|  | //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements routines for folding instructions into simpler forms | 
|  | // that do not require creating new instructions.  For example, this does | 
|  | // constant folding, and can handle identities like (X&0)->0. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Support/ValueHandle.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Support/PatternMatch.h" | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | /// SimplifyAddInst - Given operands for an Add, see if we can | 
|  | /// fold the result.  If not, this returns null. | 
|  | Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, | 
|  | const TargetData *TD) { | 
|  | if (Constant *CLHS = dyn_cast<Constant>(Op0)) { | 
|  | if (Constant *CRHS = dyn_cast<Constant>(Op1)) { | 
|  | Constant *Ops[] = { CLHS, CRHS }; | 
|  | return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), | 
|  | Ops, 2, TD); | 
|  | } | 
|  |  | 
|  | // Canonicalize the constant to the RHS. | 
|  | std::swap(Op0, Op1); | 
|  | } | 
|  |  | 
|  | if (Constant *Op1C = dyn_cast<Constant>(Op1)) { | 
|  | // X + undef -> undef | 
|  | if (isa<UndefValue>(Op1C)) | 
|  | return Op1C; | 
|  |  | 
|  | // X + 0 --> X | 
|  | if (Op1C->isNullValue()) | 
|  | return Op0; | 
|  | } | 
|  |  | 
|  | // FIXME: Could pull several more out of instcombine. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// SimplifyAndInst - Given operands for an And, see if we can | 
|  | /// fold the result.  If not, this returns null. | 
|  | Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD) { | 
|  | if (Constant *CLHS = dyn_cast<Constant>(Op0)) { | 
|  | if (Constant *CRHS = dyn_cast<Constant>(Op1)) { | 
|  | Constant *Ops[] = { CLHS, CRHS }; | 
|  | return ConstantFoldInstOperands(Instruction::And, CLHS->getType(), | 
|  | Ops, 2, TD); | 
|  | } | 
|  |  | 
|  | // Canonicalize the constant to the RHS. | 
|  | std::swap(Op0, Op1); | 
|  | } | 
|  |  | 
|  | // X & undef -> 0 | 
|  | if (isa<UndefValue>(Op1)) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // X & X = X | 
|  | if (Op0 == Op1) | 
|  | return Op0; | 
|  |  | 
|  | // X & <0,0> = <0,0> | 
|  | if (isa<ConstantAggregateZero>(Op1)) | 
|  | return Op1; | 
|  |  | 
|  | // X & <-1,-1> = X | 
|  | if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) | 
|  | if (CP->isAllOnesValue()) | 
|  | return Op0; | 
|  |  | 
|  | if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | // X & 0 = 0 | 
|  | if (Op1CI->isZero()) | 
|  | return Op1CI; | 
|  | // X & -1 = X | 
|  | if (Op1CI->isAllOnesValue()) | 
|  | return Op0; | 
|  | } | 
|  |  | 
|  | // A & ~A  =  ~A & A  =  0 | 
|  | Value *A, *B; | 
|  | if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || | 
|  | (match(Op1, m_Not(m_Value(A))) && A == Op0)) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // (A | ?) & A = A | 
|  | if (match(Op0, m_Or(m_Value(A), m_Value(B))) && | 
|  | (A == Op1 || B == Op1)) | 
|  | return Op1; | 
|  |  | 
|  | // A & (A | ?) = A | 
|  | if (match(Op1, m_Or(m_Value(A), m_Value(B))) && | 
|  | (A == Op0 || B == Op0)) | 
|  | return Op0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// SimplifyOrInst - Given operands for an Or, see if we can | 
|  | /// fold the result.  If not, this returns null. | 
|  | Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD) { | 
|  | if (Constant *CLHS = dyn_cast<Constant>(Op0)) { | 
|  | if (Constant *CRHS = dyn_cast<Constant>(Op1)) { | 
|  | Constant *Ops[] = { CLHS, CRHS }; | 
|  | return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(), | 
|  | Ops, 2, TD); | 
|  | } | 
|  |  | 
|  | // Canonicalize the constant to the RHS. | 
|  | std::swap(Op0, Op1); | 
|  | } | 
|  |  | 
|  | // X | undef -> -1 | 
|  | if (isa<UndefValue>(Op1)) | 
|  | return Constant::getAllOnesValue(Op0->getType()); | 
|  |  | 
|  | // X | X = X | 
|  | if (Op0 == Op1) | 
|  | return Op0; | 
|  |  | 
|  | // X | <0,0> = X | 
|  | if (isa<ConstantAggregateZero>(Op1)) | 
|  | return Op0; | 
|  |  | 
|  | // X | <-1,-1> = <-1,-1> | 
|  | if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) | 
|  | if (CP->isAllOnesValue()) | 
|  | return Op1; | 
|  |  | 
|  | if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | // X | 0 = X | 
|  | if (Op1CI->isZero()) | 
|  | return Op0; | 
|  | // X | -1 = -1 | 
|  | if (Op1CI->isAllOnesValue()) | 
|  | return Op1CI; | 
|  | } | 
|  |  | 
|  | // A | ~A  =  ~A | A  =  -1 | 
|  | Value *A, *B; | 
|  | if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || | 
|  | (match(Op1, m_Not(m_Value(A))) && A == Op0)) | 
|  | return Constant::getAllOnesValue(Op0->getType()); | 
|  |  | 
|  | // (A & ?) | A = A | 
|  | if (match(Op0, m_And(m_Value(A), m_Value(B))) && | 
|  | (A == Op1 || B == Op1)) | 
|  | return Op1; | 
|  |  | 
|  | // A | (A & ?) = A | 
|  | if (match(Op1, m_And(m_Value(A), m_Value(B))) && | 
|  | (A == Op0 || B == Op0)) | 
|  | return Op0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static const Type *GetCompareTy(Value *Op) { | 
|  | return CmpInst::makeCmpResultType(Op->getType()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can | 
|  | /// fold the result.  If not, this returns null. | 
|  | Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, | 
|  | const TargetData *TD) { | 
|  | CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; | 
|  | assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); | 
|  |  | 
|  | if (Constant *CLHS = dyn_cast<Constant>(LHS)) { | 
|  | if (Constant *CRHS = dyn_cast<Constant>(RHS)) | 
|  | return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); | 
|  |  | 
|  | // If we have a constant, make sure it is on the RHS. | 
|  | std::swap(LHS, RHS); | 
|  | Pred = CmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  |  | 
|  | // ITy - This is the return type of the compare we're considering. | 
|  | const Type *ITy = GetCompareTy(LHS); | 
|  |  | 
|  | // icmp X, X -> true/false | 
|  | if (LHS == RHS) | 
|  | return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); | 
|  |  | 
|  | if (isa<UndefValue>(RHS))                  // X icmp undef -> undef | 
|  | return UndefValue::get(ITy); | 
|  |  | 
|  | // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value | 
|  | // addresses never equal each other!  We already know that Op0 != Op1. | 
|  | if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) || | 
|  | isa<ConstantPointerNull>(LHS)) && | 
|  | (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) || | 
|  | isa<ConstantPointerNull>(RHS))) | 
|  | return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred)); | 
|  |  | 
|  | // See if we are doing a comparison with a constant. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { | 
|  | // If we have an icmp le or icmp ge instruction, turn it into the | 
|  | // appropriate icmp lt or icmp gt instruction.  This allows us to rely on | 
|  | // them being folded in the code below. | 
|  | switch (Pred) { | 
|  | default: break; | 
|  | case ICmpInst::ICMP_ULE: | 
|  | if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE | 
|  | return ConstantInt::getTrue(CI->getContext()); | 
|  | break; | 
|  | case ICmpInst::ICMP_SLE: | 
|  | if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE | 
|  | return ConstantInt::getTrue(CI->getContext()); | 
|  | break; | 
|  | case ICmpInst::ICMP_UGE: | 
|  | if (CI->isMinValue(false))                 // A >=u MIN -> TRUE | 
|  | return ConstantInt::getTrue(CI->getContext()); | 
|  | break; | 
|  | case ICmpInst::ICMP_SGE: | 
|  | if (CI->isMinValue(true))                  // A >=s MIN -> TRUE | 
|  | return ConstantInt::getTrue(CI->getContext()); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can | 
|  | /// fold the result.  If not, this returns null. | 
|  | Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, | 
|  | const TargetData *TD) { | 
|  | CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; | 
|  | assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); | 
|  |  | 
|  | if (Constant *CLHS = dyn_cast<Constant>(LHS)) { | 
|  | if (Constant *CRHS = dyn_cast<Constant>(RHS)) | 
|  | return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); | 
|  |  | 
|  | // If we have a constant, make sure it is on the RHS. | 
|  | std::swap(LHS, RHS); | 
|  | Pred = CmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  |  | 
|  | // Fold trivial predicates. | 
|  | if (Pred == FCmpInst::FCMP_FALSE) | 
|  | return ConstantInt::get(GetCompareTy(LHS), 0); | 
|  | if (Pred == FCmpInst::FCMP_TRUE) | 
|  | return ConstantInt::get(GetCompareTy(LHS), 1); | 
|  |  | 
|  | if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef | 
|  | return UndefValue::get(GetCompareTy(LHS)); | 
|  |  | 
|  | // fcmp x,x -> true/false.  Not all compares are foldable. | 
|  | if (LHS == RHS) { | 
|  | if (CmpInst::isTrueWhenEqual(Pred)) | 
|  | return ConstantInt::get(GetCompareTy(LHS), 1); | 
|  | if (CmpInst::isFalseWhenEqual(Pred)) | 
|  | return ConstantInt::get(GetCompareTy(LHS), 0); | 
|  | } | 
|  |  | 
|  | // Handle fcmp with constant RHS | 
|  | if (Constant *RHSC = dyn_cast<Constant>(RHS)) { | 
|  | // If the constant is a nan, see if we can fold the comparison based on it. | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { | 
|  | if (CFP->getValueAPF().isNaN()) { | 
|  | if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo" | 
|  | return ConstantInt::getFalse(CFP->getContext()); | 
|  | assert(FCmpInst::isUnordered(Pred) && | 
|  | "Comparison must be either ordered or unordered!"); | 
|  | // True if unordered. | 
|  | return ConstantInt::getTrue(CFP->getContext()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can | 
|  | /// fold the result.  If not, this returns null. | 
|  | Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps, | 
|  | const TargetData *TD) { | 
|  | // getelementptr P -> P. | 
|  | if (NumOps == 1) | 
|  | return Ops[0]; | 
|  |  | 
|  | // TODO. | 
|  | //if (isa<UndefValue>(Ops[0])) | 
|  | //  return UndefValue::get(GEP.getType()); | 
|  |  | 
|  | // getelementptr P, 0 -> P. | 
|  | if (NumOps == 2) | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1])) | 
|  | if (C->isZero()) | 
|  | return Ops[0]; | 
|  |  | 
|  | // Check to see if this is constant foldable. | 
|  | for (unsigned i = 0; i != NumOps; ++i) | 
|  | if (!isa<Constant>(Ops[i])) | 
|  | return 0; | 
|  |  | 
|  | return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), | 
|  | (Constant *const*)Ops+1, NumOps-1); | 
|  | } | 
|  |  | 
|  |  | 
|  | //=== Helper functions for higher up the class hierarchy. | 
|  |  | 
|  | /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can | 
|  | /// fold the result.  If not, this returns null. | 
|  | Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, | 
|  | const TargetData *TD) { | 
|  | switch (Opcode) { | 
|  | case Instruction::And: return SimplifyAndInst(LHS, RHS, TD); | 
|  | case Instruction::Or:  return SimplifyOrInst(LHS, RHS, TD); | 
|  | default: | 
|  | if (Constant *CLHS = dyn_cast<Constant>(LHS)) | 
|  | if (Constant *CRHS = dyn_cast<Constant>(RHS)) { | 
|  | Constant *COps[] = {CLHS, CRHS}; | 
|  | return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// SimplifyCmpInst - Given operands for a CmpInst, see if we can | 
|  | /// fold the result. | 
|  | Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, | 
|  | const TargetData *TD) { | 
|  | if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) | 
|  | return SimplifyICmpInst(Predicate, LHS, RHS, TD); | 
|  | return SimplifyFCmpInst(Predicate, LHS, RHS, TD); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SimplifyInstruction - See if we can compute a simplified version of this | 
|  | /// instruction.  If not, this returns null. | 
|  | Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD) { | 
|  | switch (I->getOpcode()) { | 
|  | default: | 
|  | return ConstantFoldInstruction(I, TD); | 
|  | case Instruction::Add: | 
|  | return SimplifyAddInst(I->getOperand(0), I->getOperand(1), | 
|  | cast<BinaryOperator>(I)->hasNoSignedWrap(), | 
|  | cast<BinaryOperator>(I)->hasNoUnsignedWrap(), TD); | 
|  | case Instruction::And: | 
|  | return SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD); | 
|  | case Instruction::Or: | 
|  | return SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD); | 
|  | case Instruction::ICmp: | 
|  | return SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), | 
|  | I->getOperand(0), I->getOperand(1), TD); | 
|  | case Instruction::FCmp: | 
|  | return SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), | 
|  | I->getOperand(0), I->getOperand(1), TD); | 
|  | case Instruction::GetElementPtr: { | 
|  | SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); | 
|  | return SimplifyGEPInst(&Ops[0], Ops.size(), TD); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then | 
|  | /// delete the From instruction.  In addition to a basic RAUW, this does a | 
|  | /// recursive simplification of the newly formed instructions.  This catches | 
|  | /// things where one simplification exposes other opportunities.  This only | 
|  | /// simplifies and deletes scalar operations, it does not change the CFG. | 
|  | /// | 
|  | void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To, | 
|  | const TargetData *TD) { | 
|  | assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!"); | 
|  |  | 
|  | // FromHandle - This keeps a weakvh on the from value so that we can know if | 
|  | // it gets deleted out from under us in a recursive simplification. | 
|  | WeakVH FromHandle(From); | 
|  |  | 
|  | while (!From->use_empty()) { | 
|  | // Update the instruction to use the new value. | 
|  | Use &U = From->use_begin().getUse(); | 
|  | Instruction *User = cast<Instruction>(U.getUser()); | 
|  | U = To; | 
|  |  | 
|  | // See if we can simplify it. | 
|  | if (Value *V = SimplifyInstruction(User, TD)) { | 
|  | // Recursively simplify this. | 
|  | ReplaceAndSimplifyAllUses(User, V, TD); | 
|  |  | 
|  | // If the recursive simplification ended up revisiting and deleting 'From' | 
|  | // then we're done. | 
|  | if (FromHandle == 0) | 
|  | return; | 
|  | } | 
|  | } | 
|  | From->eraseFromParent(); | 
|  | } | 
|  |  |