|  | //===-- JITEmitter.cpp - Write machine code to executable memory ----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines a MachineCodeEmitter object that is used by the JIT to | 
|  | // write machine code to memory and remember where relocatable values are. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "jit" | 
|  | #include "JIT.h" | 
|  | #include "JITDwarfEmitter.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/OwningPtr.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/ValueMap.h" | 
|  | #include "llvm/CodeGen/JITCodeEmitter.h" | 
|  | #include "llvm/CodeGen/MachineCodeInfo.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRelocation.h" | 
|  | #include "llvm/DebugInfo.h" | 
|  | #include "llvm/ExecutionEngine/GenericValue.h" | 
|  | #include "llvm/ExecutionEngine/JITEventListener.h" | 
|  | #include "llvm/ExecutionEngine/JITMemoryManager.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/Disassembler.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/ManagedStatic.h" | 
|  | #include "llvm/Support/Memory.h" | 
|  | #include "llvm/Support/MutexGuard.h" | 
|  | #include "llvm/Support/ValueHandle.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetJITInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <algorithm> | 
|  | #ifndef NDEBUG | 
|  | #include <iomanip> | 
|  | #endif | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumBytes, "Number of bytes of machine code compiled"); | 
|  | STATISTIC(NumRelos, "Number of relocations applied"); | 
|  | STATISTIC(NumRetries, "Number of retries with more memory"); | 
|  |  | 
|  |  | 
|  | // A declaration may stop being a declaration once it's fully read from bitcode. | 
|  | // This function returns true if F is fully read and is still a declaration. | 
|  | static bool isNonGhostDeclaration(const Function *F) { | 
|  | return F->isDeclaration() && !F->isMaterializable(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // JIT lazy compilation code. | 
|  | // | 
|  | namespace { | 
|  | class JITEmitter; | 
|  | class JITResolverState; | 
|  |  | 
|  | template<typename ValueTy> | 
|  | struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> { | 
|  | typedef JITResolverState *ExtraData; | 
|  | static void onRAUW(JITResolverState *, Value *Old, Value *New) { | 
|  | llvm_unreachable("The JIT doesn't know how to handle a" | 
|  | " RAUW on a value it has emitted."); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> { | 
|  | typedef JITResolverState *ExtraData; | 
|  | static void onDelete(JITResolverState *JRS, Function *F); | 
|  | }; | 
|  |  | 
|  | class JITResolverState { | 
|  | public: | 
|  | typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> > | 
|  | FunctionToLazyStubMapTy; | 
|  | typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy; | 
|  | typedef ValueMap<Function *, SmallPtrSet<void*, 1>, | 
|  | CallSiteValueMapConfig> FunctionToCallSitesMapTy; | 
|  | typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy; | 
|  | private: | 
|  | /// FunctionToLazyStubMap - Keep track of the lazy stub created for a | 
|  | /// particular function so that we can reuse them if necessary. | 
|  | FunctionToLazyStubMapTy FunctionToLazyStubMap; | 
|  |  | 
|  | /// CallSiteToFunctionMap - Keep track of the function that each lazy call | 
|  | /// site corresponds to, and vice versa. | 
|  | CallSiteToFunctionMapTy CallSiteToFunctionMap; | 
|  | FunctionToCallSitesMapTy FunctionToCallSitesMap; | 
|  |  | 
|  | /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a | 
|  | /// particular GlobalVariable so that we can reuse them if necessary. | 
|  | GlobalToIndirectSymMapTy GlobalToIndirectSymMap; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | /// Instance of the JIT this ResolverState serves. | 
|  | JIT *TheJIT; | 
|  | #endif | 
|  |  | 
|  | public: | 
|  | JITResolverState(JIT *jit) : FunctionToLazyStubMap(this), | 
|  | FunctionToCallSitesMap(this) { | 
|  | #ifndef NDEBUG | 
|  | TheJIT = jit; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | FunctionToLazyStubMapTy& getFunctionToLazyStubMap( | 
|  | const MutexGuard& locked) { | 
|  | assert(locked.holds(TheJIT->lock)); | 
|  | return FunctionToLazyStubMap; | 
|  | } | 
|  |  | 
|  | GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) { | 
|  | assert(lck.holds(TheJIT->lock)); | 
|  | return GlobalToIndirectSymMap; | 
|  | } | 
|  |  | 
|  | std::pair<void *, Function *> LookupFunctionFromCallSite( | 
|  | const MutexGuard &locked, void *CallSite) const { | 
|  | assert(locked.holds(TheJIT->lock)); | 
|  |  | 
|  | // The address given to us for the stub may not be exactly right, it | 
|  | // might be a little bit after the stub.  As such, use upper_bound to | 
|  | // find it. | 
|  | CallSiteToFunctionMapTy::const_iterator I = | 
|  | CallSiteToFunctionMap.upper_bound(CallSite); | 
|  | assert(I != CallSiteToFunctionMap.begin() && | 
|  | "This is not a known call site!"); | 
|  | --I; | 
|  | return *I; | 
|  | } | 
|  |  | 
|  | void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) { | 
|  | assert(locked.holds(TheJIT->lock)); | 
|  |  | 
|  | bool Inserted = CallSiteToFunctionMap.insert( | 
|  | std::make_pair(CallSite, F)).second; | 
|  | (void)Inserted; | 
|  | assert(Inserted && "Pair was already in CallSiteToFunctionMap"); | 
|  | FunctionToCallSitesMap[F].insert(CallSite); | 
|  | } | 
|  |  | 
|  | void EraseAllCallSitesForPrelocked(Function *F); | 
|  |  | 
|  | // Erases _all_ call sites regardless of their function.  This is used to | 
|  | // unregister the stub addresses from the StubToResolverMap in | 
|  | // ~JITResolver(). | 
|  | void EraseAllCallSitesPrelocked(); | 
|  | }; | 
|  |  | 
|  | /// JITResolver - Keep track of, and resolve, call sites for functions that | 
|  | /// have not yet been compiled. | 
|  | class JITResolver { | 
|  | typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy; | 
|  | typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy; | 
|  | typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy; | 
|  |  | 
|  | /// LazyResolverFn - The target lazy resolver function that we actually | 
|  | /// rewrite instructions to use. | 
|  | TargetJITInfo::LazyResolverFn LazyResolverFn; | 
|  |  | 
|  | JITResolverState state; | 
|  |  | 
|  | /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap | 
|  | /// for external functions.  TODO: Of course, external functions don't need | 
|  | /// a lazy stub.  It's actually here to make it more likely that far calls | 
|  | /// succeed, but no single stub can guarantee that.  I'll remove this in a | 
|  | /// subsequent checkin when I actually fix far calls. | 
|  | std::map<void*, void*> ExternalFnToStubMap; | 
|  |  | 
|  | /// revGOTMap - map addresses to indexes in the GOT | 
|  | std::map<void*, unsigned> revGOTMap; | 
|  | unsigned nextGOTIndex; | 
|  |  | 
|  | JITEmitter &JE; | 
|  |  | 
|  | /// Instance of JIT corresponding to this Resolver. | 
|  | JIT *TheJIT; | 
|  |  | 
|  | public: | 
|  | explicit JITResolver(JIT &jit, JITEmitter &je) | 
|  | : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) { | 
|  | LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn); | 
|  | } | 
|  |  | 
|  | ~JITResolver(); | 
|  |  | 
|  | /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's | 
|  | /// lazy-compilation stub if it has already been created. | 
|  | void *getLazyFunctionStubIfAvailable(Function *F); | 
|  |  | 
|  | /// getLazyFunctionStub - This returns a pointer to a function's | 
|  | /// lazy-compilation stub, creating one on demand as needed. | 
|  | void *getLazyFunctionStub(Function *F); | 
|  |  | 
|  | /// getExternalFunctionStub - Return a stub for the function at the | 
|  | /// specified address, created lazily on demand. | 
|  | void *getExternalFunctionStub(void *FnAddr); | 
|  |  | 
|  | /// getGlobalValueIndirectSym - Return an indirect symbol containing the | 
|  | /// specified GV address. | 
|  | void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress); | 
|  |  | 
|  | /// getGOTIndexForAddress - Return a new or existing index in the GOT for | 
|  | /// an address.  This function only manages slots, it does not manage the | 
|  | /// contents of the slots or the memory associated with the GOT. | 
|  | unsigned getGOTIndexForAddr(void *addr); | 
|  |  | 
|  | /// JITCompilerFn - This function is called to resolve a stub to a compiled | 
|  | /// address.  If the LLVM Function corresponding to the stub has not yet | 
|  | /// been compiled, this function compiles it first. | 
|  | static void *JITCompilerFn(void *Stub); | 
|  | }; | 
|  |  | 
|  | class StubToResolverMapTy { | 
|  | /// Map a stub address to a specific instance of a JITResolver so that | 
|  | /// lazily-compiled functions can find the right resolver to use. | 
|  | /// | 
|  | /// Guarded by Lock. | 
|  | std::map<void*, JITResolver*> Map; | 
|  |  | 
|  | /// Guards Map from concurrent accesses. | 
|  | mutable sys::Mutex Lock; | 
|  |  | 
|  | public: | 
|  | /// Registers a Stub to be resolved by Resolver. | 
|  | void RegisterStubResolver(void *Stub, JITResolver *Resolver) { | 
|  | MutexGuard guard(Lock); | 
|  | Map.insert(std::make_pair(Stub, Resolver)); | 
|  | } | 
|  | /// Unregisters the Stub when it's invalidated. | 
|  | void UnregisterStubResolver(void *Stub) { | 
|  | MutexGuard guard(Lock); | 
|  | Map.erase(Stub); | 
|  | } | 
|  | /// Returns the JITResolver instance that owns the Stub. | 
|  | JITResolver *getResolverFromStub(void *Stub) const { | 
|  | MutexGuard guard(Lock); | 
|  | // The address given to us for the stub may not be exactly right, it might | 
|  | // be a little bit after the stub.  As such, use upper_bound to find it. | 
|  | // This is the same trick as in LookupFunctionFromCallSite from | 
|  | // JITResolverState. | 
|  | std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub); | 
|  | assert(I != Map.begin() && "This is not a known stub!"); | 
|  | --I; | 
|  | return I->second; | 
|  | } | 
|  | /// True if any stubs refer to the given resolver. Only used in an assert(). | 
|  | /// O(N) | 
|  | bool ResolverHasStubs(JITResolver* Resolver) const { | 
|  | MutexGuard guard(Lock); | 
|  | for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(), | 
|  | E = Map.end(); I != E; ++I) { | 
|  | if (I->second == Resolver) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | }; | 
|  | /// This needs to be static so that a lazy call stub can access it with no | 
|  | /// context except the address of the stub. | 
|  | ManagedStatic<StubToResolverMapTy> StubToResolverMap; | 
|  |  | 
|  | /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is | 
|  | /// used to output functions to memory for execution. | 
|  | class JITEmitter : public JITCodeEmitter { | 
|  | JITMemoryManager *MemMgr; | 
|  |  | 
|  | // When outputting a function stub in the context of some other function, we | 
|  | // save BufferBegin/BufferEnd/CurBufferPtr here. | 
|  | uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; | 
|  |  | 
|  | // When reattempting to JIT a function after running out of space, we store | 
|  | // the estimated size of the function we're trying to JIT here, so we can | 
|  | // ask the memory manager for at least this much space.  When we | 
|  | // successfully emit the function, we reset this back to zero. | 
|  | uintptr_t SizeEstimate; | 
|  |  | 
|  | /// Relocations - These are the relocations that the function needs, as | 
|  | /// emitted. | 
|  | std::vector<MachineRelocation> Relocations; | 
|  |  | 
|  | /// MBBLocations - This vector is a mapping from MBB ID's to their address. | 
|  | /// It is filled in by the StartMachineBasicBlock callback and queried by | 
|  | /// the getMachineBasicBlockAddress callback. | 
|  | std::vector<uintptr_t> MBBLocations; | 
|  |  | 
|  | /// ConstantPool - The constant pool for the current function. | 
|  | /// | 
|  | MachineConstantPool *ConstantPool; | 
|  |  | 
|  | /// ConstantPoolBase - A pointer to the first entry in the constant pool. | 
|  | /// | 
|  | void *ConstantPoolBase; | 
|  |  | 
|  | /// ConstPoolAddresses - Addresses of individual constant pool entries. | 
|  | /// | 
|  | SmallVector<uintptr_t, 8> ConstPoolAddresses; | 
|  |  | 
|  | /// JumpTable - The jump tables for the current function. | 
|  | /// | 
|  | MachineJumpTableInfo *JumpTable; | 
|  |  | 
|  | /// JumpTableBase - A pointer to the first entry in the jump table. | 
|  | /// | 
|  | void *JumpTableBase; | 
|  |  | 
|  | /// Resolver - This contains info about the currently resolved functions. | 
|  | JITResolver Resolver; | 
|  |  | 
|  | /// DE - The dwarf emitter for the jit. | 
|  | OwningPtr<JITDwarfEmitter> DE; | 
|  |  | 
|  | /// LabelLocations - This vector is a mapping from Label ID's to their | 
|  | /// address. | 
|  | DenseMap<MCSymbol*, uintptr_t> LabelLocations; | 
|  |  | 
|  | /// MMI - Machine module info for exception informations | 
|  | MachineModuleInfo* MMI; | 
|  |  | 
|  | // CurFn - The llvm function being emitted.  Only valid during | 
|  | // finishFunction(). | 
|  | const Function *CurFn; | 
|  |  | 
|  | /// Information about emitted code, which is passed to the | 
|  | /// JITEventListeners.  This is reset in startFunction and used in | 
|  | /// finishFunction. | 
|  | JITEvent_EmittedFunctionDetails EmissionDetails; | 
|  |  | 
|  | struct EmittedCode { | 
|  | void *FunctionBody;  // Beginning of the function's allocation. | 
|  | void *Code;  // The address the function's code actually starts at. | 
|  | void *ExceptionTable; | 
|  | EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {} | 
|  | }; | 
|  | struct EmittedFunctionConfig : public ValueMapConfig<const Function*> { | 
|  | typedef JITEmitter *ExtraData; | 
|  | static void onDelete(JITEmitter *, const Function*); | 
|  | static void onRAUW(JITEmitter *, const Function*, const Function*); | 
|  | }; | 
|  | ValueMap<const Function *, EmittedCode, | 
|  | EmittedFunctionConfig> EmittedFunctions; | 
|  |  | 
|  | DebugLoc PrevDL; | 
|  |  | 
|  | /// Instance of the JIT | 
|  | JIT *TheJIT; | 
|  |  | 
|  | bool JITExceptionHandling; | 
|  |  | 
|  | public: | 
|  | JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM) | 
|  | : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0), | 
|  | EmittedFunctions(this), TheJIT(&jit), | 
|  | JITExceptionHandling(TM.Options.JITExceptionHandling) { | 
|  | MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); | 
|  | if (jit.getJITInfo().needsGOT()) { | 
|  | MemMgr->AllocateGOT(); | 
|  | DEBUG(dbgs() << "JIT is managing a GOT\n"); | 
|  | } | 
|  |  | 
|  | if (JITExceptionHandling) { | 
|  | DE.reset(new JITDwarfEmitter(jit)); | 
|  | } | 
|  | } | 
|  | ~JITEmitter() { | 
|  | delete MemMgr; | 
|  | } | 
|  |  | 
|  | JITResolver &getJITResolver() { return Resolver; } | 
|  |  | 
|  | virtual void startFunction(MachineFunction &F); | 
|  | virtual bool finishFunction(MachineFunction &F); | 
|  |  | 
|  | void emitConstantPool(MachineConstantPool *MCP); | 
|  | void initJumpTableInfo(MachineJumpTableInfo *MJTI); | 
|  | void emitJumpTableInfo(MachineJumpTableInfo *MJTI); | 
|  |  | 
|  | void startGVStub(const GlobalValue* GV, | 
|  | unsigned StubSize, unsigned Alignment = 1); | 
|  | void startGVStub(void *Buffer, unsigned StubSize); | 
|  | void finishGVStub(); | 
|  | virtual void *allocIndirectGV(const GlobalValue *GV, | 
|  | const uint8_t *Buffer, size_t Size, | 
|  | unsigned Alignment); | 
|  |  | 
|  | /// allocateSpace - Reserves space in the current block if any, or | 
|  | /// allocate a new one of the given size. | 
|  | virtual void *allocateSpace(uintptr_t Size, unsigned Alignment); | 
|  |  | 
|  | /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace, | 
|  | /// this method does not allocate memory in the current output buffer, | 
|  | /// because a global may live longer than the current function. | 
|  | virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment); | 
|  |  | 
|  | virtual void addRelocation(const MachineRelocation &MR) { | 
|  | Relocations.push_back(MR); | 
|  | } | 
|  |  | 
|  | virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { | 
|  | if (MBBLocations.size() <= (unsigned)MBB->getNumber()) | 
|  | MBBLocations.resize((MBB->getNumber()+1)*2); | 
|  | MBBLocations[MBB->getNumber()] = getCurrentPCValue(); | 
|  | if (MBB->hasAddressTaken()) | 
|  | TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(), | 
|  | (void*)getCurrentPCValue()); | 
|  | DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at [" | 
|  | << (void*) getCurrentPCValue() << "]\n"); | 
|  | } | 
|  |  | 
|  | virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const; | 
|  | virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const; | 
|  |  | 
|  | virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{ | 
|  | assert(MBBLocations.size() > (unsigned)MBB->getNumber() && | 
|  | MBBLocations[MBB->getNumber()] && "MBB not emitted!"); | 
|  | return MBBLocations[MBB->getNumber()]; | 
|  | } | 
|  |  | 
|  | /// retryWithMoreMemory - Log a retry and deallocate all memory for the | 
|  | /// given function.  Increase the minimum allocation size so that we get | 
|  | /// more memory next time. | 
|  | void retryWithMoreMemory(MachineFunction &F); | 
|  |  | 
|  | /// deallocateMemForFunction - Deallocate all memory for the specified | 
|  | /// function body. | 
|  | void deallocateMemForFunction(const Function *F); | 
|  |  | 
|  | virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn); | 
|  |  | 
|  | virtual void emitLabel(MCSymbol *Label) { | 
|  | LabelLocations[Label] = getCurrentPCValue(); | 
|  | } | 
|  |  | 
|  | virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() { | 
|  | return &LabelLocations; | 
|  | } | 
|  |  | 
|  | virtual uintptr_t getLabelAddress(MCSymbol *Label) const { | 
|  | assert(LabelLocations.count(Label) && "Label not emitted!"); | 
|  | return LabelLocations.find(Label)->second; | 
|  | } | 
|  |  | 
|  | virtual void setModuleInfo(MachineModuleInfo* Info) { | 
|  | MMI = Info; | 
|  | if (DE.get()) DE->setModuleInfo(Info); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void *getPointerToGlobal(GlobalValue *GV, void *Reference, | 
|  | bool MayNeedFarStub); | 
|  | void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference); | 
|  | }; | 
|  | } | 
|  |  | 
|  | void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) { | 
|  | JRS->EraseAllCallSitesForPrelocked(F); | 
|  | } | 
|  |  | 
|  | void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) { | 
|  | FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F); | 
|  | if (F2C == FunctionToCallSitesMap.end()) | 
|  | return; | 
|  | StubToResolverMapTy &S2RMap = *StubToResolverMap; | 
|  | for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(), | 
|  | E = F2C->second.end(); I != E; ++I) { | 
|  | S2RMap.UnregisterStubResolver(*I); | 
|  | bool Erased = CallSiteToFunctionMap.erase(*I); | 
|  | (void)Erased; | 
|  | assert(Erased && "Missing call site->function mapping"); | 
|  | } | 
|  | FunctionToCallSitesMap.erase(F2C); | 
|  | } | 
|  |  | 
|  | void JITResolverState::EraseAllCallSitesPrelocked() { | 
|  | StubToResolverMapTy &S2RMap = *StubToResolverMap; | 
|  | for (CallSiteToFunctionMapTy::const_iterator | 
|  | I = CallSiteToFunctionMap.begin(), | 
|  | E = CallSiteToFunctionMap.end(); I != E; ++I) { | 
|  | S2RMap.UnregisterStubResolver(I->first); | 
|  | } | 
|  | CallSiteToFunctionMap.clear(); | 
|  | FunctionToCallSitesMap.clear(); | 
|  | } | 
|  |  | 
|  | JITResolver::~JITResolver() { | 
|  | // No need to lock because we're in the destructor, and state isn't shared. | 
|  | state.EraseAllCallSitesPrelocked(); | 
|  | assert(!StubToResolverMap->ResolverHasStubs(this) && | 
|  | "Resolver destroyed with stubs still alive."); | 
|  | } | 
|  |  | 
|  | /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub | 
|  | /// if it has already been created. | 
|  | void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) { | 
|  | MutexGuard locked(TheJIT->lock); | 
|  |  | 
|  | // If we already have a stub for this function, recycle it. | 
|  | return state.getFunctionToLazyStubMap(locked).lookup(F); | 
|  | } | 
|  |  | 
|  | /// getFunctionStub - This returns a pointer to a function stub, creating | 
|  | /// one on demand as needed. | 
|  | void *JITResolver::getLazyFunctionStub(Function *F) { | 
|  | MutexGuard locked(TheJIT->lock); | 
|  |  | 
|  | // If we already have a lazy stub for this function, recycle it. | 
|  | void *&Stub = state.getFunctionToLazyStubMap(locked)[F]; | 
|  | if (Stub) return Stub; | 
|  |  | 
|  | // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we | 
|  | // must resolve the symbol now. | 
|  | void *Actual = TheJIT->isCompilingLazily() | 
|  | ? (void *)(intptr_t)LazyResolverFn : (void *)0; | 
|  |  | 
|  | // If this is an external declaration, attempt to resolve the address now | 
|  | // to place in the stub. | 
|  | if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) { | 
|  | Actual = TheJIT->getPointerToFunction(F); | 
|  |  | 
|  | // If we resolved the symbol to a null address (eg. a weak external) | 
|  | // don't emit a stub. Return a null pointer to the application. | 
|  | if (!Actual) return 0; | 
|  | } | 
|  |  | 
|  | TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); | 
|  | JE.startGVStub(F, SL.Size, SL.Alignment); | 
|  | // Codegen a new stub, calling the lazy resolver or the actual address of the | 
|  | // external function, if it was resolved. | 
|  | Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE); | 
|  | JE.finishGVStub(); | 
|  |  | 
|  | if (Actual != (void*)(intptr_t)LazyResolverFn) { | 
|  | // If we are getting the stub for an external function, we really want the | 
|  | // address of the stub in the GlobalAddressMap for the JIT, not the address | 
|  | // of the external function. | 
|  | TheJIT->updateGlobalMapping(F, Stub); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '" | 
|  | << F->getName() << "'\n"); | 
|  |  | 
|  | if (TheJIT->isCompilingLazily()) { | 
|  | // Register this JITResolver as the one corresponding to this call site so | 
|  | // JITCompilerFn will be able to find it. | 
|  | StubToResolverMap->RegisterStubResolver(Stub, this); | 
|  |  | 
|  | // Finally, keep track of the stub-to-Function mapping so that the | 
|  | // JITCompilerFn knows which function to compile! | 
|  | state.AddCallSite(locked, Stub, F); | 
|  | } else if (!Actual) { | 
|  | // If we are JIT'ing non-lazily but need to call a function that does not | 
|  | // exist yet, add it to the JIT's work list so that we can fill in the | 
|  | // stub address later. | 
|  | assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() && | 
|  | "'Actual' should have been set above."); | 
|  | TheJIT->addPendingFunction(F); | 
|  | } | 
|  |  | 
|  | return Stub; | 
|  | } | 
|  |  | 
|  | /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified | 
|  | /// GV address. | 
|  | void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) { | 
|  | MutexGuard locked(TheJIT->lock); | 
|  |  | 
|  | // If we already have a stub for this global variable, recycle it. | 
|  | void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV]; | 
|  | if (IndirectSym) return IndirectSym; | 
|  |  | 
|  | // Otherwise, codegen a new indirect symbol. | 
|  | IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress, | 
|  | JE); | 
|  |  | 
|  | DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym | 
|  | << "] for GV '" << GV->getName() << "'\n"); | 
|  |  | 
|  | return IndirectSym; | 
|  | } | 
|  |  | 
|  | /// getExternalFunctionStub - Return a stub for the function at the | 
|  | /// specified address, created lazily on demand. | 
|  | void *JITResolver::getExternalFunctionStub(void *FnAddr) { | 
|  | // If we already have a stub for this function, recycle it. | 
|  | void *&Stub = ExternalFnToStubMap[FnAddr]; | 
|  | if (Stub) return Stub; | 
|  |  | 
|  | TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); | 
|  | JE.startGVStub(0, SL.Size, SL.Alignment); | 
|  | Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE); | 
|  | JE.finishGVStub(); | 
|  |  | 
|  | DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub | 
|  | << "] for external function at '" << FnAddr << "'\n"); | 
|  | return Stub; | 
|  | } | 
|  |  | 
|  | unsigned JITResolver::getGOTIndexForAddr(void* addr) { | 
|  | unsigned idx = revGOTMap[addr]; | 
|  | if (!idx) { | 
|  | idx = ++nextGOTIndex; | 
|  | revGOTMap[addr] = idx; | 
|  | DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr [" | 
|  | << addr << "]\n"); | 
|  | } | 
|  | return idx; | 
|  | } | 
|  |  | 
|  | /// JITCompilerFn - This function is called when a lazy compilation stub has | 
|  | /// been entered.  It looks up which function this stub corresponds to, compiles | 
|  | /// it if necessary, then returns the resultant function pointer. | 
|  | void *JITResolver::JITCompilerFn(void *Stub) { | 
|  | JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub); | 
|  | assert(JR && "Unable to find the corresponding JITResolver to the call site"); | 
|  |  | 
|  | Function* F = 0; | 
|  | void* ActualPtr = 0; | 
|  |  | 
|  | { | 
|  | // Only lock for getting the Function. The call getPointerToFunction made | 
|  | // in this function might trigger function materializing, which requires | 
|  | // JIT lock to be unlocked. | 
|  | MutexGuard locked(JR->TheJIT->lock); | 
|  |  | 
|  | // The address given to us for the stub may not be exactly right, it might | 
|  | // be a little bit after the stub.  As such, use upper_bound to find it. | 
|  | std::pair<void*, Function*> I = | 
|  | JR->state.LookupFunctionFromCallSite(locked, Stub); | 
|  | F = I.second; | 
|  | ActualPtr = I.first; | 
|  | } | 
|  |  | 
|  | // If we have already code generated the function, just return the address. | 
|  | void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F); | 
|  |  | 
|  | if (!Result) { | 
|  | // Otherwise we don't have it, do lazy compilation now. | 
|  |  | 
|  | // If lazy compilation is disabled, emit a useful error message and abort. | 
|  | if (!JR->TheJIT->isCompilingLazily()) { | 
|  | report_fatal_error("LLVM JIT requested to do lazy compilation of" | 
|  | " function '" | 
|  | + F->getName() + "' when lazy compiles are disabled!"); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName() | 
|  | << "' In stub ptr = " << Stub << " actual ptr = " | 
|  | << ActualPtr << "\n"); | 
|  | (void)ActualPtr; | 
|  |  | 
|  | Result = JR->TheJIT->getPointerToFunction(F); | 
|  | } | 
|  |  | 
|  | // Reacquire the lock to update the GOT map. | 
|  | MutexGuard locked(JR->TheJIT->lock); | 
|  |  | 
|  | // We might like to remove the call site from the CallSiteToFunction map, but | 
|  | // we can't do that! Multiple threads could be stuck, waiting to acquire the | 
|  | // lock above. As soon as the 1st function finishes compiling the function, | 
|  | // the next one will be released, and needs to be able to find the function it | 
|  | // needs to call. | 
|  |  | 
|  | // FIXME: We could rewrite all references to this stub if we knew them. | 
|  |  | 
|  | // What we will do is set the compiled function address to map to the | 
|  | // same GOT entry as the stub so that later clients may update the GOT | 
|  | // if they see it still using the stub address. | 
|  | // Note: this is done so the Resolver doesn't have to manage GOT memory | 
|  | // Do this without allocating map space if the target isn't using a GOT | 
|  | if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end()) | 
|  | JR->revGOTMap[Result] = JR->revGOTMap[Stub]; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // JITEmitter code. | 
|  | // | 
|  | void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, | 
|  | bool MayNeedFarStub) { | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) | 
|  | return TheJIT->getOrEmitGlobalVariable(GV); | 
|  |  | 
|  | if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) | 
|  | return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false)); | 
|  |  | 
|  | // If we have already compiled the function, return a pointer to its body. | 
|  | Function *F = cast<Function>(V); | 
|  |  | 
|  | void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F); | 
|  | if (FnStub) { | 
|  | // Return the function stub if it's already created.  We do this first so | 
|  | // that we're returning the same address for the function as any previous | 
|  | // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be | 
|  | // close enough to call. | 
|  | return FnStub; | 
|  | } | 
|  |  | 
|  | // If we know the target can handle arbitrary-distance calls, try to | 
|  | // return a direct pointer. | 
|  | if (!MayNeedFarStub) { | 
|  | // If we have code, go ahead and return that. | 
|  | void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); | 
|  | if (ResultPtr) return ResultPtr; | 
|  |  | 
|  | // If this is an external function pointer, we can force the JIT to | 
|  | // 'compile' it, which really just adds it to the map. | 
|  | if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) | 
|  | return TheJIT->getPointerToFunction(F); | 
|  | } | 
|  |  | 
|  | // Otherwise, we may need a to emit a stub, and, conservatively, we always do | 
|  | // so.  Note that it's possible to return null from getLazyFunctionStub in the | 
|  | // case of a weak extern that fails to resolve. | 
|  | return Resolver.getLazyFunctionStub(F); | 
|  | } | 
|  |  | 
|  | void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) { | 
|  | // Make sure GV is emitted first, and create a stub containing the fully | 
|  | // resolved address. | 
|  | void *GVAddress = getPointerToGlobal(V, Reference, false); | 
|  | void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress); | 
|  | return StubAddr; | 
|  | } | 
|  |  | 
|  | void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) { | 
|  | if (DL.isUnknown()) return; | 
|  | if (!BeforePrintingInsn) return; | 
|  |  | 
|  | const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext(); | 
|  |  | 
|  | if (DL.getScope(Context) != 0 && PrevDL != DL) { | 
|  | JITEvent_EmittedFunctionDetails::LineStart NextLine; | 
|  | NextLine.Address = getCurrentPCValue(); | 
|  | NextLine.Loc = DL; | 
|  | EmissionDetails.LineStarts.push_back(NextLine); | 
|  | } | 
|  |  | 
|  | PrevDL = DL; | 
|  | } | 
|  |  | 
|  | static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP, | 
|  | const DataLayout *TD) { | 
|  | const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); | 
|  | if (Constants.empty()) return 0; | 
|  |  | 
|  | unsigned Size = 0; | 
|  | for (unsigned i = 0, e = Constants.size(); i != e; ++i) { | 
|  | MachineConstantPoolEntry CPE = Constants[i]; | 
|  | unsigned AlignMask = CPE.getAlignment() - 1; | 
|  | Size = (Size + AlignMask) & ~AlignMask; | 
|  | Type *Ty = CPE.getType(); | 
|  | Size += TD->getTypeAllocSize(Ty); | 
|  | } | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | void JITEmitter::startFunction(MachineFunction &F) { | 
|  | DEBUG(dbgs() << "JIT: Starting CodeGen of Function " | 
|  | << F.getName() << "\n"); | 
|  |  | 
|  | uintptr_t ActualSize = 0; | 
|  | // Set the memory writable, if it's not already | 
|  | MemMgr->setMemoryWritable(); | 
|  |  | 
|  | if (SizeEstimate > 0) { | 
|  | // SizeEstimate will be non-zero on reallocation attempts. | 
|  | ActualSize = SizeEstimate; | 
|  | } | 
|  |  | 
|  | BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(), | 
|  | ActualSize); | 
|  | BufferEnd = BufferBegin+ActualSize; | 
|  | EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin; | 
|  |  | 
|  | // Ensure the constant pool/jump table info is at least 4-byte aligned. | 
|  | emitAlignment(16); | 
|  |  | 
|  | emitConstantPool(F.getConstantPool()); | 
|  | if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) | 
|  | initJumpTableInfo(MJTI); | 
|  |  | 
|  | // About to start emitting the machine code for the function. | 
|  | emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); | 
|  | TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); | 
|  | EmittedFunctions[F.getFunction()].Code = CurBufferPtr; | 
|  |  | 
|  | MBBLocations.clear(); | 
|  |  | 
|  | EmissionDetails.MF = &F; | 
|  | EmissionDetails.LineStarts.clear(); | 
|  | } | 
|  |  | 
|  | bool JITEmitter::finishFunction(MachineFunction &F) { | 
|  | if (CurBufferPtr == BufferEnd) { | 
|  | // We must call endFunctionBody before retrying, because | 
|  | // deallocateMemForFunction requires it. | 
|  | MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); | 
|  | retryWithMoreMemory(F); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) | 
|  | emitJumpTableInfo(MJTI); | 
|  |  | 
|  | // FnStart is the start of the text, not the start of the constant pool and | 
|  | // other per-function data. | 
|  | uint8_t *FnStart = | 
|  | (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); | 
|  |  | 
|  | // FnEnd is the end of the function's machine code. | 
|  | uint8_t *FnEnd = CurBufferPtr; | 
|  |  | 
|  | if (!Relocations.empty()) { | 
|  | CurFn = F.getFunction(); | 
|  | NumRelos += Relocations.size(); | 
|  |  | 
|  | // Resolve the relocations to concrete pointers. | 
|  | for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { | 
|  | MachineRelocation &MR = Relocations[i]; | 
|  | void *ResultPtr = 0; | 
|  | if (!MR.letTargetResolve()) { | 
|  | if (MR.isExternalSymbol()) { | 
|  | ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(), | 
|  | false); | 
|  | DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to [" | 
|  | << ResultPtr << "]\n"); | 
|  |  | 
|  | // If the target REALLY wants a stub for this function, emit it now. | 
|  | if (MR.mayNeedFarStub()) { | 
|  | ResultPtr = Resolver.getExternalFunctionStub(ResultPtr); | 
|  | } | 
|  | } else if (MR.isGlobalValue()) { | 
|  | ResultPtr = getPointerToGlobal(MR.getGlobalValue(), | 
|  | BufferBegin+MR.getMachineCodeOffset(), | 
|  | MR.mayNeedFarStub()); | 
|  | } else if (MR.isIndirectSymbol()) { | 
|  | ResultPtr = getPointerToGVIndirectSym( | 
|  | MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset()); | 
|  | } else if (MR.isBasicBlock()) { | 
|  | ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); | 
|  | } else if (MR.isConstantPoolIndex()) { | 
|  | ResultPtr = | 
|  | (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); | 
|  | } else { | 
|  | assert(MR.isJumpTableIndex()); | 
|  | ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); | 
|  | } | 
|  |  | 
|  | MR.setResultPointer(ResultPtr); | 
|  | } | 
|  |  | 
|  | // if we are managing the GOT and the relocation wants an index, | 
|  | // give it one | 
|  | if (MR.isGOTRelative() && MemMgr->isManagingGOT()) { | 
|  | unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr); | 
|  | MR.setGOTIndex(idx); | 
|  | if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) { | 
|  | DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr | 
|  | << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] | 
|  | << "\n"); | 
|  | ((void**)MemMgr->getGOTBase())[idx] = ResultPtr; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | CurFn = 0; | 
|  | TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], | 
|  | Relocations.size(), MemMgr->getGOTBase()); | 
|  | } | 
|  |  | 
|  | // Update the GOT entry for F to point to the new code. | 
|  | if (MemMgr->isManagingGOT()) { | 
|  | unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin); | 
|  | if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) { | 
|  | DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin | 
|  | << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] | 
|  | << "\n"); | 
|  | ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin; | 
|  | } | 
|  | } | 
|  |  | 
|  | // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for | 
|  | // global variables that were referenced in the relocations. | 
|  | MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); | 
|  |  | 
|  | if (CurBufferPtr == BufferEnd) { | 
|  | retryWithMoreMemory(F); | 
|  | return true; | 
|  | } else { | 
|  | // Now that we've succeeded in emitting the function, reset the | 
|  | // SizeEstimate back down to zero. | 
|  | SizeEstimate = 0; | 
|  | } | 
|  |  | 
|  | BufferBegin = CurBufferPtr = 0; | 
|  | NumBytes += FnEnd-FnStart; | 
|  |  | 
|  | // Invalidate the icache if necessary. | 
|  | sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart); | 
|  |  | 
|  | TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart, | 
|  | EmissionDetails); | 
|  |  | 
|  | // Reset the previous debug location. | 
|  | PrevDL = DebugLoc(); | 
|  |  | 
|  | DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart | 
|  | << "] Function: " << F.getName() | 
|  | << ": " << (FnEnd-FnStart) << " bytes of text, " | 
|  | << Relocations.size() << " relocations\n"); | 
|  |  | 
|  | Relocations.clear(); | 
|  | ConstPoolAddresses.clear(); | 
|  |  | 
|  | // Mark code region readable and executable if it's not so already. | 
|  | MemMgr->setMemoryExecutable(); | 
|  |  | 
|  | DEBUG({ | 
|  | if (sys::hasDisassembler()) { | 
|  | dbgs() << "JIT: Disassembled code:\n"; | 
|  | dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart, | 
|  | (uintptr_t)FnStart); | 
|  | } else { | 
|  | dbgs() << "JIT: Binary code:\n"; | 
|  | uint8_t* q = FnStart; | 
|  | for (int i = 0; q < FnEnd; q += 4, ++i) { | 
|  | if (i == 4) | 
|  | i = 0; | 
|  | if (i == 0) | 
|  | dbgs() << "JIT: " << (long)(q - FnStart) << ": "; | 
|  | bool Done = false; | 
|  | for (int j = 3; j >= 0; --j) { | 
|  | if (q + j >= FnEnd) | 
|  | Done = true; | 
|  | else | 
|  | dbgs() << (unsigned short)q[j]; | 
|  | } | 
|  | if (Done) | 
|  | break; | 
|  | dbgs() << ' '; | 
|  | if (i == 3) | 
|  | dbgs() << '\n'; | 
|  | } | 
|  | dbgs()<< '\n'; | 
|  | } | 
|  | }); | 
|  |  | 
|  | if (JITExceptionHandling) { | 
|  | uintptr_t ActualSize = 0; | 
|  | SavedBufferBegin = BufferBegin; | 
|  | SavedBufferEnd = BufferEnd; | 
|  | SavedCurBufferPtr = CurBufferPtr; | 
|  | uint8_t *FrameRegister; | 
|  |  | 
|  | while (true) { | 
|  | BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(), | 
|  | ActualSize); | 
|  | BufferEnd = BufferBegin+ActualSize; | 
|  | EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin; | 
|  | uint8_t *EhStart; | 
|  | FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd, EhStart); | 
|  |  | 
|  | // If the buffer was large enough to hold the table then we are done. | 
|  | if (CurBufferPtr != BufferEnd) | 
|  | break; | 
|  |  | 
|  | // Try again with twice as much space. | 
|  | ActualSize = (CurBufferPtr - BufferBegin) * 2; | 
|  | MemMgr->deallocateExceptionTable(BufferBegin); | 
|  | } | 
|  | MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr, | 
|  | FrameRegister); | 
|  | BufferBegin = SavedBufferBegin; | 
|  | BufferEnd = SavedBufferEnd; | 
|  | CurBufferPtr = SavedCurBufferPtr; | 
|  |  | 
|  | if (JITExceptionHandling) { | 
|  | TheJIT->RegisterTable(F.getFunction(), FrameRegister); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MMI) | 
|  | MMI->EndFunction(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void JITEmitter::retryWithMoreMemory(MachineFunction &F) { | 
|  | DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n"); | 
|  | Relocations.clear();  // Clear the old relocations or we'll reapply them. | 
|  | ConstPoolAddresses.clear(); | 
|  | ++NumRetries; | 
|  | deallocateMemForFunction(F.getFunction()); | 
|  | // Try again with at least twice as much free space. | 
|  | SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin)); | 
|  |  | 
|  | for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){ | 
|  | if (MBB->hasAddressTaken()) | 
|  | TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// deallocateMemForFunction - Deallocate all memory for the specified | 
|  | /// function body.  Also drop any references the function has to stubs. | 
|  | /// May be called while the Function is being destroyed inside ~Value(). | 
|  | void JITEmitter::deallocateMemForFunction(const Function *F) { | 
|  | ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator | 
|  | Emitted = EmittedFunctions.find(F); | 
|  | if (Emitted != EmittedFunctions.end()) { | 
|  | MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody); | 
|  | MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable); | 
|  | TheJIT->NotifyFreeingMachineCode(Emitted->second.Code); | 
|  |  | 
|  | EmittedFunctions.erase(Emitted); | 
|  | } | 
|  |  | 
|  | if (JITExceptionHandling) { | 
|  | TheJIT->DeregisterTable(F); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) { | 
|  | if (BufferBegin) | 
|  | return JITCodeEmitter::allocateSpace(Size, Alignment); | 
|  |  | 
|  | // create a new memory block if there is no active one. | 
|  | // care must be taken so that BufferBegin is invalidated when a | 
|  | // block is trimmed | 
|  | BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment); | 
|  | BufferEnd = BufferBegin+Size; | 
|  | return CurBufferPtr; | 
|  | } | 
|  |  | 
|  | void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) { | 
|  | // Delegate this call through the memory manager. | 
|  | return MemMgr->allocateGlobal(Size, Alignment); | 
|  | } | 
|  |  | 
|  | void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { | 
|  | if (TheJIT->getJITInfo().hasCustomConstantPool()) | 
|  | return; | 
|  |  | 
|  | const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); | 
|  | if (Constants.empty()) return; | 
|  |  | 
|  | unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout()); | 
|  | unsigned Align = MCP->getConstantPoolAlignment(); | 
|  | ConstantPoolBase = allocateSpace(Size, Align); | 
|  | ConstantPool = MCP; | 
|  |  | 
|  | if (ConstantPoolBase == 0) return;  // Buffer overflow. | 
|  |  | 
|  | DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase | 
|  | << "] (size: " << Size << ", alignment: " << Align << ")\n"); | 
|  |  | 
|  | // Initialize the memory for all of the constant pool entries. | 
|  | unsigned Offset = 0; | 
|  | for (unsigned i = 0, e = Constants.size(); i != e; ++i) { | 
|  | MachineConstantPoolEntry CPE = Constants[i]; | 
|  | unsigned AlignMask = CPE.getAlignment() - 1; | 
|  | Offset = (Offset + AlignMask) & ~AlignMask; | 
|  |  | 
|  | uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset; | 
|  | ConstPoolAddresses.push_back(CAddr); | 
|  | if (CPE.isMachineConstantPoolEntry()) { | 
|  | // FIXME: add support to lower machine constant pool values into bytes! | 
|  | report_fatal_error("Initialize memory with machine specific constant pool" | 
|  | "entry has not been implemented!"); | 
|  | } | 
|  | TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr); | 
|  | DEBUG(dbgs() << "JIT:   CP" << i << " at [0x"; | 
|  | dbgs().write_hex(CAddr) << "]\n"); | 
|  |  | 
|  | Type *Ty = CPE.Val.ConstVal->getType(); | 
|  | Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty); | 
|  | } | 
|  | } | 
|  |  | 
|  | void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { | 
|  | if (TheJIT->getJITInfo().hasCustomJumpTables()) | 
|  | return; | 
|  | if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) | 
|  | return; | 
|  |  | 
|  | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); | 
|  | if (JT.empty()) return; | 
|  |  | 
|  | unsigned NumEntries = 0; | 
|  | for (unsigned i = 0, e = JT.size(); i != e; ++i) | 
|  | NumEntries += JT[i].MBBs.size(); | 
|  |  | 
|  | unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout()); | 
|  |  | 
|  | // Just allocate space for all the jump tables now.  We will fix up the actual | 
|  | // MBB entries in the tables after we emit the code for each block, since then | 
|  | // we will know the final locations of the MBBs in memory. | 
|  | JumpTable = MJTI; | 
|  | JumpTableBase = allocateSpace(NumEntries * EntrySize, | 
|  | MJTI->getEntryAlignment(*TheJIT->getDataLayout())); | 
|  | } | 
|  |  | 
|  | void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { | 
|  | if (TheJIT->getJITInfo().hasCustomJumpTables()) | 
|  | return; | 
|  |  | 
|  | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); | 
|  | if (JT.empty() || JumpTableBase == 0) return; | 
|  |  | 
|  |  | 
|  | switch (MJTI->getEntryKind()) { | 
|  | case MachineJumpTableInfo::EK_Inline: | 
|  | return; | 
|  | case MachineJumpTableInfo::EK_BlockAddress: { | 
|  | // EK_BlockAddress - Each entry is a plain address of block, e.g.: | 
|  | //     .word LBB123 | 
|  | assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) && | 
|  | "Cross JIT'ing?"); | 
|  |  | 
|  | // For each jump table, map each target in the jump table to the address of | 
|  | // an emitted MachineBasicBlock. | 
|  | intptr_t *SlotPtr = (intptr_t*)JumpTableBase; | 
|  |  | 
|  | for (unsigned i = 0, e = JT.size(); i != e; ++i) { | 
|  | const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; | 
|  | // Store the address of the basic block for this jump table slot in the | 
|  | // memory we allocated for the jump table in 'initJumpTableInfo' | 
|  | for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) | 
|  | *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case MachineJumpTableInfo::EK_Custom32: | 
|  | case MachineJumpTableInfo::EK_GPRel32BlockAddress: | 
|  | case MachineJumpTableInfo::EK_LabelDifference32: { | 
|  | assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?"); | 
|  | // For each jump table, place the offset from the beginning of the table | 
|  | // to the target address. | 
|  | int *SlotPtr = (int*)JumpTableBase; | 
|  |  | 
|  | for (unsigned i = 0, e = JT.size(); i != e; ++i) { | 
|  | const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; | 
|  | // Store the offset of the basic block for this jump table slot in the | 
|  | // memory we allocated for the jump table in 'initJumpTableInfo' | 
|  | uintptr_t Base = (uintptr_t)SlotPtr; | 
|  | for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { | 
|  | uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]); | 
|  | /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook. | 
|  | *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case MachineJumpTableInfo::EK_GPRel64BlockAddress: | 
|  | llvm_unreachable( | 
|  | "JT Info emission not implemented for GPRel64BlockAddress yet."); | 
|  | } | 
|  | } | 
|  |  | 
|  | void JITEmitter::startGVStub(const GlobalValue* GV, | 
|  | unsigned StubSize, unsigned Alignment) { | 
|  | SavedBufferBegin = BufferBegin; | 
|  | SavedBufferEnd = BufferEnd; | 
|  | SavedCurBufferPtr = CurBufferPtr; | 
|  |  | 
|  | BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment); | 
|  | BufferEnd = BufferBegin+StubSize+1; | 
|  | } | 
|  |  | 
|  | void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) { | 
|  | SavedBufferBegin = BufferBegin; | 
|  | SavedBufferEnd = BufferEnd; | 
|  | SavedCurBufferPtr = CurBufferPtr; | 
|  |  | 
|  | BufferBegin = CurBufferPtr = (uint8_t *)Buffer; | 
|  | BufferEnd = BufferBegin+StubSize+1; | 
|  | } | 
|  |  | 
|  | void JITEmitter::finishGVStub() { | 
|  | assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space."); | 
|  | NumBytes += getCurrentPCOffset(); | 
|  | BufferBegin = SavedBufferBegin; | 
|  | BufferEnd = SavedBufferEnd; | 
|  | CurBufferPtr = SavedCurBufferPtr; | 
|  | } | 
|  |  | 
|  | void *JITEmitter::allocIndirectGV(const GlobalValue *GV, | 
|  | const uint8_t *Buffer, size_t Size, | 
|  | unsigned Alignment) { | 
|  | uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment); | 
|  | memcpy(IndGV, Buffer, Size); | 
|  | return IndGV; | 
|  | } | 
|  |  | 
|  | // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry | 
|  | // in the constant pool that was last emitted with the 'emitConstantPool' | 
|  | // method. | 
|  | // | 
|  | uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { | 
|  | assert(ConstantNum < ConstantPool->getConstants().size() && | 
|  | "Invalid ConstantPoolIndex!"); | 
|  | return ConstPoolAddresses[ConstantNum]; | 
|  | } | 
|  |  | 
|  | // getJumpTableEntryAddress - Return the address of the JumpTable with index | 
|  | // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' | 
|  | // | 
|  | uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { | 
|  | const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables(); | 
|  | assert(Index < JT.size() && "Invalid jump table index!"); | 
|  |  | 
|  | unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout()); | 
|  |  | 
|  | unsigned Offset = 0; | 
|  | for (unsigned i = 0; i < Index; ++i) | 
|  | Offset += JT[i].MBBs.size(); | 
|  |  | 
|  | Offset *= EntrySize; | 
|  |  | 
|  | return (uintptr_t)((char *)JumpTableBase + Offset); | 
|  | } | 
|  |  | 
|  | void JITEmitter::EmittedFunctionConfig::onDelete( | 
|  | JITEmitter *Emitter, const Function *F) { | 
|  | Emitter->deallocateMemForFunction(F); | 
|  | } | 
|  | void JITEmitter::EmittedFunctionConfig::onRAUW( | 
|  | JITEmitter *, const Function*, const Function*) { | 
|  | llvm_unreachable("The JIT doesn't know how to handle a" | 
|  | " RAUW on a value it has emitted."); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Public interface to this file | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM, | 
|  | TargetMachine &tm) { | 
|  | return new JITEmitter(jit, JMM, tm); | 
|  | } | 
|  |  | 
|  | // getPointerToFunctionOrStub - If the specified function has been | 
|  | // code-gen'd, return a pointer to the function.  If not, compile it, or use | 
|  | // a stub to implement lazy compilation if available. | 
|  | // | 
|  | void *JIT::getPointerToFunctionOrStub(Function *F) { | 
|  | // If we have already code generated the function, just return the address. | 
|  | if (void *Addr = getPointerToGlobalIfAvailable(F)) | 
|  | return Addr; | 
|  |  | 
|  | // Get a stub if the target supports it. | 
|  | JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter()); | 
|  | return JE->getJITResolver().getLazyFunctionStub(F); | 
|  | } | 
|  |  | 
|  | void JIT::updateFunctionStub(Function *F) { | 
|  | // Get the empty stub we generated earlier. | 
|  | JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter()); | 
|  | void *Stub = JE->getJITResolver().getLazyFunctionStub(F); | 
|  | void *Addr = getPointerToGlobalIfAvailable(F); | 
|  | assert(Addr != Stub && "Function must have non-stub address to be updated."); | 
|  |  | 
|  | // Tell the target jit info to rewrite the stub at the specified address, | 
|  | // rather than creating a new one. | 
|  | TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout(); | 
|  | JE->startGVStub(Stub, layout.Size); | 
|  | getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter()); | 
|  | JE->finishGVStub(); | 
|  | } | 
|  |  | 
|  | /// freeMachineCodeForFunction - release machine code memory for given Function. | 
|  | /// | 
|  | void JIT::freeMachineCodeForFunction(Function *F) { | 
|  | // Delete translation for this from the ExecutionEngine, so it will get | 
|  | // retranslated next time it is used. | 
|  | updateGlobalMapping(F, 0); | 
|  |  | 
|  | // Free the actual memory for the function body and related stuff. | 
|  | static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F); | 
|  | } |