|  | //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The inline spiller modifies the machine function directly instead of | 
|  | // inserting spills and restores in VirtRegMap. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "LiveRangeCalc.h" | 
|  | #include "Spiller.h" | 
|  | #include "SplitKit.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/MapVector.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/CodeGen/LiveInterval.h" | 
|  | #include "llvm/CodeGen/LiveIntervals.h" | 
|  | #include "llvm/CodeGen/LiveRangeEdit.h" | 
|  | #include "llvm/CodeGen/LiveStacks.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineInstrBundle.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SlotIndexes.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/CodeGen/VirtRegMap.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/Support/BlockFrequency.h" | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "regalloc" | 
|  |  | 
|  | STATISTIC(NumSpilledRanges,   "Number of spilled live ranges"); | 
|  | STATISTIC(NumSnippets,        "Number of spilled snippets"); | 
|  | STATISTIC(NumSpills,          "Number of spills inserted"); | 
|  | STATISTIC(NumSpillsRemoved,   "Number of spills removed"); | 
|  | STATISTIC(NumReloads,         "Number of reloads inserted"); | 
|  | STATISTIC(NumReloadsRemoved,  "Number of reloads removed"); | 
|  | STATISTIC(NumFolded,          "Number of folded stack accesses"); | 
|  | STATISTIC(NumFoldedLoads,     "Number of folded loads"); | 
|  | STATISTIC(NumRemats,          "Number of rematerialized defs for spilling"); | 
|  |  | 
|  | static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, | 
|  | cl::desc("Disable inline spill hoisting")); | 
|  | static cl::opt<bool> | 
|  | RestrictStatepointRemat("restrict-statepoint-remat", | 
|  | cl::init(false), cl::Hidden, | 
|  | cl::desc("Restrict remat for statepoint operands")); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class HoistSpillHelper : private LiveRangeEdit::Delegate { | 
|  | MachineFunction &MF; | 
|  | LiveIntervals &LIS; | 
|  | LiveStacks &LSS; | 
|  | AliasAnalysis *AA; | 
|  | MachineDominatorTree &MDT; | 
|  | MachineLoopInfo &Loops; | 
|  | VirtRegMap &VRM; | 
|  | MachineRegisterInfo &MRI; | 
|  | const TargetInstrInfo &TII; | 
|  | const TargetRegisterInfo &TRI; | 
|  | const MachineBlockFrequencyInfo &MBFI; | 
|  |  | 
|  | InsertPointAnalysis IPA; | 
|  |  | 
|  | // Map from StackSlot to the LiveInterval of the original register. | 
|  | // Note the LiveInterval of the original register may have been deleted | 
|  | // after it is spilled. We keep a copy here to track the range where | 
|  | // spills can be moved. | 
|  | DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; | 
|  |  | 
|  | // Map from pair of (StackSlot and Original VNI) to a set of spills which | 
|  | // have the same stackslot and have equal values defined by Original VNI. | 
|  | // These spills are mergeable and are hoist candiates. | 
|  | using MergeableSpillsMap = | 
|  | MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; | 
|  | MergeableSpillsMap MergeableSpills; | 
|  |  | 
|  | /// This is the map from original register to a set containing all its | 
|  | /// siblings. To hoist a spill to another BB, we need to find out a live | 
|  | /// sibling there and use it as the source of the new spill. | 
|  | DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap; | 
|  |  | 
|  | bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, | 
|  | MachineBasicBlock &BB, unsigned &LiveReg); | 
|  |  | 
|  | void rmRedundantSpills( | 
|  | SmallPtrSet<MachineInstr *, 16> &Spills, | 
|  | SmallVectorImpl<MachineInstr *> &SpillsToRm, | 
|  | DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); | 
|  |  | 
|  | void getVisitOrders( | 
|  | MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, | 
|  | SmallVectorImpl<MachineDomTreeNode *> &Orders, | 
|  | SmallVectorImpl<MachineInstr *> &SpillsToRm, | 
|  | DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, | 
|  | DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); | 
|  |  | 
|  | void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, | 
|  | SmallPtrSet<MachineInstr *, 16> &Spills, | 
|  | SmallVectorImpl<MachineInstr *> &SpillsToRm, | 
|  | DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); | 
|  |  | 
|  | public: | 
|  | HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, | 
|  | VirtRegMap &vrm) | 
|  | : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), | 
|  | LSS(pass.getAnalysis<LiveStacks>()), | 
|  | AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), | 
|  | MDT(pass.getAnalysis<MachineDominatorTree>()), | 
|  | Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), | 
|  | MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), | 
|  | TRI(*mf.getSubtarget().getRegisterInfo()), | 
|  | MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), | 
|  | IPA(LIS, mf.getNumBlockIDs()) {} | 
|  |  | 
|  | void addToMergeableSpills(MachineInstr &Spill, int StackSlot, | 
|  | unsigned Original); | 
|  | bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); | 
|  | void hoistAllSpills(); | 
|  | void LRE_DidCloneVirtReg(unsigned, unsigned) override; | 
|  | }; | 
|  |  | 
|  | class InlineSpiller : public Spiller { | 
|  | MachineFunction &MF; | 
|  | LiveIntervals &LIS; | 
|  | LiveStacks &LSS; | 
|  | AliasAnalysis *AA; | 
|  | MachineDominatorTree &MDT; | 
|  | MachineLoopInfo &Loops; | 
|  | VirtRegMap &VRM; | 
|  | MachineRegisterInfo &MRI; | 
|  | const TargetInstrInfo &TII; | 
|  | const TargetRegisterInfo &TRI; | 
|  | const MachineBlockFrequencyInfo &MBFI; | 
|  |  | 
|  | // Variables that are valid during spill(), but used by multiple methods. | 
|  | LiveRangeEdit *Edit; | 
|  | LiveInterval *StackInt; | 
|  | int StackSlot; | 
|  | unsigned Original; | 
|  |  | 
|  | // All registers to spill to StackSlot, including the main register. | 
|  | SmallVector<unsigned, 8> RegsToSpill; | 
|  |  | 
|  | // All COPY instructions to/from snippets. | 
|  | // They are ignored since both operands refer to the same stack slot. | 
|  | SmallPtrSet<MachineInstr*, 8> SnippetCopies; | 
|  |  | 
|  | // Values that failed to remat at some point. | 
|  | SmallPtrSet<VNInfo*, 8> UsedValues; | 
|  |  | 
|  | // Dead defs generated during spilling. | 
|  | SmallVector<MachineInstr*, 8> DeadDefs; | 
|  |  | 
|  | // Object records spills information and does the hoisting. | 
|  | HoistSpillHelper HSpiller; | 
|  |  | 
|  | ~InlineSpiller() override = default; | 
|  |  | 
|  | public: | 
|  | InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) | 
|  | : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), | 
|  | LSS(pass.getAnalysis<LiveStacks>()), | 
|  | AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), | 
|  | MDT(pass.getAnalysis<MachineDominatorTree>()), | 
|  | Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), | 
|  | MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), | 
|  | TRI(*mf.getSubtarget().getRegisterInfo()), | 
|  | MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), | 
|  | HSpiller(pass, mf, vrm) {} | 
|  |  | 
|  | void spill(LiveRangeEdit &) override; | 
|  | void postOptimization() override; | 
|  |  | 
|  | private: | 
|  | bool isSnippet(const LiveInterval &SnipLI); | 
|  | void collectRegsToSpill(); | 
|  |  | 
|  | bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); } | 
|  |  | 
|  | bool isSibling(unsigned Reg); | 
|  | bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); | 
|  | void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); | 
|  |  | 
|  | void markValueUsed(LiveInterval*, VNInfo*); | 
|  | bool canGuaranteeAssignmentAfterRemat(unsigned VReg, MachineInstr &MI); | 
|  | bool reMaterializeFor(LiveInterval &, MachineInstr &MI); | 
|  | void reMaterializeAll(); | 
|  |  | 
|  | bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); | 
|  | bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, | 
|  | MachineInstr *LoadMI = nullptr); | 
|  | void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); | 
|  | void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); | 
|  |  | 
|  | void spillAroundUses(unsigned Reg); | 
|  | void spillAll(); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | Spiller::~Spiller() = default; | 
|  |  | 
|  | void Spiller::anchor() {} | 
|  |  | 
|  | Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass, | 
|  | MachineFunction &mf, | 
|  | VirtRegMap &vrm) { | 
|  | return new InlineSpiller(pass, mf, vrm); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                Snippets | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // When spilling a virtual register, we also spill any snippets it is connected | 
|  | // to. The snippets are small live ranges that only have a single real use, | 
|  | // leftovers from live range splitting. Spilling them enables memory operand | 
|  | // folding or tightens the live range around the single use. | 
|  | // | 
|  | // This minimizes register pressure and maximizes the store-to-load distance for | 
|  | // spill slots which can be important in tight loops. | 
|  |  | 
|  | /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, | 
|  | /// otherwise return 0. | 
|  | static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) { | 
|  | if (!MI.isFullCopy()) | 
|  | return 0; | 
|  | if (MI.getOperand(0).getReg() == Reg) | 
|  | return MI.getOperand(1).getReg(); | 
|  | if (MI.getOperand(1).getReg() == Reg) | 
|  | return MI.getOperand(0).getReg(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// isSnippet - Identify if a live interval is a snippet that should be spilled. | 
|  | /// It is assumed that SnipLI is a virtual register with the same original as | 
|  | /// Edit->getReg(). | 
|  | bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { | 
|  | unsigned Reg = Edit->getReg(); | 
|  |  | 
|  | // A snippet is a tiny live range with only a single instruction using it | 
|  | // besides copies to/from Reg or spills/fills. We accept: | 
|  | // | 
|  | //   %snip = COPY %Reg / FILL fi# | 
|  | //   %snip = USE %snip | 
|  | //   %Reg = COPY %snip / SPILL %snip, fi# | 
|  | // | 
|  | if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *UseMI = nullptr; | 
|  |  | 
|  | // Check that all uses satisfy our criteria. | 
|  | for (MachineRegisterInfo::reg_instr_nodbg_iterator | 
|  | RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), | 
|  | E = MRI.reg_instr_nodbg_end(); RI != E; ) { | 
|  | MachineInstr &MI = *RI++; | 
|  |  | 
|  | // Allow copies to/from Reg. | 
|  | if (isFullCopyOf(MI, Reg)) | 
|  | continue; | 
|  |  | 
|  | // Allow stack slot loads. | 
|  | int FI; | 
|  | if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) | 
|  | continue; | 
|  |  | 
|  | // Allow stack slot stores. | 
|  | if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) | 
|  | continue; | 
|  |  | 
|  | // Allow a single additional instruction. | 
|  | if (UseMI && &MI != UseMI) | 
|  | return false; | 
|  | UseMI = &MI; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// collectRegsToSpill - Collect live range snippets that only have a single | 
|  | /// real use. | 
|  | void InlineSpiller::collectRegsToSpill() { | 
|  | unsigned Reg = Edit->getReg(); | 
|  |  | 
|  | // Main register always spills. | 
|  | RegsToSpill.assign(1, Reg); | 
|  | SnippetCopies.clear(); | 
|  |  | 
|  | // Snippets all have the same original, so there can't be any for an original | 
|  | // register. | 
|  | if (Original == Reg) | 
|  | return; | 
|  |  | 
|  | for (MachineRegisterInfo::reg_instr_iterator | 
|  | RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { | 
|  | MachineInstr &MI = *RI++; | 
|  | unsigned SnipReg = isFullCopyOf(MI, Reg); | 
|  | if (!isSibling(SnipReg)) | 
|  | continue; | 
|  | LiveInterval &SnipLI = LIS.getInterval(SnipReg); | 
|  | if (!isSnippet(SnipLI)) | 
|  | continue; | 
|  | SnippetCopies.insert(&MI); | 
|  | if (isRegToSpill(SnipReg)) | 
|  | continue; | 
|  | RegsToSpill.push_back(SnipReg); | 
|  | LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); | 
|  | ++NumSnippets; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool InlineSpiller::isSibling(unsigned Reg) { | 
|  | return TargetRegisterInfo::isVirtualRegister(Reg) && | 
|  | VRM.getOriginal(Reg) == Original; | 
|  | } | 
|  |  | 
|  | /// It is beneficial to spill to earlier place in the same BB in case | 
|  | /// as follows: | 
|  | /// There is an alternative def earlier in the same MBB. | 
|  | /// Hoist the spill as far as possible in SpillMBB. This can ease | 
|  | /// register pressure: | 
|  | /// | 
|  | ///   x = def | 
|  | ///   y = use x | 
|  | ///   s = copy x | 
|  | /// | 
|  | /// Hoisting the spill of s to immediately after the def removes the | 
|  | /// interference between x and y: | 
|  | /// | 
|  | ///   x = def | 
|  | ///   spill x | 
|  | ///   y = use killed x | 
|  | /// | 
|  | /// This hoist only helps when the copy kills its source. | 
|  | /// | 
|  | bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, | 
|  | MachineInstr &CopyMI) { | 
|  | SlotIndex Idx = LIS.getInstructionIndex(CopyMI); | 
|  | #ifndef NDEBUG | 
|  | VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); | 
|  | assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); | 
|  | #endif | 
|  |  | 
|  | unsigned SrcReg = CopyMI.getOperand(1).getReg(); | 
|  | LiveInterval &SrcLI = LIS.getInterval(SrcReg); | 
|  | VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); | 
|  | LiveQueryResult SrcQ = SrcLI.Query(Idx); | 
|  | MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); | 
|  | if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) | 
|  | return false; | 
|  |  | 
|  | // Conservatively extend the stack slot range to the range of the original | 
|  | // value. We may be able to do better with stack slot coloring by being more | 
|  | // careful here. | 
|  | assert(StackInt && "No stack slot assigned yet."); | 
|  | LiveInterval &OrigLI = LIS.getInterval(Original); | 
|  | VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); | 
|  | StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); | 
|  | LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " | 
|  | << *StackInt << '\n'); | 
|  |  | 
|  | // We are going to spill SrcVNI immediately after its def, so clear out | 
|  | // any later spills of the same value. | 
|  | eliminateRedundantSpills(SrcLI, SrcVNI); | 
|  |  | 
|  | MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); | 
|  | MachineBasicBlock::iterator MII; | 
|  | if (SrcVNI->isPHIDef()) | 
|  | MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); | 
|  | else { | 
|  | MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); | 
|  | assert(DefMI && "Defining instruction disappeared"); | 
|  | MII = DefMI; | 
|  | ++MII; | 
|  | } | 
|  | // Insert spill without kill flag immediately after def. | 
|  | TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, | 
|  | MRI.getRegClass(SrcReg), &TRI); | 
|  | --MII; // Point to store instruction. | 
|  | LIS.InsertMachineInstrInMaps(*MII); | 
|  | LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); | 
|  |  | 
|  | HSpiller.addToMergeableSpills(*MII, StackSlot, Original); | 
|  | ++NumSpills; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any | 
|  | /// redundant spills of this value in SLI.reg and sibling copies. | 
|  | void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { | 
|  | assert(VNI && "Missing value"); | 
|  | SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; | 
|  | WorkList.push_back(std::make_pair(&SLI, VNI)); | 
|  | assert(StackInt && "No stack slot assigned yet."); | 
|  |  | 
|  | do { | 
|  | LiveInterval *LI; | 
|  | std::tie(LI, VNI) = WorkList.pop_back_val(); | 
|  | unsigned Reg = LI->reg; | 
|  | LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' | 
|  | << VNI->def << " in " << *LI << '\n'); | 
|  |  | 
|  | // Regs to spill are taken care of. | 
|  | if (isRegToSpill(Reg)) | 
|  | continue; | 
|  |  | 
|  | // Add all of VNI's live range to StackInt. | 
|  | StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); | 
|  | LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); | 
|  |  | 
|  | // Find all spills and copies of VNI. | 
|  | for (MachineRegisterInfo::use_instr_nodbg_iterator | 
|  | UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); | 
|  | UI != E; ) { | 
|  | MachineInstr &MI = *UI++; | 
|  | if (!MI.isCopy() && !MI.mayStore()) | 
|  | continue; | 
|  | SlotIndex Idx = LIS.getInstructionIndex(MI); | 
|  | if (LI->getVNInfoAt(Idx) != VNI) | 
|  | continue; | 
|  |  | 
|  | // Follow sibling copies down the dominator tree. | 
|  | if (unsigned DstReg = isFullCopyOf(MI, Reg)) { | 
|  | if (isSibling(DstReg)) { | 
|  | LiveInterval &DstLI = LIS.getInterval(DstReg); | 
|  | VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); | 
|  | assert(DstVNI && "Missing defined value"); | 
|  | assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); | 
|  | WorkList.push_back(std::make_pair(&DstLI, DstVNI)); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Erase spills. | 
|  | int FI; | 
|  | if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { | 
|  | LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); | 
|  | // eliminateDeadDefs won't normally remove stores, so switch opcode. | 
|  | MI.setDesc(TII.get(TargetOpcode::KILL)); | 
|  | DeadDefs.push_back(&MI); | 
|  | ++NumSpillsRemoved; | 
|  | if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) | 
|  | --NumSpills; | 
|  | } | 
|  | } | 
|  | } while (!WorkList.empty()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            Rematerialization | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// markValueUsed - Remember that VNI failed to rematerialize, so its defining | 
|  | /// instruction cannot be eliminated. See through snippet copies | 
|  | void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { | 
|  | SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; | 
|  | WorkList.push_back(std::make_pair(LI, VNI)); | 
|  | do { | 
|  | std::tie(LI, VNI) = WorkList.pop_back_val(); | 
|  | if (!UsedValues.insert(VNI).second) | 
|  | continue; | 
|  |  | 
|  | if (VNI->isPHIDef()) { | 
|  | MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); | 
|  | for (MachineBasicBlock *P : MBB->predecessors()) { | 
|  | VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); | 
|  | if (PVNI) | 
|  | WorkList.push_back(std::make_pair(LI, PVNI)); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Follow snippet copies. | 
|  | MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); | 
|  | if (!SnippetCopies.count(MI)) | 
|  | continue; | 
|  | LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); | 
|  | assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); | 
|  | VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); | 
|  | assert(SnipVNI && "Snippet undefined before copy"); | 
|  | WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); | 
|  | } while (!WorkList.empty()); | 
|  | } | 
|  |  | 
|  | bool InlineSpiller::canGuaranteeAssignmentAfterRemat(unsigned VReg, | 
|  | MachineInstr &MI) { | 
|  | if (!RestrictStatepointRemat) | 
|  | return true; | 
|  | // Here's a quick explanation of the problem we're trying to handle here: | 
|  | // * There are some pseudo instructions with more vreg uses than there are | 
|  | //   physical registers on the machine. | 
|  | // * This is normally handled by spilling the vreg, and folding the reload | 
|  | //   into the user instruction.  (Thus decreasing the number of used vregs | 
|  | //   until the remainder can be assigned to physregs.) | 
|  | // * However, since we may try to spill vregs in any order, we can end up | 
|  | //   trying to spill each operand to the instruction, and then rematting it | 
|  | //   instead.  When that happens, the new live intervals (for the remats) are | 
|  | //   expected to be trivially assignable (i.e. RS_Done).  However, since we | 
|  | //   may have more remats than physregs, we're guaranteed to fail to assign | 
|  | //   one. | 
|  | // At the moment, we only handle this for STATEPOINTs since they're the only | 
|  | // psuedo op where we've seen this.  If we start seeing other instructions | 
|  | // with the same problem, we need to revisit this. | 
|  | return (MI.getOpcode() != TargetOpcode::STATEPOINT); | 
|  | } | 
|  |  | 
|  | /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. | 
|  | bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { | 
|  | // Analyze instruction | 
|  | SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; | 
|  | MIBundleOperands::VirtRegInfo RI = | 
|  | MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); | 
|  |  | 
|  | if (!RI.Reads) | 
|  | return false; | 
|  |  | 
|  | SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); | 
|  | VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); | 
|  |  | 
|  | if (!ParentVNI) { | 
|  | LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) | 
|  | MO.setIsUndef(); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (SnippetCopies.count(&MI)) | 
|  | return false; | 
|  |  | 
|  | LiveInterval &OrigLI = LIS.getInterval(Original); | 
|  | VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); | 
|  | LiveRangeEdit::Remat RM(ParentVNI); | 
|  | RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); | 
|  |  | 
|  | if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { | 
|  | markValueUsed(&VirtReg, ParentVNI); | 
|  | LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the instruction also writes VirtReg.reg, it had better not require the | 
|  | // same register for uses and defs. | 
|  | if (RI.Tied) { | 
|  | markValueUsed(&VirtReg, ParentVNI); | 
|  | LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Before rematerializing into a register for a single instruction, try to | 
|  | // fold a load into the instruction. That avoids allocating a new register. | 
|  | if (RM.OrigMI->canFoldAsLoad() && | 
|  | foldMemoryOperand(Ops, RM.OrigMI)) { | 
|  | Edit->markRematerialized(RM.ParentVNI); | 
|  | ++NumFoldedLoads; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we can't guarantee that we'll be able to actually assign the new vreg, | 
|  | // we can't remat. | 
|  | if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg, MI)) { | 
|  | markValueUsed(&VirtReg, ParentVNI); | 
|  | LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Allocate a new register for the remat. | 
|  | unsigned NewVReg = Edit->createFrom(Original); | 
|  |  | 
|  | // Finally we can rematerialize OrigMI before MI. | 
|  | SlotIndex DefIdx = | 
|  | Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); | 
|  |  | 
|  | // We take the DebugLoc from MI, since OrigMI may be attributed to a | 
|  | // different source location. | 
|  | auto *NewMI = LIS.getInstructionFromIndex(DefIdx); | 
|  | NewMI->setDebugLoc(MI.getDebugLoc()); | 
|  |  | 
|  | (void)DefIdx; | 
|  | LLVM_DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t' | 
|  | << *LIS.getInstructionFromIndex(DefIdx)); | 
|  |  | 
|  | // Replace operands | 
|  | for (const auto &OpPair : Ops) { | 
|  | MachineOperand &MO = OpPair.first->getOperand(OpPair.second); | 
|  | if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { | 
|  | MO.setReg(NewVReg); | 
|  | MO.setIsKill(); | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n'); | 
|  |  | 
|  | ++NumRemats; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// reMaterializeAll - Try to rematerialize as many uses as possible, | 
|  | /// and trim the live ranges after. | 
|  | void InlineSpiller::reMaterializeAll() { | 
|  | if (!Edit->anyRematerializable(AA)) | 
|  | return; | 
|  |  | 
|  | UsedValues.clear(); | 
|  |  | 
|  | // Try to remat before all uses of snippets. | 
|  | bool anyRemat = false; | 
|  | for (unsigned Reg : RegsToSpill) { | 
|  | LiveInterval &LI = LIS.getInterval(Reg); | 
|  | for (MachineRegisterInfo::reg_bundle_iterator | 
|  | RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); | 
|  | RegI != E; ) { | 
|  | MachineInstr &MI = *RegI++; | 
|  |  | 
|  | // Debug values are not allowed to affect codegen. | 
|  | if (MI.isDebugValue()) | 
|  | continue; | 
|  |  | 
|  | assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " | 
|  | "instruction that isn't a DBG_VALUE"); | 
|  |  | 
|  | anyRemat |= reMaterializeFor(LI, MI); | 
|  | } | 
|  | } | 
|  | if (!anyRemat) | 
|  | return; | 
|  |  | 
|  | // Remove any values that were completely rematted. | 
|  | for (unsigned Reg : RegsToSpill) { | 
|  | LiveInterval &LI = LIS.getInterval(Reg); | 
|  | for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); | 
|  | I != E; ++I) { | 
|  | VNInfo *VNI = *I; | 
|  | if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) | 
|  | continue; | 
|  | MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); | 
|  | MI->addRegisterDead(Reg, &TRI); | 
|  | if (!MI->allDefsAreDead()) | 
|  | continue; | 
|  | LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); | 
|  | DeadDefs.push_back(MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Eliminate dead code after remat. Note that some snippet copies may be | 
|  | // deleted here. | 
|  | if (DeadDefs.empty()) | 
|  | return; | 
|  | LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); | 
|  | Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); | 
|  |  | 
|  | // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions | 
|  | // after rematerialization.  To remove a VNI for a vreg from its LiveInterval, | 
|  | // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all | 
|  | // removed, PHI VNI are still left in the LiveInterval. | 
|  | // So to get rid of unused reg, we need to check whether it has non-dbg | 
|  | // reference instead of whether it has non-empty interval. | 
|  | unsigned ResultPos = 0; | 
|  | for (unsigned Reg : RegsToSpill) { | 
|  | if (MRI.reg_nodbg_empty(Reg)) { | 
|  | Edit->eraseVirtReg(Reg); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(LIS.hasInterval(Reg) && | 
|  | (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && | 
|  | "Empty and not used live-range?!"); | 
|  |  | 
|  | RegsToSpill[ResultPos++] = Reg; | 
|  | } | 
|  | RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); | 
|  | LLVM_DEBUG(dbgs() << RegsToSpill.size() | 
|  | << " registers to spill after remat.\n"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                 Spilling | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// If MI is a load or store of StackSlot, it can be removed. | 
|  | bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { | 
|  | int FI = 0; | 
|  | unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI); | 
|  | bool IsLoad = InstrReg; | 
|  | if (!IsLoad) | 
|  | InstrReg = TII.isStoreToStackSlot(*MI, FI); | 
|  |  | 
|  | // We have a stack access. Is it the right register and slot? | 
|  | if (InstrReg != Reg || FI != StackSlot) | 
|  | return false; | 
|  |  | 
|  | if (!IsLoad) | 
|  | HSpiller.rmFromMergeableSpills(*MI, StackSlot); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); | 
|  | LIS.RemoveMachineInstrFromMaps(*MI); | 
|  | MI->eraseFromParent(); | 
|  |  | 
|  | if (IsLoad) { | 
|  | ++NumReloadsRemoved; | 
|  | --NumReloads; | 
|  | } else { | 
|  | ++NumSpillsRemoved; | 
|  | --NumSpills; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD | 
|  | // Dump the range of instructions from B to E with their slot indexes. | 
|  | static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, | 
|  | MachineBasicBlock::iterator E, | 
|  | LiveIntervals const &LIS, | 
|  | const char *const header, | 
|  | unsigned VReg =0) { | 
|  | char NextLine = '\n'; | 
|  | char SlotIndent = '\t'; | 
|  |  | 
|  | if (std::next(B) == E) { | 
|  | NextLine = ' '; | 
|  | SlotIndent = ' '; | 
|  | } | 
|  |  | 
|  | dbgs() << '\t' << header << ": " << NextLine; | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = B; I != E; ++I) { | 
|  | SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); | 
|  |  | 
|  | // If a register was passed in and this instruction has it as a | 
|  | // destination that is marked as an early clobber, print the | 
|  | // early-clobber slot index. | 
|  | if (VReg) { | 
|  | MachineOperand *MO = I->findRegisterDefOperand(VReg); | 
|  | if (MO && MO->isEarlyClobber()) | 
|  | Idx = Idx.getRegSlot(true); | 
|  | } | 
|  |  | 
|  | dbgs() << SlotIndent << Idx << '\t' << *I; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// foldMemoryOperand - Try folding stack slot references in Ops into their | 
|  | /// instructions. | 
|  | /// | 
|  | /// @param Ops    Operand indices from analyzeVirtReg(). | 
|  | /// @param LoadMI Load instruction to use instead of stack slot when non-null. | 
|  | /// @return       True on success. | 
|  | bool InlineSpiller:: | 
|  | foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, | 
|  | MachineInstr *LoadMI) { | 
|  | if (Ops.empty()) | 
|  | return false; | 
|  | // Don't attempt folding in bundles. | 
|  | MachineInstr *MI = Ops.front().first; | 
|  | if (Ops.back().first != MI || MI->isBundled()) | 
|  | return false; | 
|  |  | 
|  | bool WasCopy = MI->isCopy(); | 
|  | unsigned ImpReg = 0; | 
|  |  | 
|  | // Spill subregs if the target allows it. | 
|  | // We always want to spill subregs for stackmap/patchpoint pseudos. | 
|  | bool SpillSubRegs = TII.isSubregFoldable() || | 
|  | MI->getOpcode() == TargetOpcode::STATEPOINT || | 
|  | MI->getOpcode() == TargetOpcode::PATCHPOINT || | 
|  | MI->getOpcode() == TargetOpcode::STACKMAP; | 
|  |  | 
|  | // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied | 
|  | // operands. | 
|  | SmallVector<unsigned, 8> FoldOps; | 
|  | for (const auto &OpPair : Ops) { | 
|  | unsigned Idx = OpPair.second; | 
|  | assert(MI == OpPair.first && "Instruction conflict during operand folding"); | 
|  | MachineOperand &MO = MI->getOperand(Idx); | 
|  | if (MO.isImplicit()) { | 
|  | ImpReg = MO.getReg(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!SpillSubRegs && MO.getSubReg()) | 
|  | return false; | 
|  | // We cannot fold a load instruction into a def. | 
|  | if (LoadMI && MO.isDef()) | 
|  | return false; | 
|  | // Tied use operands should not be passed to foldMemoryOperand. | 
|  | if (!MI->isRegTiedToDefOperand(Idx)) | 
|  | FoldOps.push_back(Idx); | 
|  | } | 
|  |  | 
|  | // If we only have implicit uses, we won't be able to fold that. | 
|  | // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! | 
|  | if (FoldOps.empty()) | 
|  | return false; | 
|  |  | 
|  | MachineInstrSpan MIS(MI); | 
|  |  | 
|  | MachineInstr *FoldMI = | 
|  | LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) | 
|  | : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS); | 
|  | if (!FoldMI) | 
|  | return false; | 
|  |  | 
|  | // Remove LIS for any dead defs in the original MI not in FoldMI. | 
|  | for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { | 
|  | if (!MO->isReg()) | 
|  | continue; | 
|  | unsigned Reg = MO->getReg(); | 
|  | if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) || | 
|  | MRI.isReserved(Reg)) { | 
|  | continue; | 
|  | } | 
|  | // Skip non-Defs, including undef uses and internal reads. | 
|  | if (MO->isUse()) | 
|  | continue; | 
|  | MIBundleOperands::PhysRegInfo RI = | 
|  | MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI); | 
|  | if (RI.FullyDefined) | 
|  | continue; | 
|  | // FoldMI does not define this physreg. Remove the LI segment. | 
|  | assert(MO->isDead() && "Cannot fold physreg def"); | 
|  | SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); | 
|  | LIS.removePhysRegDefAt(Reg, Idx); | 
|  | } | 
|  |  | 
|  | int FI; | 
|  | if (TII.isStoreToStackSlot(*MI, FI) && | 
|  | HSpiller.rmFromMergeableSpills(*MI, FI)) | 
|  | --NumSpills; | 
|  | LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); | 
|  | MI->eraseFromParent(); | 
|  |  | 
|  | // Insert any new instructions other than FoldMI into the LIS maps. | 
|  | assert(!MIS.empty() && "Unexpected empty span of instructions!"); | 
|  | for (MachineInstr &MI : MIS) | 
|  | if (&MI != FoldMI) | 
|  | LIS.InsertMachineInstrInMaps(MI); | 
|  |  | 
|  | // TII.foldMemoryOperand may have left some implicit operands on the | 
|  | // instruction.  Strip them. | 
|  | if (ImpReg) | 
|  | for (unsigned i = FoldMI->getNumOperands(); i; --i) { | 
|  | MachineOperand &MO = FoldMI->getOperand(i - 1); | 
|  | if (!MO.isReg() || !MO.isImplicit()) | 
|  | break; | 
|  | if (MO.getReg() == ImpReg) | 
|  | FoldMI->RemoveOperand(i - 1); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, | 
|  | "folded")); | 
|  |  | 
|  | if (!WasCopy) | 
|  | ++NumFolded; | 
|  | else if (Ops.front().second == 0) { | 
|  | ++NumSpills; | 
|  | HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); | 
|  | } else | 
|  | ++NumReloads; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void InlineSpiller::insertReload(unsigned NewVReg, | 
|  | SlotIndex Idx, | 
|  | MachineBasicBlock::iterator MI) { | 
|  | MachineBasicBlock &MBB = *MI->getParent(); | 
|  |  | 
|  | MachineInstrSpan MIS(MI); | 
|  | TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, | 
|  | MRI.getRegClass(NewVReg), &TRI); | 
|  |  | 
|  | LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); | 
|  |  | 
|  | LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", | 
|  | NewVReg)); | 
|  | ++NumReloads; | 
|  | } | 
|  |  | 
|  | /// Check if \p Def fully defines a VReg with an undefined value. | 
|  | /// If that's the case, that means the value of VReg is actually | 
|  | /// not relevant. | 
|  | static bool isFullUndefDef(const MachineInstr &Def) { | 
|  | if (!Def.isImplicitDef()) | 
|  | return false; | 
|  | assert(Def.getNumOperands() == 1 && | 
|  | "Implicit def with more than one definition"); | 
|  | // We can say that the VReg defined by Def is undef, only if it is | 
|  | // fully defined by Def. Otherwise, some of the lanes may not be | 
|  | // undef and the value of the VReg matters. | 
|  | return !Def.getOperand(0).getSubReg(); | 
|  | } | 
|  |  | 
|  | /// insertSpill - Insert a spill of NewVReg after MI. | 
|  | void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, | 
|  | MachineBasicBlock::iterator MI) { | 
|  | MachineBasicBlock &MBB = *MI->getParent(); | 
|  |  | 
|  | MachineInstrSpan MIS(MI); | 
|  | bool IsRealSpill = true; | 
|  | if (isFullUndefDef(*MI)) { | 
|  | // Don't spill undef value. | 
|  | // Anything works for undef, in particular keeping the memory | 
|  | // uninitialized is a viable option and it saves code size and | 
|  | // run time. | 
|  | BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) | 
|  | .addReg(NewVReg, getKillRegState(isKill)); | 
|  | IsRealSpill = false; | 
|  | } else | 
|  | TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, | 
|  | MRI.getRegClass(NewVReg), &TRI); | 
|  |  | 
|  | LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); | 
|  |  | 
|  | LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, | 
|  | "spill")); | 
|  | ++NumSpills; | 
|  | if (IsRealSpill) | 
|  | HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original); | 
|  | } | 
|  |  | 
|  | /// spillAroundUses - insert spill code around each use of Reg. | 
|  | void InlineSpiller::spillAroundUses(unsigned Reg) { | 
|  | LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); | 
|  | LiveInterval &OldLI = LIS.getInterval(Reg); | 
|  |  | 
|  | // Iterate over instructions using Reg. | 
|  | for (MachineRegisterInfo::reg_bundle_iterator | 
|  | RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); | 
|  | RegI != E; ) { | 
|  | MachineInstr *MI = &*(RegI++); | 
|  |  | 
|  | // Debug values are not allowed to affect codegen. | 
|  | if (MI->isDebugValue()) { | 
|  | // Modify DBG_VALUE now that the value is in a spill slot. | 
|  | MachineBasicBlock *MBB = MI->getParent(); | 
|  | LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI); | 
|  | buildDbgValueForSpill(*MBB, MI, *MI, StackSlot); | 
|  | MBB->erase(MI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(!MI->isDebugInstr() && "Did not expect to find a use in debug " | 
|  | "instruction that isn't a DBG_VALUE"); | 
|  |  | 
|  | // Ignore copies to/from snippets. We'll delete them. | 
|  | if (SnippetCopies.count(MI)) | 
|  | continue; | 
|  |  | 
|  | // Stack slot accesses may coalesce away. | 
|  | if (coalesceStackAccess(MI, Reg)) | 
|  | continue; | 
|  |  | 
|  | // Analyze instruction. | 
|  | SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; | 
|  | MIBundleOperands::VirtRegInfo RI = | 
|  | MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops); | 
|  |  | 
|  | // Find the slot index where this instruction reads and writes OldLI. | 
|  | // This is usually the def slot, except for tied early clobbers. | 
|  | SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); | 
|  | if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) | 
|  | if (SlotIndex::isSameInstr(Idx, VNI->def)) | 
|  | Idx = VNI->def; | 
|  |  | 
|  | // Check for a sibling copy. | 
|  | unsigned SibReg = isFullCopyOf(*MI, Reg); | 
|  | if (SibReg && isSibling(SibReg)) { | 
|  | // This may actually be a copy between snippets. | 
|  | if (isRegToSpill(SibReg)) { | 
|  | LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI); | 
|  | SnippetCopies.insert(MI); | 
|  | continue; | 
|  | } | 
|  | if (RI.Writes) { | 
|  | if (hoistSpillInsideBB(OldLI, *MI)) { | 
|  | // This COPY is now dead, the value is already in the stack slot. | 
|  | MI->getOperand(0).setIsDead(); | 
|  | DeadDefs.push_back(MI); | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | // This is a reload for a sib-reg copy. Drop spills downstream. | 
|  | LiveInterval &SibLI = LIS.getInterval(SibReg); | 
|  | eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); | 
|  | // The COPY will fold to a reload below. | 
|  | } | 
|  | } | 
|  |  | 
|  | // Attempt to fold memory ops. | 
|  | if (foldMemoryOperand(Ops)) | 
|  | continue; | 
|  |  | 
|  | // Create a new virtual register for spill/fill. | 
|  | // FIXME: Infer regclass from instruction alone. | 
|  | unsigned NewVReg = Edit->createFrom(Reg); | 
|  |  | 
|  | if (RI.Reads) | 
|  | insertReload(NewVReg, Idx, MI); | 
|  |  | 
|  | // Rewrite instruction operands. | 
|  | bool hasLiveDef = false; | 
|  | for (const auto &OpPair : Ops) { | 
|  | MachineOperand &MO = OpPair.first->getOperand(OpPair.second); | 
|  | MO.setReg(NewVReg); | 
|  | if (MO.isUse()) { | 
|  | if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) | 
|  | MO.setIsKill(); | 
|  | } else { | 
|  | if (!MO.isDead()) | 
|  | hasLiveDef = true; | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); | 
|  |  | 
|  | // FIXME: Use a second vreg if instruction has no tied ops. | 
|  | if (RI.Writes) | 
|  | if (hasLiveDef) | 
|  | insertSpill(NewVReg, true, MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// spillAll - Spill all registers remaining after rematerialization. | 
|  | void InlineSpiller::spillAll() { | 
|  | // Update LiveStacks now that we are committed to spilling. | 
|  | if (StackSlot == VirtRegMap::NO_STACK_SLOT) { | 
|  | StackSlot = VRM.assignVirt2StackSlot(Original); | 
|  | StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); | 
|  | StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); | 
|  | } else | 
|  | StackInt = &LSS.getInterval(StackSlot); | 
|  |  | 
|  | if (Original != Edit->getReg()) | 
|  | VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); | 
|  |  | 
|  | assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); | 
|  | for (unsigned Reg : RegsToSpill) | 
|  | StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), | 
|  | StackInt->getValNumInfo(0)); | 
|  | LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); | 
|  |  | 
|  | // Spill around uses of all RegsToSpill. | 
|  | for (unsigned Reg : RegsToSpill) | 
|  | spillAroundUses(Reg); | 
|  |  | 
|  | // Hoisted spills may cause dead code. | 
|  | if (!DeadDefs.empty()) { | 
|  | LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); | 
|  | Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); | 
|  | } | 
|  |  | 
|  | // Finally delete the SnippetCopies. | 
|  | for (unsigned Reg : RegsToSpill) { | 
|  | for (MachineRegisterInfo::reg_instr_iterator | 
|  | RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); | 
|  | RI != E; ) { | 
|  | MachineInstr &MI = *(RI++); | 
|  | assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); | 
|  | // FIXME: Do this with a LiveRangeEdit callback. | 
|  | LIS.RemoveMachineInstrFromMaps(MI); | 
|  | MI.eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Delete all spilled registers. | 
|  | for (unsigned Reg : RegsToSpill) | 
|  | Edit->eraseVirtReg(Reg); | 
|  | } | 
|  |  | 
|  | void InlineSpiller::spill(LiveRangeEdit &edit) { | 
|  | ++NumSpilledRanges; | 
|  | Edit = &edit; | 
|  | assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) | 
|  | && "Trying to spill a stack slot."); | 
|  | // Share a stack slot among all descendants of Original. | 
|  | Original = VRM.getOriginal(edit.getReg()); | 
|  | StackSlot = VRM.getStackSlot(Original); | 
|  | StackInt = nullptr; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Inline spilling " | 
|  | << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) | 
|  | << ':' << edit.getParent() << "\nFrom original " | 
|  | << printReg(Original) << '\n'); | 
|  | assert(edit.getParent().isSpillable() && | 
|  | "Attempting to spill already spilled value."); | 
|  | assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); | 
|  |  | 
|  | collectRegsToSpill(); | 
|  | reMaterializeAll(); | 
|  |  | 
|  | // Remat may handle everything. | 
|  | if (!RegsToSpill.empty()) | 
|  | spillAll(); | 
|  |  | 
|  | Edit->calculateRegClassAndHint(MF, Loops, MBFI); | 
|  | } | 
|  |  | 
|  | /// Optimizations after all the reg selections and spills are done. | 
|  | void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } | 
|  |  | 
|  | /// When a spill is inserted, add the spill to MergeableSpills map. | 
|  | void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, | 
|  | unsigned Original) { | 
|  | BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); | 
|  | LiveInterval &OrigLI = LIS.getInterval(Original); | 
|  | // save a copy of LiveInterval in StackSlotToOrigLI because the original | 
|  | // LiveInterval may be cleared after all its references are spilled. | 
|  | if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { | 
|  | auto LI = llvm::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight); | 
|  | LI->assign(OrigLI, Allocator); | 
|  | StackSlotToOrigLI[StackSlot] = std::move(LI); | 
|  | } | 
|  | SlotIndex Idx = LIS.getInstructionIndex(Spill); | 
|  | VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); | 
|  | std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); | 
|  | MergeableSpills[MIdx].insert(&Spill); | 
|  | } | 
|  |  | 
|  | /// When a spill is removed, remove the spill from MergeableSpills map. | 
|  | /// Return true if the spill is removed successfully. | 
|  | bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, | 
|  | int StackSlot) { | 
|  | auto It = StackSlotToOrigLI.find(StackSlot); | 
|  | if (It == StackSlotToOrigLI.end()) | 
|  | return false; | 
|  | SlotIndex Idx = LIS.getInstructionIndex(Spill); | 
|  | VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); | 
|  | std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); | 
|  | return MergeableSpills[MIdx].erase(&Spill); | 
|  | } | 
|  |  | 
|  | /// Check BB to see if it is a possible target BB to place a hoisted spill, | 
|  | /// i.e., there should be a living sibling of OrigReg at the insert point. | 
|  | bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, | 
|  | MachineBasicBlock &BB, unsigned &LiveReg) { | 
|  | SlotIndex Idx; | 
|  | unsigned OrigReg = OrigLI.reg; | 
|  | MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB); | 
|  | if (MI != BB.end()) | 
|  | Idx = LIS.getInstructionIndex(*MI); | 
|  | else | 
|  | Idx = LIS.getMBBEndIdx(&BB).getPrevSlot(); | 
|  | SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg]; | 
|  | assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); | 
|  |  | 
|  | for (auto const SibReg : Siblings) { | 
|  | LiveInterval &LI = LIS.getInterval(SibReg); | 
|  | VNInfo *VNI = LI.getVNInfoAt(Idx); | 
|  | if (VNI) { | 
|  | LiveReg = SibReg; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Remove redundant spills in the same BB. Save those redundant spills in | 
|  | /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. | 
|  | void HoistSpillHelper::rmRedundantSpills( | 
|  | SmallPtrSet<MachineInstr *, 16> &Spills, | 
|  | SmallVectorImpl<MachineInstr *> &SpillsToRm, | 
|  | DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { | 
|  | // For each spill saw, check SpillBBToSpill[] and see if its BB already has | 
|  | // another spill inside. If a BB contains more than one spill, only keep the | 
|  | // earlier spill with smaller SlotIndex. | 
|  | for (const auto CurrentSpill : Spills) { | 
|  | MachineBasicBlock *Block = CurrentSpill->getParent(); | 
|  | MachineDomTreeNode *Node = MDT.getBase().getNode(Block); | 
|  | MachineInstr *PrevSpill = SpillBBToSpill[Node]; | 
|  | if (PrevSpill) { | 
|  | SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); | 
|  | SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); | 
|  | MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; | 
|  | MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; | 
|  | SpillsToRm.push_back(SpillToRm); | 
|  | SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; | 
|  | } else { | 
|  | SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; | 
|  | } | 
|  | } | 
|  | for (const auto SpillToRm : SpillsToRm) | 
|  | Spills.erase(SpillToRm); | 
|  | } | 
|  |  | 
|  | /// Starting from \p Root find a top-down traversal order of the dominator | 
|  | /// tree to visit all basic blocks containing the elements of \p Spills. | 
|  | /// Redundant spills will be found and put into \p SpillsToRm at the same | 
|  | /// time. \p SpillBBToSpill will be populated as part of the process and | 
|  | /// maps a basic block to the first store occurring in the basic block. | 
|  | /// \post SpillsToRm.union(Spills\@post) == Spills\@pre | 
|  | void HoistSpillHelper::getVisitOrders( | 
|  | MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, | 
|  | SmallVectorImpl<MachineDomTreeNode *> &Orders, | 
|  | SmallVectorImpl<MachineInstr *> &SpillsToRm, | 
|  | DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, | 
|  | DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { | 
|  | // The set contains all the possible BB nodes to which we may hoist | 
|  | // original spills. | 
|  | SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; | 
|  | // Save the BB nodes on the path from the first BB node containing | 
|  | // non-redundant spill to the Root node. | 
|  | SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; | 
|  | // All the spills to be hoisted must originate from a single def instruction | 
|  | // to the OrigReg. It means the def instruction should dominate all the spills | 
|  | // to be hoisted. We choose the BB where the def instruction is located as | 
|  | // the Root. | 
|  | MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); | 
|  | // For every node on the dominator tree with spill, walk up on the dominator | 
|  | // tree towards the Root node until it is reached. If there is other node | 
|  | // containing spill in the middle of the path, the previous spill saw will | 
|  | // be redundant and the node containing it will be removed. All the nodes on | 
|  | // the path starting from the first node with non-redundant spill to the Root | 
|  | // node will be added to the WorkSet, which will contain all the possible | 
|  | // locations where spills may be hoisted to after the loop below is done. | 
|  | for (const auto Spill : Spills) { | 
|  | MachineBasicBlock *Block = Spill->getParent(); | 
|  | MachineDomTreeNode *Node = MDT[Block]; | 
|  | MachineInstr *SpillToRm = nullptr; | 
|  | while (Node != RootIDomNode) { | 
|  | // If Node dominates Block, and it already contains a spill, the spill in | 
|  | // Block will be redundant. | 
|  | if (Node != MDT[Block] && SpillBBToSpill[Node]) { | 
|  | SpillToRm = SpillBBToSpill[MDT[Block]]; | 
|  | break; | 
|  | /// If we see the Node already in WorkSet, the path from the Node to | 
|  | /// the Root node must already be traversed by another spill. | 
|  | /// Then no need to repeat. | 
|  | } else if (WorkSet.count(Node)) { | 
|  | break; | 
|  | } else { | 
|  | NodesOnPath.insert(Node); | 
|  | } | 
|  | Node = Node->getIDom(); | 
|  | } | 
|  | if (SpillToRm) { | 
|  | SpillsToRm.push_back(SpillToRm); | 
|  | } else { | 
|  | // Add a BB containing the original spills to SpillsToKeep -- i.e., | 
|  | // set the initial status before hoisting start. The value of BBs | 
|  | // containing original spills is set to 0, in order to descriminate | 
|  | // with BBs containing hoisted spills which will be inserted to | 
|  | // SpillsToKeep later during hoisting. | 
|  | SpillsToKeep[MDT[Block]] = 0; | 
|  | WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); | 
|  | } | 
|  | NodesOnPath.clear(); | 
|  | } | 
|  |  | 
|  | // Sort the nodes in WorkSet in top-down order and save the nodes | 
|  | // in Orders. Orders will be used for hoisting in runHoistSpills. | 
|  | unsigned idx = 0; | 
|  | Orders.push_back(MDT.getBase().getNode(Root)); | 
|  | do { | 
|  | MachineDomTreeNode *Node = Orders[idx++]; | 
|  | const std::vector<MachineDomTreeNode *> &Children = Node->getChildren(); | 
|  | unsigned NumChildren = Children.size(); | 
|  | for (unsigned i = 0; i != NumChildren; ++i) { | 
|  | MachineDomTreeNode *Child = Children[i]; | 
|  | if (WorkSet.count(Child)) | 
|  | Orders.push_back(Child); | 
|  | } | 
|  | } while (idx != Orders.size()); | 
|  | assert(Orders.size() == WorkSet.size() && | 
|  | "Orders have different size with WorkSet"); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); | 
|  | SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); | 
|  | for (; RIt != Orders.rend(); RIt++) | 
|  | LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); | 
|  | LLVM_DEBUG(dbgs() << "\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// Try to hoist spills according to BB hotness. The spills to removed will | 
|  | /// be saved in \p SpillsToRm. The spills to be inserted will be saved in | 
|  | /// \p SpillsToIns. | 
|  | void HoistSpillHelper::runHoistSpills( | 
|  | LiveInterval &OrigLI, VNInfo &OrigVNI, | 
|  | SmallPtrSet<MachineInstr *, 16> &Spills, | 
|  | SmallVectorImpl<MachineInstr *> &SpillsToRm, | 
|  | DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { | 
|  | // Visit order of dominator tree nodes. | 
|  | SmallVector<MachineDomTreeNode *, 32> Orders; | 
|  | // SpillsToKeep contains all the nodes where spills are to be inserted | 
|  | // during hoisting. If the spill to be inserted is an original spill | 
|  | // (not a hoisted one), the value of the map entry is 0. If the spill | 
|  | // is a hoisted spill, the value of the map entry is the VReg to be used | 
|  | // as the source of the spill. | 
|  | DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; | 
|  | // Map from BB to the first spill inside of it. | 
|  | DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; | 
|  |  | 
|  | rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); | 
|  |  | 
|  | MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); | 
|  | getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, | 
|  | SpillBBToSpill); | 
|  |  | 
|  | // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of | 
|  | // nodes set and the cost of all the spills inside those nodes. | 
|  | // The nodes set are the locations where spills are to be inserted | 
|  | // in the subtree of current node. | 
|  | using NodesCostPair = | 
|  | std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; | 
|  | DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; | 
|  |  | 
|  | // Iterate Orders set in reverse order, which will be a bottom-up order | 
|  | // in the dominator tree. Once we visit a dom tree node, we know its | 
|  | // children have already been visited and the spill locations in the | 
|  | // subtrees of all the children have been determined. | 
|  | SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); | 
|  | for (; RIt != Orders.rend(); RIt++) { | 
|  | MachineBasicBlock *Block = (*RIt)->getBlock(); | 
|  |  | 
|  | // If Block contains an original spill, simply continue. | 
|  | if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { | 
|  | SpillsInSubTreeMap[*RIt].first.insert(*RIt); | 
|  | // SpillsInSubTreeMap[*RIt].second contains the cost of spill. | 
|  | SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Collect spills in subtree of current node (*RIt) to | 
|  | // SpillsInSubTreeMap[*RIt].first. | 
|  | const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren(); | 
|  | unsigned NumChildren = Children.size(); | 
|  | for (unsigned i = 0; i != NumChildren; ++i) { | 
|  | MachineDomTreeNode *Child = Children[i]; | 
|  | if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) | 
|  | continue; | 
|  | // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below | 
|  | // should be placed before getting the begin and end iterators of | 
|  | // SpillsInSubTreeMap[Child].first, or else the iterators may be | 
|  | // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time | 
|  | // and the map grows and then the original buckets in the map are moved. | 
|  | SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = | 
|  | SpillsInSubTreeMap[*RIt].first; | 
|  | BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; | 
|  | SubTreeCost += SpillsInSubTreeMap[Child].second; | 
|  | auto BI = SpillsInSubTreeMap[Child].first.begin(); | 
|  | auto EI = SpillsInSubTreeMap[Child].first.end(); | 
|  | SpillsInSubTree.insert(BI, EI); | 
|  | SpillsInSubTreeMap.erase(Child); | 
|  | } | 
|  |  | 
|  | SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = | 
|  | SpillsInSubTreeMap[*RIt].first; | 
|  | BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; | 
|  | // No spills in subtree, simply continue. | 
|  | if (SpillsInSubTree.empty()) | 
|  | continue; | 
|  |  | 
|  | // Check whether Block is a possible candidate to insert spill. | 
|  | unsigned LiveReg = 0; | 
|  | if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) | 
|  | continue; | 
|  |  | 
|  | // If there are multiple spills that could be merged, bias a little | 
|  | // to hoist the spill. | 
|  | BranchProbability MarginProb = (SpillsInSubTree.size() > 1) | 
|  | ? BranchProbability(9, 10) | 
|  | : BranchProbability(1, 1); | 
|  | if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { | 
|  | // Hoist: Move spills to current Block. | 
|  | for (const auto SpillBB : SpillsInSubTree) { | 
|  | // When SpillBB is a BB contains original spill, insert the spill | 
|  | // to SpillsToRm. | 
|  | if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && | 
|  | !SpillsToKeep[SpillBB]) { | 
|  | MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; | 
|  | SpillsToRm.push_back(SpillToRm); | 
|  | } | 
|  | // SpillBB will not contain spill anymore, remove it from SpillsToKeep. | 
|  | SpillsToKeep.erase(SpillBB); | 
|  | } | 
|  | // Current Block is the BB containing the new hoisted spill. Add it to | 
|  | // SpillsToKeep. LiveReg is the source of the new spill. | 
|  | SpillsToKeep[*RIt] = LiveReg; | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "spills in BB: "; | 
|  | for (const auto Rspill : SpillsInSubTree) | 
|  | dbgs() << Rspill->getBlock()->getNumber() << " "; | 
|  | dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() | 
|  | << "\n"; | 
|  | }); | 
|  | SpillsInSubTree.clear(); | 
|  | SpillsInSubTree.insert(*RIt); | 
|  | SubTreeCost = MBFI.getBlockFreq(Block); | 
|  | } | 
|  | } | 
|  | // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), | 
|  | // save them to SpillsToIns. | 
|  | for (const auto Ent : SpillsToKeep) { | 
|  | if (Ent.second) | 
|  | SpillsToIns[Ent.first->getBlock()] = Ent.second; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// For spills with equal values, remove redundant spills and hoist those left | 
|  | /// to less hot spots. | 
|  | /// | 
|  | /// Spills with equal values will be collected into the same set in | 
|  | /// MergeableSpills when spill is inserted. These equal spills are originated | 
|  | /// from the same defining instruction and are dominated by the instruction. | 
|  | /// Before hoisting all the equal spills, redundant spills inside in the same | 
|  | /// BB are first marked to be deleted. Then starting from the spills left, walk | 
|  | /// up on the dominator tree towards the Root node where the define instruction | 
|  | /// is located, mark the dominated spills to be deleted along the way and | 
|  | /// collect the BB nodes on the path from non-dominated spills to the define | 
|  | /// instruction into a WorkSet. The nodes in WorkSet are the candidate places | 
|  | /// where we are considering to hoist the spills. We iterate the WorkSet in | 
|  | /// bottom-up order, and for each node, we will decide whether to hoist spills | 
|  | /// inside its subtree to that node. In this way, we can get benefit locally | 
|  | /// even if hoisting all the equal spills to one cold place is impossible. | 
|  | void HoistSpillHelper::hoistAllSpills() { | 
|  | SmallVector<unsigned, 4> NewVRegs; | 
|  | LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); | 
|  |  | 
|  | for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { | 
|  | unsigned Reg = TargetRegisterInfo::index2VirtReg(i); | 
|  | unsigned Original = VRM.getPreSplitReg(Reg); | 
|  | if (!MRI.def_empty(Reg)) | 
|  | Virt2SiblingsMap[Original].insert(Reg); | 
|  | } | 
|  |  | 
|  | // Each entry in MergeableSpills contains a spill set with equal values. | 
|  | for (auto &Ent : MergeableSpills) { | 
|  | int Slot = Ent.first.first; | 
|  | LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; | 
|  | VNInfo *OrigVNI = Ent.first.second; | 
|  | SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; | 
|  | if (Ent.second.empty()) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" | 
|  | << "Equal spills in BB: "; | 
|  | for (const auto spill : EqValSpills) | 
|  | dbgs() << spill->getParent()->getNumber() << " "; | 
|  | dbgs() << "\n"; | 
|  | }); | 
|  |  | 
|  | // SpillsToRm is the spill set to be removed from EqValSpills. | 
|  | SmallVector<MachineInstr *, 16> SpillsToRm; | 
|  | // SpillsToIns is the spill set to be newly inserted after hoisting. | 
|  | DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; | 
|  |  | 
|  | runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Finally inserted spills in BB: "; | 
|  | for (const auto Ispill : SpillsToIns) | 
|  | dbgs() << Ispill.first->getNumber() << " "; | 
|  | dbgs() << "\nFinally removed spills in BB: "; | 
|  | for (const auto Rspill : SpillsToRm) | 
|  | dbgs() << Rspill->getParent()->getNumber() << " "; | 
|  | dbgs() << "\n"; | 
|  | }); | 
|  |  | 
|  | // Stack live range update. | 
|  | LiveInterval &StackIntvl = LSS.getInterval(Slot); | 
|  | if (!SpillsToIns.empty() || !SpillsToRm.empty()) | 
|  | StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, | 
|  | StackIntvl.getValNumInfo(0)); | 
|  |  | 
|  | // Insert hoisted spills. | 
|  | for (auto const Insert : SpillsToIns) { | 
|  | MachineBasicBlock *BB = Insert.first; | 
|  | unsigned LiveReg = Insert.second; | 
|  | MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB); | 
|  | TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot, | 
|  | MRI.getRegClass(LiveReg), &TRI); | 
|  | LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI); | 
|  | ++NumSpills; | 
|  | } | 
|  |  | 
|  | // Remove redundant spills or change them to dead instructions. | 
|  | NumSpills -= SpillsToRm.size(); | 
|  | for (auto const RMEnt : SpillsToRm) { | 
|  | RMEnt->setDesc(TII.get(TargetOpcode::KILL)); | 
|  | for (unsigned i = RMEnt->getNumOperands(); i; --i) { | 
|  | MachineOperand &MO = RMEnt->getOperand(i - 1); | 
|  | if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) | 
|  | RMEnt->RemoveOperand(i - 1); | 
|  | } | 
|  | } | 
|  | Edit.eliminateDeadDefs(SpillsToRm, None, AA); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// For VirtReg clone, the \p New register should have the same physreg or | 
|  | /// stackslot as the \p old register. | 
|  | void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { | 
|  | if (VRM.hasPhys(Old)) | 
|  | VRM.assignVirt2Phys(New, VRM.getPhys(Old)); | 
|  | else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) | 
|  | VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); | 
|  | else | 
|  | llvm_unreachable("VReg should be assigned either physreg or stackslot"); | 
|  | } |