|  | //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // BreakCriticalEdges pass - Break all of the critical edges in the CFG by | 
|  | // inserting a dummy basic block.  This pass may be "required" by passes that | 
|  | // cannot deal with critical edges.  For this usage, the structure type is | 
|  | // forward declared.  This pass obviously invalidates the CFG, but can update | 
|  | // dominator trees. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/CFG.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "break-crit-edges" | 
|  |  | 
|  | STATISTIC(NumBroken, "Number of blocks inserted"); | 
|  |  | 
|  | namespace { | 
|  | struct BreakCriticalEdges : public FunctionPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | BreakCriticalEdges() : FunctionPass(ID) { | 
|  | initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | unsigned N = SplitAllCriticalEdges(F, this); | 
|  | NumBroken += N; | 
|  | return N > 0; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<LoopInfo>(); | 
|  |  | 
|  | // No loop canonicalization guarantees are broken by this pass. | 
|  | AU.addPreservedID(LoopSimplifyID); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char BreakCriticalEdges::ID = 0; | 
|  | INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges", | 
|  | "Break critical edges in CFG", false, false) | 
|  |  | 
|  | // Publicly exposed interface to pass... | 
|  | char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID; | 
|  | FunctionPass *llvm::createBreakCriticalEdgesPass() { | 
|  | return new BreakCriticalEdges(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //    Implementation of the external critical edge manipulation functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form | 
|  | /// may require new PHIs in the new exit block. This function inserts the | 
|  | /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB | 
|  | /// is the new loop exit block, and DestBB is the old loop exit, now the | 
|  | /// successor of SplitBB. | 
|  | static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, | 
|  | BasicBlock *SplitBB, | 
|  | BasicBlock *DestBB) { | 
|  | // SplitBB shouldn't have anything non-trivial in it yet. | 
|  | assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || | 
|  | SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!"); | 
|  |  | 
|  | // For each PHI in the destination block. | 
|  | for (BasicBlock::iterator I = DestBB->begin(); | 
|  | PHINode *PN = dyn_cast<PHINode>(I); ++I) { | 
|  | unsigned Idx = PN->getBasicBlockIndex(SplitBB); | 
|  | Value *V = PN->getIncomingValue(Idx); | 
|  |  | 
|  | // If the input is a PHI which already satisfies LCSSA, don't create | 
|  | // a new one. | 
|  | if (const PHINode *VP = dyn_cast<PHINode>(V)) | 
|  | if (VP->getParent() == SplitBB) | 
|  | continue; | 
|  |  | 
|  | // Otherwise a new PHI is needed. Create one and populate it. | 
|  | PHINode *NewPN = | 
|  | PHINode::Create(PN->getType(), Preds.size(), "split", | 
|  | SplitBB->isLandingPad() ? | 
|  | SplitBB->begin() : SplitBB->getTerminator()); | 
|  | for (unsigned i = 0, e = Preds.size(); i != e; ++i) | 
|  | NewPN->addIncoming(V, Preds[i]); | 
|  |  | 
|  | // Update the original PHI. | 
|  | PN->setIncomingValue(Idx, NewPN); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to | 
|  | /// split the critical edge.  This will update DominatorTree information if it | 
|  | /// is available, thus calling this pass will not invalidate either of them. | 
|  | /// This returns the new block if the edge was split, null otherwise. | 
|  | /// | 
|  | /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the | 
|  | /// specified successor will be merged into the same critical edge block. | 
|  | /// This is most commonly interesting with switch instructions, which may | 
|  | /// have many edges to any one destination.  This ensures that all edges to that | 
|  | /// dest go to one block instead of each going to a different block, but isn't | 
|  | /// the standard definition of a "critical edge". | 
|  | /// | 
|  | /// It is invalid to call this function on a critical edge that starts at an | 
|  | /// IndirectBrInst.  Splitting these edges will almost always create an invalid | 
|  | /// program because the address of the new block won't be the one that is jumped | 
|  | /// to. | 
|  | /// | 
|  | BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, | 
|  | Pass *P, bool MergeIdenticalEdges, | 
|  | bool DontDeleteUselessPhis, | 
|  | bool SplitLandingPads) { | 
|  | if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return nullptr; | 
|  |  | 
|  | assert(!isa<IndirectBrInst>(TI) && | 
|  | "Cannot split critical edge from IndirectBrInst"); | 
|  |  | 
|  | BasicBlock *TIBB = TI->getParent(); | 
|  | BasicBlock *DestBB = TI->getSuccessor(SuccNum); | 
|  |  | 
|  | // Splitting the critical edge to a landing pad block is non-trivial. Don't do | 
|  | // it in this generic function. | 
|  | if (DestBB->isLandingPad()) return nullptr; | 
|  |  | 
|  | // Create a new basic block, linking it into the CFG. | 
|  | BasicBlock *NewBB = BasicBlock::Create(TI->getContext(), | 
|  | TIBB->getName() + "." + DestBB->getName() + "_crit_edge"); | 
|  | // Create our unconditional branch. | 
|  | BranchInst *NewBI = BranchInst::Create(DestBB, NewBB); | 
|  | NewBI->setDebugLoc(TI->getDebugLoc()); | 
|  |  | 
|  | // Branch to the new block, breaking the edge. | 
|  | TI->setSuccessor(SuccNum, NewBB); | 
|  |  | 
|  | // Insert the block into the function... right after the block TI lives in. | 
|  | Function &F = *TIBB->getParent(); | 
|  | Function::iterator FBBI = TIBB; | 
|  | F.getBasicBlockList().insert(++FBBI, NewBB); | 
|  |  | 
|  | // If there are any PHI nodes in DestBB, we need to update them so that they | 
|  | // merge incoming values from NewBB instead of from TIBB. | 
|  | { | 
|  | unsigned BBIdx = 0; | 
|  | for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) { | 
|  | // We no longer enter through TIBB, now we come in through NewBB. | 
|  | // Revector exactly one entry in the PHI node that used to come from | 
|  | // TIBB to come from NewBB. | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  |  | 
|  | // Reuse the previous value of BBIdx if it lines up.  In cases where we | 
|  | // have multiple phi nodes with *lots* of predecessors, this is a speed | 
|  | // win because we don't have to scan the PHI looking for TIBB.  This | 
|  | // happens because the BB list of PHI nodes are usually in the same | 
|  | // order. | 
|  | if (PN->getIncomingBlock(BBIdx) != TIBB) | 
|  | BBIdx = PN->getBasicBlockIndex(TIBB); | 
|  | PN->setIncomingBlock(BBIdx, NewBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there are any other edges from TIBB to DestBB, update those to go | 
|  | // through the split block, making those edges non-critical as well (and | 
|  | // reducing the number of phi entries in the DestBB if relevant). | 
|  | if (MergeIdenticalEdges) { | 
|  | for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) { | 
|  | if (TI->getSuccessor(i) != DestBB) continue; | 
|  |  | 
|  | // Remove an entry for TIBB from DestBB phi nodes. | 
|  | DestBB->removePredecessor(TIBB, DontDeleteUselessPhis); | 
|  |  | 
|  | // We found another edge to DestBB, go to NewBB instead. | 
|  | TI->setSuccessor(i, NewBB); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // If we don't have a pass object, we can't update anything... | 
|  | if (!P) return NewBB; | 
|  |  | 
|  | DominatorTreeWrapperPass *DTWP = | 
|  | P->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); | 
|  | DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; | 
|  | LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>(); | 
|  |  | 
|  | // If we have nothing to update, just return. | 
|  | if (!DT && !LI) | 
|  | return NewBB; | 
|  |  | 
|  | // Now update analysis information.  Since the only predecessor of NewBB is | 
|  | // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate | 
|  | // anything, as there are other successors of DestBB.  However, if all other | 
|  | // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a | 
|  | // loop header) then NewBB dominates DestBB. | 
|  | SmallVector<BasicBlock*, 8> OtherPreds; | 
|  |  | 
|  | // If there is a PHI in the block, loop over predecessors with it, which is | 
|  | // faster than iterating pred_begin/end. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (PN->getIncomingBlock(i) != NewBB) | 
|  | OtherPreds.push_back(PN->getIncomingBlock(i)); | 
|  | } else { | 
|  | for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); | 
|  | I != E; ++I) { | 
|  | BasicBlock *P = *I; | 
|  | if (P != NewBB) | 
|  | OtherPreds.push_back(P); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool NewBBDominatesDestBB = true; | 
|  |  | 
|  | // Should we update DominatorTree information? | 
|  | if (DT) { | 
|  | DomTreeNode *TINode = DT->getNode(TIBB); | 
|  |  | 
|  | // The new block is not the immediate dominator for any other nodes, but | 
|  | // TINode is the immediate dominator for the new node. | 
|  | // | 
|  | if (TINode) {       // Don't break unreachable code! | 
|  | DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB); | 
|  | DomTreeNode *DestBBNode = nullptr; | 
|  |  | 
|  | // If NewBBDominatesDestBB hasn't been computed yet, do so with DT. | 
|  | if (!OtherPreds.empty()) { | 
|  | DestBBNode = DT->getNode(DestBB); | 
|  | while (!OtherPreds.empty() && NewBBDominatesDestBB) { | 
|  | if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back())) | 
|  | NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode); | 
|  | OtherPreds.pop_back(); | 
|  | } | 
|  | OtherPreds.clear(); | 
|  | } | 
|  |  | 
|  | // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it | 
|  | // doesn't dominate anything. | 
|  | if (NewBBDominatesDestBB) { | 
|  | if (!DestBBNode) DestBBNode = DT->getNode(DestBB); | 
|  | DT->changeImmediateDominator(DestBBNode, NewBBNode); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update LoopInfo if it is around. | 
|  | if (LI) { | 
|  | if (Loop *TIL = LI->getLoopFor(TIBB)) { | 
|  | // If one or the other blocks were not in a loop, the new block is not | 
|  | // either, and thus LI doesn't need to be updated. | 
|  | if (Loop *DestLoop = LI->getLoopFor(DestBB)) { | 
|  | if (TIL == DestLoop) { | 
|  | // Both in the same loop, the NewBB joins loop. | 
|  | DestLoop->addBasicBlockToLoop(NewBB, LI->getBase()); | 
|  | } else if (TIL->contains(DestLoop)) { | 
|  | // Edge from an outer loop to an inner loop.  Add to the outer loop. | 
|  | TIL->addBasicBlockToLoop(NewBB, LI->getBase()); | 
|  | } else if (DestLoop->contains(TIL)) { | 
|  | // Edge from an inner loop to an outer loop.  Add to the outer loop. | 
|  | DestLoop->addBasicBlockToLoop(NewBB, LI->getBase()); | 
|  | } else { | 
|  | // Edge from two loops with no containment relation.  Because these | 
|  | // are natural loops, we know that the destination block must be the | 
|  | // header of its loop (adding a branch into a loop elsewhere would | 
|  | // create an irreducible loop). | 
|  | assert(DestLoop->getHeader() == DestBB && | 
|  | "Should not create irreducible loops!"); | 
|  | if (Loop *P = DestLoop->getParentLoop()) | 
|  | P->addBasicBlockToLoop(NewBB, LI->getBase()); | 
|  | } | 
|  | } | 
|  | // If TIBB is in a loop and DestBB is outside of that loop, we may need | 
|  | // to update LoopSimplify form and LCSSA form. | 
|  | if (!TIL->contains(DestBB) && | 
|  | P->mustPreserveAnalysisID(LoopSimplifyID)) { | 
|  | assert(!TIL->contains(NewBB) && | 
|  | "Split point for loop exit is contained in loop!"); | 
|  |  | 
|  | // Update LCSSA form in the newly created exit block. | 
|  | if (P->mustPreserveAnalysisID(LCSSAID)) | 
|  | createPHIsForSplitLoopExit(TIBB, NewBB, DestBB); | 
|  |  | 
|  | // The only that we can break LoopSimplify form by splitting a critical | 
|  | // edge is if after the split there exists some edge from TIL to DestBB | 
|  | // *and* the only edge into DestBB from outside of TIL is that of | 
|  | // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB | 
|  | // is the new exit block and it has no non-loop predecessors. If the | 
|  | // second isn't true, then DestBB was not in LoopSimplify form prior to | 
|  | // the split as it had a non-loop predecessor. In both of these cases, | 
|  | // the predecessor must be directly in TIL, not in a subloop, or again | 
|  | // LoopSimplify doesn't hold. | 
|  | SmallVector<BasicBlock *, 4> LoopPreds; | 
|  | for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; | 
|  | ++I) { | 
|  | BasicBlock *P = *I; | 
|  | if (P == NewBB) | 
|  | continue; // The new block is known. | 
|  | if (LI->getLoopFor(P) != TIL) { | 
|  | // No need to re-simplify, it wasn't to start with. | 
|  | LoopPreds.clear(); | 
|  | break; | 
|  | } | 
|  | LoopPreds.push_back(P); | 
|  | } | 
|  | if (!LoopPreds.empty()) { | 
|  | assert(!DestBB->isLandingPad() && | 
|  | "We don't split edges to landing pads!"); | 
|  | BasicBlock *NewExitBB = | 
|  | SplitBlockPredecessors(DestBB, LoopPreds, "split", P); | 
|  | if (P->mustPreserveAnalysisID(LCSSAID)) | 
|  | createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB); | 
|  | } | 
|  | } | 
|  | // LCSSA form was updated above for the case where LoopSimplify is | 
|  | // available, which means that all predecessors of loop exit blocks | 
|  | // are within the loop. Without LoopSimplify form, it would be | 
|  | // necessary to insert a new phi. | 
|  | assert((!P->mustPreserveAnalysisID(LCSSAID) || | 
|  | P->mustPreserveAnalysisID(LoopSimplifyID)) && | 
|  | "SplitCriticalEdge doesn't know how to update LCCSA form " | 
|  | "without LoopSimplify!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return NewBB; | 
|  | } |