| //===- CodeExtractor.cpp - Pull code region into a new function -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the interface to tear out a code region, such as an |
| // individual loop or a parallel section, into a new function, replacing it with |
| // a call to the new function. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/BasicBlock.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/Verifier.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/FunctionUtils.h" |
| #include "Support/Debug.h" |
| #include "Support/StringExtras.h" |
| #include <algorithm> |
| #include <set> |
| using namespace llvm; |
| |
| namespace { |
| |
| /// getFunctionArg - Return a pointer to F's ARGNOth argument. |
| /// |
| Argument *getFunctionArg(Function *F, unsigned argno) { |
| Function::aiterator I = F->abegin(); |
| std::advance(I, argno); |
| return I; |
| } |
| |
| struct CodeExtractor { |
| typedef std::vector<Value*> Values; |
| typedef std::vector<std::pair<unsigned, unsigned> > PhiValChangesTy; |
| typedef std::map<PHINode*, PhiValChangesTy> PhiVal2ArgTy; |
| PhiVal2ArgTy PhiVal2Arg; |
| std::set<BasicBlock*> BlocksToExtract; |
| public: |
| Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); |
| |
| private: |
| void findInputsOutputs(Values &inputs, Values &outputs, |
| BasicBlock *newHeader, |
| BasicBlock *newRootNode); |
| |
| void processPhiNodeInputs(PHINode *Phi, |
| Values &inputs, |
| BasicBlock *newHeader, |
| BasicBlock *newRootNode); |
| |
| void rewritePhiNodes(Function *F, BasicBlock *newFuncRoot); |
| |
| Function *constructFunction(const Values &inputs, |
| const Values &outputs, |
| BasicBlock *newRootNode, BasicBlock *newHeader, |
| Function *oldFunction, Module *M); |
| |
| void moveCodeToFunction(Function *newFunction); |
| |
| void emitCallAndSwitchStatement(Function *newFunction, |
| BasicBlock *newHeader, |
| Values &inputs, |
| Values &outputs); |
| |
| }; |
| } |
| |
| void CodeExtractor::processPhiNodeInputs(PHINode *Phi, |
| Values &inputs, |
| BasicBlock *codeReplacer, |
| BasicBlock *newFuncRoot) |
| { |
| // Separate incoming values and BasicBlocks as internal/external. We ignore |
| // the case where both the value and BasicBlock are internal, because we don't |
| // need to do a thing. |
| std::vector<unsigned> EValEBB; |
| std::vector<unsigned> EValIBB; |
| std::vector<unsigned> IValEBB; |
| |
| for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) { |
| Value *phiVal = Phi->getIncomingValue(i); |
| if (Instruction *Inst = dyn_cast<Instruction>(phiVal)) { |
| if (BlocksToExtract.count(Inst->getParent())) { |
| if (!BlocksToExtract.count(Phi->getIncomingBlock(i))) |
| IValEBB.push_back(i); |
| } else { |
| if (BlocksToExtract.count(Phi->getIncomingBlock(i))) |
| EValIBB.push_back(i); |
| else |
| EValEBB.push_back(i); |
| } |
| } else if (Constant *Const = dyn_cast<Constant>(phiVal)) { |
| // Constants are internal, but considered `external' if they are coming |
| // from an external block. |
| if (!BlocksToExtract.count(Phi->getIncomingBlock(i))) |
| EValEBB.push_back(i); |
| } else if (Argument *Arg = dyn_cast<Argument>(phiVal)) { |
| // arguments are external |
| if (BlocksToExtract.count(Phi->getIncomingBlock(i))) |
| EValIBB.push_back(i); |
| else |
| EValEBB.push_back(i); |
| } else { |
| phiVal->dump(); |
| assert(0 && "Unhandled input in a Phi node"); |
| } |
| } |
| |
| // Both value and block are external. Need to group all of |
| // these, have an external phi, pass the result as an |
| // argument, and have THIS phi use that result. |
| if (EValEBB.size() > 0) { |
| if (EValEBB.size() == 1) { |
| // Now if it's coming from the newFuncRoot, it's that funky input |
| unsigned phiIdx = EValEBB[0]; |
| if (!dyn_cast<Constant>(Phi->getIncomingValue(phiIdx))) |
| { |
| PhiVal2Arg[Phi].push_back(std::make_pair(phiIdx, inputs.size())); |
| // We can just pass this value in as argument |
| inputs.push_back(Phi->getIncomingValue(phiIdx)); |
| } |
| Phi->setIncomingBlock(phiIdx, newFuncRoot); |
| } else { |
| PHINode *externalPhi = new PHINode(Phi->getType(), "extPhi"); |
| codeReplacer->getInstList().insert(codeReplacer->begin(), externalPhi); |
| for (std::vector<unsigned>::iterator i = EValEBB.begin(), |
| e = EValEBB.end(); i != e; ++i) |
| { |
| externalPhi->addIncoming(Phi->getIncomingValue(*i), |
| Phi->getIncomingBlock(*i)); |
| |
| // We make these values invalid instead of deleting them because that |
| // would shift the indices of other values... The fixPhiNodes should |
| // clean these phi nodes up later. |
| Phi->setIncomingValue(*i, 0); |
| Phi->setIncomingBlock(*i, 0); |
| } |
| PhiVal2Arg[Phi].push_back(std::make_pair(Phi->getNumIncomingValues(), |
| inputs.size())); |
| // We can just pass this value in as argument |
| inputs.push_back(externalPhi); |
| } |
| } |
| |
| // When the value is external, but block internal... |
| // just pass it in as argument, no change to phi node |
| for (std::vector<unsigned>::iterator i = EValIBB.begin(), |
| e = EValIBB.end(); i != e; ++i) |
| { |
| // rewrite the phi input node to be an argument |
| PhiVal2Arg[Phi].push_back(std::make_pair(*i, inputs.size())); |
| inputs.push_back(Phi->getIncomingValue(*i)); |
| } |
| |
| // Value internal, block external |
| // this can happen if we are extracting a part of a loop |
| for (std::vector<unsigned>::iterator i = IValEBB.begin(), |
| e = IValEBB.end(); i != e; ++i) |
| { |
| assert(0 && "Cannot (YET) handle internal values via external blocks"); |
| } |
| } |
| |
| |
| void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs, |
| BasicBlock *newHeader, |
| BasicBlock *newRootNode) { |
| for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), |
| ce = BlocksToExtract.end(); ci != ce; ++ci) { |
| BasicBlock *BB = *ci; |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { |
| // If a used value is defined outside the region, it's an input. If an |
| // instruction is used outside the region, it's an output. |
| if (PHINode *Phi = dyn_cast<PHINode>(I)) { |
| processPhiNodeInputs(Phi, inputs, newHeader, newRootNode); |
| } else { |
| // All other instructions go through the generic input finder |
| // Loop over the operands of each instruction (inputs) |
| for (User::op_iterator op = I->op_begin(), opE = I->op_end(); |
| op != opE; ++op) |
| if (Instruction *opI = dyn_cast<Instruction>(*op)) { |
| // Check if definition of this operand is within the loop |
| if (!BlocksToExtract.count(opI->getParent())) { |
| // add this operand to the inputs |
| inputs.push_back(opI); |
| } |
| } else if (isa<Argument>(*op)) { |
| inputs.push_back(*op); |
| } |
| } |
| |
| // Consider uses of this instruction (outputs) |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); |
| UI != E; ++UI) |
| if (!BlocksToExtract.count(cast<Instruction>(*UI)->getParent())) |
| outputs.push_back(*UI); |
| } // for: insts |
| } // for: basic blocks |
| } |
| |
| void CodeExtractor::rewritePhiNodes(Function *F, |
| BasicBlock *newFuncRoot) { |
| // Write any changes that were saved before: use function arguments as inputs |
| for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end(); |
| i != e; ++i) |
| { |
| PHINode *phi = (*i).first; |
| PhiValChangesTy &values = (*i).second; |
| for (unsigned cIdx = 0, ce = values.size(); cIdx != ce; ++cIdx) |
| { |
| unsigned phiValueIdx = values[cIdx].first, argNum = values[cIdx].second; |
| if (phiValueIdx < phi->getNumIncomingValues()) |
| phi->setIncomingValue(phiValueIdx, getFunctionArg(F, argNum)); |
| else |
| phi->addIncoming(getFunctionArg(F, argNum), newFuncRoot); |
| } |
| } |
| |
| // Delete any invalid Phi node inputs that were marked as NULL previously |
| for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end(); |
| i != e; ++i) |
| { |
| PHINode *phi = (*i).first; |
| for (unsigned idx = 0, end = phi->getNumIncomingValues(); idx != end; ++idx) |
| { |
| if (phi->getIncomingValue(idx) == 0 && phi->getIncomingBlock(idx) == 0) { |
| phi->removeIncomingValue(idx); |
| --idx; |
| --end; |
| } |
| } |
| } |
| |
| // We are done with the saved values |
| PhiVal2Arg.clear(); |
| } |
| |
| |
| /// constructFunction - make a function based on inputs and outputs, as follows: |
| /// f(in0, ..., inN, out0, ..., outN) |
| /// |
| Function *CodeExtractor::constructFunction(const Values &inputs, |
| const Values &outputs, |
| BasicBlock *newRootNode, |
| BasicBlock *newHeader, |
| Function *oldFunction, Module *M) { |
| DEBUG(std::cerr << "inputs: " << inputs.size() << "\n"); |
| DEBUG(std::cerr << "outputs: " << outputs.size() << "\n"); |
| BasicBlock *header = *BlocksToExtract.begin(); |
| |
| // This function returns unsigned, outputs will go back by reference. |
| Type *retTy = Type::UShortTy; |
| std::vector<const Type*> paramTy; |
| |
| // Add the types of the input values to the function's argument list |
| for (Values::const_iterator i = inputs.begin(), |
| e = inputs.end(); i != e; ++i) { |
| const Value *value = *i; |
| DEBUG(std::cerr << "value used in func: " << value << "\n"); |
| paramTy.push_back(value->getType()); |
| } |
| |
| // Add the types of the output values to the function's argument list, but |
| // make them pointer types for scalars |
| for (Values::const_iterator i = outputs.begin(), |
| e = outputs.end(); i != e; ++i) { |
| const Value *value = *i; |
| DEBUG(std::cerr << "instr used in func: " << value << "\n"); |
| const Type *valueType = value->getType(); |
| // Convert scalar types into a pointer of that type |
| if (valueType->isPrimitiveType()) { |
| valueType = PointerType::get(valueType); |
| } |
| paramTy.push_back(valueType); |
| } |
| |
| DEBUG(std::cerr << "Function type: " << retTy << " f("); |
| for (std::vector<const Type*>::iterator i = paramTy.begin(), |
| e = paramTy.end(); i != e; ++i) |
| DEBUG(std::cerr << (*i) << ", "); |
| DEBUG(std::cerr << ")\n"); |
| |
| const FunctionType *funcType = FunctionType::get(retTy, paramTy, false); |
| |
| // Create the new function |
| Function *newFunction = new Function(funcType, |
| GlobalValue::InternalLinkage, |
| oldFunction->getName() + "_code", M); |
| newFunction->getBasicBlockList().push_back(newRootNode); |
| |
| for (unsigned i = 0, e = inputs.size(); i != e; ++i) { |
| std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); |
| for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); |
| use != useE; ++use) |
| if (Instruction* inst = dyn_cast<Instruction>(*use)) |
| if (BlocksToExtract.count(inst->getParent())) |
| inst->replaceUsesOfWith(inputs[i], getFunctionArg(newFunction, i)); |
| } |
| |
| // Rewrite branches to basic blocks outside of the loop to new dummy blocks |
| // within the new function. This must be done before we lose track of which |
| // blocks were originally in the code region. |
| std::vector<User*> Users(header->use_begin(), header->use_end()); |
| for (std::vector<User*>::iterator i = Users.begin(), e = Users.end(); |
| i != e; ++i) { |
| if (BranchInst *inst = dyn_cast<BranchInst>(*i)) { |
| BasicBlock *BB = inst->getParent(); |
| if (!BlocksToExtract.count(BB) && BB->getParent() == oldFunction) { |
| // The BasicBlock which contains the branch is not in the region |
| // modify the branch target to a new block |
| inst->replaceUsesOfWith(header, newHeader); |
| } |
| } |
| } |
| |
| return newFunction; |
| } |
| |
| void CodeExtractor::moveCodeToFunction(Function *newFunction) { |
| Function *oldFunc = (*BlocksToExtract.begin())->getParent(); |
| Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); |
| Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); |
| |
| for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), |
| e = BlocksToExtract.end(); i != e; ++i) { |
| // Delete the basic block from the old function, and the list of blocks |
| oldBlocks.remove(*i); |
| |
| // Insert this basic block into the new function |
| newBlocks.push_back(*i); |
| } |
| } |
| |
| void |
| CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, |
| BasicBlock *codeReplacer, |
| Values &inputs, |
| Values &outputs) |
| { |
| // Emit a call to the new function, passing allocated memory for outputs and |
| // just plain inputs for non-scalars |
| std::vector<Value*> params(inputs); |
| |
| for (Values::const_iterator i = outputs.begin(), e = outputs.end(); i != e; |
| ++i) { |
| Value *Output = *i; |
| // Create allocas for scalar outputs |
| if (Output->getType()->isPrimitiveType()) { |
| AllocaInst *alloca = |
| new AllocaInst((*i)->getType(), 0, Output->getName()+".loc", |
| codeReplacer->getParent()->begin()->begin()); |
| params.push_back(alloca); |
| |
| LoadInst *load = new LoadInst(alloca, Output->getName()+".reload"); |
| codeReplacer->getInstList().push_back(load); |
| std::vector<User*> Users((*i)->use_begin(), (*i)->use_end()); |
| for (std::vector<User*>::iterator use = Users.begin(), useE =Users.end(); |
| use != useE; ++use) { |
| if (Instruction* inst = dyn_cast<Instruction>(*use)) { |
| if (!BlocksToExtract.count(inst->getParent())) |
| inst->replaceUsesOfWith(*i, load); |
| } |
| } |
| } else { |
| params.push_back(*i); |
| } |
| } |
| |
| CallInst *call = new CallInst(newFunction, params, "targetBlock"); |
| codeReplacer->getInstList().push_front(call); |
| |
| // Now we can emit a switch statement using the call as a value. |
| SwitchInst *TheSwitch = new SwitchInst(call, codeReplacer, codeReplacer); |
| |
| // Since there may be multiple exits from the original region, make the new |
| // function return an unsigned, switch on that number. This loop iterates |
| // over all of the blocks in the extracted region, updating any terminator |
| // instructions in the to-be-extracted region that branch to blocks that are |
| // not in the region to be extracted. |
| std::map<BasicBlock*, BasicBlock*> ExitBlockMap; |
| |
| unsigned switchVal = 0; |
| for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), |
| e = BlocksToExtract.end(); i != e; ++i) { |
| TerminatorInst *TI = (*i)->getTerminator(); |
| for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
| if (!BlocksToExtract.count(TI->getSuccessor(i))) { |
| BasicBlock *OldTarget = TI->getSuccessor(i); |
| // add a new basic block which returns the appropriate value |
| BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; |
| if (!NewTarget) { |
| // If we don't already have an exit stub for this non-extracted |
| // destination, create one now! |
| NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", |
| newFunction); |
| |
| ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal++); |
| ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); |
| |
| // Update the switch instruction. |
| TheSwitch->addCase(brVal, OldTarget); |
| |
| // Restore values just before we exit |
| // FIXME: Use a GetElementPtr to bunch the outputs in a struct |
| for (unsigned out = 0, e = outputs.size(); out != e; ++out) |
| new StoreInst(outputs[out], getFunctionArg(newFunction, out),NTRet); |
| } |
| |
| // rewrite the original branch instruction with this new target |
| TI->setSuccessor(i, NewTarget); |
| } |
| } |
| |
| // Now that we've done the deed, make the default destination of the switch |
| // instruction be one of the exit blocks of the region. |
| if (TheSwitch->getNumSuccessors() > 1) { |
| // FIXME: this is broken w.r.t. PHI nodes, but the old code was more broken. |
| // This edge is not traversable. |
| TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(1)); |
| } |
| } |
| |
| |
| /// ExtractRegion - Removes a loop from a function, replaces it with a call to |
| /// new function. Returns pointer to the new function. |
| /// |
| /// algorithm: |
| /// |
| /// find inputs and outputs for the region |
| /// |
| /// for inputs: add to function as args, map input instr* to arg# |
| /// for outputs: add allocas for scalars, |
| /// add to func as args, map output instr* to arg# |
| /// |
| /// rewrite func to use argument #s instead of instr* |
| /// |
| /// for each scalar output in the function: at every exit, store intermediate |
| /// computed result back into memory. |
| /// |
| Function *CodeExtractor::ExtractCodeRegion(const std::vector<BasicBlock*> &code) |
| { |
| // 1) Find inputs, outputs |
| // 2) Construct new function |
| // * Add allocas for defs, pass as args by reference |
| // * Pass in uses as args |
| // 3) Move code region, add call instr to func |
| // |
| BlocksToExtract.insert(code.begin(), code.end()); |
| |
| Values inputs, outputs; |
| |
| // Assumption: this is a single-entry code region, and the header is the first |
| // block in the region. |
| BasicBlock *header = code[0]; |
| for (unsigned i = 1, e = code.size(); i != e; ++i) |
| for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); |
| PI != E; ++PI) |
| assert(BlocksToExtract.count(*PI) && |
| "No blocks in this region may have entries from outside the region" |
| " except for the first block!"); |
| |
| Function *oldFunction = header->getParent(); |
| |
| // This takes place of the original loop |
| BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction); |
| |
| // The new function needs a root node because other nodes can branch to the |
| // head of the loop, and the root cannot have predecessors |
| BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); |
| newFuncRoot->getInstList().push_back(new BranchInst(header)); |
| |
| // Find inputs to, outputs from the code region |
| // |
| // If one of the inputs is coming from a different basic block and it's in a |
| // phi node, we need to rewrite the phi node: |
| // |
| // * All the inputs which involve basic blocks OUTSIDE of this region go into |
| // a NEW phi node that takes care of finding which value really came in. |
| // The result of this phi is passed to the function as an argument. |
| // |
| // * All the other phi values stay. |
| // |
| // FIXME: PHI nodes' incoming blocks aren't being rewritten to accomodate for |
| // blocks moving to a new function. |
| // SOLUTION: move Phi nodes out of the loop header into the codeReplacer, pass |
| // the values as parameters to the function |
| findInputsOutputs(inputs, outputs, codeReplacer, newFuncRoot); |
| |
| // Step 2: Construct new function based on inputs/outputs, |
| // Add allocas for all defs |
| Function *newFunction = constructFunction(inputs, outputs, newFuncRoot, |
| codeReplacer, oldFunction, |
| oldFunction->getParent()); |
| |
| rewritePhiNodes(newFunction, newFuncRoot); |
| |
| emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); |
| |
| moveCodeToFunction(newFunction); |
| |
| DEBUG(if (verifyFunction(*newFunction)) abort()); |
| return newFunction; |
| } |
| |
| /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new |
| /// function |
| /// |
| Function* llvm::ExtractCodeRegion(const std::vector<BasicBlock*> &code) { |
| return CodeExtractor().ExtractCodeRegion(code); |
| } |
| |
| /// ExtractBasicBlock - slurp a natural loop into a brand new function |
| /// |
| Function* llvm::ExtractLoop(Loop *L) { |
| return CodeExtractor().ExtractCodeRegion(L->getBlocks()); |
| } |
| |
| /// ExtractBasicBlock - slurp a basic block into a brand new function |
| /// |
| Function* llvm::ExtractBasicBlock(BasicBlock *BB) { |
| std::vector<BasicBlock*> Blocks; |
| Blocks.push_back(BB); |
| return CodeExtractor().ExtractCodeRegion(Blocks); |
| } |