong to substitute Reg+Reg for | 
|  | /// Reg in an asm, because the load or store opcode would have to change. | 
|  | virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, | 
|  | char ConstraintCode, | 
|  | std::vector<SDValue> &OutOps) { | 
|  | OutOps.push_back(Op); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue BuildSDIVSequence(SDNode *N); | 
|  | SDValue BuildUDIVSequence(SDNode *N); | 
|  |  | 
|  | void InsertVRSaveCode(MachineFunction &MF); | 
|  |  | 
|  | virtual const char *getPassName() const { | 
|  | return "PowerPC DAG->DAG Pattern Instruction Selection"; | 
|  | } | 
|  |  | 
|  | /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for | 
|  | /// this target when scheduling the DAG. | 
|  | virtual ScheduleHazardRecognizer *CreateTargetHazardRecognizer() { | 
|  | // Should use subtarget info to pick the right hazard recognizer.  For | 
|  | // now, always return a PPC970 recognizer. | 
|  | const TargetInstrInfo *II = TM.getInstrInfo(); | 
|  | assert(II && "No InstrInfo?"); | 
|  | return new PPCHazardRecognizer970(*II); | 
|  | } | 
|  |  | 
|  | // Include the pieces autogenerated from the target description. | 
|  | #include "PPCGenDAGISel.inc" | 
|  |  | 
|  | private: | 
|  | SDNode *SelectSETCC(SDNode *N); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// InsertVRSaveCode - Once the entire function has been instruction selected, | 
|  | /// all virtual registers are created and all machine instructions are built, | 
|  | /// check to see if we need to save/restore VRSAVE.  If so, do it. | 
|  | void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { | 
|  | // Check to see if this function uses vector registers, which means we have to | 
|  | // save and restore the VRSAVE register and update it with the regs we use. | 
|  | // | 
|  | // In this case, there will be virtual registers of vector type created | 
|  | // by the scheduler.  Detect them now. | 
|  | bool HasVectorVReg = false; | 
|  | for (unsigned i = TargetRegisterInfo::FirstVirtualRegister, | 
|  | e = RegInfo->getLastVirtReg()+1; i != e; ++i) | 
|  | if (RegInfo->getRegClass(i) == &PPC::VRRCRegClass) { | 
|  | HasVectorVReg = true; | 
|  | break; | 
|  | } | 
|  | if (!HasVectorVReg) return;  // nothing to do. | 
|  |  | 
|  | // If we have a vector register, we want to emit code into the entry and exit | 
|  | // blocks to save and restore the VRSAVE register.  We do this here (instead | 
|  | // of marking all vector instructions as clobbering VRSAVE) for two reasons: | 
|  | // | 
|  | // 1. This (trivially) reduces the load on the register allocator, by not | 
|  | //    having to represent the live range of the VRSAVE register. | 
|  | // 2. This (more significantly) allows us to create a temporary virtual | 
|  | //    register to hold the saved VRSAVE value, allowing this temporary to be | 
|  | //    register allocated, instead of forcing it to be spilled to the stack. | 
|  |  | 
|  | // Create two vregs - one to hold the VRSAVE register that is live-in to the | 
|  | // function and one for the value after having bits or'd into it. | 
|  | unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); | 
|  | unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); | 
|  |  | 
|  | const TargetInstrInfo &TII = *TM.getInstrInfo(); | 
|  | MachineBasicBlock &EntryBB = *Fn.begin(); | 
|  | DebugLoc dl = DebugLoc::getUnknownLoc(); | 
|  | // Emit the following code into the entry block: | 
|  | // InVRSAVE = MFVRSAVE | 
|  | // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE | 
|  | // MTVRSAVE UpdatedVRSAVE | 
|  | MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point | 
|  | BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); | 
|  | BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), | 
|  | UpdatedVRSAVE).addReg(InVRSAVE); | 
|  | BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); | 
|  |  | 
|  | // Find all return blocks, outputting a restore in each epilog. | 
|  | for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { | 
|  | if (!BB->empty() && BB->back().getDesc().isReturn()) { | 
|  | IP = BB->end(); --IP; | 
|  |  | 
|  | // Skip over all terminator instructions, which are part of the return | 
|  | // sequence. | 
|  | MachineBasicBlock::iterator I2 = IP; | 
|  | while (I2 != BB->begin() && (--I2)->getDesc().isTerminator()) | 
|  | IP = I2; | 
|  |  | 
|  | // Emit: MTVRSAVE InVRSave | 
|  | BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getGlobalBaseReg - Output the instructions required to put the | 
|  | /// base address to use for accessing globals into a register. | 
|  | /// | 
|  | SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { | 
|  | if (!GlobalBaseReg) { | 
|  | const TargetInstrInfo &TII = *TM.getInstrInfo(); | 
|  | // Insert the set of GlobalBaseReg into the first MBB of the function | 
|  | MachineBasicBlock &FirstMBB = MF->front(); | 
|  | MachineBasicBlock::iterator MBBI = FirstMBB.begin(); | 
|  | DebugLoc dl = DebugLoc::getUnknownLoc(); | 
|  |  | 
|  | if (PPCLowering.getPointerTy() == MVT::i32) { | 
|  | GlobalBaseReg = RegInfo->createVirtualRegister(PPC::GPRCRegisterClass); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR), PPC::LR); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); | 
|  | } else { | 
|  | GlobalBaseReg = RegInfo->createVirtualRegister(PPC::G8RCRegisterClass); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8), PPC::LR8); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); | 
|  | } | 
|  | } | 
|  | return CurDAG->getRegister(GlobalBaseReg, | 
|  | PPCLowering.getPointerTy()).getNode(); | 
|  | } | 
|  |  | 
|  | /// isIntS16Immediate - This method tests to see if the node is either a 32-bit | 
|  | /// or 64-bit immediate, and if the value can be accurately represented as a | 
|  | /// sign extension from a 16-bit value.  If so, this returns true and the | 
|  | /// immediate. | 
|  | static bool isIntS16Immediate(SDNode *N, short &Imm) { | 
|  | if (N->getOpcode() != ISD::Constant) | 
|  | return false; | 
|  |  | 
|  | Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | else | 
|  | return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | } | 
|  |  | 
|  | static bool isIntS16Immediate(SDValue Op, short &Imm) { | 
|  | return isIntS16Immediate(Op.getNode(), Imm); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isInt32Immediate - This method tests to see if the node is a 32-bit constant | 
|  | /// operand. If so Imm will receive the 32-bit value. | 
|  | static bool isInt32Immediate(SDNode *N, unsigned &Imm) { | 
|  | if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { | 
|  | Imm = cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isInt64Immediate - This method tests to see if the node is a 64-bit constant | 
|  | /// operand.  If so Imm will receive the 64-bit value. | 
|  | static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { | 
|  | if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { | 
|  | Imm = cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // isInt32Immediate - This method tests to see if a constant operand. | 
|  | // If so Imm will receive the 32 bit value. | 
|  | static bool isInt32Immediate(SDValue N, unsigned &Imm) { | 
|  | return isInt32Immediate(N.getNode(), Imm); | 
|  | } | 
|  |  | 
|  |  | 
|  | // isOpcWithIntImmediate - This method tests to see if the node is a specific | 
|  | // opcode and that it has a immediate integer right operand. | 
|  | // If so Imm will receive the 32 bit value. | 
|  | static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { | 
|  | return N->getOpcode() == Opc | 
|  | && isInt32Immediate(N->getOperand(1).getNode(), Imm); | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { | 
|  | if (isShiftedMask_32(Val)) { | 
|  | // look for the first non-zero bit | 
|  | MB = CountLeadingZeros_32(Val); | 
|  | // look for the first zero bit after the run of ones | 
|  | ME = CountLeadingZeros_32((Val - 1) ^ Val); | 
|  | return true; | 
|  | } else { | 
|  | Val = ~Val; // invert mask | 
|  | if (isShiftedMask_32(Val)) { | 
|  | // effectively look for the first zero bit | 
|  | ME = CountLeadingZeros_32(Val) - 1; | 
|  | // effectively look for the first one bit after the run of zeros | 
|  | MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | // no run present | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, | 
|  | bool isShiftMask, unsigned &SH, | 
|  | unsigned &MB, unsigned &ME) { | 
|  | // Don't even go down this path for i64, since different logic will be | 
|  | // necessary for rldicl/rldicr/rldimi. | 
|  | if (N->getValueType(0) != MVT::i32) | 
|  | return false; | 
|  |  | 
|  | unsigned Shift  = 32; | 
|  | unsigned Indeterminant = ~0;  // bit mask marking indeterminant results | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | if (N->getNumOperands() != 2 || | 
|  | !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) | 
|  | return false; | 
|  |  | 
|  | if (Opcode == ISD::SHL) { | 
|  | // apply shift left to mask if it comes first | 
|  | if (isShiftMask) Mask = Mask << Shift; | 
|  | // determine which bits are made indeterminant by shift | 
|  | Indeterminant = ~(0xFFFFFFFFu << Shift); | 
|  | } else if (Opcode == ISD::SRL) { | 
|  | // apply shift right to mask if it comes first | 
|  | if (isShiftMask) Mask = Mask >> Shift; | 
|  | // determine which bits are made indeterminant by shift | 
|  | Indeterminant = ~(0xFFFFFFFFu >> Shift); | 
|  | // adjust for the left rotate | 
|  | Shift = 32 - Shift; | 
|  | } else if (Opcode == ISD::ROTL) { | 
|  | Indeterminant = 0; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // if the mask doesn't intersect any Indeterminant bits | 
|  | if (Mask && !(Mask & Indeterminant)) { | 
|  | SH = Shift & 31; | 
|  | // make sure the mask is still a mask (wrap arounds may not be) | 
|  | return isRunOfOnes(Mask, MB, ME); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectBitfieldInsert - turn an or of two masked values into | 
|  | /// the rotate left word immediate then mask insert (rlwimi) instruction. | 
|  | SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  |  | 
|  | APInt LKZ, LKO, RKZ, RKO; | 
|  | CurDAG->ComputeMaskedBits(Op0, APInt::getAllOnesValue(32), LKZ, LKO); | 
|  | CurDAG->ComputeMaskedBits(Op1, APInt::getAllOnesValue(32), RKZ, RKO); | 
|  |  | 
|  | unsigned TargetMask = LKZ.getZExtValue(); | 
|  | unsigned InsertMask = RKZ.getZExtValue(); | 
|  |  | 
|  | if ((TargetMask | InsertMask) == 0xFFFFFFFF) { | 
|  | unsigned Op0Opc = Op0.getOpcode(); | 
|  | unsigned Op1Opc = Op1.getOpcode(); | 
|  | unsigned Value, SH = 0; | 
|  | TargetMask = ~TargetMask; | 
|  | InsertMask = ~InsertMask; | 
|  |  | 
|  | // If the LHS has a foldable shift and the RHS does not, then swap it to the | 
|  | // RHS so that we can fold the shift into the insert. | 
|  | if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { | 
|  | if (Op0.getOperand(0).getOpcode() == ISD::SHL || | 
|  | Op0.getOperand(0).getOpcode() == ISD::SRL) { | 
|  | if (Op1.getOperand(0).getOpcode() != ISD::SHL && | 
|  | Op1.getOperand(0).getOpcode() != ISD::SRL) { | 
|  | std::swap(Op0, Op1); | 
|  | std::swap(Op0Opc, Op1Opc); | 
|  | std::swap(TargetMask, InsertMask); | 
|  | } | 
|  | } | 
|  | } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { | 
|  | if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && | 
|  | Op1.getOperand(0).getOpcode() != ISD::SRL) { | 
|  | std::swap(Op0, Op1); | 
|  | std::swap(Op0Opc, Op1Opc); | 
|  | std::swap(TargetMask, InsertMask); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned MB, ME; | 
|  | if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) { | 
|  | SDValue Tmp1, Tmp2; | 
|  |  | 
|  | if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && | 
|  | isInt32Immediate(Op1.getOperand(1), Value)) { | 
|  | Op1 = Op1.getOperand(0); | 
|  | SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value; | 
|  | } | 
|  | if (Op1Opc == ISD::AND) { | 
|  | unsigned SHOpc = Op1.getOperand(0).getOpcode(); | 
|  | if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && | 
|  | isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { | 
|  | Op1 = Op1.getOperand(0).getOperand(0); | 
|  | SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value; | 
|  | } else { | 
|  | Op1 = Op1.getOperand(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | SH &= 31; | 
|  | SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB), | 
|  | getI32Imm(ME) }; | 
|  | return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// SelectCC - Select a comparison of the specified values with the specified | 
|  | /// condition code, returning the CR# of the expression. | 
|  | SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, | 
|  | ISD::CondCode CC, DebugLoc dl) { | 
|  | // Always select the LHS. | 
|  | unsigned Opc; | 
|  |  | 
|  | if (LHS.getValueType() == MVT::i32) { | 
|  | unsigned Imm; | 
|  | if (CC == ISD::SETEQ || CC == ISD::SETNE) { | 
|  | if (isInt32Immediate(RHS, Imm)) { | 
|  | // SETEQ/SETNE comparison with 16-bit immediate, fold it. | 
|  | if (isUInt16(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, | 
|  | getI32Imm(Imm & 0xFFFF)), 0); | 
|  | // If this is a 16-bit signed immediate, fold it. | 
|  | if (isInt16((int)Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, | 
|  | getI32Imm(Imm & 0xFFFF)), 0); | 
|  |  | 
|  | // For non-equality comparisons, the default code would materialize the | 
|  | // constant, then compare against it, like this: | 
|  | //   lis r2, 4660 | 
|  | //   ori r2, r2, 22136 | 
|  | //   cmpw cr0, r3, r2 | 
|  | // Since we are just comparing for equality, we can emit this instead: | 
|  | //   xoris r0,r3,0x1234 | 
|  | //   cmplwi cr0,r0,0x5678 | 
|  | //   beq cr0,L6 | 
|  | SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, | 
|  | getI32Imm(Imm >> 16)), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, | 
|  | getI32Imm(Imm & 0xFFFF)), 0); | 
|  | } | 
|  | Opc = PPC::CMPLW; | 
|  | } else if (ISD::isUnsignedIntSetCC(CC)) { | 
|  | if (isInt32Immediate(RHS, Imm) && isUInt16(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, | 
|  | getI32Imm(Imm & 0xFFFF)), 0); | 
|  | Opc = PPC::CMPLW; | 
|  | } else { | 
|  | short SImm; | 
|  | if (isIntS16Immediate(RHS, SImm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, | 
|  | getI32Imm((int)SImm & 0xFFFF)), | 
|  | 0); | 
|  | Opc = PPC::CMPW; | 
|  | } | 
|  | } else if (LHS.getValueType() == MVT::i64) { | 
|  | uint64_t Imm; | 
|  | if (CC == ISD::SETEQ || CC == ISD::SETNE) { | 
|  | if (isInt64Immediate(RHS.getNode(), Imm)) { | 
|  | // SETEQ/SETNE comparison with 16-bit immediate, fold it. | 
|  | if (isUInt16(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, | 
|  | getI32Imm(Imm & 0xFFFF)), 0); | 
|  | // If this is a 16-bit signed immediate, fold it. | 
|  | if (isInt16(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, | 
|  | getI32Imm(Imm & 0xFFFF)), 0); | 
|  |  | 
|  | // For non-equality comparisons, the default code would materialize the | 
|  | // constant, then compare against it, like this: | 
|  | //   lis r2, 4660 | 
|  | //   ori r2, r2, 22136 | 
|  | //   cmpd cr0, r3, r2 | 
|  | // Since we are just comparing for equality, we can emit this instead: | 
|  | //   xoris r0,r3,0x1234 | 
|  | //   cmpldi cr0,r0,0x5678 | 
|  | //   beq cr0,L6 | 
|  | if (isUInt32(Imm)) { | 
|  | SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, | 
|  | getI64Imm(Imm >> 16)), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, | 
|  | getI64Imm(Imm & 0xFFFF)), 0); | 
|  | } | 
|  | } | 
|  | Opc = PPC::CMPLD; | 
|  | } else if (ISD::isUnsignedIntSetCC(CC)) { | 
|  | if (isInt64Immediate(RHS.getNode(), Imm) && isUInt16(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, | 
|  | getI64Imm(Imm & 0xFFFF)), 0); | 
|  | Opc = PPC::CMPLD; | 
|  | } else { | 
|  | short SImm; | 
|  | if (isIntS16Immediate(RHS, SImm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, | 
|  | getI64Imm(SImm & 0xFFFF)), | 
|  | 0); | 
|  | Opc = PPC::CMPD; | 
|  | } | 
|  | } else if (LHS.getValueType() == MVT::f32) { | 
|  | Opc = PPC::FCMPUS; | 
|  | } else { | 
|  | assert(LHS.getValueType() == MVT::f64 && "Unknown vt!"); | 
|  | Opc = PPC::FCMPUD; | 
|  | } | 
|  | return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); | 
|  | } | 
|  |  | 
|  | static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { | 
|  | switch (CC) { | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETONE: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETOGE: | 
|  | llvm_unreachable("Should be lowered by legalize!"); | 
|  | default: llvm_unreachable("Unknown condition!"); | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETEQ:  return PPC::PRED_EQ; | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETNE:  return PPC::PRED_NE; | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLT:  return PPC::PRED_LT; | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:  return PPC::PRED_LE; | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT:  return PPC::PRED_GT; | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE:  return PPC::PRED_GE; | 
|  | case ISD::SETO:   return PPC::PRED_NU; | 
|  | case ISD::SETUO:  return PPC::PRED_UN; | 
|  | // These two are invalid for floating point.  Assume we have int. | 
|  | case ISD::SETULT: return PPC::PRED_LT; | 
|  | case ISD::SETUGT: return PPC::PRED_GT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getCRIdxForSetCC - Return the index of the condition register field | 
|  | /// associated with the SetCC condition, and whether or not the field is | 
|  | /// treated as inverted.  That is, lt = 0; ge = 0 inverted. | 
|  | /// | 
|  | /// If this returns with Other != -1, then the returned comparison is an or of | 
|  | /// two simpler comparisons.  In this case, Invert is guaranteed to be false. | 
|  | static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) { | 
|  | Invert = false; | 
|  | Other = -1; | 
|  | switch (CC) { | 
|  | default: llvm_unreachable("Unknown condition!"); | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ | 
|  | case ISD::SETUO:  return 3;                  // Bit #3 = SETUO | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE | 
|  | case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETONE: | 
|  | llvm_unreachable("Invalid branch code: should be expanded by legalize"); | 
|  | // These are invalid for floating point.  Assume integer. | 
|  | case ISD::SETULT: return 0; | 
|  | case ISD::SETUGT: return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) { | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  | unsigned Imm; | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); | 
|  | if (isInt32Immediate(N->getOperand(1), Imm)) { | 
|  | // We can codegen setcc op, imm very efficiently compared to a brcond. | 
|  | // Check for those cases here. | 
|  | // setcc op, 0 | 
|  | if (Imm == 0) { | 
|  | SDValue Op = N->getOperand(0); | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETEQ: { | 
|  | Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); | 
|  | SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) }; | 
|  | return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); | 
|  | } | 
|  | case ISD::SETNE: { | 
|  | SDValue AD = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag, | 
|  | Op, getI32Imm(~0U)), 0); | 
|  | return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, | 
|  | AD.getValue(1)); | 
|  | } | 
|  | case ISD::SETLT: { | 
|  | SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; | 
|  | return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); | 
|  | } | 
|  | case ISD::SETGT: { | 
|  | SDValue T = | 
|  | SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); | 
|  | T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); | 
|  | SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; | 
|  | return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); | 
|  | } | 
|  | } | 
|  | } else if (Imm == ~0U) {        // setcc op, -1 | 
|  | SDValue Op = N->getOperand(0); | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETEQ: | 
|  | Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag, | 
|  | Op, getI32Imm(1)), 0); | 
|  | return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, | 
|  | SDValue(CurDAG->getMachineNode(PPC::LI, dl, | 
|  | MVT::i32, | 
|  | getI32Imm(0)), 0), | 
|  | Op.getValue(1)); | 
|  | case ISD::SETNE: { | 
|  | Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); | 
|  | SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag, | 
|  | Op, getI32Imm(~0U)); | 
|  | return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), | 
|  | Op, SDValue(AD, 1)); | 
|  | } | 
|  | case ISD::SETLT: { | 
|  | SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, | 
|  | getI32Imm(1)), 0); | 
|  | SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, | 
|  | Op), 0); | 
|  | SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; | 
|  | return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); | 
|  | } | 
|  | case ISD::SETGT: { | 
|  | SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; | 
|  | Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), | 
|  | 0); | 
|  | return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, | 
|  | getI32Imm(1)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Inv; | 
|  | int OtherCondIdx; | 
|  | unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx); | 
|  | SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); | 
|  | SDValue IntCR; | 
|  |  | 
|  | // Force the ccreg into CR7. | 
|  | SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); | 
|  |  | 
|  | SDValue InFlag(0, 0);  // Null incoming flag value. | 
|  | CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, | 
|  | InFlag).getValue(1); | 
|  |  | 
|  | if (PPCSubTarget.isGigaProcessor() && OtherCondIdx == -1) | 
|  | IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, | 
|  | CCReg), 0); | 
|  | else | 
|  | IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCR, dl, MVT::i32, CCReg), 0); | 
|  |  | 
|  | SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31), | 
|  | getI32Imm(31), getI32Imm(31) }; | 
|  | if (OtherCondIdx == -1 && !Inv) | 
|  | return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); | 
|  |  | 
|  | // Get the specified bit. | 
|  | SDValue Tmp = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0); | 
|  | if (Inv) { | 
|  | assert(OtherCondIdx == -1 && "Can't have split plus negation"); | 
|  | return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); | 
|  | } | 
|  |  | 
|  | // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT. | 
|  | // We already got the bit for the first part of the comparison (e.g. SETULE). | 
|  |  | 
|  | // Get the other bit of the comparison. | 
|  | Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31); | 
|  | SDValue OtherCond = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0); | 
|  |  | 
|  | return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Select - Convert the specified operand from a target-independent to a | 
|  | // target-specific node if it hasn't already been changed. | 
|  | SDNode *PPCDAGToDAGISel::Select(SDNode *N) { | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  | if (N->isMachineOpcode()) | 
|  | return NULL;   // Already selected. | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  |  | 
|  | case ISD::Constant: { | 
|  | if (N->getValueType(0) == MVT::i64) { | 
|  | // Get 64 bit value. | 
|  | int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | // Assume no remaining bits. | 
|  | unsigned Remainder = 0; | 
|  | // Assume no shift required. | 
|  | unsigned Shift = 0; | 
|  |  | 
|  | // If it can't be represented as a 32 bit value. | 
|  | if (!isInt32(Imm)) { | 
|  | Shift = CountTrailingZeros_64(Imm); | 
|  | int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; | 
|  |  | 
|  | // If the shifted value fits 32 bits. | 
|  | if (isInt32(ImmSh)) { | 
|  | // Go with the shifted value. | 
|  | Imm = ImmSh; | 
|  | } else { | 
|  | // Still stuck with a 64 bit value. | 
|  | Remainder = Imm; | 
|  | Shift = 32; | 
|  | Imm >>= 32; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Intermediate operand. | 
|  | SDNode *Result; | 
|  |  | 
|  | // Handle first 32 bits. | 
|  | unsigned Lo = Imm & 0xFFFF; | 
|  | unsigned Hi = (Imm >> 16) & 0xFFFF; | 
|  |  | 
|  | // Simple value. | 
|  | if (isInt16(Imm)) { | 
|  | // Just the Lo bits. | 
|  | Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo)); | 
|  | } else if (Lo) { | 
|  | // Handle the Hi bits. | 
|  | unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; | 
|  | Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); | 
|  | // And Lo bits. | 
|  | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, | 
|  | SDValue(Result, 0), getI32Imm(Lo)); | 
|  | } else { | 
|  | // Just the Hi bits. | 
|  | Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); | 
|  | } | 
|  |  | 
|  | // If no shift, we're done. | 
|  | if (!Shift) return Result; | 
|  |  | 
|  | // Shift for next step if the upper 32-bits were not zero. | 
|  | if (Imm) { | 
|  | Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, | 
|  | SDValue(Result, 0), | 
|  | getI32Imm(Shift), | 
|  | getI32Imm(63 - Shift)); | 
|  | } | 
|  |  | 
|  | // Add in the last bits as required. | 
|  | if ((Hi = (Remainder >> 16) & 0xFFFF)) { | 
|  | Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, | 
|  | SDValue(Result, 0), getI32Imm(Hi)); | 
|  | } | 
|  | if ((Lo = Remainder & 0xFFFF)) { | 
|  | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, | 
|  | SDValue(Result, 0), getI32Imm(Lo)); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SETCC: | 
|  | return SelectSETCC(N); | 
|  | case PPCISD::GlobalBaseReg: | 
|  | return getGlobalBaseReg(); | 
|  |  | 
|  | case ISD::FrameIndex: { | 
|  | int FI = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); | 
|  | unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; | 
|  | if (N->hasOneUse()) | 
|  | return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI, | 
|  | getSmallIPtrImm(0)); | 
|  | return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, | 
|  | getSmallIPtrImm(0)); | 
|  | } | 
|  |  | 
|  | case PPCISD::MFCR: { | 
|  | SDValue InFlag = N->getOperand(1); | 
|  | // Use MFOCRF if supported. | 
|  | if (PPCSubTarget.isGigaProcessor()) | 
|  | return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, | 
|  | N->getOperand(0), InFlag); | 
|  | else | 
|  | return CurDAG->getMachineNode(PPC::MFCR, dl, MVT::i32, InFlag); | 
|  | } | 
|  |  | 
|  | case ISD::SDIV: { | 
|  | // FIXME: since this depends on the setting of the carry flag from the srawi | 
|  | //        we should really be making notes about that for the scheduler. | 
|  | // FIXME: It sure would be nice if we could cheaply recognize the | 
|  | //        srl/add/sra pattern the dag combiner will generate for this as | 
|  | //        sra/addze rather than having to handle sdiv ourselves.  oh well. | 
|  | unsigned Imm; | 
|  | if (isInt32Immediate(N->getOperand(1), Imm)) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | if ((signed)Imm > 0 && isPowerOf2_32(Imm)) { | 
|  | SDNode *Op = | 
|  | CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Flag, | 
|  | N0, getI32Imm(Log2_32(Imm))); | 
|  | return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, | 
|  | SDValue(Op, 0), SDValue(Op, 1)); | 
|  | } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) { | 
|  | SDNode *Op = | 
|  | CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Flag, | 
|  | N0, getI32Imm(Log2_32(-Imm))); | 
|  | SDValue PT = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32, | 
|  | SDValue(Op, 0), SDValue(Op, 1)), | 
|  | 0); | 
|  | return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::LOAD: { | 
|  | // Handle preincrement loads. | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N); | 
|  | EVT LoadedVT = LD->getMemoryVT(); | 
|  |  | 
|  | // Normal loads are handled by code generated from the .td file. | 
|  | if (LD->getAddressingMode() != ISD::PRE_INC) | 
|  | break; | 
|  |  | 
|  | SDValue Offset = LD->getOffset(); | 
|  | if (isa<ConstantSDNode>(Offset) || | 
|  | Offset.getOpcode() == ISD::TargetGlobalAddress) { | 
|  |  | 
|  | unsigned Opcode; | 
|  | bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; | 
|  | if (LD->getValueType(0) != MVT::i64) { | 
|  | // Handle PPC32 integer and normal FP loads. | 
|  | assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); | 
|  | switch (LoadedVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Invalid PPC load type!"); | 
|  | case MVT::f64: Opcode = PPC::LFDU; break; | 
|  | case MVT::f32: Opcode = PPC::LFSU; break; | 
|  | case MVT::i32: Opcode = PPC::LWZU; break; | 
|  | case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opcode = PPC::LBZU; break; | 
|  | } | 
|  | } else { | 
|  | assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); | 
|  | assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); | 
|  | switch (LoadedVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Invalid PPC load type!"); | 
|  | case MVT::i64: Opcode = PPC::LDU; break; | 
|  | case MVT::i32: Opcode = PPC::LWZU8; break; | 
|  | case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opcode = PPC::LBZU8; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Base = LD->getBasePtr(); | 
|  | SDValue Ops[] = { Offset, Base, Chain }; | 
|  | // FIXME: PPC64 | 
|  | return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), | 
|  | PPCLowering.getPointerTy(), | 
|  | MVT::Other, Ops, 3); | 
|  | } else { | 
|  | llvm_unreachable("R+R preindex loads not supported yet!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | case ISD::AND: { | 
|  | unsigned Imm, Imm2, SH, MB, ME; | 
|  |  | 
|  | // If this is an and of a value rotated between 0 and 31 bits and then and'd | 
|  | // with a mask, emit rlwinm | 
|  | if (isInt32Immediate(N->getOperand(1), Imm) && | 
|  | isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { | 
|  | SDValue Val = N->getOperand(0).getOperand(0); | 
|  | SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; | 
|  | return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); | 
|  | } | 
|  | // If this is just a masked value where the input is not handled above, and | 
|  | // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm | 
|  | if (isInt32Immediate(N->getOperand(1), Imm) && | 
|  | isRunOfOnes(Imm, MB, ME) && | 
|  | N->getOperand(0).getOpcode() != ISD::ROTL) { | 
|  | SDValue Val = N->getOperand(0); | 
|  | SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) }; | 
|  | return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); | 
|  | } | 
|  | // AND X, 0 -> 0, not "rlwinm 32". | 
|  | if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { | 
|  | ReplaceUses(SDValue(N, 0), N->getOperand(1)); | 
|  | return NULL; | 
|  | } | 
|  | // ISD::OR doesn't get all the bitfield insertion fun. | 
|  | // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert | 
|  | if (isInt32Immediate(N->getOperand(1), Imm) && | 
|  | N->getOperand(0).getOpcode() == ISD::OR && | 
|  | isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { | 
|  | unsigned MB, ME; | 
|  | Imm = ~(Imm^Imm2); | 
|  | if (isRunOfOnes(Imm, MB, ME)) { | 
|  | SDValue Ops[] = { N->getOperand(0).getOperand(0), | 
|  | N->getOperand(0).getOperand(1), | 
|  | getI32Imm(0), getI32Imm(MB),getI32Imm(ME) }; | 
|  | return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::OR: | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | if (SDNode *I = SelectBitfieldInsert(N)) | 
|  | return I; | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | case ISD::SHL: { | 
|  | unsigned Imm, SH, MB, ME; | 
|  | if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && | 
|  | isRotateAndMask(N, Imm, true, SH, MB, ME)) { | 
|  | SDValue Ops[] = { N->getOperand(0).getOperand(0), | 
|  | getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; | 
|  | return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::SRL: { | 
|  | unsigned Imm, SH, MB, ME; | 
|  | if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && | 
|  | isRotateAndMask(N, Imm, true, SH, MB, ME)) { | 
|  | SDValue Ops[] = { N->getOperand(0).getOperand(0), | 
|  | getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; | 
|  | return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT_CC: { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); | 
|  |  | 
|  | // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc | 
|  | if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) | 
|  | if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) | 
|  | if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) | 
|  | if (N1C->isNullValue() && N3C->isNullValue() && | 
|  | N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && | 
|  | // FIXME: Implement this optzn for PPC64. | 
|  | N->getValueType(0) == MVT::i32) { | 
|  | SDNode *Tmp = | 
|  | CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag, | 
|  | N->getOperand(0), getI32Imm(~0U)); | 
|  | return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, | 
|  | SDValue(Tmp, 0), N->getOperand(0), | 
|  | SDValue(Tmp, 1)); | 
|  | } | 
|  |  | 
|  | SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); | 
|  | unsigned BROpc = getPredicateForSetCC(CC); | 
|  |  | 
|  | unsigned SelectCCOp; | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | SelectCCOp = PPC::SELECT_CC_I4; | 
|  | else if (N->getValueType(0) == MVT::i64) | 
|  | SelectCCOp = PPC::SELECT_CC_I8; | 
|  | else if (N->getValueType(0) == MVT::f32) | 
|  | SelectCCOp = PPC::SELECT_CC_F4; | 
|  | else if (N->getValueType(0) == MVT::f64) | 
|  | SelectCCOp = PPC::SELECT_CC_F8; | 
|  | else | 
|  | SelectCCOp = PPC::SELECT_CC_VRRC; | 
|  |  | 
|  | SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), | 
|  | getI32Imm(BROpc) }; | 
|  | return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4); | 
|  | } | 
|  | case PPCISD::COND_BRANCH: { | 
|  | // Op #0 is the Chain. | 
|  | // Op #1 is the PPC::PRED_* number. | 
|  | // Op #2 is the CR# | 
|  | // Op #3 is the Dest MBB | 
|  | // Op #4 is the Flag. | 
|  | // Prevent PPC::PRED_* from being selected into LI. | 
|  | SDValue Pred = | 
|  | getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); | 
|  | SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), | 
|  | N->getOperand(0), N->getOperand(4) }; | 
|  | return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5); | 
|  | } | 
|  | case ISD::BR_CC: { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); | 
|  | SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); | 
|  | SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode, | 
|  | N->getOperand(4), N->getOperand(0) }; | 
|  | return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4); | 
|  | } | 
|  | case ISD::BRIND: { | 
|  | // FIXME: Should custom lower this. | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue Target = N->getOperand(1); | 
|  | unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; | 
|  | Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Target, | 
|  | Chain), 0); | 
|  | return CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SelectCode(N); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// createPPCISelDag - This pass converts a legalized DAG into a | 
|  | /// PowerPC-specific DAG, ready for instruction scheduling. | 
|  | /// | 
|  | FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) { | 
|  | return new PPCDAGToDAGISel(TM); | 
|  | } | 
|  |  |