|  | #include "llvm/Analysis/Passes.h" | 
|  | #include "llvm/ExecutionEngine/Orc/CompileUtils.h" | 
|  | #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h" | 
|  | #include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h" | 
|  | #include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/LegacyPassManager.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Verifier.h" | 
|  | #include "llvm/Support/TargetSelect.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include <cctype> | 
|  | #include <iomanip> | 
|  | #include <iostream> | 
|  | #include <map> | 
|  | #include <sstream> | 
|  | #include <string> | 
|  | #include <vector> | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Lexer | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one | 
|  | // of these for known things. | 
|  | enum Token { | 
|  | tok_eof = -1, | 
|  |  | 
|  | // commands | 
|  | tok_def = -2, tok_extern = -3, | 
|  |  | 
|  | // primary | 
|  | tok_identifier = -4, tok_number = -5, | 
|  |  | 
|  | // control | 
|  | tok_if = -6, tok_then = -7, tok_else = -8, | 
|  | tok_for = -9, tok_in = -10, | 
|  |  | 
|  | // operators | 
|  | tok_binary = -11, tok_unary = -12, | 
|  |  | 
|  | // var definition | 
|  | tok_var = -13 | 
|  | }; | 
|  |  | 
|  | static std::string IdentifierStr;  // Filled in if tok_identifier | 
|  | static double NumVal;              // Filled in if tok_number | 
|  |  | 
|  | /// gettok - Return the next token from standard input. | 
|  | static int gettok() { | 
|  | static int LastChar = ' '; | 
|  |  | 
|  | // Skip any whitespace. | 
|  | while (isspace(LastChar)) | 
|  | LastChar = getchar(); | 
|  |  | 
|  | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* | 
|  | IdentifierStr = LastChar; | 
|  | while (isalnum((LastChar = getchar()))) | 
|  | IdentifierStr += LastChar; | 
|  |  | 
|  | if (IdentifierStr == "def") return tok_def; | 
|  | if (IdentifierStr == "extern") return tok_extern; | 
|  | if (IdentifierStr == "if") return tok_if; | 
|  | if (IdentifierStr == "then") return tok_then; | 
|  | if (IdentifierStr == "else") return tok_else; | 
|  | if (IdentifierStr == "for") return tok_for; | 
|  | if (IdentifierStr == "in") return tok_in; | 
|  | if (IdentifierStr == "binary") return tok_binary; | 
|  | if (IdentifierStr == "unary") return tok_unary; | 
|  | if (IdentifierStr == "var") return tok_var; | 
|  | return tok_identifier; | 
|  | } | 
|  |  | 
|  | if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+ | 
|  | std::string NumStr; | 
|  | do { | 
|  | NumStr += LastChar; | 
|  | LastChar = getchar(); | 
|  | } while (isdigit(LastChar) || LastChar == '.'); | 
|  |  | 
|  | NumVal = strtod(NumStr.c_str(), 0); | 
|  | return tok_number; | 
|  | } | 
|  |  | 
|  | if (LastChar == '#') { | 
|  | // Comment until end of line. | 
|  | do LastChar = getchar(); | 
|  | while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); | 
|  |  | 
|  | if (LastChar != EOF) | 
|  | return gettok(); | 
|  | } | 
|  |  | 
|  | // Check for end of file.  Don't eat the EOF. | 
|  | if (LastChar == EOF) | 
|  | return tok_eof; | 
|  |  | 
|  | // Otherwise, just return the character as its ascii value. | 
|  | int ThisChar = LastChar; | 
|  | LastChar = getchar(); | 
|  | return ThisChar; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Abstract Syntax Tree (aka Parse Tree) | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | class IRGenContext; | 
|  |  | 
|  | /// ExprAST - Base class for all expression nodes. | 
|  | struct ExprAST { | 
|  | virtual ~ExprAST() {} | 
|  | virtual Value *IRGen(IRGenContext &C) const = 0; | 
|  | }; | 
|  |  | 
|  | /// NumberExprAST - Expression class for numeric literals like "1.0". | 
|  | struct NumberExprAST : public ExprAST { | 
|  | NumberExprAST(double Val) : Val(Val) {} | 
|  | Value *IRGen(IRGenContext &C) const override; | 
|  |  | 
|  | double Val; | 
|  | }; | 
|  |  | 
|  | /// VariableExprAST - Expression class for referencing a variable, like "a". | 
|  | struct VariableExprAST : public ExprAST { | 
|  | VariableExprAST(std::string Name) : Name(std::move(Name)) {} | 
|  | Value *IRGen(IRGenContext &C) const override; | 
|  |  | 
|  | std::string Name; | 
|  | }; | 
|  |  | 
|  | /// UnaryExprAST - Expression class for a unary operator. | 
|  | struct UnaryExprAST : public ExprAST { | 
|  | UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand) | 
|  | : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {} | 
|  |  | 
|  | Value *IRGen(IRGenContext &C) const override; | 
|  |  | 
|  | char Opcode; | 
|  | std::unique_ptr<ExprAST> Operand; | 
|  | }; | 
|  |  | 
|  | /// BinaryExprAST - Expression class for a binary operator. | 
|  | struct BinaryExprAST : public ExprAST { | 
|  | BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS, | 
|  | std::unique_ptr<ExprAST> RHS) | 
|  | : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {} | 
|  |  | 
|  | Value *IRGen(IRGenContext &C) const override; | 
|  |  | 
|  | char Op; | 
|  | std::unique_ptr<ExprAST> LHS, RHS; | 
|  | }; | 
|  |  | 
|  | /// CallExprAST - Expression class for function calls. | 
|  | struct CallExprAST : public ExprAST { | 
|  | CallExprAST(std::string CalleeName, | 
|  | std::vector<std::unique_ptr<ExprAST>> Args) | 
|  | : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {} | 
|  |  | 
|  | Value *IRGen(IRGenContext &C) const override; | 
|  |  | 
|  | std::string CalleeName; | 
|  | std::vector<std::unique_ptr<ExprAST>> Args; | 
|  | }; | 
|  |  | 
|  | /// IfExprAST - Expression class for if/then/else. | 
|  | struct IfExprAST : public ExprAST { | 
|  | IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then, | 
|  | std::unique_ptr<ExprAST> Else) | 
|  | : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {} | 
|  | Value *IRGen(IRGenContext &C) const override; | 
|  |  | 
|  | std::unique_ptr<ExprAST> Cond, Then, Else; | 
|  | }; | 
|  |  | 
|  | /// ForExprAST - Expression class for for/in. | 
|  | struct ForExprAST : public ExprAST { | 
|  | ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start, | 
|  | std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step, | 
|  | std::unique_ptr<ExprAST> Body) | 
|  | : VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)), | 
|  | Step(std::move(Step)), Body(std::move(Body)) {} | 
|  |  | 
|  | Value *IRGen(IRGenContext &C) const override; | 
|  |  | 
|  | std::string VarName; | 
|  | std::unique_ptr<ExprAST> Start, End, Step, Body; | 
|  | }; | 
|  |  | 
|  | /// VarExprAST - Expression class for var/in | 
|  | struct VarExprAST : public ExprAST { | 
|  | typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding; | 
|  | typedef std::vector<Binding> BindingList; | 
|  |  | 
|  | VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body) | 
|  | : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {} | 
|  |  | 
|  | Value *IRGen(IRGenContext &C) const override; | 
|  |  | 
|  | BindingList VarBindings; | 
|  | std::unique_ptr<ExprAST> Body; | 
|  | }; | 
|  |  | 
|  | /// PrototypeAST - This class represents the "prototype" for a function, | 
|  | /// which captures its argument names as well as if it is an operator. | 
|  | struct PrototypeAST { | 
|  | PrototypeAST(std::string Name, std::vector<std::string> Args, | 
|  | bool IsOperator = false, unsigned Precedence = 0) | 
|  | : Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator), | 
|  | Precedence(Precedence) {} | 
|  |  | 
|  | Function *IRGen(IRGenContext &C) const; | 
|  | void CreateArgumentAllocas(Function *F, IRGenContext &C); | 
|  |  | 
|  | bool isUnaryOp() const { return IsOperator && Args.size() == 1; } | 
|  | bool isBinaryOp() const { return IsOperator && Args.size() == 2; } | 
|  |  | 
|  | char getOperatorName() const { | 
|  | assert(isUnaryOp() || isBinaryOp()); | 
|  | return Name[Name.size()-1]; | 
|  | } | 
|  |  | 
|  | std::string Name; | 
|  | std::vector<std::string> Args; | 
|  | bool IsOperator; | 
|  | unsigned Precedence;  // Precedence if a binary op. | 
|  | }; | 
|  |  | 
|  | /// FunctionAST - This class represents a function definition itself. | 
|  | struct FunctionAST { | 
|  | FunctionAST(std::unique_ptr<PrototypeAST> Proto, | 
|  | std::unique_ptr<ExprAST> Body) | 
|  | : Proto(std::move(Proto)), Body(std::move(Body)) {} | 
|  |  | 
|  | Function *IRGen(IRGenContext &C) const; | 
|  |  | 
|  | std::unique_ptr<PrototypeAST> Proto; | 
|  | std::unique_ptr<ExprAST> Body; | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Parser | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current | 
|  | /// token the parser is looking at.  getNextToken reads another token from the | 
|  | /// lexer and updates CurTok with its results. | 
|  | static int CurTok; | 
|  | static int getNextToken() { | 
|  | return CurTok = gettok(); | 
|  | } | 
|  |  | 
|  | /// BinopPrecedence - This holds the precedence for each binary operator that is | 
|  | /// defined. | 
|  | static std::map<char, int> BinopPrecedence; | 
|  |  | 
|  | /// GetTokPrecedence - Get the precedence of the pending binary operator token. | 
|  | static int GetTokPrecedence() { | 
|  | if (!isascii(CurTok)) | 
|  | return -1; | 
|  |  | 
|  | // Make sure it's a declared binop. | 
|  | int TokPrec = BinopPrecedence[CurTok]; | 
|  | if (TokPrec <= 0) return -1; | 
|  | return TokPrec; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | std::unique_ptr<T> ErrorU(const std::string &Str) { | 
|  | std::cerr << "Error: " << Str << "\n"; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | T* ErrorP(const std::string &Str) { | 
|  | std::cerr << "Error: " << Str << "\n"; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ExprAST> ParseExpression(); | 
|  |  | 
|  | /// identifierexpr | 
|  | ///   ::= identifier | 
|  | ///   ::= identifier '(' expression* ')' | 
|  | static std::unique_ptr<ExprAST> ParseIdentifierExpr() { | 
|  | std::string IdName = IdentifierStr; | 
|  |  | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | if (CurTok != '(') // Simple variable ref. | 
|  | return llvm::make_unique<VariableExprAST>(IdName); | 
|  |  | 
|  | // Call. | 
|  | getNextToken();  // eat ( | 
|  | std::vector<std::unique_ptr<ExprAST>> Args; | 
|  | if (CurTok != ')') { | 
|  | while (1) { | 
|  | auto Arg = ParseExpression(); | 
|  | if (!Arg) return nullptr; | 
|  | Args.push_back(std::move(Arg)); | 
|  |  | 
|  | if (CurTok == ')') break; | 
|  |  | 
|  | if (CurTok != ',') | 
|  | return ErrorU<CallExprAST>("Expected ')' or ',' in argument list"); | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Eat the ')'. | 
|  | getNextToken(); | 
|  |  | 
|  | return llvm::make_unique<CallExprAST>(IdName, std::move(Args)); | 
|  | } | 
|  |  | 
|  | /// numberexpr ::= number | 
|  | static std::unique_ptr<NumberExprAST> ParseNumberExpr() { | 
|  | auto Result = llvm::make_unique<NumberExprAST>(NumVal); | 
|  | getNextToken(); // consume the number | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// parenexpr ::= '(' expression ')' | 
|  | static std::unique_ptr<ExprAST> ParseParenExpr() { | 
|  | getNextToken();  // eat (. | 
|  | auto V = ParseExpression(); | 
|  | if (!V) | 
|  | return nullptr; | 
|  |  | 
|  | if (CurTok != ')') | 
|  | return ErrorU<ExprAST>("expected ')'"); | 
|  | getNextToken();  // eat ). | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// ifexpr ::= 'if' expression 'then' expression 'else' expression | 
|  | static std::unique_ptr<ExprAST> ParseIfExpr() { | 
|  | getNextToken();  // eat the if. | 
|  |  | 
|  | // condition. | 
|  | auto Cond = ParseExpression(); | 
|  | if (!Cond) | 
|  | return nullptr; | 
|  |  | 
|  | if (CurTok != tok_then) | 
|  | return ErrorU<ExprAST>("expected then"); | 
|  | getNextToken();  // eat the then | 
|  |  | 
|  | auto Then = ParseExpression(); | 
|  | if (!Then) | 
|  | return nullptr; | 
|  |  | 
|  | if (CurTok != tok_else) | 
|  | return ErrorU<ExprAST>("expected else"); | 
|  |  | 
|  | getNextToken(); | 
|  |  | 
|  | auto Else = ParseExpression(); | 
|  | if (!Else) | 
|  | return nullptr; | 
|  |  | 
|  | return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then), | 
|  | std::move(Else)); | 
|  | } | 
|  |  | 
|  | /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression | 
|  | static std::unique_ptr<ForExprAST> ParseForExpr() { | 
|  | getNextToken();  // eat the for. | 
|  |  | 
|  | if (CurTok != tok_identifier) | 
|  | return ErrorU<ForExprAST>("expected identifier after for"); | 
|  |  | 
|  | std::string IdName = IdentifierStr; | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | if (CurTok != '=') | 
|  | return ErrorU<ForExprAST>("expected '=' after for"); | 
|  | getNextToken();  // eat '='. | 
|  |  | 
|  |  | 
|  | auto Start = ParseExpression(); | 
|  | if (!Start) | 
|  | return nullptr; | 
|  | if (CurTok != ',') | 
|  | return ErrorU<ForExprAST>("expected ',' after for start value"); | 
|  | getNextToken(); | 
|  |  | 
|  | auto End = ParseExpression(); | 
|  | if (!End) | 
|  | return nullptr; | 
|  |  | 
|  | // The step value is optional. | 
|  | std::unique_ptr<ExprAST> Step; | 
|  | if (CurTok == ',') { | 
|  | getNextToken(); | 
|  | Step = ParseExpression(); | 
|  | if (!Step) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (CurTok != tok_in) | 
|  | return ErrorU<ForExprAST>("expected 'in' after for"); | 
|  | getNextToken();  // eat 'in'. | 
|  |  | 
|  | auto Body = ParseExpression(); | 
|  | if (Body) | 
|  | return nullptr; | 
|  |  | 
|  | return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End), | 
|  | std::move(Step), std::move(Body)); | 
|  | } | 
|  |  | 
|  | /// varexpr ::= 'var' identifier ('=' expression)? | 
|  | //                    (',' identifier ('=' expression)?)* 'in' expression | 
|  | static std::unique_ptr<VarExprAST> ParseVarExpr() { | 
|  | getNextToken();  // eat the var. | 
|  |  | 
|  | VarExprAST::BindingList VarBindings; | 
|  |  | 
|  | // At least one variable name is required. | 
|  | if (CurTok != tok_identifier) | 
|  | return ErrorU<VarExprAST>("expected identifier after var"); | 
|  |  | 
|  | while (1) { | 
|  | std::string Name = IdentifierStr; | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | // Read the optional initializer. | 
|  | std::unique_ptr<ExprAST> Init; | 
|  | if (CurTok == '=') { | 
|  | getNextToken(); // eat the '='. | 
|  |  | 
|  | Init = ParseExpression(); | 
|  | if (!Init) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init))); | 
|  |  | 
|  | // End of var list, exit loop. | 
|  | if (CurTok != ',') break; | 
|  | getNextToken(); // eat the ','. | 
|  |  | 
|  | if (CurTok != tok_identifier) | 
|  | return ErrorU<VarExprAST>("expected identifier list after var"); | 
|  | } | 
|  |  | 
|  | // At this point, we have to have 'in'. | 
|  | if (CurTok != tok_in) | 
|  | return ErrorU<VarExprAST>("expected 'in' keyword after 'var'"); | 
|  | getNextToken();  // eat 'in'. | 
|  |  | 
|  | auto Body = ParseExpression(); | 
|  | if (!Body) | 
|  | return nullptr; | 
|  |  | 
|  | return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body)); | 
|  | } | 
|  |  | 
|  | /// primary | 
|  | ///   ::= identifierexpr | 
|  | ///   ::= numberexpr | 
|  | ///   ::= parenexpr | 
|  | ///   ::= ifexpr | 
|  | ///   ::= forexpr | 
|  | ///   ::= varexpr | 
|  | static std::unique_ptr<ExprAST> ParsePrimary() { | 
|  | switch (CurTok) { | 
|  | default: return ErrorU<ExprAST>("unknown token when expecting an expression"); | 
|  | case tok_identifier: return ParseIdentifierExpr(); | 
|  | case tok_number:     return ParseNumberExpr(); | 
|  | case '(':            return ParseParenExpr(); | 
|  | case tok_if:         return ParseIfExpr(); | 
|  | case tok_for:        return ParseForExpr(); | 
|  | case tok_var:        return ParseVarExpr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// unary | 
|  | ///   ::= primary | 
|  | ///   ::= '!' unary | 
|  | static std::unique_ptr<ExprAST> ParseUnary() { | 
|  | // If the current token is not an operator, it must be a primary expr. | 
|  | if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') | 
|  | return ParsePrimary(); | 
|  |  | 
|  | // If this is a unary operator, read it. | 
|  | int Opc = CurTok; | 
|  | getNextToken(); | 
|  | if (auto Operand = ParseUnary()) | 
|  | return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand)); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// binoprhs | 
|  | ///   ::= ('+' unary)* | 
|  | static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec, | 
|  | std::unique_ptr<ExprAST> LHS) { | 
|  | // If this is a binop, find its precedence. | 
|  | while (1) { | 
|  | int TokPrec = GetTokPrecedence(); | 
|  |  | 
|  | // If this is a binop that binds at least as tightly as the current binop, | 
|  | // consume it, otherwise we are done. | 
|  | if (TokPrec < ExprPrec) | 
|  | return LHS; | 
|  |  | 
|  | // Okay, we know this is a binop. | 
|  | int BinOp = CurTok; | 
|  | getNextToken();  // eat binop | 
|  |  | 
|  | // Parse the unary expression after the binary operator. | 
|  | auto RHS = ParseUnary(); | 
|  | if (!RHS) | 
|  | return nullptr; | 
|  |  | 
|  | // If BinOp binds less tightly with RHS than the operator after RHS, let | 
|  | // the pending operator take RHS as its LHS. | 
|  | int NextPrec = GetTokPrecedence(); | 
|  | if (TokPrec < NextPrec) { | 
|  | RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS)); | 
|  | if (!RHS) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Merge LHS/RHS. | 
|  | LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// expression | 
|  | ///   ::= unary binoprhs | 
|  | /// | 
|  | static std::unique_ptr<ExprAST> ParseExpression() { | 
|  | auto LHS = ParseUnary(); | 
|  | if (!LHS) | 
|  | return nullptr; | 
|  |  | 
|  | return ParseBinOpRHS(0, std::move(LHS)); | 
|  | } | 
|  |  | 
|  | /// prototype | 
|  | ///   ::= id '(' id* ')' | 
|  | ///   ::= binary LETTER number? (id, id) | 
|  | ///   ::= unary LETTER (id) | 
|  | static std::unique_ptr<PrototypeAST> ParsePrototype() { | 
|  | std::string FnName; | 
|  |  | 
|  | unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. | 
|  | unsigned BinaryPrecedence = 30; | 
|  |  | 
|  | switch (CurTok) { | 
|  | default: | 
|  | return ErrorU<PrototypeAST>("Expected function name in prototype"); | 
|  | case tok_identifier: | 
|  | FnName = IdentifierStr; | 
|  | Kind = 0; | 
|  | getNextToken(); | 
|  | break; | 
|  | case tok_unary: | 
|  | getNextToken(); | 
|  | if (!isascii(CurTok)) | 
|  | return ErrorU<PrototypeAST>("Expected unary operator"); | 
|  | FnName = "unary"; | 
|  | FnName += (char)CurTok; | 
|  | Kind = 1; | 
|  | getNextToken(); | 
|  | break; | 
|  | case tok_binary: | 
|  | getNextToken(); | 
|  | if (!isascii(CurTok)) | 
|  | return ErrorU<PrototypeAST>("Expected binary operator"); | 
|  | FnName = "binary"; | 
|  | FnName += (char)CurTok; | 
|  | Kind = 2; | 
|  | getNextToken(); | 
|  |  | 
|  | // Read the precedence if present. | 
|  | if (CurTok == tok_number) { | 
|  | if (NumVal < 1 || NumVal > 100) | 
|  | return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100"); | 
|  | BinaryPrecedence = (unsigned)NumVal; | 
|  | getNextToken(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (CurTok != '(') | 
|  | return ErrorU<PrototypeAST>("Expected '(' in prototype"); | 
|  |  | 
|  | std::vector<std::string> ArgNames; | 
|  | while (getNextToken() == tok_identifier) | 
|  | ArgNames.push_back(IdentifierStr); | 
|  | if (CurTok != ')') | 
|  | return ErrorU<PrototypeAST>("Expected ')' in prototype"); | 
|  |  | 
|  | // success. | 
|  | getNextToken();  // eat ')'. | 
|  |  | 
|  | // Verify right number of names for operator. | 
|  | if (Kind && ArgNames.size() != Kind) | 
|  | return ErrorU<PrototypeAST>("Invalid number of operands for operator"); | 
|  |  | 
|  | return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0, | 
|  | BinaryPrecedence); | 
|  | } | 
|  |  | 
|  | /// definition ::= 'def' prototype expression | 
|  | static std::unique_ptr<FunctionAST> ParseDefinition() { | 
|  | getNextToken();  // eat def. | 
|  | auto Proto = ParsePrototype(); | 
|  | if (!Proto) | 
|  | return nullptr; | 
|  |  | 
|  | if (auto Body = ParseExpression()) | 
|  | return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body)); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// toplevelexpr ::= expression | 
|  | static std::unique_ptr<FunctionAST> ParseTopLevelExpr() { | 
|  | if (auto E = ParseExpression()) { | 
|  | // Make an anonymous proto. | 
|  | auto Proto = | 
|  | llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>()); | 
|  | return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E)); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// external ::= 'extern' prototype | 
|  | static std::unique_ptr<PrototypeAST> ParseExtern() { | 
|  | getNextToken();  // eat extern. | 
|  | return ParsePrototype(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Code Generation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // FIXME: Obviously we can do better than this | 
|  | std::string GenerateUniqueName(const std::string &Root) { | 
|  | static int i = 0; | 
|  | std::ostringstream NameStream; | 
|  | NameStream << Root << ++i; | 
|  | return NameStream.str(); | 
|  | } | 
|  |  | 
|  | std::string MakeLegalFunctionName(std::string Name) | 
|  | { | 
|  | std::string NewName; | 
|  | assert(!Name.empty() && "Base name must not be empty"); | 
|  |  | 
|  | // Start with what we have | 
|  | NewName = Name; | 
|  |  | 
|  | // Look for a numberic first character | 
|  | if (NewName.find_first_of("0123456789") == 0) { | 
|  | NewName.insert(0, 1, 'n'); | 
|  | } | 
|  |  | 
|  | // Replace illegal characters with their ASCII equivalent | 
|  | std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; | 
|  | size_t pos; | 
|  | while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) { | 
|  | std::ostringstream NumStream; | 
|  | NumStream << (int)NewName.at(pos); | 
|  | NewName = NewName.replace(pos, 1, NumStream.str()); | 
|  | } | 
|  |  | 
|  | return NewName; | 
|  | } | 
|  |  | 
|  | class SessionContext { | 
|  | public: | 
|  | SessionContext(LLVMContext &C) : Context(C) {} | 
|  | LLVMContext& getLLVMContext() const { return Context; } | 
|  | void addPrototypeAST(std::unique_ptr<PrototypeAST> P); | 
|  | PrototypeAST* getPrototypeAST(const std::string &Name); | 
|  | std::map<std::string, std::unique_ptr<FunctionAST>> FunctionDefs; | 
|  | private: | 
|  | typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap; | 
|  | LLVMContext &Context; | 
|  | PrototypeMap Prototypes; | 
|  | }; | 
|  |  | 
|  | void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) { | 
|  | Prototypes[P->Name] = std::move(P); | 
|  | } | 
|  |  | 
|  | PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) { | 
|  | PrototypeMap::iterator I = Prototypes.find(Name); | 
|  | if (I != Prototypes.end()) | 
|  | return I->second.get(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | class IRGenContext { | 
|  | public: | 
|  |  | 
|  | IRGenContext(SessionContext &S) | 
|  | : Session(S), | 
|  | M(new Module(GenerateUniqueName("jit_module_"), | 
|  | Session.getLLVMContext())), | 
|  | Builder(Session.getLLVMContext()) {} | 
|  |  | 
|  | SessionContext& getSession() { return Session; } | 
|  | Module& getM() const { return *M; } | 
|  | std::unique_ptr<Module> takeM() { return std::move(M); } | 
|  | IRBuilder<>& getBuilder() { return Builder; } | 
|  | LLVMContext& getLLVMContext() { return Session.getLLVMContext(); } | 
|  | Function* getPrototype(const std::string &Name); | 
|  |  | 
|  | std::map<std::string, AllocaInst*> NamedValues; | 
|  | private: | 
|  | SessionContext &Session; | 
|  | std::unique_ptr<Module> M; | 
|  | IRBuilder<> Builder; | 
|  | }; | 
|  |  | 
|  | Function* IRGenContext::getPrototype(const std::string &Name) { | 
|  | if (Function *ExistingProto = M->getFunction(Name)) | 
|  | return ExistingProto; | 
|  | if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name)) | 
|  | return ProtoAST->IRGen(*this); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of | 
|  | /// the function.  This is used for mutable variables etc. | 
|  | static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, | 
|  | const std::string &VarName) { | 
|  | IRBuilder<> TmpB(&TheFunction->getEntryBlock(), | 
|  | TheFunction->getEntryBlock().begin()); | 
|  | return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, | 
|  | VarName.c_str()); | 
|  | } | 
|  |  | 
|  | Value *NumberExprAST::IRGen(IRGenContext &C) const { | 
|  | return ConstantFP::get(C.getLLVMContext(), APFloat(Val)); | 
|  | } | 
|  |  | 
|  | Value *VariableExprAST::IRGen(IRGenContext &C) const { | 
|  | // Look this variable up in the function. | 
|  | Value *V = C.NamedValues[Name]; | 
|  |  | 
|  | if (V == 0) | 
|  | return ErrorP<Value>("Unknown variable name '" + Name + "'"); | 
|  |  | 
|  | // Load the value. | 
|  | return C.getBuilder().CreateLoad(V, Name.c_str()); | 
|  | } | 
|  |  | 
|  | Value *UnaryExprAST::IRGen(IRGenContext &C) const { | 
|  | if (Value *OperandV = Operand->IRGen(C)) { | 
|  | std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode); | 
|  | if (Function *F = C.getPrototype(FnName)) | 
|  | return C.getBuilder().CreateCall(F, OperandV, "unop"); | 
|  | return ErrorP<Value>("Unknown unary operator"); | 
|  | } | 
|  |  | 
|  | // Could not codegen operand - return null. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *BinaryExprAST::IRGen(IRGenContext &C) const { | 
|  | // Special case '=' because we don't want to emit the LHS as an expression. | 
|  | if (Op == '=') { | 
|  | // Assignment requires the LHS to be an identifier. | 
|  | auto LHSVar = static_cast<VariableExprAST&>(*LHS); | 
|  | // Codegen the RHS. | 
|  | Value *Val = RHS->IRGen(C); | 
|  | if (!Val) return nullptr; | 
|  |  | 
|  | // Look up the name. | 
|  | if (auto Variable = C.NamedValues[LHSVar.Name]) { | 
|  | C.getBuilder().CreateStore(Val, Variable); | 
|  | return Val; | 
|  | } | 
|  | return ErrorP<Value>("Unknown variable name"); | 
|  | } | 
|  |  | 
|  | Value *L = LHS->IRGen(C); | 
|  | Value *R = RHS->IRGen(C); | 
|  | if (!L || !R) return nullptr; | 
|  |  | 
|  | switch (Op) { | 
|  | case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp"); | 
|  | case '-': return C.getBuilder().CreateFSub(L, R, "subtmp"); | 
|  | case '*': return C.getBuilder().CreateFMul(L, R, "multmp"); | 
|  | case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp"); | 
|  | case '<': | 
|  | L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp"); | 
|  | // Convert bool 0/1 to double 0.0 or 1.0 | 
|  | return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), | 
|  | "booltmp"); | 
|  | default: break; | 
|  | } | 
|  |  | 
|  | // If it wasn't a builtin binary operator, it must be a user defined one. Emit | 
|  | // a call to it. | 
|  | std::string FnName = MakeLegalFunctionName(std::string("binary")+Op); | 
|  | if (Function *F = C.getPrototype(FnName)) { | 
|  | Value *Ops[] = { L, R }; | 
|  | return C.getBuilder().CreateCall(F, Ops, "binop"); | 
|  | } | 
|  |  | 
|  | return ErrorP<Value>("Unknown binary operator"); | 
|  | } | 
|  |  | 
|  | Value *CallExprAST::IRGen(IRGenContext &C) const { | 
|  | // Look up the name in the global module table. | 
|  | if (auto CalleeF = C.getPrototype(CalleeName)) { | 
|  | // If argument mismatch error. | 
|  | if (CalleeF->arg_size() != Args.size()) | 
|  | return ErrorP<Value>("Incorrect # arguments passed"); | 
|  |  | 
|  | std::vector<Value*> ArgsV; | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | ArgsV.push_back(Args[i]->IRGen(C)); | 
|  | if (!ArgsV.back()) return nullptr; | 
|  | } | 
|  |  | 
|  | return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp"); | 
|  | } | 
|  |  | 
|  | return ErrorP<Value>("Unknown function referenced"); | 
|  | } | 
|  |  | 
|  | Value *IfExprAST::IRGen(IRGenContext &C) const { | 
|  | Value *CondV = Cond->IRGen(C); | 
|  | if (!CondV) return nullptr; | 
|  |  | 
|  | // Convert condition to a bool by comparing equal to 0.0. | 
|  | ConstantFP *FPZero = | 
|  | ConstantFP::get(C.getLLVMContext(), APFloat(0.0)); | 
|  | CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond"); | 
|  |  | 
|  | Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent(); | 
|  |  | 
|  | // Create blocks for the then and else cases.  Insert the 'then' block at the | 
|  | // end of the function. | 
|  | BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction); | 
|  | BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else"); | 
|  | BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont"); | 
|  |  | 
|  | C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB); | 
|  |  | 
|  | // Emit then value. | 
|  | C.getBuilder().SetInsertPoint(ThenBB); | 
|  |  | 
|  | Value *ThenV = Then->IRGen(C); | 
|  | if (!ThenV) return nullptr; | 
|  |  | 
|  | C.getBuilder().CreateBr(MergeBB); | 
|  | // Codegen of 'Then' can change the current block, update ThenBB for the PHI. | 
|  | ThenBB = C.getBuilder().GetInsertBlock(); | 
|  |  | 
|  | // Emit else block. | 
|  | TheFunction->getBasicBlockList().push_back(ElseBB); | 
|  | C.getBuilder().SetInsertPoint(ElseBB); | 
|  |  | 
|  | Value *ElseV = Else->IRGen(C); | 
|  | if (!ElseV) return nullptr; | 
|  |  | 
|  | C.getBuilder().CreateBr(MergeBB); | 
|  | // Codegen of 'Else' can change the current block, update ElseBB for the PHI. | 
|  | ElseBB = C.getBuilder().GetInsertBlock(); | 
|  |  | 
|  | // Emit merge block. | 
|  | TheFunction->getBasicBlockList().push_back(MergeBB); | 
|  | C.getBuilder().SetInsertPoint(MergeBB); | 
|  | PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, | 
|  | "iftmp"); | 
|  |  | 
|  | PN->addIncoming(ThenV, ThenBB); | 
|  | PN->addIncoming(ElseV, ElseBB); | 
|  | return PN; | 
|  | } | 
|  |  | 
|  | Value *ForExprAST::IRGen(IRGenContext &C) const { | 
|  | // Output this as: | 
|  | //   var = alloca double | 
|  | //   ... | 
|  | //   start = startexpr | 
|  | //   store start -> var | 
|  | //   goto loop | 
|  | // loop: | 
|  | //   ... | 
|  | //   bodyexpr | 
|  | //   ... | 
|  | // loopend: | 
|  | //   step = stepexpr | 
|  | //   endcond = endexpr | 
|  | // | 
|  | //   curvar = load var | 
|  | //   nextvar = curvar + step | 
|  | //   store nextvar -> var | 
|  | //   br endcond, loop, endloop | 
|  | // outloop: | 
|  |  | 
|  | Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent(); | 
|  |  | 
|  | // Create an alloca for the variable in the entry block. | 
|  | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); | 
|  |  | 
|  | // Emit the start code first, without 'variable' in scope. | 
|  | Value *StartVal = Start->IRGen(C); | 
|  | if (!StartVal) return nullptr; | 
|  |  | 
|  | // Store the value into the alloca. | 
|  | C.getBuilder().CreateStore(StartVal, Alloca); | 
|  |  | 
|  | // Make the new basic block for the loop header, inserting after current | 
|  | // block. | 
|  | BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); | 
|  |  | 
|  | // Insert an explicit fall through from the current block to the LoopBB. | 
|  | C.getBuilder().CreateBr(LoopBB); | 
|  |  | 
|  | // Start insertion in LoopBB. | 
|  | C.getBuilder().SetInsertPoint(LoopBB); | 
|  |  | 
|  | // Within the loop, the variable is defined equal to the PHI node.  If it | 
|  | // shadows an existing variable, we have to restore it, so save it now. | 
|  | AllocaInst *OldVal = C.NamedValues[VarName]; | 
|  | C.NamedValues[VarName] = Alloca; | 
|  |  | 
|  | // Emit the body of the loop.  This, like any other expr, can change the | 
|  | // current BB.  Note that we ignore the value computed by the body, but don't | 
|  | // allow an error. | 
|  | if (!Body->IRGen(C)) | 
|  | return nullptr; | 
|  |  | 
|  | // Emit the step value. | 
|  | Value *StepVal; | 
|  | if (Step) { | 
|  | StepVal = Step->IRGen(C); | 
|  | if (!StepVal) return nullptr; | 
|  | } else { | 
|  | // If not specified, use 1.0. | 
|  | StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); | 
|  | } | 
|  |  | 
|  | // Compute the end condition. | 
|  | Value *EndCond = End->IRGen(C); | 
|  | if (EndCond == 0) return EndCond; | 
|  |  | 
|  | // Reload, increment, and restore the alloca.  This handles the case where | 
|  | // the body of the loop mutates the variable. | 
|  | Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str()); | 
|  | Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar"); | 
|  | C.getBuilder().CreateStore(NextVar, Alloca); | 
|  |  | 
|  | // Convert condition to a bool by comparing equal to 0.0. | 
|  | EndCond = C.getBuilder().CreateFCmpONE(EndCond, | 
|  | ConstantFP::get(getGlobalContext(), APFloat(0.0)), | 
|  | "loopcond"); | 
|  |  | 
|  | // Create the "after loop" block and insert it. | 
|  | BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); | 
|  |  | 
|  | // Insert the conditional branch into the end of LoopEndBB. | 
|  | C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB); | 
|  |  | 
|  | // Any new code will be inserted in AfterBB. | 
|  | C.getBuilder().SetInsertPoint(AfterBB); | 
|  |  | 
|  | // Restore the unshadowed variable. | 
|  | if (OldVal) | 
|  | C.NamedValues[VarName] = OldVal; | 
|  | else | 
|  | C.NamedValues.erase(VarName); | 
|  |  | 
|  |  | 
|  | // for expr always returns 0.0. | 
|  | return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); | 
|  | } | 
|  |  | 
|  | Value *VarExprAST::IRGen(IRGenContext &C) const { | 
|  | std::vector<AllocaInst *> OldBindings; | 
|  |  | 
|  | Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent(); | 
|  |  | 
|  | // Register all variables and emit their initializer. | 
|  | for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) { | 
|  | auto &VarName = VarBindings[i].first; | 
|  | auto &Init = VarBindings[i].second; | 
|  |  | 
|  | // Emit the initializer before adding the variable to scope, this prevents | 
|  | // the initializer from referencing the variable itself, and permits stuff | 
|  | // like this: | 
|  | //  var a = 1 in | 
|  | //    var a = a in ...   # refers to outer 'a'. | 
|  | Value *InitVal; | 
|  | if (Init) { | 
|  | InitVal = Init->IRGen(C); | 
|  | if (!InitVal) return nullptr; | 
|  | } else // If not specified, use 0.0. | 
|  | InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0)); | 
|  |  | 
|  | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); | 
|  | C.getBuilder().CreateStore(InitVal, Alloca); | 
|  |  | 
|  | // Remember the old variable binding so that we can restore the binding when | 
|  | // we unrecurse. | 
|  | OldBindings.push_back(C.NamedValues[VarName]); | 
|  |  | 
|  | // Remember this binding. | 
|  | C.NamedValues[VarName] = Alloca; | 
|  | } | 
|  |  | 
|  | // Codegen the body, now that all vars are in scope. | 
|  | Value *BodyVal = Body->IRGen(C); | 
|  | if (!BodyVal) return nullptr; | 
|  |  | 
|  | // Pop all our variables from scope. | 
|  | for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) | 
|  | C.NamedValues[VarBindings[i].first] = OldBindings[i]; | 
|  |  | 
|  | // Return the body computation. | 
|  | return BodyVal; | 
|  | } | 
|  |  | 
|  | Function *PrototypeAST::IRGen(IRGenContext &C) const { | 
|  | std::string FnName = MakeLegalFunctionName(Name); | 
|  |  | 
|  | // Make the function type:  double(double,double) etc. | 
|  | std::vector<Type*> Doubles(Args.size(), | 
|  | Type::getDoubleTy(getGlobalContext())); | 
|  | FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), | 
|  | Doubles, false); | 
|  | Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, | 
|  | &C.getM()); | 
|  |  | 
|  | // If F conflicted, there was already something named 'FnName'.  If it has a | 
|  | // body, don't allow redefinition or reextern. | 
|  | if (F->getName() != FnName) { | 
|  | // Delete the one we just made and get the existing one. | 
|  | F->eraseFromParent(); | 
|  | F = C.getM().getFunction(Name); | 
|  |  | 
|  | // If F already has a body, reject this. | 
|  | if (!F->empty()) { | 
|  | ErrorP<Function>("redefinition of function"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If F took a different number of args, reject. | 
|  | if (F->arg_size() != Args.size()) { | 
|  | ErrorP<Function>("redefinition of function with different # args"); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set names for all arguments. | 
|  | unsigned Idx = 0; | 
|  | for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); | 
|  | ++AI, ++Idx) | 
|  | AI->setName(Args[Idx]); | 
|  |  | 
|  | return F; | 
|  | } | 
|  |  | 
|  | /// CreateArgumentAllocas - Create an alloca for each argument and register the | 
|  | /// argument in the symbol table so that references to it will succeed. | 
|  | void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) { | 
|  | Function::arg_iterator AI = F->arg_begin(); | 
|  | for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { | 
|  | // Create an alloca for this variable. | 
|  | AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); | 
|  |  | 
|  | // Store the initial value into the alloca. | 
|  | C.getBuilder().CreateStore(AI, Alloca); | 
|  |  | 
|  | // Add arguments to variable symbol table. | 
|  | C.NamedValues[Args[Idx]] = Alloca; | 
|  | } | 
|  | } | 
|  |  | 
|  | Function *FunctionAST::IRGen(IRGenContext &C) const { | 
|  | C.NamedValues.clear(); | 
|  |  | 
|  | Function *TheFunction = Proto->IRGen(C); | 
|  | if (!TheFunction) | 
|  | return nullptr; | 
|  |  | 
|  | // If this is an operator, install it. | 
|  | if (Proto->isBinaryOp()) | 
|  | BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence; | 
|  |  | 
|  | // Create a new basic block to start insertion into. | 
|  | BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); | 
|  | C.getBuilder().SetInsertPoint(BB); | 
|  |  | 
|  | // Add all arguments to the symbol table and create their allocas. | 
|  | Proto->CreateArgumentAllocas(TheFunction, C); | 
|  |  | 
|  | if (Value *RetVal = Body->IRGen(C)) { | 
|  | // Finish off the function. | 
|  | C.getBuilder().CreateRet(RetVal); | 
|  |  | 
|  | // Validate the generated code, checking for consistency. | 
|  | verifyFunction(*TheFunction); | 
|  |  | 
|  | return TheFunction; | 
|  | } | 
|  |  | 
|  | // Error reading body, remove function. | 
|  | TheFunction->eraseFromParent(); | 
|  |  | 
|  | if (Proto->isBinaryOp()) | 
|  | BinopPrecedence.erase(Proto->getOperatorName()); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Top-Level parsing and JIT Driver | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static std::unique_ptr<llvm::Module> IRGen(SessionContext &S, | 
|  | const FunctionAST &F) { | 
|  | IRGenContext C(S); | 
|  | auto LF = F.IRGen(C); | 
|  | if (!LF) | 
|  | return nullptr; | 
|  | #ifndef MINIMAL_STDERR_OUTPUT | 
|  | fprintf(stderr, "Read function definition:"); | 
|  | LF->dump(); | 
|  | #endif | 
|  | return C.takeM(); | 
|  | } | 
|  |  | 
|  | class KaleidoscopeJIT { | 
|  | public: | 
|  | typedef ObjectLinkingLayer<> ObjLayerT; | 
|  | typedef IRCompileLayer<ObjLayerT> CompileLayerT; | 
|  | typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT; | 
|  |  | 
|  | typedef LazyEmitLayerT::ModuleSetHandleT ModuleHandleT; | 
|  |  | 
|  | std::string Mangle(const std::string &Name) { | 
|  | std::string MangledName; | 
|  | { | 
|  | raw_string_ostream MangledNameStream(MangledName); | 
|  | Mang.getNameWithPrefix(MangledNameStream, Name); | 
|  | } | 
|  | return MangledName; | 
|  | } | 
|  |  | 
|  | KaleidoscopeJIT(SessionContext &Session) | 
|  | : TM(EngineBuilder().selectTarget()), | 
|  | Mang(TM->getDataLayout()), Session(Session), | 
|  | CompileLayer(ObjectLayer, SimpleCompiler(*TM)), | 
|  | LazyEmitLayer(CompileLayer) {} | 
|  |  | 
|  | ModuleHandleT addModule(std::unique_ptr<Module> M) { | 
|  | if (!M->getDataLayout()) | 
|  | M->setDataLayout(TM->getDataLayout()); | 
|  |  | 
|  | // The LazyEmitLayer takes lists of modules, rather than single modules, so | 
|  | // we'll just build a single-element list. | 
|  | std::vector<std::unique_ptr<Module>> S; | 
|  | S.push_back(std::move(M)); | 
|  |  | 
|  | // We need a memory manager to allocate memory and resolve symbols for this | 
|  | // new module. Create one that resolves symbols by looking back into the JIT. | 
|  | auto MM = createLookasideRTDyldMM<SectionMemoryManager>( | 
|  | [&](const std::string &Name) -> uint64_t { | 
|  | // First try to find 'Name' within the JIT. | 
|  | if (auto Symbol = findMangledSymbol(Name)) | 
|  | return Symbol.getAddress(); | 
|  |  | 
|  | // If we don't find 'Name' in the JIT, see if we have some AST | 
|  | // for it. | 
|  | auto DefI = Session.FunctionDefs.find(Name); | 
|  | if (DefI == Session.FunctionDefs.end()) | 
|  | return 0; | 
|  |  | 
|  | // We have AST for 'Name'. IRGen it, add it to the JIT, and | 
|  | // return the address for it. | 
|  | // FIXME: What happens if IRGen fails? | 
|  | addModule(IRGen(Session, *DefI->second)); | 
|  |  | 
|  | // Remove the function definition's AST now that we've | 
|  | // finished with it. | 
|  | Session.FunctionDefs.erase(DefI); | 
|  |  | 
|  | return findMangledSymbol(Name).getAddress(); | 
|  | }, | 
|  | [](const std::string &S) { return 0; } ); | 
|  |  | 
|  | return LazyEmitLayer.addModuleSet(std::move(S), std::move(MM)); | 
|  | } | 
|  |  | 
|  | void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); } | 
|  |  | 
|  | JITSymbol findMangledSymbol(const std::string &Name) { | 
|  | return LazyEmitLayer.findSymbol(Name, false); | 
|  | } | 
|  |  | 
|  | JITSymbol findSymbol(const std::string &Name) { | 
|  | return findMangledSymbol(Mangle(Name)); | 
|  | } | 
|  |  | 
|  | private: | 
|  |  | 
|  | std::unique_ptr<TargetMachine> TM; | 
|  | Mangler Mang; | 
|  | SessionContext &Session; | 
|  |  | 
|  | ObjLayerT ObjectLayer; | 
|  | CompileLayerT CompileLayer; | 
|  | LazyEmitLayerT LazyEmitLayer; | 
|  | }; | 
|  |  | 
|  | static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) { | 
|  | if (auto F = ParseDefinition()) { | 
|  | S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto)); | 
|  | S.FunctionDefs[J.Mangle(F->Proto->Name)] = std::move(F); | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void HandleExtern(SessionContext &S) { | 
|  | if (auto P = ParseExtern()) | 
|  | S.addPrototypeAST(std::move(P)); | 
|  | else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) { | 
|  | // Evaluate a top-level expression into an anonymous function. | 
|  | if (auto F = ParseTopLevelExpr()) { | 
|  | IRGenContext C(S); | 
|  | if (auto ExprFunc = F->IRGen(C)) { | 
|  | #ifndef MINIMAL_STDERR_OUTPUT | 
|  | std::cerr << "Expression function:\n"; | 
|  | ExprFunc->dump(); | 
|  | #endif | 
|  | // Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove | 
|  | // this module as soon as we've executed Function ExprFunc. | 
|  | auto H = J.addModule(C.takeM()); | 
|  |  | 
|  | // Get the address of the JIT'd function in memory. | 
|  | auto ExprSymbol = J.findSymbol("__anon_expr"); | 
|  |  | 
|  | // Cast it to the right type (takes no arguments, returns a double) so we | 
|  | // can call it as a native function. | 
|  | double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress(); | 
|  | #ifdef MINIMAL_STDERR_OUTPUT | 
|  | FP(); | 
|  | #else | 
|  | std::cerr << "Evaluated to " << FP() << "\n"; | 
|  | #endif | 
|  |  | 
|  | // Remove the function. | 
|  | J.removeModule(H); | 
|  | } | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// top ::= definition | external | expression | ';' | 
|  | static void MainLoop() { | 
|  | SessionContext S(getGlobalContext()); | 
|  | KaleidoscopeJIT J(S); | 
|  |  | 
|  | while (1) { | 
|  | #ifndef MINIMAL_STDERR_OUTPUT | 
|  | std::cerr << "ready> "; | 
|  | #endif | 
|  | switch (CurTok) { | 
|  | case tok_eof:    return; | 
|  | case ';':        getNextToken(); break;  // ignore top-level semicolons. | 
|  | case tok_def:    HandleDefinition(S, J); break; | 
|  | case tok_extern: HandleExtern(S); break; | 
|  | default:         HandleTopLevelExpression(S, J); break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // "Library" functions that can be "extern'd" from user code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// putchard - putchar that takes a double and returns 0. | 
|  | extern "C" | 
|  | double putchard(double X) { | 
|  | putchar((char)X); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// printd - printf that takes a double prints it as "%f\n", returning 0. | 
|  | extern "C" | 
|  | double printd(double X) { | 
|  | printf("%f", X); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | extern "C" | 
|  | double printlf() { | 
|  | printf("\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Main driver code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | int main() { | 
|  | InitializeNativeTarget(); | 
|  | InitializeNativeTargetAsmPrinter(); | 
|  | InitializeNativeTargetAsmParser(); | 
|  |  | 
|  | // Install standard binary operators. | 
|  | // 1 is lowest precedence. | 
|  | BinopPrecedence['='] = 2; | 
|  | BinopPrecedence['<'] = 10; | 
|  | BinopPrecedence['+'] = 20; | 
|  | BinopPrecedence['-'] = 20; | 
|  | BinopPrecedence['/'] = 40; | 
|  | BinopPrecedence['*'] = 40;  // highest. | 
|  |  | 
|  | // Prime the first token. | 
|  | #ifndef MINIMAL_STDERR_OUTPUT | 
|  | std::cerr << "ready> "; | 
|  | #endif | 
|  | getNextToken(); | 
|  |  | 
|  | std::cerr << std::fixed; | 
|  |  | 
|  | // Run the main "interpreter loop" now. | 
|  | MainLoop(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  |