|  | //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Collect the sequence of machine instructions for a basic block. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/CodeGen/LiveIntervals.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SlotIndexes.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/ModuleSlotTracker.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/Support/DataTypes.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "codegen" | 
|  |  | 
|  | MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) | 
|  | : BB(B), Number(-1), xParent(&MF) { | 
|  | Insts.Parent = this; | 
|  | if (B) | 
|  | IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::~MachineBasicBlock() { | 
|  | } | 
|  |  | 
|  | /// Return the MCSymbol for this basic block. | 
|  | MCSymbol *MachineBasicBlock::getSymbol() const { | 
|  | if (!CachedMCSymbol) { | 
|  | const MachineFunction *MF = getParent(); | 
|  | MCContext &Ctx = MF->getContext(); | 
|  | auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); | 
|  | assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); | 
|  | CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + | 
|  | Twine(MF->getFunctionNumber()) + | 
|  | "_" + Twine(getNumber())); | 
|  | } | 
|  |  | 
|  | return CachedMCSymbol; | 
|  | } | 
|  |  | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { | 
|  | MBB.print(OS); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { | 
|  | return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); | 
|  | } | 
|  |  | 
|  | /// When an MBB is added to an MF, we need to update the parent pointer of the | 
|  | /// MBB, the MBB numbering, and any instructions in the MBB to be on the right | 
|  | /// operand list for registers. | 
|  | /// | 
|  | /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it | 
|  | /// gets the next available unique MBB number. If it is removed from a | 
|  | /// MachineFunction, it goes back to being #-1. | 
|  | void ilist_callback_traits<MachineBasicBlock>::addNodeToList( | 
|  | MachineBasicBlock *N) { | 
|  | MachineFunction &MF = *N->getParent(); | 
|  | N->Number = MF.addToMBBNumbering(N); | 
|  |  | 
|  | // Make sure the instructions have their operands in the reginfo lists. | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  | for (MachineBasicBlock::instr_iterator | 
|  | I = N->instr_begin(), E = N->instr_end(); I != E; ++I) | 
|  | I->AddRegOperandsToUseLists(RegInfo); | 
|  | } | 
|  |  | 
|  | void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( | 
|  | MachineBasicBlock *N) { | 
|  | N->getParent()->removeFromMBBNumbering(N->Number); | 
|  | N->Number = -1; | 
|  | } | 
|  |  | 
|  | /// When we add an instruction to a basic block list, we update its parent | 
|  | /// pointer and add its operands from reg use/def lists if appropriate. | 
|  | void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { | 
|  | assert(!N->getParent() && "machine instruction already in a basic block"); | 
|  | N->setParent(Parent); | 
|  |  | 
|  | // Add the instruction's register operands to their corresponding | 
|  | // use/def lists. | 
|  | MachineFunction *MF = Parent->getParent(); | 
|  | N->AddRegOperandsToUseLists(MF->getRegInfo()); | 
|  | MF->handleInsertion(*N); | 
|  | } | 
|  |  | 
|  | /// When we remove an instruction from a basic block list, we update its parent | 
|  | /// pointer and remove its operands from reg use/def lists if appropriate. | 
|  | void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { | 
|  | assert(N->getParent() && "machine instruction not in a basic block"); | 
|  |  | 
|  | // Remove from the use/def lists. | 
|  | if (MachineFunction *MF = N->getMF()) { | 
|  | MF->handleRemoval(*N); | 
|  | N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); | 
|  | } | 
|  |  | 
|  | N->setParent(nullptr); | 
|  | } | 
|  |  | 
|  | /// When moving a range of instructions from one MBB list to another, we need to | 
|  | /// update the parent pointers and the use/def lists. | 
|  | void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, | 
|  | instr_iterator First, | 
|  | instr_iterator Last) { | 
|  | assert(Parent->getParent() == FromList.Parent->getParent() && | 
|  | "cannot transfer MachineInstrs between MachineFunctions"); | 
|  |  | 
|  | // If it's within the same BB, there's nothing to do. | 
|  | if (this == &FromList) | 
|  | return; | 
|  |  | 
|  | assert(Parent != FromList.Parent && "Two lists have the same parent?"); | 
|  |  | 
|  | // If splicing between two blocks within the same function, just update the | 
|  | // parent pointers. | 
|  | for (; First != Last; ++First) | 
|  | First->setParent(Parent); | 
|  | } | 
|  |  | 
|  | void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { | 
|  | assert(!MI->getParent() && "MI is still in a block!"); | 
|  | Parent->getParent()->DeleteMachineInstr(MI); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { | 
|  | instr_iterator I = instr_begin(), E = instr_end(); | 
|  | while (I != E && I->isPHI()) | 
|  | ++I; | 
|  | assert((I == E || !I->isInsideBundle()) && | 
|  | "First non-phi MI cannot be inside a bundle!"); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator | 
|  | MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { | 
|  | const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); | 
|  |  | 
|  | iterator E = end(); | 
|  | while (I != E && (I->isPHI() || I->isPosition() || | 
|  | TII->isBasicBlockPrologue(*I))) | 
|  | ++I; | 
|  | // FIXME: This needs to change if we wish to bundle labels | 
|  | // inside the bundle. | 
|  | assert((I == E || !I->isInsideBundle()) && | 
|  | "First non-phi / non-label instruction is inside a bundle!"); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator | 
|  | MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { | 
|  | const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); | 
|  |  | 
|  | iterator E = end(); | 
|  | while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || | 
|  | TII->isBasicBlockPrologue(*I))) | 
|  | ++I; | 
|  | // FIXME: This needs to change if we wish to bundle labels / dbg_values | 
|  | // inside the bundle. | 
|  | assert((I == E || !I->isInsideBundle()) && | 
|  | "First non-phi / non-label / non-debug " | 
|  | "instruction is inside a bundle!"); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { | 
|  | iterator B = begin(), E = end(), I = E; | 
|  | while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) | 
|  | ; /*noop */ | 
|  | while (I != E && !I->isTerminator()) | 
|  | ++I; | 
|  | return I; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { | 
|  | instr_iterator B = instr_begin(), E = instr_end(), I = E; | 
|  | while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) | 
|  | ; /*noop */ | 
|  | while (I != E && !I->isTerminator()) | 
|  | ++I; | 
|  | return I; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { | 
|  | // Skip over begin-of-block dbg_value instructions. | 
|  | return skipDebugInstructionsForward(begin(), end()); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { | 
|  | // Skip over end-of-block dbg_value instructions. | 
|  | instr_iterator B = instr_begin(), I = instr_end(); | 
|  | while (I != B) { | 
|  | --I; | 
|  | // Return instruction that starts a bundle. | 
|  | if (I->isDebugInstr() || I->isInsideBundle()) | 
|  | continue; | 
|  | return I; | 
|  | } | 
|  | // The block is all debug values. | 
|  | return end(); | 
|  | } | 
|  |  | 
|  | bool MachineBasicBlock::hasEHPadSuccessor() const { | 
|  | for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) | 
|  | if ((*I)->isEHPad()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { | 
|  | print(dbgs()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bool MachineBasicBlock::isLegalToHoistInto() const { | 
|  | if (isReturnBlock() || hasEHPadSuccessor()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | StringRef MachineBasicBlock::getName() const { | 
|  | if (const BasicBlock *LBB = getBasicBlock()) | 
|  | return LBB->getName(); | 
|  | else | 
|  | return StringRef("", 0); | 
|  | } | 
|  |  | 
|  | /// Return a hopefully unique identifier for this block. | 
|  | std::string MachineBasicBlock::getFullName() const { | 
|  | std::string Name; | 
|  | if (getParent()) | 
|  | Name = (getParent()->getName() + ":").str(); | 
|  | if (getBasicBlock()) | 
|  | Name += getBasicBlock()->getName(); | 
|  | else | 
|  | Name += ("BB" + Twine(getNumber())).str(); | 
|  | return Name; | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, | 
|  | bool IsStandalone) const { | 
|  | const MachineFunction *MF = getParent(); | 
|  | if (!MF) { | 
|  | OS << "Can't print out MachineBasicBlock because parent MachineFunction" | 
|  | << " is null\n"; | 
|  | return; | 
|  | } | 
|  | const Function &F = MF->getFunction(); | 
|  | const Module *M = F.getParent(); | 
|  | ModuleSlotTracker MST(M); | 
|  | MST.incorporateFunction(F); | 
|  | print(OS, MST, Indexes, IsStandalone); | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, | 
|  | const SlotIndexes *Indexes, | 
|  | bool IsStandalone) const { | 
|  | const MachineFunction *MF = getParent(); | 
|  | if (!MF) { | 
|  | OS << "Can't print out MachineBasicBlock because parent MachineFunction" | 
|  | << " is null\n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Indexes) | 
|  | OS << Indexes->getMBBStartIdx(this) << '\t'; | 
|  |  | 
|  | OS << "bb." << getNumber(); | 
|  | bool HasAttributes = false; | 
|  | if (const auto *BB = getBasicBlock()) { | 
|  | if (BB->hasName()) { | 
|  | OS << "." << BB->getName(); | 
|  | } else { | 
|  | HasAttributes = true; | 
|  | OS << " ("; | 
|  | int Slot = MST.getLocalSlot(BB); | 
|  | if (Slot == -1) | 
|  | OS << "<ir-block badref>"; | 
|  | else | 
|  | OS << (Twine("%ir-block.") + Twine(Slot)).str(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hasAddressTaken()) { | 
|  | OS << (HasAttributes ? ", " : " ("); | 
|  | OS << "address-taken"; | 
|  | HasAttributes = true; | 
|  | } | 
|  | if (isEHPad()) { | 
|  | OS << (HasAttributes ? ", " : " ("); | 
|  | OS << "landing-pad"; | 
|  | HasAttributes = true; | 
|  | } | 
|  | if (getAlignment()) { | 
|  | OS << (HasAttributes ? ", " : " ("); | 
|  | OS << "align " << getAlignment(); | 
|  | HasAttributes = true; | 
|  | } | 
|  | if (HasAttributes) | 
|  | OS << ")"; | 
|  | OS << ":\n"; | 
|  |  | 
|  | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); | 
|  | const MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); | 
|  | bool HasLineAttributes = false; | 
|  |  | 
|  | // Print the preds of this block according to the CFG. | 
|  | if (!pred_empty() && IsStandalone) { | 
|  | if (Indexes) OS << '\t'; | 
|  | // Don't indent(2), align with previous line attributes. | 
|  | OS << "; predecessors: "; | 
|  | for (auto I = pred_begin(), E = pred_end(); I != E; ++I) { | 
|  | if (I != pred_begin()) | 
|  | OS << ", "; | 
|  | OS << printMBBReference(**I); | 
|  | } | 
|  | OS << '\n'; | 
|  | HasLineAttributes = true; | 
|  | } | 
|  |  | 
|  | if (!succ_empty()) { | 
|  | if (Indexes) OS << '\t'; | 
|  | // Print the successors | 
|  | OS.indent(2) << "successors: "; | 
|  | for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { | 
|  | if (I != succ_begin()) | 
|  | OS << ", "; | 
|  | OS << printMBBReference(**I); | 
|  | if (!Probs.empty()) | 
|  | OS << '(' | 
|  | << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) | 
|  | << ')'; | 
|  | } | 
|  | if (!Probs.empty() && IsStandalone) { | 
|  | // Print human readable probabilities as comments. | 
|  | OS << "; "; | 
|  | for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { | 
|  | const BranchProbability &BP = getSuccProbability(I); | 
|  | if (I != succ_begin()) | 
|  | OS << ", "; | 
|  | OS << printMBBReference(**I) << '(' | 
|  | << format("%.2f%%", | 
|  | rint(((double)BP.getNumerator() / BP.getDenominator()) * | 
|  | 100.0 * 100.0) / | 
|  | 100.0) | 
|  | << ')'; | 
|  | } | 
|  | } | 
|  |  | 
|  | OS << '\n'; | 
|  | HasLineAttributes = true; | 
|  | } | 
|  |  | 
|  | if (!livein_empty() && MRI.tracksLiveness()) { | 
|  | if (Indexes) OS << '\t'; | 
|  | OS.indent(2) << "liveins: "; | 
|  |  | 
|  | bool First = true; | 
|  | for (const auto &LI : liveins()) { | 
|  | if (!First) | 
|  | OS << ", "; | 
|  | First = false; | 
|  | OS << printReg(LI.PhysReg, TRI); | 
|  | if (!LI.LaneMask.all()) | 
|  | OS << ":0x" << PrintLaneMask(LI.LaneMask); | 
|  | } | 
|  | HasLineAttributes = true; | 
|  | } | 
|  |  | 
|  | if (HasLineAttributes) | 
|  | OS << '\n'; | 
|  |  | 
|  | bool IsInBundle = false; | 
|  | for (const MachineInstr &MI : instrs()) { | 
|  | if (Indexes) { | 
|  | if (Indexes->hasIndex(MI)) | 
|  | OS << Indexes->getInstructionIndex(MI); | 
|  | OS << '\t'; | 
|  | } | 
|  |  | 
|  | if (IsInBundle && !MI.isInsideBundle()) { | 
|  | OS.indent(2) << "}\n"; | 
|  | IsInBundle = false; | 
|  | } | 
|  |  | 
|  | OS.indent(IsInBundle ? 4 : 2); | 
|  | MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, | 
|  | /*AddNewLine=*/false, &TII); | 
|  |  | 
|  | if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { | 
|  | OS << " {"; | 
|  | IsInBundle = true; | 
|  | } | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | if (IsInBundle) | 
|  | OS.indent(2) << "}\n"; | 
|  |  | 
|  | if (IrrLoopHeaderWeight && IsStandalone) { | 
|  | if (Indexes) OS << '\t'; | 
|  | OS.indent(2) << "; Irreducible loop header weight: " | 
|  | << IrrLoopHeaderWeight.getValue() << '\n'; | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::printAsOperand(raw_ostream &OS, | 
|  | bool /*PrintType*/) const { | 
|  | OS << "%bb." << getNumber(); | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { | 
|  | LiveInVector::iterator I = find_if( | 
|  | LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); | 
|  | if (I == LiveIns.end()) | 
|  | return; | 
|  |  | 
|  | I->LaneMask &= ~LaneMask; | 
|  | if (I->LaneMask.none()) | 
|  | LiveIns.erase(I); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::livein_iterator | 
|  | MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { | 
|  | // Get non-const version of iterator. | 
|  | LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); | 
|  | return LiveIns.erase(LI); | 
|  | } | 
|  |  | 
|  | bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { | 
|  | livein_iterator I = find_if( | 
|  | LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); | 
|  | return I != livein_end() && (I->LaneMask & LaneMask).any(); | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::sortUniqueLiveIns() { | 
|  | llvm::sort(LiveIns, | 
|  | [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { | 
|  | return LI0.PhysReg < LI1.PhysReg; | 
|  | }); | 
|  | // Liveins are sorted by physreg now we can merge their lanemasks. | 
|  | LiveInVector::const_iterator I = LiveIns.begin(); | 
|  | LiveInVector::const_iterator J; | 
|  | LiveInVector::iterator Out = LiveIns.begin(); | 
|  | for (; I != LiveIns.end(); ++Out, I = J) { | 
|  | unsigned PhysReg = I->PhysReg; | 
|  | LaneBitmask LaneMask = I->LaneMask; | 
|  | for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) | 
|  | LaneMask |= J->LaneMask; | 
|  | Out->PhysReg = PhysReg; | 
|  | Out->LaneMask = LaneMask; | 
|  | } | 
|  | LiveIns.erase(Out, LiveIns.end()); | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { | 
|  | assert(getParent() && "MBB must be inserted in function"); | 
|  | assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); | 
|  | assert(RC && "Register class is required"); | 
|  | assert((isEHPad() || this == &getParent()->front()) && | 
|  | "Only the entry block and landing pads can have physreg live ins"); | 
|  |  | 
|  | bool LiveIn = isLiveIn(PhysReg); | 
|  | iterator I = SkipPHIsAndLabels(begin()), E = end(); | 
|  | MachineRegisterInfo &MRI = getParent()->getRegInfo(); | 
|  | const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); | 
|  |  | 
|  | // Look for an existing copy. | 
|  | if (LiveIn) | 
|  | for (;I != E && I->isCopy(); ++I) | 
|  | if (I->getOperand(1).getReg() == PhysReg) { | 
|  | unsigned VirtReg = I->getOperand(0).getReg(); | 
|  | if (!MRI.constrainRegClass(VirtReg, RC)) | 
|  | llvm_unreachable("Incompatible live-in register class."); | 
|  | return VirtReg; | 
|  | } | 
|  |  | 
|  | // No luck, create a virtual register. | 
|  | unsigned VirtReg = MRI.createVirtualRegister(RC); | 
|  | BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) | 
|  | .addReg(PhysReg, RegState::Kill); | 
|  | if (!LiveIn) | 
|  | addLiveIn(PhysReg); | 
|  | return VirtReg; | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { | 
|  | getParent()->splice(NewAfter->getIterator(), getIterator()); | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { | 
|  | getParent()->splice(++NewBefore->getIterator(), getIterator()); | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::updateTerminator() { | 
|  | const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); | 
|  | // A block with no successors has no concerns with fall-through edges. | 
|  | if (this->succ_empty()) | 
|  | return; | 
|  |  | 
|  | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | DebugLoc DL = findBranchDebugLoc(); | 
|  | bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); | 
|  | (void) B; | 
|  | assert(!B && "UpdateTerminators requires analyzable predecessors!"); | 
|  | if (Cond.empty()) { | 
|  | if (TBB) { | 
|  | // The block has an unconditional branch. If its successor is now its | 
|  | // layout successor, delete the branch. | 
|  | if (isLayoutSuccessor(TBB)) | 
|  | TII->removeBranch(*this); | 
|  | } else { | 
|  | // The block has an unconditional fallthrough. If its successor is not its | 
|  | // layout successor, insert a branch. First we have to locate the only | 
|  | // non-landing-pad successor, as that is the fallthrough block. | 
|  | for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { | 
|  | if ((*SI)->isEHPad()) | 
|  | continue; | 
|  | assert(!TBB && "Found more than one non-landing-pad successor!"); | 
|  | TBB = *SI; | 
|  | } | 
|  |  | 
|  | // If there is no non-landing-pad successor, the block has no fall-through | 
|  | // edges to be concerned with. | 
|  | if (!TBB) | 
|  | return; | 
|  |  | 
|  | // Finally update the unconditional successor to be reached via a branch | 
|  | // if it would not be reached by fallthrough. | 
|  | if (!isLayoutSuccessor(TBB)) | 
|  | TII->insertBranch(*this, TBB, nullptr, Cond, DL); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (FBB) { | 
|  | // The block has a non-fallthrough conditional branch. If one of its | 
|  | // successors is its layout successor, rewrite it to a fallthrough | 
|  | // conditional branch. | 
|  | if (isLayoutSuccessor(TBB)) { | 
|  | if (TII->reverseBranchCondition(Cond)) | 
|  | return; | 
|  | TII->removeBranch(*this); | 
|  | TII->insertBranch(*this, FBB, nullptr, Cond, DL); | 
|  | } else if (isLayoutSuccessor(FBB)) { | 
|  | TII->removeBranch(*this); | 
|  | TII->insertBranch(*this, TBB, nullptr, Cond, DL); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Walk through the successors and find the successor which is not a landing | 
|  | // pad and is not the conditional branch destination (in TBB) as the | 
|  | // fallthrough successor. | 
|  | MachineBasicBlock *FallthroughBB = nullptr; | 
|  | for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { | 
|  | if ((*SI)->isEHPad() || *SI == TBB) | 
|  | continue; | 
|  | assert(!FallthroughBB && "Found more than one fallthrough successor."); | 
|  | FallthroughBB = *SI; | 
|  | } | 
|  |  | 
|  | if (!FallthroughBB) { | 
|  | if (canFallThrough()) { | 
|  | // We fallthrough to the same basic block as the conditional jump targets. | 
|  | // Remove the conditional jump, leaving unconditional fallthrough. | 
|  | // FIXME: This does not seem like a reasonable pattern to support, but it | 
|  | // has been seen in the wild coming out of degenerate ARM test cases. | 
|  | TII->removeBranch(*this); | 
|  |  | 
|  | // Finally update the unconditional successor to be reached via a branch if | 
|  | // it would not be reached by fallthrough. | 
|  | if (!isLayoutSuccessor(TBB)) | 
|  | TII->insertBranch(*this, TBB, nullptr, Cond, DL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We enter here iff exactly one successor is TBB which cannot fallthrough | 
|  | // and the rest successors if any are EHPads.  In this case, we need to | 
|  | // change the conditional branch into unconditional branch. | 
|  | TII->removeBranch(*this); | 
|  | Cond.clear(); | 
|  | TII->insertBranch(*this, TBB, nullptr, Cond, DL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The block has a fallthrough conditional branch. | 
|  | if (isLayoutSuccessor(TBB)) { | 
|  | if (TII->reverseBranchCondition(Cond)) { | 
|  | // We can't reverse the condition, add an unconditional branch. | 
|  | Cond.clear(); | 
|  | TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); | 
|  | return; | 
|  | } | 
|  | TII->removeBranch(*this); | 
|  | TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); | 
|  | } else if (!isLayoutSuccessor(FallthroughBB)) { | 
|  | TII->removeBranch(*this); | 
|  | TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::validateSuccProbs() const { | 
|  | #ifndef NDEBUG | 
|  | int64_t Sum = 0; | 
|  | for (auto Prob : Probs) | 
|  | Sum += Prob.getNumerator(); | 
|  | // Due to precision issue, we assume that the sum of probabilities is one if | 
|  | // the difference between the sum of their numerators and the denominator is | 
|  | // no greater than the number of successors. | 
|  | assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= | 
|  | Probs.size() && | 
|  | "The sum of successors's probabilities exceeds one."); | 
|  | #endif // NDEBUG | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, | 
|  | BranchProbability Prob) { | 
|  | // Probability list is either empty (if successor list isn't empty, this means | 
|  | // disabled optimization) or has the same size as successor list. | 
|  | if (!(Probs.empty() && !Successors.empty())) | 
|  | Probs.push_back(Prob); | 
|  | Successors.push_back(Succ); | 
|  | Succ->addPredecessor(this); | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { | 
|  | // We need to make sure probability list is either empty or has the same size | 
|  | // of successor list. When this function is called, we can safely delete all | 
|  | // probability in the list. | 
|  | Probs.clear(); | 
|  | Successors.push_back(Succ); | 
|  | Succ->addPredecessor(this); | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, | 
|  | MachineBasicBlock *New, | 
|  | bool NormalizeSuccProbs) { | 
|  | succ_iterator OldI = llvm::find(successors(), Old); | 
|  | assert(OldI != succ_end() && "Old is not a successor of this block!"); | 
|  | assert(llvm::find(successors(), New) == succ_end() && | 
|  | "New is already a successor of this block!"); | 
|  |  | 
|  | // Add a new successor with equal probability as the original one. Note | 
|  | // that we directly copy the probability using the iterator rather than | 
|  | // getting a potentially synthetic probability computed when unknown. This | 
|  | // preserves the probabilities as-is and then we can renormalize them and | 
|  | // query them effectively afterward. | 
|  | addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() | 
|  | : *getProbabilityIterator(OldI)); | 
|  | if (NormalizeSuccProbs) | 
|  | normalizeSuccProbs(); | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, | 
|  | bool NormalizeSuccProbs) { | 
|  | succ_iterator I = find(Successors, Succ); | 
|  | removeSuccessor(I, NormalizeSuccProbs); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::succ_iterator | 
|  | MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { | 
|  | assert(I != Successors.end() && "Not a current successor!"); | 
|  |  | 
|  | // If probability list is empty it means we don't use it (disabled | 
|  | // optimization). | 
|  | if (!Probs.empty()) { | 
|  | probability_iterator WI = getProbabilityIterator(I); | 
|  | Probs.erase(WI); | 
|  | if (NormalizeSuccProbs) | 
|  | normalizeSuccProbs(); | 
|  | } | 
|  |  | 
|  | (*I)->removePredecessor(this); | 
|  | return Successors.erase(I); | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, | 
|  | MachineBasicBlock *New) { | 
|  | if (Old == New) | 
|  | return; | 
|  |  | 
|  | succ_iterator E = succ_end(); | 
|  | succ_iterator NewI = E; | 
|  | succ_iterator OldI = E; | 
|  | for (succ_iterator I = succ_begin(); I != E; ++I) { | 
|  | if (*I == Old) { | 
|  | OldI = I; | 
|  | if (NewI != E) | 
|  | break; | 
|  | } | 
|  | if (*I == New) { | 
|  | NewI = I; | 
|  | if (OldI != E) | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(OldI != E && "Old is not a successor of this block"); | 
|  |  | 
|  | // If New isn't already a successor, let it take Old's place. | 
|  | if (NewI == E) { | 
|  | Old->removePredecessor(this); | 
|  | New->addPredecessor(this); | 
|  | *OldI = New; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // New is already a successor. | 
|  | // Update its probability instead of adding a duplicate edge. | 
|  | if (!Probs.empty()) { | 
|  | auto ProbIter = getProbabilityIterator(NewI); | 
|  | if (!ProbIter->isUnknown()) | 
|  | *ProbIter += *getProbabilityIterator(OldI); | 
|  | } | 
|  | removeSuccessor(OldI); | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, | 
|  | succ_iterator I) { | 
|  | if (Orig->Probs.empty()) | 
|  | addSuccessor(*I, Orig->getSuccProbability(I)); | 
|  | else | 
|  | addSuccessorWithoutProb(*I); | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { | 
|  | Predecessors.push_back(Pred); | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { | 
|  | pred_iterator I = find(Predecessors, Pred); | 
|  | assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); | 
|  | Predecessors.erase(I); | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { | 
|  | if (this == FromMBB) | 
|  | return; | 
|  |  | 
|  | while (!FromMBB->succ_empty()) { | 
|  | MachineBasicBlock *Succ = *FromMBB->succ_begin(); | 
|  |  | 
|  | // If probability list is empty it means we don't use it (disabled optimization). | 
|  | if (!FromMBB->Probs.empty()) { | 
|  | auto Prob = *FromMBB->Probs.begin(); | 
|  | addSuccessor(Succ, Prob); | 
|  | } else | 
|  | addSuccessorWithoutProb(Succ); | 
|  |  | 
|  | FromMBB->removeSuccessor(Succ); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { | 
|  | if (this == FromMBB) | 
|  | return; | 
|  |  | 
|  | while (!FromMBB->succ_empty()) { | 
|  | MachineBasicBlock *Succ = *FromMBB->succ_begin(); | 
|  | if (!FromMBB->Probs.empty()) { | 
|  | auto Prob = *FromMBB->Probs.begin(); | 
|  | addSuccessor(Succ, Prob); | 
|  | } else | 
|  | addSuccessorWithoutProb(Succ); | 
|  | FromMBB->removeSuccessor(Succ); | 
|  |  | 
|  | // Fix up any PHI nodes in the successor. | 
|  | for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), | 
|  | ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) | 
|  | for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (MO.getMBB() == FromMBB) | 
|  | MO.setMBB(this); | 
|  | } | 
|  | } | 
|  | normalizeSuccProbs(); | 
|  | } | 
|  |  | 
|  | bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { | 
|  | return is_contained(predecessors(), MBB); | 
|  | } | 
|  |  | 
|  | bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { | 
|  | return is_contained(successors(), MBB); | 
|  | } | 
|  |  | 
|  | bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { | 
|  | MachineFunction::const_iterator I(this); | 
|  | return std::next(I) == MachineFunction::const_iterator(MBB); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *MachineBasicBlock::getFallThrough() { | 
|  | MachineFunction::iterator Fallthrough = getIterator(); | 
|  | ++Fallthrough; | 
|  | // If FallthroughBlock is off the end of the function, it can't fall through. | 
|  | if (Fallthrough == getParent()->end()) | 
|  | return nullptr; | 
|  |  | 
|  | // If FallthroughBlock isn't a successor, no fallthrough is possible. | 
|  | if (!isSuccessor(&*Fallthrough)) | 
|  | return nullptr; | 
|  |  | 
|  | // Analyze the branches, if any, at the end of the block. | 
|  | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); | 
|  | if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { | 
|  | // If we couldn't analyze the branch, examine the last instruction. | 
|  | // If the block doesn't end in a known control barrier, assume fallthrough | 
|  | // is possible. The isPredicated check is needed because this code can be | 
|  | // called during IfConversion, where an instruction which is normally a | 
|  | // Barrier is predicated and thus no longer an actual control barrier. | 
|  | return (empty() || !back().isBarrier() || TII->isPredicated(back())) | 
|  | ? &*Fallthrough | 
|  | : nullptr; | 
|  | } | 
|  |  | 
|  | // If there is no branch, control always falls through. | 
|  | if (!TBB) return &*Fallthrough; | 
|  |  | 
|  | // If there is some explicit branch to the fallthrough block, it can obviously | 
|  | // reach, even though the branch should get folded to fall through implicitly. | 
|  | if (MachineFunction::iterator(TBB) == Fallthrough || | 
|  | MachineFunction::iterator(FBB) == Fallthrough) | 
|  | return &*Fallthrough; | 
|  |  | 
|  | // If it's an unconditional branch to some block not the fall through, it | 
|  | // doesn't fall through. | 
|  | if (Cond.empty()) return nullptr; | 
|  |  | 
|  | // Otherwise, if it is conditional and has no explicit false block, it falls | 
|  | // through. | 
|  | return (FBB == nullptr) ? &*Fallthrough : nullptr; | 
|  | } | 
|  |  | 
|  | bool MachineBasicBlock::canFallThrough() { | 
|  | return getFallThrough() != nullptr; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, | 
|  | Pass &P) { | 
|  | if (!canSplitCriticalEdge(Succ)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineFunction *MF = getParent(); | 
|  | DebugLoc DL;  // FIXME: this is nowhere | 
|  |  | 
|  | MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); | 
|  | MF->insert(std::next(MachineFunction::iterator(this)), NMBB); | 
|  | LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) | 
|  | << " -- " << printMBBReference(*NMBB) << " -- " | 
|  | << printMBBReference(*Succ) << '\n'); | 
|  |  | 
|  | LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); | 
|  | SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); | 
|  | if (LIS) | 
|  | LIS->insertMBBInMaps(NMBB); | 
|  | else if (Indexes) | 
|  | Indexes->insertMBBInMaps(NMBB); | 
|  |  | 
|  | // On some targets like Mips, branches may kill virtual registers. Make sure | 
|  | // that LiveVariables is properly updated after updateTerminator replaces the | 
|  | // terminators. | 
|  | LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); | 
|  |  | 
|  | // Collect a list of virtual registers killed by the terminators. | 
|  | SmallVector<unsigned, 4> KilledRegs; | 
|  | if (LV) | 
|  | for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); | 
|  | I != E; ++I) { | 
|  | MachineInstr *MI = &*I; | 
|  | for (MachineInstr::mop_iterator OI = MI->operands_begin(), | 
|  | OE = MI->operands_end(); OI != OE; ++OI) { | 
|  | if (!OI->isReg() || OI->getReg() == 0 || | 
|  | !OI->isUse() || !OI->isKill() || OI->isUndef()) | 
|  | continue; | 
|  | unsigned Reg = OI->getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg) || | 
|  | LV->getVarInfo(Reg).removeKill(*MI)) { | 
|  | KilledRegs.push_back(Reg); | 
|  | LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI); | 
|  | OI->setIsKill(false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<unsigned, 4> UsedRegs; | 
|  | if (LIS) { | 
|  | for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); | 
|  | I != E; ++I) { | 
|  | MachineInstr *MI = &*I; | 
|  |  | 
|  | for (MachineInstr::mop_iterator OI = MI->operands_begin(), | 
|  | OE = MI->operands_end(); OI != OE; ++OI) { | 
|  | if (!OI->isReg() || OI->getReg() == 0) | 
|  | continue; | 
|  |  | 
|  | unsigned Reg = OI->getReg(); | 
|  | if (!is_contained(UsedRegs, Reg)) | 
|  | UsedRegs.push_back(Reg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ReplaceUsesOfBlockWith(Succ, NMBB); | 
|  |  | 
|  | // If updateTerminator() removes instructions, we need to remove them from | 
|  | // SlotIndexes. | 
|  | SmallVector<MachineInstr*, 4> Terminators; | 
|  | if (Indexes) { | 
|  | for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); | 
|  | I != E; ++I) | 
|  | Terminators.push_back(&*I); | 
|  | } | 
|  |  | 
|  | updateTerminator(); | 
|  |  | 
|  | if (Indexes) { | 
|  | SmallVector<MachineInstr*, 4> NewTerminators; | 
|  | for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); | 
|  | I != E; ++I) | 
|  | NewTerminators.push_back(&*I); | 
|  |  | 
|  | for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), | 
|  | E = Terminators.end(); I != E; ++I) { | 
|  | if (!is_contained(NewTerminators, *I)) | 
|  | Indexes->removeMachineInstrFromMaps(**I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Insert unconditional "jump Succ" instruction in NMBB if necessary. | 
|  | NMBB->addSuccessor(Succ); | 
|  | if (!NMBB->isLayoutSuccessor(Succ)) { | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); | 
|  | TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); | 
|  |  | 
|  | if (Indexes) { | 
|  | for (MachineInstr &MI : NMBB->instrs()) { | 
|  | // Some instructions may have been moved to NMBB by updateTerminator(), | 
|  | // so we first remove any instruction that already has an index. | 
|  | if (Indexes->hasIndex(MI)) | 
|  | Indexes->removeMachineInstrFromMaps(MI); | 
|  | Indexes->insertMachineInstrInMaps(MI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fix PHI nodes in Succ so they refer to NMBB instead of this | 
|  | for (MachineBasicBlock::instr_iterator | 
|  | i = Succ->instr_begin(),e = Succ->instr_end(); | 
|  | i != e && i->isPHI(); ++i) | 
|  | for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) | 
|  | if (i->getOperand(ni+1).getMBB() == this) | 
|  | i->getOperand(ni+1).setMBB(NMBB); | 
|  |  | 
|  | // Inherit live-ins from the successor | 
|  | for (const auto &LI : Succ->liveins()) | 
|  | NMBB->addLiveIn(LI); | 
|  |  | 
|  | // Update LiveVariables. | 
|  | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); | 
|  | if (LV) { | 
|  | // Restore kills of virtual registers that were killed by the terminators. | 
|  | while (!KilledRegs.empty()) { | 
|  | unsigned Reg = KilledRegs.pop_back_val(); | 
|  | for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { | 
|  | if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) | 
|  | continue; | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | LV->getVarInfo(Reg).Kills.push_back(&*I); | 
|  | LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Update relevant live-through information. | 
|  | LV->addNewBlock(NMBB, this, Succ); | 
|  | } | 
|  |  | 
|  | if (LIS) { | 
|  | // After splitting the edge and updating SlotIndexes, live intervals may be | 
|  | // in one of two situations, depending on whether this block was the last in | 
|  | // the function. If the original block was the last in the function, all | 
|  | // live intervals will end prior to the beginning of the new split block. If | 
|  | // the original block was not at the end of the function, all live intervals | 
|  | // will extend to the end of the new split block. | 
|  |  | 
|  | bool isLastMBB = | 
|  | std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); | 
|  |  | 
|  | SlotIndex StartIndex = Indexes->getMBBEndIdx(this); | 
|  | SlotIndex PrevIndex = StartIndex.getPrevSlot(); | 
|  | SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); | 
|  |  | 
|  | // Find the registers used from NMBB in PHIs in Succ. | 
|  | SmallSet<unsigned, 8> PHISrcRegs; | 
|  | for (MachineBasicBlock::instr_iterator | 
|  | I = Succ->instr_begin(), E = Succ->instr_end(); | 
|  | I != E && I->isPHI(); ++I) { | 
|  | for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { | 
|  | if (I->getOperand(ni+1).getMBB() == NMBB) { | 
|  | MachineOperand &MO = I->getOperand(ni); | 
|  | unsigned Reg = MO.getReg(); | 
|  | PHISrcRegs.insert(Reg); | 
|  | if (MO.isUndef()) | 
|  | continue; | 
|  |  | 
|  | LiveInterval &LI = LIS->getInterval(Reg); | 
|  | VNInfo *VNI = LI.getVNInfoAt(PrevIndex); | 
|  | assert(VNI && | 
|  | "PHI sources should be live out of their predecessors."); | 
|  | LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineRegisterInfo *MRI = &getParent()->getRegInfo(); | 
|  | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { | 
|  | unsigned Reg = TargetRegisterInfo::index2VirtReg(i); | 
|  | if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) | 
|  | continue; | 
|  |  | 
|  | LiveInterval &LI = LIS->getInterval(Reg); | 
|  | if (!LI.liveAt(PrevIndex)) | 
|  | continue; | 
|  |  | 
|  | bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); | 
|  | if (isLiveOut && isLastMBB) { | 
|  | VNInfo *VNI = LI.getVNInfoAt(PrevIndex); | 
|  | assert(VNI && "LiveInterval should have VNInfo where it is live."); | 
|  | LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); | 
|  | } else if (!isLiveOut && !isLastMBB) { | 
|  | LI.removeSegment(StartIndex, EndIndex); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update all intervals for registers whose uses may have been modified by | 
|  | // updateTerminator(). | 
|  | LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); | 
|  | } | 
|  |  | 
|  | if (MachineDominatorTree *MDT = | 
|  | P.getAnalysisIfAvailable<MachineDominatorTree>()) | 
|  | MDT->recordSplitCriticalEdge(this, Succ, NMBB); | 
|  |  | 
|  | if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) | 
|  | if (MachineLoop *TIL = MLI->getLoopFor(this)) { | 
|  | // If one or the other blocks were not in a loop, the new block is not | 
|  | // either, and thus LI doesn't need to be updated. | 
|  | if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { | 
|  | if (TIL == DestLoop) { | 
|  | // Both in the same loop, the NMBB joins loop. | 
|  | DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); | 
|  | } else if (TIL->contains(DestLoop)) { | 
|  | // Edge from an outer loop to an inner loop.  Add to the outer loop. | 
|  | TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); | 
|  | } else if (DestLoop->contains(TIL)) { | 
|  | // Edge from an inner loop to an outer loop.  Add to the outer loop. | 
|  | DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); | 
|  | } else { | 
|  | // Edge from two loops with no containment relation.  Because these | 
|  | // are natural loops, we know that the destination block must be the | 
|  | // header of its loop (adding a branch into a loop elsewhere would | 
|  | // create an irreducible loop). | 
|  | assert(DestLoop->getHeader() == Succ && | 
|  | "Should not create irreducible loops!"); | 
|  | if (MachineLoop *P = DestLoop->getParentLoop()) | 
|  | P->addBasicBlockToLoop(NMBB, MLI->getBase()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return NMBB; | 
|  | } | 
|  |  | 
|  | bool MachineBasicBlock::canSplitCriticalEdge( | 
|  | const MachineBasicBlock *Succ) const { | 
|  | // Splitting the critical edge to a landing pad block is non-trivial. Don't do | 
|  | // it in this generic function. | 
|  | if (Succ->isEHPad()) | 
|  | return false; | 
|  |  | 
|  | const MachineFunction *MF = getParent(); | 
|  |  | 
|  | // Performance might be harmed on HW that implements branching using exec mask | 
|  | // where both sides of the branches are always executed. | 
|  | if (MF->getTarget().requiresStructuredCFG()) | 
|  | return false; | 
|  |  | 
|  | // We may need to update this's terminator, but we can't do that if | 
|  | // AnalyzeBranch fails. If this uses a jump table, we won't touch it. | 
|  | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); | 
|  | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | // AnalyzeBanch should modify this, since we did not allow modification. | 
|  | if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, | 
|  | /*AllowModify*/ false)) | 
|  | return false; | 
|  |  | 
|  | // Avoid bugpoint weirdness: A block may end with a conditional branch but | 
|  | // jumps to the same MBB is either case. We have duplicate CFG edges in that | 
|  | // case that we can't handle. Since this never happens in properly optimized | 
|  | // code, just skip those edges. | 
|  | if (TBB && TBB == FBB) { | 
|  | LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " | 
|  | << printMBBReference(*this) << '\n'); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's | 
|  | /// neighboring instructions so the bundle won't be broken by removing MI. | 
|  | static void unbundleSingleMI(MachineInstr *MI) { | 
|  | // Removing the first instruction in a bundle. | 
|  | if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) | 
|  | MI->unbundleFromSucc(); | 
|  | // Removing the last instruction in a bundle. | 
|  | if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) | 
|  | MI->unbundleFromPred(); | 
|  | // If MI is not bundled, or if it is internal to a bundle, the neighbor flags | 
|  | // are already fine. | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::instr_iterator | 
|  | MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { | 
|  | unbundleSingleMI(&*I); | 
|  | return Insts.erase(I); | 
|  | } | 
|  |  | 
|  | MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { | 
|  | unbundleSingleMI(MI); | 
|  | MI->clearFlag(MachineInstr::BundledPred); | 
|  | MI->clearFlag(MachineInstr::BundledSucc); | 
|  | return Insts.remove(MI); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::instr_iterator | 
|  | MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { | 
|  | assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && | 
|  | "Cannot insert instruction with bundle flags"); | 
|  | // Set the bundle flags when inserting inside a bundle. | 
|  | if (I != instr_end() && I->isBundledWithPred()) { | 
|  | MI->setFlag(MachineInstr::BundledPred); | 
|  | MI->setFlag(MachineInstr::BundledSucc); | 
|  | } | 
|  | return Insts.insert(I, MI); | 
|  | } | 
|  |  | 
|  | /// This method unlinks 'this' from the containing function, and returns it, but | 
|  | /// does not delete it. | 
|  | MachineBasicBlock *MachineBasicBlock::removeFromParent() { | 
|  | assert(getParent() && "Not embedded in a function!"); | 
|  | getParent()->remove(this); | 
|  | return this; | 
|  | } | 
|  |  | 
|  | /// This method unlinks 'this' from the containing function, and deletes it. | 
|  | void MachineBasicBlock::eraseFromParent() { | 
|  | assert(getParent() && "Not embedded in a function!"); | 
|  | getParent()->erase(this); | 
|  | } | 
|  |  | 
|  | /// Given a machine basic block that branched to 'Old', change the code and CFG | 
|  | /// so that it branches to 'New' instead. | 
|  | void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, | 
|  | MachineBasicBlock *New) { | 
|  | assert(Old != New && "Cannot replace self with self!"); | 
|  |  | 
|  | MachineBasicBlock::instr_iterator I = instr_end(); | 
|  | while (I != instr_begin()) { | 
|  | --I; | 
|  | if (!I->isTerminator()) break; | 
|  |  | 
|  | // Scan the operands of this machine instruction, replacing any uses of Old | 
|  | // with New. | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | 
|  | if (I->getOperand(i).isMBB() && | 
|  | I->getOperand(i).getMBB() == Old) | 
|  | I->getOperand(i).setMBB(New); | 
|  | } | 
|  |  | 
|  | // Update the successor information. | 
|  | replaceSuccessor(Old, New); | 
|  | } | 
|  |  | 
|  | /// Various pieces of code can cause excess edges in the CFG to be inserted.  If | 
|  | /// we have proven that MBB can only branch to DestA and DestB, remove any other | 
|  | /// MBB successors from the CFG.  DestA and DestB can be null. | 
|  | /// | 
|  | /// Besides DestA and DestB, retain other edges leading to LandingPads | 
|  | /// (currently there can be only one; we don't check or require that here). | 
|  | /// Note it is possible that DestA and/or DestB are LandingPads. | 
|  | bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, | 
|  | MachineBasicBlock *DestB, | 
|  | bool IsCond) { | 
|  | // The values of DestA and DestB frequently come from a call to the | 
|  | // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial | 
|  | // values from there. | 
|  | // | 
|  | // 1. If both DestA and DestB are null, then the block ends with no branches | 
|  | //    (it falls through to its successor). | 
|  | // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends | 
|  | //    with only an unconditional branch. | 
|  | // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends | 
|  | //    with a conditional branch that falls through to a successor (DestB). | 
|  | // 4. If DestA and DestB is set and IsCond is true, then the block ends with a | 
|  | //    conditional branch followed by an unconditional branch. DestA is the | 
|  | //    'true' destination and DestB is the 'false' destination. | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | MachineBasicBlock *FallThru = getNextNode(); | 
|  |  | 
|  | if (!DestA && !DestB) { | 
|  | // Block falls through to successor. | 
|  | DestA = FallThru; | 
|  | DestB = FallThru; | 
|  | } else if (DestA && !DestB) { | 
|  | if (IsCond) | 
|  | // Block ends in conditional jump that falls through to successor. | 
|  | DestB = FallThru; | 
|  | } else { | 
|  | assert(DestA && DestB && IsCond && | 
|  | "CFG in a bad state. Cannot correct CFG edges"); | 
|  | } | 
|  |  | 
|  | // Remove superfluous edges. I.e., those which aren't destinations of this | 
|  | // basic block, duplicate edges, or landing pads. | 
|  | SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; | 
|  | MachineBasicBlock::succ_iterator SI = succ_begin(); | 
|  | while (SI != succ_end()) { | 
|  | const MachineBasicBlock *MBB = *SI; | 
|  | if (!SeenMBBs.insert(MBB).second || | 
|  | (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { | 
|  | // This is a superfluous edge, remove it. | 
|  | SI = removeSuccessor(SI); | 
|  | Changed = true; | 
|  | } else { | 
|  | ++SI; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Changed) | 
|  | normalizeSuccProbs(); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE | 
|  | /// instructions.  Return UnknownLoc if there is none. | 
|  | DebugLoc | 
|  | MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { | 
|  | // Skip debug declarations, we don't want a DebugLoc from them. | 
|  | MBBI = skipDebugInstructionsForward(MBBI, instr_end()); | 
|  | if (MBBI != instr_end()) | 
|  | return MBBI->getDebugLoc(); | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE | 
|  | /// instructions.  Return UnknownLoc if there is none. | 
|  | DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { | 
|  | if (MBBI == instr_begin()) return {}; | 
|  | // Skip debug declarations, we don't want a DebugLoc from them. | 
|  | MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin()); | 
|  | if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | /// Find and return the merged DebugLoc of the branch instructions of the block. | 
|  | /// Return UnknownLoc if there is none. | 
|  | DebugLoc | 
|  | MachineBasicBlock::findBranchDebugLoc() { | 
|  | DebugLoc DL; | 
|  | auto TI = getFirstTerminator(); | 
|  | while (TI != end() && !TI->isBranch()) | 
|  | ++TI; | 
|  |  | 
|  | if (TI != end()) { | 
|  | DL = TI->getDebugLoc(); | 
|  | for (++TI ; TI != end() ; ++TI) | 
|  | if (TI->isBranch()) | 
|  | DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); | 
|  | } | 
|  | return DL; | 
|  | } | 
|  |  | 
|  | /// Return probability of the edge from this block to MBB. | 
|  | BranchProbability | 
|  | MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { | 
|  | if (Probs.empty()) | 
|  | return BranchProbability(1, succ_size()); | 
|  |  | 
|  | const auto &Prob = *getProbabilityIterator(Succ); | 
|  | if (Prob.isUnknown()) { | 
|  | // For unknown probabilities, collect the sum of all known ones, and evenly | 
|  | // ditribute the complemental of the sum to each unknown probability. | 
|  | unsigned KnownProbNum = 0; | 
|  | auto Sum = BranchProbability::getZero(); | 
|  | for (auto &P : Probs) { | 
|  | if (!P.isUnknown()) { | 
|  | Sum += P; | 
|  | KnownProbNum++; | 
|  | } | 
|  | } | 
|  | return Sum.getCompl() / (Probs.size() - KnownProbNum); | 
|  | } else | 
|  | return Prob; | 
|  | } | 
|  |  | 
|  | /// Set successor probability of a given iterator. | 
|  | void MachineBasicBlock::setSuccProbability(succ_iterator I, | 
|  | BranchProbability Prob) { | 
|  | assert(!Prob.isUnknown()); | 
|  | if (Probs.empty()) | 
|  | return; | 
|  | *getProbabilityIterator(I) = Prob; | 
|  | } | 
|  |  | 
|  | /// Return probability iterator corresonding to the I successor iterator | 
|  | MachineBasicBlock::const_probability_iterator | 
|  | MachineBasicBlock::getProbabilityIterator( | 
|  | MachineBasicBlock::const_succ_iterator I) const { | 
|  | assert(Probs.size() == Successors.size() && "Async probability list!"); | 
|  | const size_t index = std::distance(Successors.begin(), I); | 
|  | assert(index < Probs.size() && "Not a current successor!"); | 
|  | return Probs.begin() + index; | 
|  | } | 
|  |  | 
|  | /// Return probability iterator corresonding to the I successor iterator. | 
|  | MachineBasicBlock::probability_iterator | 
|  | MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { | 
|  | assert(Probs.size() == Successors.size() && "Async probability list!"); | 
|  | const size_t index = std::distance(Successors.begin(), I); | 
|  | assert(index < Probs.size() && "Not a current successor!"); | 
|  | return Probs.begin() + index; | 
|  | } | 
|  |  | 
|  | /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed | 
|  | /// as of just before "MI". | 
|  | /// | 
|  | /// Search is localised to a neighborhood of | 
|  | /// Neighborhood instructions before (searching for defs or kills) and N | 
|  | /// instructions after (searching just for defs) MI. | 
|  | MachineBasicBlock::LivenessQueryResult | 
|  | MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, | 
|  | unsigned Reg, const_iterator Before, | 
|  | unsigned Neighborhood) const { | 
|  | unsigned N = Neighborhood; | 
|  |  | 
|  | // Try searching forwards from Before, looking for reads or defs. | 
|  | const_iterator I(Before); | 
|  | for (; I != end() && N > 0; ++I) { | 
|  | if (I->isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | --N; | 
|  |  | 
|  | MachineOperandIteratorBase::PhysRegInfo Info = | 
|  | ConstMIOperands(*I).analyzePhysReg(Reg, TRI); | 
|  |  | 
|  | // Register is live when we read it here. | 
|  | if (Info.Read) | 
|  | return LQR_Live; | 
|  | // Register is dead if we can fully overwrite or clobber it here. | 
|  | if (Info.FullyDefined || Info.Clobbered) | 
|  | return LQR_Dead; | 
|  | } | 
|  |  | 
|  | // If we reached the end, it is safe to clobber Reg at the end of a block of | 
|  | // no successor has it live in. | 
|  | if (I == end()) { | 
|  | for (MachineBasicBlock *S : successors()) { | 
|  | for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { | 
|  | if (TRI->regsOverlap(LI.PhysReg, Reg)) | 
|  | return LQR_Live; | 
|  | } | 
|  | } | 
|  |  | 
|  | return LQR_Dead; | 
|  | } | 
|  |  | 
|  |  | 
|  | N = Neighborhood; | 
|  |  | 
|  | // Start by searching backwards from Before, looking for kills, reads or defs. | 
|  | I = const_iterator(Before); | 
|  | // If this is the first insn in the block, don't search backwards. | 
|  | if (I != begin()) { | 
|  | do { | 
|  | --I; | 
|  |  | 
|  | if (I->isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | --N; | 
|  |  | 
|  | MachineOperandIteratorBase::PhysRegInfo Info = | 
|  | ConstMIOperands(*I).analyzePhysReg(Reg, TRI); | 
|  |  | 
|  | // Defs happen after uses so they take precedence if both are present. | 
|  |  | 
|  | // Register is dead after a dead def of the full register. | 
|  | if (Info.DeadDef) | 
|  | return LQR_Dead; | 
|  | // Register is (at least partially) live after a def. | 
|  | if (Info.Defined) { | 
|  | if (!Info.PartialDeadDef) | 
|  | return LQR_Live; | 
|  | // As soon as we saw a partial definition (dead or not), | 
|  | // we cannot tell if the value is partial live without | 
|  | // tracking the lanemasks. We are not going to do this, | 
|  | // so fall back on the remaining of the analysis. | 
|  | break; | 
|  | } | 
|  | // Register is dead after a full kill or clobber and no def. | 
|  | if (Info.Killed || Info.Clobbered) | 
|  | return LQR_Dead; | 
|  | // Register must be live if we read it. | 
|  | if (Info.Read) | 
|  | return LQR_Live; | 
|  |  | 
|  | } while (I != begin() && N > 0); | 
|  | } | 
|  |  | 
|  | // Did we get to the start of the block? | 
|  | if (I == begin()) { | 
|  | // If so, the register's state is definitely defined by the live-in state. | 
|  | for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) | 
|  | if (TRI->regsOverlap(LI.PhysReg, Reg)) | 
|  | return LQR_Live; | 
|  |  | 
|  | return LQR_Dead; | 
|  | } | 
|  |  | 
|  | // At this point we have no idea of the liveness of the register. | 
|  | return LQR_Unknown; | 
|  | } | 
|  |  | 
|  | const uint32_t * | 
|  | MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { | 
|  | // EH funclet entry does not preserve any registers. | 
|  | return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; | 
|  | } | 
|  |  | 
|  | const uint32_t * | 
|  | MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { | 
|  | // If we see a return block with successors, this must be a funclet return, | 
|  | // which does not preserve any registers. If there are no successors, we don't | 
|  | // care what kind of return it is, putting a mask after it is a no-op. | 
|  | return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; | 
|  | } | 
|  |  | 
|  | void MachineBasicBlock::clearLiveIns() { | 
|  | LiveIns.clear(); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { | 
|  | assert(getParent()->getProperties().hasProperty( | 
|  | MachineFunctionProperties::Property::TracksLiveness) && | 
|  | "Liveness information is accurate"); | 
|  | return LiveIns.begin(); | 
|  | } |