|  | //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This transformation analyzes and transforms the induction variables (and | 
|  | // computations derived from them) into simpler forms suitable for subsequent | 
|  | // analysis and transformation. | 
|  | // | 
|  | // If the trip count of a loop is computable, this pass also makes the following | 
|  | // changes: | 
|  | //   1. The exit condition for the loop is canonicalized to compare the | 
|  | //      induction value against the exit value.  This turns loops like: | 
|  | //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' | 
|  | //   2. Any use outside of the loop of an expression derived from the indvar | 
|  | //      is changed to compute the derived value outside of the loop, eliminating | 
|  | //      the dependence on the exit value of the induction variable.  If the only | 
|  | //      purpose of the loop is to compute the exit value of some derived | 
|  | //      expression, this transformation will make the loop dead. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/IndVarSimplify.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/LoopPassManager.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpander.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Transforms/Utils/SimplifyIndVar.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "indvars" | 
|  |  | 
|  | STATISTIC(NumWidened     , "Number of indvars widened"); | 
|  | STATISTIC(NumReplaced    , "Number of exit values replaced"); | 
|  | STATISTIC(NumLFTR        , "Number of loop exit tests replaced"); | 
|  | STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated"); | 
|  | STATISTIC(NumElimIV      , "Number of congruent IVs eliminated"); | 
|  |  | 
|  | // Trip count verification can be enabled by default under NDEBUG if we | 
|  | // implement a strong expression equivalence checker in SCEV. Until then, we | 
|  | // use the verify-indvars flag, which may assert in some cases. | 
|  | static cl::opt<bool> VerifyIndvars( | 
|  | "verify-indvars", cl::Hidden, | 
|  | cl::desc("Verify the ScalarEvolution result after running indvars")); | 
|  |  | 
|  | enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; | 
|  |  | 
|  | static cl::opt<ReplaceExitVal> ReplaceExitValue( | 
|  | "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), | 
|  | cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), | 
|  | cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), | 
|  | clEnumValN(OnlyCheapRepl, "cheap", | 
|  | "only replace exit value when the cost is cheap"), | 
|  | clEnumValN(AlwaysRepl, "always", | 
|  | "always replace exit value whenever possible"), | 
|  | clEnumValEnd)); | 
|  |  | 
|  | namespace { | 
|  | struct RewritePhi; | 
|  |  | 
|  | class IndVarSimplify { | 
|  | LoopInfo *LI; | 
|  | ScalarEvolution *SE; | 
|  | DominatorTree *DT; | 
|  | const DataLayout &DL; | 
|  | TargetLibraryInfo *TLI; | 
|  | const TargetTransformInfo *TTI; | 
|  |  | 
|  | SmallVector<WeakVH, 16> DeadInsts; | 
|  | bool Changed = false; | 
|  |  | 
|  | bool isValidRewrite(Value *FromVal, Value *ToVal); | 
|  |  | 
|  | void handleFloatingPointIV(Loop *L, PHINode *PH); | 
|  | void rewriteNonIntegerIVs(Loop *L); | 
|  |  | 
|  | void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); | 
|  |  | 
|  | bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); | 
|  | void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); | 
|  | void rewriteFirstIterationLoopExitValues(Loop *L); | 
|  |  | 
|  | Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, | 
|  | PHINode *IndVar, SCEVExpander &Rewriter); | 
|  |  | 
|  | void sinkUnusedInvariants(Loop *L); | 
|  |  | 
|  | Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, | 
|  | Instruction *InsertPt, Type *Ty); | 
|  |  | 
|  | public: | 
|  | IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, | 
|  | const DataLayout &DL, TargetLibraryInfo *TLI, | 
|  | TargetTransformInfo *TTI) | 
|  | : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} | 
|  |  | 
|  | bool run(Loop *L); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Return true if the SCEV expansion generated by the rewriter can replace the | 
|  | /// original value. SCEV guarantees that it produces the same value, but the way | 
|  | /// it is produced may be illegal IR.  Ideally, this function will only be | 
|  | /// called for verification. | 
|  | bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { | 
|  | // If an SCEV expression subsumed multiple pointers, its expansion could | 
|  | // reassociate the GEP changing the base pointer. This is illegal because the | 
|  | // final address produced by a GEP chain must be inbounds relative to its | 
|  | // underlying object. Otherwise basic alias analysis, among other things, | 
|  | // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid | 
|  | // producing an expression involving multiple pointers. Until then, we must | 
|  | // bail out here. | 
|  | // | 
|  | // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject | 
|  | // because it understands lcssa phis while SCEV does not. | 
|  | Value *FromPtr = FromVal; | 
|  | Value *ToPtr = ToVal; | 
|  | if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { | 
|  | FromPtr = GEP->getPointerOperand(); | 
|  | } | 
|  | if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { | 
|  | ToPtr = GEP->getPointerOperand(); | 
|  | } | 
|  | if (FromPtr != FromVal || ToPtr != ToVal) { | 
|  | // Quickly check the common case | 
|  | if (FromPtr == ToPtr) | 
|  | return true; | 
|  |  | 
|  | // SCEV may have rewritten an expression that produces the GEP's pointer | 
|  | // operand. That's ok as long as the pointer operand has the same base | 
|  | // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the | 
|  | // base of a recurrence. This handles the case in which SCEV expansion | 
|  | // converts a pointer type recurrence into a nonrecurrent pointer base | 
|  | // indexed by an integer recurrence. | 
|  |  | 
|  | // If the GEP base pointer is a vector of pointers, abort. | 
|  | if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) | 
|  | return false; | 
|  |  | 
|  | const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); | 
|  | const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); | 
|  | if (FromBase == ToBase) | 
|  | return true; | 
|  |  | 
|  | DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " | 
|  | << *FromBase << " != " << *ToBase << "\n"); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine the insertion point for this user. By default, insert immediately | 
|  | /// before the user. SCEVExpander or LICM will hoist loop invariants out of the | 
|  | /// loop. For PHI nodes, there may be multiple uses, so compute the nearest | 
|  | /// common dominator for the incoming blocks. | 
|  | static Instruction *getInsertPointForUses(Instruction *User, Value *Def, | 
|  | DominatorTree *DT, LoopInfo *LI) { | 
|  | PHINode *PHI = dyn_cast<PHINode>(User); | 
|  | if (!PHI) | 
|  | return User; | 
|  |  | 
|  | Instruction *InsertPt = nullptr; | 
|  | for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { | 
|  | if (PHI->getIncomingValue(i) != Def) | 
|  | continue; | 
|  |  | 
|  | BasicBlock *InsertBB = PHI->getIncomingBlock(i); | 
|  | if (!InsertPt) { | 
|  | InsertPt = InsertBB->getTerminator(); | 
|  | continue; | 
|  | } | 
|  | InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); | 
|  | InsertPt = InsertBB->getTerminator(); | 
|  | } | 
|  | assert(InsertPt && "Missing phi operand"); | 
|  |  | 
|  | auto *DefI = dyn_cast<Instruction>(Def); | 
|  | if (!DefI) | 
|  | return InsertPt; | 
|  |  | 
|  | assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); | 
|  |  | 
|  | auto *L = LI->getLoopFor(DefI->getParent()); | 
|  | assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); | 
|  |  | 
|  | for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) | 
|  | if (LI->getLoopFor(DTN->getBlock()) == L) | 
|  | return DTN->getBlock()->getTerminator(); | 
|  |  | 
|  | llvm_unreachable("DefI dominates InsertPt!"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // rewriteNonIntegerIVs and helpers. Prefer integer IVs. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Convert APF to an integer, if possible. | 
|  | static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { | 
|  | bool isExact = false; | 
|  | // See if we can convert this to an int64_t | 
|  | uint64_t UIntVal; | 
|  | if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, | 
|  | &isExact) != APFloat::opOK || !isExact) | 
|  | return false; | 
|  | IntVal = UIntVal; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// If the loop has floating induction variable then insert corresponding | 
|  | /// integer induction variable if possible. | 
|  | /// For example, | 
|  | /// for(double i = 0; i < 10000; ++i) | 
|  | ///   bar(i) | 
|  | /// is converted into | 
|  | /// for(int i = 0; i < 10000; ++i) | 
|  | ///   bar((double)i); | 
|  | /// | 
|  | void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { | 
|  | unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); | 
|  | unsigned BackEdge     = IncomingEdge^1; | 
|  |  | 
|  | // Check incoming value. | 
|  | auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); | 
|  |  | 
|  | int64_t InitValue; | 
|  | if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) | 
|  | return; | 
|  |  | 
|  | // Check IV increment. Reject this PN if increment operation is not | 
|  | // an add or increment value can not be represented by an integer. | 
|  | auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); | 
|  | if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; | 
|  |  | 
|  | // If this is not an add of the PHI with a constantfp, or if the constant fp | 
|  | // is not an integer, bail out. | 
|  | ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); | 
|  | int64_t IncValue; | 
|  | if (IncValueVal == nullptr || Incr->getOperand(0) != PN || | 
|  | !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) | 
|  | return; | 
|  |  | 
|  | // Check Incr uses. One user is PN and the other user is an exit condition | 
|  | // used by the conditional terminator. | 
|  | Value::user_iterator IncrUse = Incr->user_begin(); | 
|  | Instruction *U1 = cast<Instruction>(*IncrUse++); | 
|  | if (IncrUse == Incr->user_end()) return; | 
|  | Instruction *U2 = cast<Instruction>(*IncrUse++); | 
|  | if (IncrUse != Incr->user_end()) return; | 
|  |  | 
|  | // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't | 
|  | // only used by a branch, we can't transform it. | 
|  | FCmpInst *Compare = dyn_cast<FCmpInst>(U1); | 
|  | if (!Compare) | 
|  | Compare = dyn_cast<FCmpInst>(U2); | 
|  | if (!Compare || !Compare->hasOneUse() || | 
|  | !isa<BranchInst>(Compare->user_back())) | 
|  | return; | 
|  |  | 
|  | BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); | 
|  |  | 
|  | // We need to verify that the branch actually controls the iteration count | 
|  | // of the loop.  If not, the new IV can overflow and no one will notice. | 
|  | // The branch block must be in the loop and one of the successors must be out | 
|  | // of the loop. | 
|  | assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); | 
|  | if (!L->contains(TheBr->getParent()) || | 
|  | (L->contains(TheBr->getSuccessor(0)) && | 
|  | L->contains(TheBr->getSuccessor(1)))) | 
|  | return; | 
|  |  | 
|  |  | 
|  | // If it isn't a comparison with an integer-as-fp (the exit value), we can't | 
|  | // transform it. | 
|  | ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); | 
|  | int64_t ExitValue; | 
|  | if (ExitValueVal == nullptr || | 
|  | !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) | 
|  | return; | 
|  |  | 
|  | // Find new predicate for integer comparison. | 
|  | CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; | 
|  | switch (Compare->getPredicate()) { | 
|  | default: return;  // Unknown comparison. | 
|  | case CmpInst::FCMP_OEQ: | 
|  | case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; | 
|  | case CmpInst::FCMP_ONE: | 
|  | case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; | 
|  | case CmpInst::FCMP_OGT: | 
|  | case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; | 
|  | case CmpInst::FCMP_OGE: | 
|  | case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; | 
|  | case CmpInst::FCMP_OLT: | 
|  | case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; | 
|  | case CmpInst::FCMP_OLE: | 
|  | case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; | 
|  | } | 
|  |  | 
|  | // We convert the floating point induction variable to a signed i32 value if | 
|  | // we can.  This is only safe if the comparison will not overflow in a way | 
|  | // that won't be trapped by the integer equivalent operations.  Check for this | 
|  | // now. | 
|  | // TODO: We could use i64 if it is native and the range requires it. | 
|  |  | 
|  | // The start/stride/exit values must all fit in signed i32. | 
|  | if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) | 
|  | return; | 
|  |  | 
|  | // If not actually striding (add x, 0.0), avoid touching the code. | 
|  | if (IncValue == 0) | 
|  | return; | 
|  |  | 
|  | // Positive and negative strides have different safety conditions. | 
|  | if (IncValue > 0) { | 
|  | // If we have a positive stride, we require the init to be less than the | 
|  | // exit value. | 
|  | if (InitValue >= ExitValue) | 
|  | return; | 
|  |  | 
|  | uint32_t Range = uint32_t(ExitValue-InitValue); | 
|  | // Check for infinite loop, either: | 
|  | // while (i <= Exit) or until (i > Exit) | 
|  | if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { | 
|  | if (++Range == 0) return;  // Range overflows. | 
|  | } | 
|  |  | 
|  | unsigned Leftover = Range % uint32_t(IncValue); | 
|  |  | 
|  | // If this is an equality comparison, we require that the strided value | 
|  | // exactly land on the exit value, otherwise the IV condition will wrap | 
|  | // around and do things the fp IV wouldn't. | 
|  | if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && | 
|  | Leftover != 0) | 
|  | return; | 
|  |  | 
|  | // If the stride would wrap around the i32 before exiting, we can't | 
|  | // transform the IV. | 
|  | if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) | 
|  | return; | 
|  |  | 
|  | } else { | 
|  | // If we have a negative stride, we require the init to be greater than the | 
|  | // exit value. | 
|  | if (InitValue <= ExitValue) | 
|  | return; | 
|  |  | 
|  | uint32_t Range = uint32_t(InitValue-ExitValue); | 
|  | // Check for infinite loop, either: | 
|  | // while (i >= Exit) or until (i < Exit) | 
|  | if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { | 
|  | if (++Range == 0) return;  // Range overflows. | 
|  | } | 
|  |  | 
|  | unsigned Leftover = Range % uint32_t(-IncValue); | 
|  |  | 
|  | // If this is an equality comparison, we require that the strided value | 
|  | // exactly land on the exit value, otherwise the IV condition will wrap | 
|  | // around and do things the fp IV wouldn't. | 
|  | if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && | 
|  | Leftover != 0) | 
|  | return; | 
|  |  | 
|  | // If the stride would wrap around the i32 before exiting, we can't | 
|  | // transform the IV. | 
|  | if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) | 
|  | return; | 
|  | } | 
|  |  | 
|  | IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); | 
|  |  | 
|  | // Insert new integer induction variable. | 
|  | PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); | 
|  | NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), | 
|  | PN->getIncomingBlock(IncomingEdge)); | 
|  |  | 
|  | Value *NewAdd = | 
|  | BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), | 
|  | Incr->getName()+".int", Incr); | 
|  | NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); | 
|  |  | 
|  | ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, | 
|  | ConstantInt::get(Int32Ty, ExitValue), | 
|  | Compare->getName()); | 
|  |  | 
|  | // In the following deletions, PN may become dead and may be deleted. | 
|  | // Use a WeakVH to observe whether this happens. | 
|  | WeakVH WeakPH = PN; | 
|  |  | 
|  | // Delete the old floating point exit comparison.  The branch starts using the | 
|  | // new comparison. | 
|  | NewCompare->takeName(Compare); | 
|  | Compare->replaceAllUsesWith(NewCompare); | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); | 
|  |  | 
|  | // Delete the old floating point increment. | 
|  | Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); | 
|  |  | 
|  | // If the FP induction variable still has uses, this is because something else | 
|  | // in the loop uses its value.  In order to canonicalize the induction | 
|  | // variable, we chose to eliminate the IV and rewrite it in terms of an | 
|  | // int->fp cast. | 
|  | // | 
|  | // We give preference to sitofp over uitofp because it is faster on most | 
|  | // platforms. | 
|  | if (WeakPH) { | 
|  | Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", | 
|  | &*PN->getParent()->getFirstInsertionPt()); | 
|  | PN->replaceAllUsesWith(Conv); | 
|  | RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); | 
|  | } | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { | 
|  | // First step.  Check to see if there are any floating-point recurrences. | 
|  | // If there are, change them into integer recurrences, permitting analysis by | 
|  | // the SCEV routines. | 
|  | // | 
|  | BasicBlock *Header = L->getHeader(); | 
|  |  | 
|  | SmallVector<WeakVH, 8> PHIs; | 
|  | for (BasicBlock::iterator I = Header->begin(); | 
|  | PHINode *PN = dyn_cast<PHINode>(I); ++I) | 
|  | PHIs.push_back(PN); | 
|  |  | 
|  | for (unsigned i = 0, e = PHIs.size(); i != e; ++i) | 
|  | if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) | 
|  | handleFloatingPointIV(L, PN); | 
|  |  | 
|  | // If the loop previously had floating-point IV, ScalarEvolution | 
|  | // may not have been able to compute a trip count. Now that we've done some | 
|  | // re-writing, the trip count may be computable. | 
|  | if (Changed) | 
|  | SE->forgetLoop(L); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Collect information about PHI nodes which can be transformed in | 
|  | // rewriteLoopExitValues. | 
|  | struct RewritePhi { | 
|  | PHINode *PN; | 
|  | unsigned Ith;  // Ith incoming value. | 
|  | Value *Val;    // Exit value after expansion. | 
|  | bool HighCost; // High Cost when expansion. | 
|  |  | 
|  | RewritePhi(PHINode *P, unsigned I, Value *V, bool H) | 
|  | : PN(P), Ith(I), Val(V), HighCost(H) {} | 
|  | }; | 
|  | } | 
|  |  | 
|  | Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, | 
|  | Loop *L, Instruction *InsertPt, | 
|  | Type *ResultTy) { | 
|  | // Before expanding S into an expensive LLVM expression, see if we can use an | 
|  | // already existing value as the expansion for S. | 
|  | if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L)) | 
|  | if (ExistingValue->getType() == ResultTy) | 
|  | return ExistingValue; | 
|  |  | 
|  | // We didn't find anything, fall back to using SCEVExpander. | 
|  | return Rewriter.expandCodeFor(S, ResultTy, InsertPt); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // rewriteLoopExitValues - Optimize IV users outside the loop. | 
|  | // As a side effect, reduces the amount of IV processing within the loop. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Check to see if this loop has a computable loop-invariant execution count. | 
|  | /// If so, this means that we can compute the final value of any expressions | 
|  | /// that are recurrent in the loop, and substitute the exit values from the loop | 
|  | /// into any instructions outside of the loop that use the final values of the | 
|  | /// current expressions. | 
|  | /// | 
|  | /// This is mostly redundant with the regular IndVarSimplify activities that | 
|  | /// happen later, except that it's more powerful in some cases, because it's | 
|  | /// able to brute-force evaluate arbitrary instructions as long as they have | 
|  | /// constant operands at the beginning of the loop. | 
|  | void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { | 
|  | // Check a pre-condition. | 
|  | assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); | 
|  |  | 
|  | SmallVector<BasicBlock*, 8> ExitBlocks; | 
|  | L->getUniqueExitBlocks(ExitBlocks); | 
|  |  | 
|  | SmallVector<RewritePhi, 8> RewritePhiSet; | 
|  | // Find all values that are computed inside the loop, but used outside of it. | 
|  | // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan | 
|  | // the exit blocks of the loop to find them. | 
|  | for (BasicBlock *ExitBB : ExitBlocks) { | 
|  | // If there are no PHI nodes in this exit block, then no values defined | 
|  | // inside the loop are used on this path, skip it. | 
|  | PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); | 
|  | if (!PN) continue; | 
|  |  | 
|  | unsigned NumPreds = PN->getNumIncomingValues(); | 
|  |  | 
|  | // Iterate over all of the PHI nodes. | 
|  | BasicBlock::iterator BBI = ExitBB->begin(); | 
|  | while ((PN = dyn_cast<PHINode>(BBI++))) { | 
|  | if (PN->use_empty()) | 
|  | continue; // dead use, don't replace it | 
|  |  | 
|  | if (!SE->isSCEVable(PN->getType())) | 
|  | continue; | 
|  |  | 
|  | // It's necessary to tell ScalarEvolution about this explicitly so that | 
|  | // it can walk the def-use list and forget all SCEVs, as it may not be | 
|  | // watching the PHI itself. Once the new exit value is in place, there | 
|  | // may not be a def-use connection between the loop and every instruction | 
|  | // which got a SCEVAddRecExpr for that loop. | 
|  | SE->forgetValue(PN); | 
|  |  | 
|  | // Iterate over all of the values in all the PHI nodes. | 
|  | for (unsigned i = 0; i != NumPreds; ++i) { | 
|  | // If the value being merged in is not integer or is not defined | 
|  | // in the loop, skip it. | 
|  | Value *InVal = PN->getIncomingValue(i); | 
|  | if (!isa<Instruction>(InVal)) | 
|  | continue; | 
|  |  | 
|  | // If this pred is for a subloop, not L itself, skip it. | 
|  | if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) | 
|  | continue; // The Block is in a subloop, skip it. | 
|  |  | 
|  | // Check that InVal is defined in the loop. | 
|  | Instruction *Inst = cast<Instruction>(InVal); | 
|  | if (!L->contains(Inst)) | 
|  | continue; | 
|  |  | 
|  | // Okay, this instruction has a user outside of the current loop | 
|  | // and varies predictably *inside* the loop.  Evaluate the value it | 
|  | // contains when the loop exits, if possible. | 
|  | const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); | 
|  | if (!SE->isLoopInvariant(ExitValue, L) || | 
|  | !isSafeToExpand(ExitValue, *SE)) | 
|  | continue; | 
|  |  | 
|  | // Computing the value outside of the loop brings no benefit if : | 
|  | //  - it is definitely used inside the loop in a way which can not be | 
|  | //    optimized away. | 
|  | //  - no use outside of the loop can take advantage of hoisting the | 
|  | //    computation out of the loop | 
|  | if (ExitValue->getSCEVType()>=scMulExpr) { | 
|  | unsigned NumHardInternalUses = 0; | 
|  | unsigned NumSoftExternalUses = 0; | 
|  | unsigned NumUses = 0; | 
|  | for (auto IB = Inst->user_begin(), IE = Inst->user_end(); | 
|  | IB != IE && NumUses <= 6; ++IB) { | 
|  | Instruction *UseInstr = cast<Instruction>(*IB); | 
|  | unsigned Opc = UseInstr->getOpcode(); | 
|  | NumUses++; | 
|  | if (L->contains(UseInstr)) { | 
|  | if (Opc == Instruction::Call || Opc == Instruction::Ret) | 
|  | NumHardInternalUses++; | 
|  | } else { | 
|  | if (Opc == Instruction::PHI) { | 
|  | // Do not count the Phi as a use. LCSSA may have inserted | 
|  | // plenty of trivial ones. | 
|  | NumUses--; | 
|  | for (auto PB = UseInstr->user_begin(), | 
|  | PE = UseInstr->user_end(); | 
|  | PB != PE && NumUses <= 6; ++PB, ++NumUses) { | 
|  | unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); | 
|  | if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) | 
|  | NumSoftExternalUses++; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (Opc != Instruction::Call && Opc != Instruction::Ret) | 
|  | NumSoftExternalUses++; | 
|  | } | 
|  | } | 
|  | if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); | 
|  | Value *ExitVal = | 
|  | expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); | 
|  |  | 
|  | DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' | 
|  | << "  LoopVal = " << *Inst << "\n"); | 
|  |  | 
|  | if (!isValidRewrite(Inst, ExitVal)) { | 
|  | DeadInsts.push_back(ExitVal); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Collect all the candidate PHINodes to be rewritten. | 
|  | RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); | 
|  |  | 
|  | // Transformation. | 
|  | for (const RewritePhi &Phi : RewritePhiSet) { | 
|  | PHINode *PN = Phi.PN; | 
|  | Value *ExitVal = Phi.Val; | 
|  |  | 
|  | // Only do the rewrite when the ExitValue can be expanded cheaply. | 
|  | // If LoopCanBeDel is true, rewrite exit value aggressively. | 
|  | if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { | 
|  | DeadInsts.push_back(ExitVal); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Changed = true; | 
|  | ++NumReplaced; | 
|  | Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); | 
|  | PN->setIncomingValue(Phi.Ith, ExitVal); | 
|  |  | 
|  | // If this instruction is dead now, delete it. Don't do it now to avoid | 
|  | // invalidating iterators. | 
|  | if (isInstructionTriviallyDead(Inst, TLI)) | 
|  | DeadInsts.push_back(Inst); | 
|  |  | 
|  | // Replace PN with ExitVal if that is legal and does not break LCSSA. | 
|  | if (PN->getNumIncomingValues() == 1 && | 
|  | LI->replacementPreservesLCSSAForm(PN, ExitVal)) { | 
|  | PN->replaceAllUsesWith(ExitVal); | 
|  | PN->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The insertion point instruction may have been deleted; clear it out | 
|  | // so that the rewriter doesn't trip over it later. | 
|  | Rewriter.clearInsertPoint(); | 
|  | } | 
|  |  | 
|  | //===---------------------------------------------------------------------===// | 
|  | // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know | 
|  | // they will exit at the first iteration. | 
|  | //===---------------------------------------------------------------------===// | 
|  |  | 
|  | /// Check to see if this loop has loop invariant conditions which lead to loop | 
|  | /// exits. If so, we know that if the exit path is taken, it is at the first | 
|  | /// loop iteration. This lets us predict exit values of PHI nodes that live in | 
|  | /// loop header. | 
|  | void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { | 
|  | // Verify the input to the pass is already in LCSSA form. | 
|  | assert(L->isLCSSAForm(*DT)); | 
|  |  | 
|  | SmallVector<BasicBlock *, 8> ExitBlocks; | 
|  | L->getUniqueExitBlocks(ExitBlocks); | 
|  | auto *LoopHeader = L->getHeader(); | 
|  | assert(LoopHeader && "Invalid loop"); | 
|  |  | 
|  | for (auto *ExitBB : ExitBlocks) { | 
|  | BasicBlock::iterator BBI = ExitBB->begin(); | 
|  | // If there are no more PHI nodes in this exit block, then no more | 
|  | // values defined inside the loop are used on this path. | 
|  | while (auto *PN = dyn_cast<PHINode>(BBI++)) { | 
|  | for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues(); | 
|  | IncomingValIdx != E; ++IncomingValIdx) { | 
|  | auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx); | 
|  |  | 
|  | // We currently only support loop exits from loop header. If the | 
|  | // incoming block is not loop header, we need to recursively check | 
|  | // all conditions starting from loop header are loop invariants. | 
|  | // Additional support might be added in the future. | 
|  | if (IncomingBB != LoopHeader) | 
|  | continue; | 
|  |  | 
|  | // Get condition that leads to the exit path. | 
|  | auto *TermInst = IncomingBB->getTerminator(); | 
|  |  | 
|  | Value *Cond = nullptr; | 
|  | if (auto *BI = dyn_cast<BranchInst>(TermInst)) { | 
|  | // Must be a conditional branch, otherwise the block | 
|  | // should not be in the loop. | 
|  | Cond = BI->getCondition(); | 
|  | } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) | 
|  | Cond = SI->getCondition(); | 
|  | else | 
|  | continue; | 
|  |  | 
|  | if (!L->isLoopInvariant(Cond)) | 
|  | continue; | 
|  |  | 
|  | auto *ExitVal = | 
|  | dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx)); | 
|  |  | 
|  | // Only deal with PHIs. | 
|  | if (!ExitVal) | 
|  | continue; | 
|  |  | 
|  | // If ExitVal is a PHI on the loop header, then we know its | 
|  | // value along this exit because the exit can only be taken | 
|  | // on the first iteration. | 
|  | auto *LoopPreheader = L->getLoopPreheader(); | 
|  | assert(LoopPreheader && "Invalid loop"); | 
|  | int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); | 
|  | if (PreheaderIdx != -1) { | 
|  | assert(ExitVal->getParent() == LoopHeader && | 
|  | "ExitVal must be in loop header"); | 
|  | PN->setIncomingValue(IncomingValIdx, | 
|  | ExitVal->getIncomingValue(PreheaderIdx)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check whether it is possible to delete the loop after rewriting exit | 
|  | /// value. If it is possible, ignore ReplaceExitValue and do rewriting | 
|  | /// aggressively. | 
|  | bool IndVarSimplify::canLoopBeDeleted( | 
|  | Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { | 
|  |  | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | // If there is no preheader, the loop will not be deleted. | 
|  | if (!Preheader) | 
|  | return false; | 
|  |  | 
|  | // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. | 
|  | // We obviate multiple ExitingBlocks case for simplicity. | 
|  | // TODO: If we see testcase with multiple ExitingBlocks can be deleted | 
|  | // after exit value rewriting, we can enhance the logic here. | 
|  | SmallVector<BasicBlock *, 4> ExitingBlocks; | 
|  | L->getExitingBlocks(ExitingBlocks); | 
|  | SmallVector<BasicBlock *, 8> ExitBlocks; | 
|  | L->getUniqueExitBlocks(ExitBlocks); | 
|  | if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) | 
|  | return false; | 
|  |  | 
|  | BasicBlock *ExitBlock = ExitBlocks[0]; | 
|  | BasicBlock::iterator BI = ExitBlock->begin(); | 
|  | while (PHINode *P = dyn_cast<PHINode>(BI)) { | 
|  | Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); | 
|  |  | 
|  | // If the Incoming value of P is found in RewritePhiSet, we know it | 
|  | // could be rewritten to use a loop invariant value in transformation | 
|  | // phase later. Skip it in the loop invariant check below. | 
|  | bool found = false; | 
|  | for (const RewritePhi &Phi : RewritePhiSet) { | 
|  | unsigned i = Phi.Ith; | 
|  | if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | Instruction *I; | 
|  | if (!found && (I = dyn_cast<Instruction>(Incoming))) | 
|  | if (!L->hasLoopInvariantOperands(I)) | 
|  | return false; | 
|  |  | 
|  | ++BI; | 
|  | } | 
|  |  | 
|  | for (auto *BB : L->blocks()) | 
|  | if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); })) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  IV Widening - Extend the width of an IV to cover its widest uses. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | // Collect information about induction variables that are used by sign/zero | 
|  | // extend operations. This information is recorded by CollectExtend and provides | 
|  | // the input to WidenIV. | 
|  | struct WideIVInfo { | 
|  | PHINode *NarrowIV = nullptr; | 
|  | Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext | 
|  | bool IsSigned = false;            // Was a sext user seen before a zext? | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Update information about the induction variable that is extended by this | 
|  | /// sign or zero extend operation. This is used to determine the final width of | 
|  | /// the IV before actually widening it. | 
|  | static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, | 
|  | const TargetTransformInfo *TTI) { | 
|  | bool IsSigned = Cast->getOpcode() == Instruction::SExt; | 
|  | if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) | 
|  | return; | 
|  |  | 
|  | Type *Ty = Cast->getType(); | 
|  | uint64_t Width = SE->getTypeSizeInBits(Ty); | 
|  | if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) | 
|  | return; | 
|  |  | 
|  | // Cast is either an sext or zext up to this point. | 
|  | // We should not widen an indvar if arithmetics on the wider indvar are more | 
|  | // expensive than those on the narrower indvar. We check only the cost of ADD | 
|  | // because at least an ADD is required to increment the induction variable. We | 
|  | // could compute more comprehensively the cost of all instructions on the | 
|  | // induction variable when necessary. | 
|  | if (TTI && | 
|  | TTI->getArithmeticInstrCost(Instruction::Add, Ty) > | 
|  | TTI->getArithmeticInstrCost(Instruction::Add, | 
|  | Cast->getOperand(0)->getType())) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!WI.WidestNativeType) { | 
|  | WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); | 
|  | WI.IsSigned = IsSigned; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We extend the IV to satisfy the sign of its first user, arbitrarily. | 
|  | if (WI.IsSigned != IsSigned) | 
|  | return; | 
|  |  | 
|  | if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) | 
|  | WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Record a link in the Narrow IV def-use chain along with the WideIV that | 
|  | /// computes the same value as the Narrow IV def.  This avoids caching Use* | 
|  | /// pointers. | 
|  | struct NarrowIVDefUse { | 
|  | Instruction *NarrowDef = nullptr; | 
|  | Instruction *NarrowUse = nullptr; | 
|  | Instruction *WideDef = nullptr; | 
|  |  | 
|  | // True if the narrow def is never negative.  Tracking this information lets | 
|  | // us use a sign extension instead of a zero extension or vice versa, when | 
|  | // profitable and legal. | 
|  | bool NeverNegative = false; | 
|  |  | 
|  | NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, | 
|  | bool NeverNegative) | 
|  | : NarrowDef(ND), NarrowUse(NU), WideDef(WD), | 
|  | NeverNegative(NeverNegative) {} | 
|  | }; | 
|  |  | 
|  | /// The goal of this transform is to remove sign and zero extends without | 
|  | /// creating any new induction variables. To do this, it creates a new phi of | 
|  | /// the wider type and redirects all users, either removing extends or inserting | 
|  | /// truncs whenever we stop propagating the type. | 
|  | /// | 
|  | class WidenIV { | 
|  | // Parameters | 
|  | PHINode *OrigPhi; | 
|  | Type *WideType; | 
|  | bool IsSigned; | 
|  |  | 
|  | // Context | 
|  | LoopInfo        *LI; | 
|  | Loop            *L; | 
|  | ScalarEvolution *SE; | 
|  | DominatorTree   *DT; | 
|  |  | 
|  | // Result | 
|  | PHINode *WidePhi; | 
|  | Instruction *WideInc; | 
|  | const SCEV *WideIncExpr; | 
|  | SmallVectorImpl<WeakVH> &DeadInsts; | 
|  |  | 
|  | SmallPtrSet<Instruction*,16> Widened; | 
|  | SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; | 
|  |  | 
|  | public: | 
|  | WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, | 
|  | ScalarEvolution *SEv, DominatorTree *DTree, | 
|  | SmallVectorImpl<WeakVH> &DI) : | 
|  | OrigPhi(WI.NarrowIV), | 
|  | WideType(WI.WidestNativeType), | 
|  | IsSigned(WI.IsSigned), | 
|  | LI(LInfo), | 
|  | L(LI->getLoopFor(OrigPhi->getParent())), | 
|  | SE(SEv), | 
|  | DT(DTree), | 
|  | WidePhi(nullptr), | 
|  | WideInc(nullptr), | 
|  | WideIncExpr(nullptr), | 
|  | DeadInsts(DI) { | 
|  | assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); | 
|  | } | 
|  |  | 
|  | PHINode *createWideIV(SCEVExpander &Rewriter); | 
|  |  | 
|  | protected: | 
|  | Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, | 
|  | Instruction *Use); | 
|  |  | 
|  | Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); | 
|  | Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, | 
|  | const SCEVAddRecExpr *WideAR); | 
|  | Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); | 
|  |  | 
|  | const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse); | 
|  |  | 
|  | const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU); | 
|  |  | 
|  | const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, | 
|  | unsigned OpCode) const; | 
|  |  | 
|  | Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); | 
|  |  | 
|  | bool widenLoopCompare(NarrowIVDefUse DU); | 
|  |  | 
|  | void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); | 
|  | }; | 
|  | } // anonymous namespace | 
|  |  | 
|  | /// Perform a quick domtree based check for loop invariance assuming that V is | 
|  | /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this | 
|  | /// purpose. | 
|  | static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { | 
|  | Instruction *Inst = dyn_cast<Instruction>(V); | 
|  | if (!Inst) | 
|  | return true; | 
|  |  | 
|  | return DT->properlyDominates(Inst->getParent(), L->getHeader()); | 
|  | } | 
|  |  | 
|  | Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, | 
|  | bool IsSigned, Instruction *Use) { | 
|  | // Set the debug location and conservative insertion point. | 
|  | IRBuilder<> Builder(Use); | 
|  | // Hoist the insertion point into loop preheaders as far as possible. | 
|  | for (const Loop *L = LI->getLoopFor(Use->getParent()); | 
|  | L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); | 
|  | L = L->getParentLoop()) | 
|  | Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); | 
|  |  | 
|  | return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : | 
|  | Builder.CreateZExt(NarrowOper, WideType); | 
|  | } | 
|  |  | 
|  | /// Instantiate a wide operation to replace a narrow operation. This only needs | 
|  | /// to handle operations that can evaluation to SCEVAddRec. It can safely return | 
|  | /// 0 for any operation we decide not to clone. | 
|  | Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, | 
|  | const SCEVAddRecExpr *WideAR) { | 
|  | unsigned Opcode = DU.NarrowUse->getOpcode(); | 
|  | switch (Opcode) { | 
|  | default: | 
|  | return nullptr; | 
|  | case Instruction::Add: | 
|  | case Instruction::Mul: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::Sub: | 
|  | return cloneArithmeticIVUser(DU, WideAR); | 
|  |  | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | return cloneBitwiseIVUser(DU); | 
|  | } | 
|  | } | 
|  |  | 
|  | Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { | 
|  | Instruction *NarrowUse = DU.NarrowUse; | 
|  | Instruction *NarrowDef = DU.NarrowDef; | 
|  | Instruction *WideDef = DU.WideDef; | 
|  |  | 
|  | DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); | 
|  |  | 
|  | // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything | 
|  | // about the narrow operand yet so must insert a [sz]ext. It is probably loop | 
|  | // invariant and will be folded or hoisted. If it actually comes from a | 
|  | // widened IV, it should be removed during a future call to widenIVUse. | 
|  | Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) | 
|  | ? WideDef | 
|  | : createExtendInst(NarrowUse->getOperand(0), WideType, | 
|  | IsSigned, NarrowUse); | 
|  | Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) | 
|  | ? WideDef | 
|  | : createExtendInst(NarrowUse->getOperand(1), WideType, | 
|  | IsSigned, NarrowUse); | 
|  |  | 
|  | auto *NarrowBO = cast<BinaryOperator>(NarrowUse); | 
|  | auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, | 
|  | NarrowBO->getName()); | 
|  | IRBuilder<> Builder(NarrowUse); | 
|  | Builder.Insert(WideBO); | 
|  | WideBO->copyIRFlags(NarrowBO); | 
|  | return WideBO; | 
|  | } | 
|  |  | 
|  | Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, | 
|  | const SCEVAddRecExpr *WideAR) { | 
|  | Instruction *NarrowUse = DU.NarrowUse; | 
|  | Instruction *NarrowDef = DU.NarrowDef; | 
|  | Instruction *WideDef = DU.WideDef; | 
|  |  | 
|  | DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); | 
|  |  | 
|  | unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; | 
|  |  | 
|  | // We're trying to find X such that | 
|  | // | 
|  | //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X | 
|  | // | 
|  | // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), | 
|  | // and check using SCEV if any of them are correct. | 
|  |  | 
|  | // Returns true if extending NonIVNarrowDef according to `SignExt` is a | 
|  | // correct solution to X. | 
|  | auto GuessNonIVOperand = [&](bool SignExt) { | 
|  | const SCEV *WideLHS; | 
|  | const SCEV *WideRHS; | 
|  |  | 
|  | auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { | 
|  | if (SignExt) | 
|  | return SE->getSignExtendExpr(S, Ty); | 
|  | return SE->getZeroExtendExpr(S, Ty); | 
|  | }; | 
|  |  | 
|  | if (IVOpIdx == 0) { | 
|  | WideLHS = SE->getSCEV(WideDef); | 
|  | const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); | 
|  | WideRHS = GetExtend(NarrowRHS, WideType); | 
|  | } else { | 
|  | const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); | 
|  | WideLHS = GetExtend(NarrowLHS, WideType); | 
|  | WideRHS = SE->getSCEV(WideDef); | 
|  | } | 
|  |  | 
|  | // WideUse is "WideDef `op.wide` X" as described in the comment. | 
|  | const SCEV *WideUse = nullptr; | 
|  |  | 
|  | switch (NarrowUse->getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("No other possibility!"); | 
|  |  | 
|  | case Instruction::Add: | 
|  | WideUse = SE->getAddExpr(WideLHS, WideRHS); | 
|  | break; | 
|  |  | 
|  | case Instruction::Mul: | 
|  | WideUse = SE->getMulExpr(WideLHS, WideRHS); | 
|  | break; | 
|  |  | 
|  | case Instruction::UDiv: | 
|  | WideUse = SE->getUDivExpr(WideLHS, WideRHS); | 
|  | break; | 
|  |  | 
|  | case Instruction::Sub: | 
|  | WideUse = SE->getMinusSCEV(WideLHS, WideRHS); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return WideUse == WideAR; | 
|  | }; | 
|  |  | 
|  | bool SignExtend = IsSigned; | 
|  | if (!GuessNonIVOperand(SignExtend)) { | 
|  | SignExtend = !SignExtend; | 
|  | if (!GuessNonIVOperand(SignExtend)) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) | 
|  | ? WideDef | 
|  | : createExtendInst(NarrowUse->getOperand(0), WideType, | 
|  | SignExtend, NarrowUse); | 
|  | Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) | 
|  | ? WideDef | 
|  | : createExtendInst(NarrowUse->getOperand(1), WideType, | 
|  | SignExtend, NarrowUse); | 
|  |  | 
|  | auto *NarrowBO = cast<BinaryOperator>(NarrowUse); | 
|  | auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, | 
|  | NarrowBO->getName()); | 
|  |  | 
|  | IRBuilder<> Builder(NarrowUse); | 
|  | Builder.Insert(WideBO); | 
|  | WideBO->copyIRFlags(NarrowBO); | 
|  | return WideBO; | 
|  | } | 
|  |  | 
|  | const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, | 
|  | unsigned OpCode) const { | 
|  | if (OpCode == Instruction::Add) | 
|  | return SE->getAddExpr(LHS, RHS); | 
|  | if (OpCode == Instruction::Sub) | 
|  | return SE->getMinusSCEV(LHS, RHS); | 
|  | if (OpCode == Instruction::Mul) | 
|  | return SE->getMulExpr(LHS, RHS); | 
|  |  | 
|  | llvm_unreachable("Unsupported opcode."); | 
|  | } | 
|  |  | 
|  | /// No-wrap operations can transfer sign extension of their result to their | 
|  | /// operands. Generate the SCEV value for the widened operation without | 
|  | /// actually modifying the IR yet. If the expression after extending the | 
|  | /// operands is an AddRec for this loop, return it. | 
|  | const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { | 
|  |  | 
|  | // Handle the common case of add<nsw/nuw> | 
|  | const unsigned OpCode = DU.NarrowUse->getOpcode(); | 
|  | // Only Add/Sub/Mul instructions supported yet. | 
|  | if (OpCode != Instruction::Add && OpCode != Instruction::Sub && | 
|  | OpCode != Instruction::Mul) | 
|  | return nullptr; | 
|  |  | 
|  | // One operand (NarrowDef) has already been extended to WideDef. Now determine | 
|  | // if extending the other will lead to a recurrence. | 
|  | const unsigned ExtendOperIdx = | 
|  | DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; | 
|  | assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); | 
|  |  | 
|  | const SCEV *ExtendOperExpr = nullptr; | 
|  | const OverflowingBinaryOperator *OBO = | 
|  | cast<OverflowingBinaryOperator>(DU.NarrowUse); | 
|  | if (IsSigned && OBO->hasNoSignedWrap()) | 
|  | ExtendOperExpr = SE->getSignExtendExpr( | 
|  | SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); | 
|  | else if(!IsSigned && OBO->hasNoUnsignedWrap()) | 
|  | ExtendOperExpr = SE->getZeroExtendExpr( | 
|  | SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); | 
|  | else | 
|  | return nullptr; | 
|  |  | 
|  | // When creating this SCEV expr, don't apply the current operations NSW or NUW | 
|  | // flags. This instruction may be guarded by control flow that the no-wrap | 
|  | // behavior depends on. Non-control-equivalent instructions can be mapped to | 
|  | // the same SCEV expression, and it would be incorrect to transfer NSW/NUW | 
|  | // semantics to those operations. | 
|  | const SCEV *lhs = SE->getSCEV(DU.WideDef); | 
|  | const SCEV *rhs = ExtendOperExpr; | 
|  |  | 
|  | // Let's swap operands to the initial order for the case of non-commutative | 
|  | // operations, like SUB. See PR21014. | 
|  | if (ExtendOperIdx == 0) | 
|  | std::swap(lhs, rhs); | 
|  | const SCEVAddRecExpr *AddRec = | 
|  | dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); | 
|  |  | 
|  | if (!AddRec || AddRec->getLoop() != L) | 
|  | return nullptr; | 
|  | return AddRec; | 
|  | } | 
|  |  | 
|  | /// Is this instruction potentially interesting for further simplification after | 
|  | /// widening it's type? In other words, can the extend be safely hoisted out of | 
|  | /// the loop with SCEV reducing the value to a recurrence on the same loop. If | 
|  | /// so, return the sign or zero extended recurrence. Otherwise return NULL. | 
|  | const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) { | 
|  | if (!SE->isSCEVable(NarrowUse->getType())) | 
|  | return nullptr; | 
|  |  | 
|  | const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); | 
|  | if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= | 
|  | SE->getTypeSizeInBits(WideType)) { | 
|  | // NarrowUse implicitly widens its operand. e.g. a gep with a narrow | 
|  | // index. So don't follow this use. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const SCEV *WideExpr = IsSigned ? | 
|  | SE->getSignExtendExpr(NarrowExpr, WideType) : | 
|  | SE->getZeroExtendExpr(NarrowExpr, WideType); | 
|  | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); | 
|  | if (!AddRec || AddRec->getLoop() != L) | 
|  | return nullptr; | 
|  | return AddRec; | 
|  | } | 
|  |  | 
|  | /// This IV user cannot be widen. Replace this use of the original narrow IV | 
|  | /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. | 
|  | static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { | 
|  | DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef | 
|  | << " for user " << *DU.NarrowUse << "\n"); | 
|  | IRBuilder<> Builder( | 
|  | getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); | 
|  | Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); | 
|  | DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); | 
|  | } | 
|  |  | 
|  | /// If the narrow use is a compare instruction, then widen the compare | 
|  | //  (and possibly the other operand).  The extend operation is hoisted into the | 
|  | // loop preheader as far as possible. | 
|  | bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { | 
|  | ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); | 
|  | if (!Cmp) | 
|  | return false; | 
|  |  | 
|  | // We can legally widen the comparison in the following two cases: | 
|  | // | 
|  | //  - The signedness of the IV extension and comparison match | 
|  | // | 
|  | //  - The narrow IV is always positive (and thus its sign extension is equal | 
|  | //    to its zero extension).  For instance, let's say we're zero extending | 
|  | //    %narrow for the following use | 
|  | // | 
|  | //      icmp slt i32 %narrow, %val   ... (A) | 
|  | // | 
|  | //    and %narrow is always positive.  Then | 
|  | // | 
|  | //      (A) == icmp slt i32 sext(%narrow), sext(%val) | 
|  | //          == icmp slt i32 zext(%narrow), sext(%val) | 
|  |  | 
|  | if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) | 
|  | return false; | 
|  |  | 
|  | Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); | 
|  | unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); | 
|  | unsigned IVWidth = SE->getTypeSizeInBits(WideType); | 
|  | assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); | 
|  |  | 
|  | // Widen the compare instruction. | 
|  | IRBuilder<> Builder( | 
|  | getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); | 
|  | DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); | 
|  |  | 
|  | // Widen the other operand of the compare, if necessary. | 
|  | if (CastWidth < IVWidth) { | 
|  | Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); | 
|  | DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine whether an individual user of the narrow IV can be widened. If so, | 
|  | /// return the wide clone of the user. | 
|  | Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { | 
|  |  | 
|  | // Stop traversing the def-use chain at inner-loop phis or post-loop phis. | 
|  | if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { | 
|  | if (LI->getLoopFor(UsePhi->getParent()) != L) { | 
|  | // For LCSSA phis, sink the truncate outside the loop. | 
|  | // After SimplifyCFG most loop exit targets have a single predecessor. | 
|  | // Otherwise fall back to a truncate within the loop. | 
|  | if (UsePhi->getNumOperands() != 1) | 
|  | truncateIVUse(DU, DT, LI); | 
|  | else { | 
|  | // Widening the PHI requires us to insert a trunc.  The logical place | 
|  | // for this trunc is in the same BB as the PHI.  This is not possible if | 
|  | // the BB is terminated by a catchswitch. | 
|  | if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) | 
|  | return nullptr; | 
|  |  | 
|  | PHINode *WidePhi = | 
|  | PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", | 
|  | UsePhi); | 
|  | WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); | 
|  | IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); | 
|  | Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); | 
|  | UsePhi->replaceAllUsesWith(Trunc); | 
|  | DeadInsts.emplace_back(UsePhi); | 
|  | DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi | 
|  | << " to " << *WidePhi << "\n"); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | // Our raison d'etre! Eliminate sign and zero extension. | 
|  | if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { | 
|  | Value *NewDef = DU.WideDef; | 
|  | if (DU.NarrowUse->getType() != WideType) { | 
|  | unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); | 
|  | unsigned IVWidth = SE->getTypeSizeInBits(WideType); | 
|  | if (CastWidth < IVWidth) { | 
|  | // The cast isn't as wide as the IV, so insert a Trunc. | 
|  | IRBuilder<> Builder(DU.NarrowUse); | 
|  | NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); | 
|  | } | 
|  | else { | 
|  | // A wider extend was hidden behind a narrower one. This may induce | 
|  | // another round of IV widening in which the intermediate IV becomes | 
|  | // dead. It should be very rare. | 
|  | DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi | 
|  | << " not wide enough to subsume " << *DU.NarrowUse << "\n"); | 
|  | DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); | 
|  | NewDef = DU.NarrowUse; | 
|  | } | 
|  | } | 
|  | if (NewDef != DU.NarrowUse) { | 
|  | DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse | 
|  | << " replaced by " << *DU.WideDef << "\n"); | 
|  | ++NumElimExt; | 
|  | DU.NarrowUse->replaceAllUsesWith(NewDef); | 
|  | DeadInsts.emplace_back(DU.NarrowUse); | 
|  | } | 
|  | // Now that the extend is gone, we want to expose it's uses for potential | 
|  | // further simplification. We don't need to directly inform SimplifyIVUsers | 
|  | // of the new users, because their parent IV will be processed later as a | 
|  | // new loop phi. If we preserved IVUsers analysis, we would also want to | 
|  | // push the uses of WideDef here. | 
|  |  | 
|  | // No further widening is needed. The deceased [sz]ext had done it for us. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Does this user itself evaluate to a recurrence after widening? | 
|  | const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse); | 
|  | if (!WideAddRec) | 
|  | WideAddRec = getExtendedOperandRecurrence(DU); | 
|  |  | 
|  | if (!WideAddRec) { | 
|  | // If use is a loop condition, try to promote the condition instead of | 
|  | // truncating the IV first. | 
|  | if (widenLoopCompare(DU)) | 
|  | return nullptr; | 
|  |  | 
|  | // This user does not evaluate to a recurence after widening, so don't | 
|  | // follow it. Instead insert a Trunc to kill off the original use, | 
|  | // eventually isolating the original narrow IV so it can be removed. | 
|  | truncateIVUse(DU, DT, LI); | 
|  | return nullptr; | 
|  | } | 
|  | // Assume block terminators cannot evaluate to a recurrence. We can't to | 
|  | // insert a Trunc after a terminator if there happens to be a critical edge. | 
|  | assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && | 
|  | "SCEV is not expected to evaluate a block terminator"); | 
|  |  | 
|  | // Reuse the IV increment that SCEVExpander created as long as it dominates | 
|  | // NarrowUse. | 
|  | Instruction *WideUse = nullptr; | 
|  | if (WideAddRec == WideIncExpr && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) | 
|  | WideUse = WideInc; | 
|  | else { | 
|  | WideUse = cloneIVUser(DU, WideAddRec); | 
|  | if (!WideUse) | 
|  | return nullptr; | 
|  | } | 
|  | // Evaluation of WideAddRec ensured that the narrow expression could be | 
|  | // extended outside the loop without overflow. This suggests that the wide use | 
|  | // evaluates to the same expression as the extended narrow use, but doesn't | 
|  | // absolutely guarantee it. Hence the following failsafe check. In rare cases | 
|  | // where it fails, we simply throw away the newly created wide use. | 
|  | if (WideAddRec != SE->getSCEV(WideUse)) { | 
|  | DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse | 
|  | << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); | 
|  | DeadInsts.emplace_back(WideUse); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Returning WideUse pushes it on the worklist. | 
|  | return WideUse; | 
|  | } | 
|  |  | 
|  | /// Add eligible users of NarrowDef to NarrowIVUsers. | 
|  | /// | 
|  | void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { | 
|  | const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); | 
|  | bool NeverNegative = | 
|  | SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, | 
|  | SE->getConstant(NarrowSCEV->getType(), 0)); | 
|  | for (User *U : NarrowDef->users()) { | 
|  | Instruction *NarrowUser = cast<Instruction>(U); | 
|  |  | 
|  | // Handle data flow merges and bizarre phi cycles. | 
|  | if (!Widened.insert(NarrowUser).second) | 
|  | continue; | 
|  |  | 
|  | NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Process a single induction variable. First use the SCEVExpander to create a | 
|  | /// wide induction variable that evaluates to the same recurrence as the | 
|  | /// original narrow IV. Then use a worklist to forward traverse the narrow IV's | 
|  | /// def-use chain. After widenIVUse has processed all interesting IV users, the | 
|  | /// narrow IV will be isolated for removal by DeleteDeadPHIs. | 
|  | /// | 
|  | /// It would be simpler to delete uses as they are processed, but we must avoid | 
|  | /// invalidating SCEV expressions. | 
|  | /// | 
|  | PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { | 
|  | // Is this phi an induction variable? | 
|  | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); | 
|  | if (!AddRec) | 
|  | return nullptr; | 
|  |  | 
|  | // Widen the induction variable expression. | 
|  | const SCEV *WideIVExpr = IsSigned ? | 
|  | SE->getSignExtendExpr(AddRec, WideType) : | 
|  | SE->getZeroExtendExpr(AddRec, WideType); | 
|  |  | 
|  | assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && | 
|  | "Expect the new IV expression to preserve its type"); | 
|  |  | 
|  | // Can the IV be extended outside the loop without overflow? | 
|  | AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); | 
|  | if (!AddRec || AddRec->getLoop() != L) | 
|  | return nullptr; | 
|  |  | 
|  | // An AddRec must have loop-invariant operands. Since this AddRec is | 
|  | // materialized by a loop header phi, the expression cannot have any post-loop | 
|  | // operands, so they must dominate the loop header. | 
|  | assert( | 
|  | SE->properlyDominates(AddRec->getStart(), L->getHeader()) && | 
|  | SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && | 
|  | "Loop header phi recurrence inputs do not dominate the loop"); | 
|  |  | 
|  | // The rewriter provides a value for the desired IV expression. This may | 
|  | // either find an existing phi or materialize a new one. Either way, we | 
|  | // expect a well-formed cyclic phi-with-increments. i.e. any operand not part | 
|  | // of the phi-SCC dominates the loop entry. | 
|  | Instruction *InsertPt = &L->getHeader()->front(); | 
|  | WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); | 
|  |  | 
|  | // Remembering the WideIV increment generated by SCEVExpander allows | 
|  | // widenIVUse to reuse it when widening the narrow IV's increment. We don't | 
|  | // employ a general reuse mechanism because the call above is the only call to | 
|  | // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. | 
|  | if (BasicBlock *LatchBlock = L->getLoopLatch()) { | 
|  | WideInc = | 
|  | cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); | 
|  | WideIncExpr = SE->getSCEV(WideInc); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); | 
|  | ++NumWidened; | 
|  |  | 
|  | // Traverse the def-use chain using a worklist starting at the original IV. | 
|  | assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); | 
|  |  | 
|  | Widened.insert(OrigPhi); | 
|  | pushNarrowIVUsers(OrigPhi, WidePhi); | 
|  |  | 
|  | while (!NarrowIVUsers.empty()) { | 
|  | NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); | 
|  |  | 
|  | // Process a def-use edge. This may replace the use, so don't hold a | 
|  | // use_iterator across it. | 
|  | Instruction *WideUse = widenIVUse(DU, Rewriter); | 
|  |  | 
|  | // Follow all def-use edges from the previous narrow use. | 
|  | if (WideUse) | 
|  | pushNarrowIVUsers(DU.NarrowUse, WideUse); | 
|  |  | 
|  | // widenIVUse may have removed the def-use edge. | 
|  | if (DU.NarrowDef->use_empty()) | 
|  | DeadInsts.emplace_back(DU.NarrowDef); | 
|  | } | 
|  | return WidePhi; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Live IV Reduction - Minimize IVs live across the loop. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Simplification of IV users based on SCEV evaluation. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class IndVarSimplifyVisitor : public IVVisitor { | 
|  | ScalarEvolution *SE; | 
|  | const TargetTransformInfo *TTI; | 
|  | PHINode *IVPhi; | 
|  |  | 
|  | public: | 
|  | WideIVInfo WI; | 
|  |  | 
|  | IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, | 
|  | const TargetTransformInfo *TTI, | 
|  | const DominatorTree *DTree) | 
|  | : SE(SCEV), TTI(TTI), IVPhi(IV) { | 
|  | DT = DTree; | 
|  | WI.NarrowIV = IVPhi; | 
|  | } | 
|  |  | 
|  | // Implement the interface used by simplifyUsersOfIV. | 
|  | void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Iteratively perform simplification on a worklist of IV users. Each | 
|  | /// successive simplification may push more users which may themselves be | 
|  | /// candidates for simplification. | 
|  | /// | 
|  | /// Sign/Zero extend elimination is interleaved with IV simplification. | 
|  | /// | 
|  | void IndVarSimplify::simplifyAndExtend(Loop *L, | 
|  | SCEVExpander &Rewriter, | 
|  | LoopInfo *LI) { | 
|  | SmallVector<WideIVInfo, 8> WideIVs; | 
|  |  | 
|  | SmallVector<PHINode*, 8> LoopPhis; | 
|  | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { | 
|  | LoopPhis.push_back(cast<PHINode>(I)); | 
|  | } | 
|  | // Each round of simplification iterates through the SimplifyIVUsers worklist | 
|  | // for all current phis, then determines whether any IVs can be | 
|  | // widened. Widening adds new phis to LoopPhis, inducing another round of | 
|  | // simplification on the wide IVs. | 
|  | while (!LoopPhis.empty()) { | 
|  | // Evaluate as many IV expressions as possible before widening any IVs. This | 
|  | // forces SCEV to set no-wrap flags before evaluating sign/zero | 
|  | // extension. The first time SCEV attempts to normalize sign/zero extension, | 
|  | // the result becomes final. So for the most predictable results, we delay | 
|  | // evaluation of sign/zero extend evaluation until needed, and avoid running | 
|  | // other SCEV based analysis prior to simplifyAndExtend. | 
|  | do { | 
|  | PHINode *CurrIV = LoopPhis.pop_back_val(); | 
|  |  | 
|  | // Information about sign/zero extensions of CurrIV. | 
|  | IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); | 
|  |  | 
|  | Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor); | 
|  |  | 
|  | if (Visitor.WI.WidestNativeType) { | 
|  | WideIVs.push_back(Visitor.WI); | 
|  | } | 
|  | } while(!LoopPhis.empty()); | 
|  |  | 
|  | for (; !WideIVs.empty(); WideIVs.pop_back()) { | 
|  | WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); | 
|  | if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { | 
|  | Changed = true; | 
|  | LoopPhis.push_back(WidePhi); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Return true if this loop's backedge taken count expression can be safely and | 
|  | /// cheaply expanded into an instruction sequence that can be used by | 
|  | /// linearFunctionTestReplace. | 
|  | /// | 
|  | /// TODO: This fails for pointer-type loop counters with greater than one byte | 
|  | /// strides, consequently preventing LFTR from running. For the purpose of LFTR | 
|  | /// we could skip this check in the case that the LFTR loop counter (chosen by | 
|  | /// FindLoopCounter) is also pointer type. Instead, we could directly convert | 
|  | /// the loop test to an inequality test by checking the target data's alignment | 
|  | /// of element types (given that the initial pointer value originates from or is | 
|  | /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). | 
|  | /// However, we don't yet have a strong motivation for converting loop tests | 
|  | /// into inequality tests. | 
|  | static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, | 
|  | SCEVExpander &Rewriter) { | 
|  | const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); | 
|  | if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || | 
|  | BackedgeTakenCount->isZero()) | 
|  | return false; | 
|  |  | 
|  | if (!L->getExitingBlock()) | 
|  | return false; | 
|  |  | 
|  | // Can't rewrite non-branch yet. | 
|  | if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) | 
|  | return false; | 
|  |  | 
|  | if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. | 
|  | static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { | 
|  | Instruction *IncI = dyn_cast<Instruction>(IncV); | 
|  | if (!IncI) | 
|  | return nullptr; | 
|  |  | 
|  | switch (IncI->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | break; | 
|  | case Instruction::GetElementPtr: | 
|  | // An IV counter must preserve its type. | 
|  | if (IncI->getNumOperands() == 2) | 
|  | break; | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); | 
|  | if (Phi && Phi->getParent() == L->getHeader()) { | 
|  | if (isLoopInvariant(IncI->getOperand(1), L, DT)) | 
|  | return Phi; | 
|  | return nullptr; | 
|  | } | 
|  | if (IncI->getOpcode() == Instruction::GetElementPtr) | 
|  | return nullptr; | 
|  |  | 
|  | // Allow add/sub to be commuted. | 
|  | Phi = dyn_cast<PHINode>(IncI->getOperand(1)); | 
|  | if (Phi && Phi->getParent() == L->getHeader()) { | 
|  | if (isLoopInvariant(IncI->getOperand(0), L, DT)) | 
|  | return Phi; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Return the compare guarding the loop latch, or NULL for unrecognized tests. | 
|  | static ICmpInst *getLoopTest(Loop *L) { | 
|  | assert(L->getExitingBlock() && "expected loop exit"); | 
|  |  | 
|  | BasicBlock *LatchBlock = L->getLoopLatch(); | 
|  | // Don't bother with LFTR if the loop is not properly simplified. | 
|  | if (!LatchBlock) | 
|  | return nullptr; | 
|  |  | 
|  | BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); | 
|  | assert(BI && "expected exit branch"); | 
|  |  | 
|  | return dyn_cast<ICmpInst>(BI->getCondition()); | 
|  | } | 
|  |  | 
|  | /// linearFunctionTestReplace policy. Return true unless we can show that the | 
|  | /// current exit test is already sufficiently canonical. | 
|  | static bool needsLFTR(Loop *L, DominatorTree *DT) { | 
|  | // Do LFTR to simplify the exit condition to an ICMP. | 
|  | ICmpInst *Cond = getLoopTest(L); | 
|  | if (!Cond) | 
|  | return true; | 
|  |  | 
|  | // Do LFTR to simplify the exit ICMP to EQ/NE | 
|  | ICmpInst::Predicate Pred = Cond->getPredicate(); | 
|  | if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) | 
|  | return true; | 
|  |  | 
|  | // Look for a loop invariant RHS | 
|  | Value *LHS = Cond->getOperand(0); | 
|  | Value *RHS = Cond->getOperand(1); | 
|  | if (!isLoopInvariant(RHS, L, DT)) { | 
|  | if (!isLoopInvariant(LHS, L, DT)) | 
|  | return true; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | // Look for a simple IV counter LHS | 
|  | PHINode *Phi = dyn_cast<PHINode>(LHS); | 
|  | if (!Phi) | 
|  | Phi = getLoopPhiForCounter(LHS, L, DT); | 
|  |  | 
|  | if (!Phi) | 
|  | return true; | 
|  |  | 
|  | // Do LFTR if PHI node is defined in the loop, but is *not* a counter. | 
|  | int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); | 
|  | if (Idx < 0) | 
|  | return true; | 
|  |  | 
|  | // Do LFTR if the exit condition's IV is *not* a simple counter. | 
|  | Value *IncV = Phi->getIncomingValue(Idx); | 
|  | return Phi != getLoopPhiForCounter(IncV, L, DT); | 
|  | } | 
|  |  | 
|  | /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils | 
|  | /// down to checking that all operands are constant and listing instructions | 
|  | /// that may hide undef. | 
|  | static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, | 
|  | unsigned Depth) { | 
|  | if (isa<Constant>(V)) | 
|  | return !isa<UndefValue>(V); | 
|  |  | 
|  | if (Depth >= 6) | 
|  | return false; | 
|  |  | 
|  | // Conservatively handle non-constant non-instructions. For example, Arguments | 
|  | // may be undef. | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) | 
|  | return false; | 
|  |  | 
|  | // Load and return values may be undef. | 
|  | if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) | 
|  | return false; | 
|  |  | 
|  | // Optimistically handle other instructions. | 
|  | for (Value *Op : I->operands()) { | 
|  | if (!Visited.insert(Op).second) | 
|  | continue; | 
|  | if (!hasConcreteDefImpl(Op, Visited, Depth+1)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the given value is concrete. We must prove that undef can | 
|  | /// never reach it. | 
|  | /// | 
|  | /// TODO: If we decide that this is a good approach to checking for undef, we | 
|  | /// may factor it into a common location. | 
|  | static bool hasConcreteDef(Value *V) { | 
|  | SmallPtrSet<Value*, 8> Visited; | 
|  | Visited.insert(V); | 
|  | return hasConcreteDefImpl(V, Visited, 0); | 
|  | } | 
|  |  | 
|  | /// Return true if this IV has any uses other than the (soon to be rewritten) | 
|  | /// loop exit test. | 
|  | static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { | 
|  | int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); | 
|  | Value *IncV = Phi->getIncomingValue(LatchIdx); | 
|  |  | 
|  | for (User *U : Phi->users()) | 
|  | if (U != Cond && U != IncV) return false; | 
|  |  | 
|  | for (User *U : IncV->users()) | 
|  | if (U != Cond && U != Phi) return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Find an affine IV in canonical form. | 
|  | /// | 
|  | /// BECount may be an i8* pointer type. The pointer difference is already | 
|  | /// valid count without scaling the address stride, so it remains a pointer | 
|  | /// expression as far as SCEV is concerned. | 
|  | /// | 
|  | /// Currently only valid for LFTR. See the comments on hasConcreteDef below. | 
|  | /// | 
|  | /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount | 
|  | /// | 
|  | /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. | 
|  | /// This is difficult in general for SCEV because of potential overflow. But we | 
|  | /// could at least handle constant BECounts. | 
|  | static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, | 
|  | ScalarEvolution *SE, DominatorTree *DT) { | 
|  | uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); | 
|  |  | 
|  | Value *Cond = | 
|  | cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); | 
|  |  | 
|  | // Loop over all of the PHI nodes, looking for a simple counter. | 
|  | PHINode *BestPhi = nullptr; | 
|  | const SCEV *BestInit = nullptr; | 
|  | BasicBlock *LatchBlock = L->getLoopLatch(); | 
|  | assert(LatchBlock && "needsLFTR should guarantee a loop latch"); | 
|  | const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); | 
|  |  | 
|  | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { | 
|  | PHINode *Phi = cast<PHINode>(I); | 
|  | if (!SE->isSCEVable(Phi->getType())) | 
|  | continue; | 
|  |  | 
|  | // Avoid comparing an integer IV against a pointer Limit. | 
|  | if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) | 
|  | continue; | 
|  |  | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); | 
|  | if (!AR || AR->getLoop() != L || !AR->isAffine()) | 
|  | continue; | 
|  |  | 
|  | // AR may be a pointer type, while BECount is an integer type. | 
|  | // AR may be wider than BECount. With eq/ne tests overflow is immaterial. | 
|  | // AR may not be a narrower type, or we may never exit. | 
|  | uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); | 
|  | if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) | 
|  | continue; | 
|  |  | 
|  | const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); | 
|  | if (!Step || !Step->isOne()) | 
|  | continue; | 
|  |  | 
|  | int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); | 
|  | Value *IncV = Phi->getIncomingValue(LatchIdx); | 
|  | if (getLoopPhiForCounter(IncV, L, DT) != Phi) | 
|  | continue; | 
|  |  | 
|  | // Avoid reusing a potentially undef value to compute other values that may | 
|  | // have originally had a concrete definition. | 
|  | if (!hasConcreteDef(Phi)) { | 
|  | // We explicitly allow unknown phis as long as they are already used by | 
|  | // the loop test. In this case we assume that performing LFTR could not | 
|  | // increase the number of undef users. | 
|  | if (ICmpInst *Cond = getLoopTest(L)) { | 
|  | if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && | 
|  | Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | const SCEV *Init = AR->getStart(); | 
|  |  | 
|  | if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { | 
|  | // Don't force a live loop counter if another IV can be used. | 
|  | if (AlmostDeadIV(Phi, LatchBlock, Cond)) | 
|  | continue; | 
|  |  | 
|  | // Prefer to count-from-zero. This is a more "canonical" counter form. It | 
|  | // also prefers integer to pointer IVs. | 
|  | if (BestInit->isZero() != Init->isZero()) { | 
|  | if (BestInit->isZero()) | 
|  | continue; | 
|  | } | 
|  | // If two IVs both count from zero or both count from nonzero then the | 
|  | // narrower is likely a dead phi that has been widened. Use the wider phi | 
|  | // to allow the other to be eliminated. | 
|  | else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) | 
|  | continue; | 
|  | } | 
|  | BestPhi = Phi; | 
|  | BestInit = Init; | 
|  | } | 
|  | return BestPhi; | 
|  | } | 
|  |  | 
|  | /// Help linearFunctionTestReplace by generating a value that holds the RHS of | 
|  | /// the new loop test. | 
|  | static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, | 
|  | SCEVExpander &Rewriter, ScalarEvolution *SE) { | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); | 
|  | assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); | 
|  | const SCEV *IVInit = AR->getStart(); | 
|  |  | 
|  | // IVInit may be a pointer while IVCount is an integer when FindLoopCounter | 
|  | // finds a valid pointer IV. Sign extend BECount in order to materialize a | 
|  | // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing | 
|  | // the existing GEPs whenever possible. | 
|  | if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { | 
|  | // IVOffset will be the new GEP offset that is interpreted by GEP as a | 
|  | // signed value. IVCount on the other hand represents the loop trip count, | 
|  | // which is an unsigned value. FindLoopCounter only allows induction | 
|  | // variables that have a positive unit stride of one. This means we don't | 
|  | // have to handle the case of negative offsets (yet) and just need to zero | 
|  | // extend IVCount. | 
|  | Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); | 
|  | const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); | 
|  |  | 
|  | // Expand the code for the iteration count. | 
|  | assert(SE->isLoopInvariant(IVOffset, L) && | 
|  | "Computed iteration count is not loop invariant!"); | 
|  | BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); | 
|  | Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); | 
|  |  | 
|  | Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); | 
|  | assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); | 
|  | // We could handle pointer IVs other than i8*, but we need to compensate for | 
|  | // gep index scaling. See canExpandBackedgeTakenCount comments. | 
|  | assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), | 
|  | cast<PointerType>(GEPBase->getType()) | 
|  | ->getElementType())->isOne() && | 
|  | "unit stride pointer IV must be i8*"); | 
|  |  | 
|  | IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); | 
|  | return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); | 
|  | } else { | 
|  | // In any other case, convert both IVInit and IVCount to integers before | 
|  | // comparing. This may result in SCEV expension of pointers, but in practice | 
|  | // SCEV will fold the pointer arithmetic away as such: | 
|  | // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). | 
|  | // | 
|  | // Valid Cases: (1) both integers is most common; (2) both may be pointers | 
|  | // for simple memset-style loops. | 
|  | // | 
|  | // IVInit integer and IVCount pointer would only occur if a canonical IV | 
|  | // were generated on top of case #2, which is not expected. | 
|  |  | 
|  | const SCEV *IVLimit = nullptr; | 
|  | // For unit stride, IVCount = Start + BECount with 2's complement overflow. | 
|  | // For non-zero Start, compute IVCount here. | 
|  | if (AR->getStart()->isZero()) | 
|  | IVLimit = IVCount; | 
|  | else { | 
|  | assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); | 
|  | const SCEV *IVInit = AR->getStart(); | 
|  |  | 
|  | // For integer IVs, truncate the IV before computing IVInit + BECount. | 
|  | if (SE->getTypeSizeInBits(IVInit->getType()) | 
|  | > SE->getTypeSizeInBits(IVCount->getType())) | 
|  | IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); | 
|  |  | 
|  | IVLimit = SE->getAddExpr(IVInit, IVCount); | 
|  | } | 
|  | // Expand the code for the iteration count. | 
|  | BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); | 
|  | IRBuilder<> Builder(BI); | 
|  | assert(SE->isLoopInvariant(IVLimit, L) && | 
|  | "Computed iteration count is not loop invariant!"); | 
|  | // Ensure that we generate the same type as IndVar, or a smaller integer | 
|  | // type. In the presence of null pointer values, we have an integer type | 
|  | // SCEV expression (IVInit) for a pointer type IV value (IndVar). | 
|  | Type *LimitTy = IVCount->getType()->isPointerTy() ? | 
|  | IndVar->getType() : IVCount->getType(); | 
|  | return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// This method rewrites the exit condition of the loop to be a canonical != | 
|  | /// comparison against the incremented loop induction variable.  This pass is | 
|  | /// able to rewrite the exit tests of any loop where the SCEV analysis can | 
|  | /// determine a loop-invariant trip count of the loop, which is actually a much | 
|  | /// broader range than just linear tests. | 
|  | Value *IndVarSimplify:: | 
|  | linearFunctionTestReplace(Loop *L, | 
|  | const SCEV *BackedgeTakenCount, | 
|  | PHINode *IndVar, | 
|  | SCEVExpander &Rewriter) { | 
|  | assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); | 
|  |  | 
|  | // Initialize CmpIndVar and IVCount to their preincremented values. | 
|  | Value *CmpIndVar = IndVar; | 
|  | const SCEV *IVCount = BackedgeTakenCount; | 
|  |  | 
|  | // If the exiting block is the same as the backedge block, we prefer to | 
|  | // compare against the post-incremented value, otherwise we must compare | 
|  | // against the preincremented value. | 
|  | if (L->getExitingBlock() == L->getLoopLatch()) { | 
|  | // Add one to the "backedge-taken" count to get the trip count. | 
|  | // This addition may overflow, which is valid as long as the comparison is | 
|  | // truncated to BackedgeTakenCount->getType(). | 
|  | IVCount = SE->getAddExpr(BackedgeTakenCount, | 
|  | SE->getOne(BackedgeTakenCount->getType())); | 
|  | // The BackedgeTaken expression contains the number of times that the | 
|  | // backedge branches to the loop header.  This is one less than the | 
|  | // number of times the loop executes, so use the incremented indvar. | 
|  | CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); | 
|  | } | 
|  |  | 
|  | Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); | 
|  | assert(ExitCnt->getType()->isPointerTy() == | 
|  | IndVar->getType()->isPointerTy() && | 
|  | "genLoopLimit missed a cast"); | 
|  |  | 
|  | // Insert a new icmp_ne or icmp_eq instruction before the branch. | 
|  | BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); | 
|  | ICmpInst::Predicate P; | 
|  | if (L->contains(BI->getSuccessor(0))) | 
|  | P = ICmpInst::ICMP_NE; | 
|  | else | 
|  | P = ICmpInst::ICMP_EQ; | 
|  |  | 
|  | DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" | 
|  | << "      LHS:" << *CmpIndVar << '\n' | 
|  | << "       op:\t" | 
|  | << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" | 
|  | << "      RHS:\t" << *ExitCnt << "\n" | 
|  | << "  IVCount:\t" << *IVCount << "\n"); | 
|  |  | 
|  | IRBuilder<> Builder(BI); | 
|  |  | 
|  | // LFTR can ignore IV overflow and truncate to the width of | 
|  | // BECount. This avoids materializing the add(zext(add)) expression. | 
|  | unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); | 
|  | unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); | 
|  | if (CmpIndVarSize > ExitCntSize) { | 
|  | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); | 
|  | const SCEV *ARStart = AR->getStart(); | 
|  | const SCEV *ARStep = AR->getStepRecurrence(*SE); | 
|  | // For constant IVCount, avoid truncation. | 
|  | if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { | 
|  | const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); | 
|  | APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); | 
|  | // Note that the post-inc value of BackedgeTakenCount may have overflowed | 
|  | // above such that IVCount is now zero. | 
|  | if (IVCount != BackedgeTakenCount && Count == 0) { | 
|  | Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); | 
|  | ++Count; | 
|  | } | 
|  | else | 
|  | Count = Count.zext(CmpIndVarSize); | 
|  | APInt NewLimit; | 
|  | if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) | 
|  | NewLimit = Start - Count; | 
|  | else | 
|  | NewLimit = Start + Count; | 
|  | ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); | 
|  |  | 
|  | DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n"); | 
|  | } else { | 
|  | CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), | 
|  | "lftr.wideiv"); | 
|  | } | 
|  | } | 
|  | Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); | 
|  | Value *OrigCond = BI->getCondition(); | 
|  | // It's tempting to use replaceAllUsesWith here to fully replace the old | 
|  | // comparison, but that's not immediately safe, since users of the old | 
|  | // comparison may not be dominated by the new comparison. Instead, just | 
|  | // update the branch to use the new comparison; in the common case this | 
|  | // will make old comparison dead. | 
|  | BI->setCondition(Cond); | 
|  | DeadInsts.push_back(OrigCond); | 
|  |  | 
|  | ++NumLFTR; | 
|  | Changed = true; | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// If there's a single exit block, sink any loop-invariant values that | 
|  | /// were defined in the preheader but not used inside the loop into the | 
|  | /// exit block to reduce register pressure in the loop. | 
|  | void IndVarSimplify::sinkUnusedInvariants(Loop *L) { | 
|  | BasicBlock *ExitBlock = L->getExitBlock(); | 
|  | if (!ExitBlock) return; | 
|  |  | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | if (!Preheader) return; | 
|  |  | 
|  | Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt(); | 
|  | BasicBlock::iterator I(Preheader->getTerminator()); | 
|  | while (I != Preheader->begin()) { | 
|  | --I; | 
|  | // New instructions were inserted at the end of the preheader. | 
|  | if (isa<PHINode>(I)) | 
|  | break; | 
|  |  | 
|  | // Don't move instructions which might have side effects, since the side | 
|  | // effects need to complete before instructions inside the loop.  Also don't | 
|  | // move instructions which might read memory, since the loop may modify | 
|  | // memory. Note that it's okay if the instruction might have undefined | 
|  | // behavior: LoopSimplify guarantees that the preheader dominates the exit | 
|  | // block. | 
|  | if (I->mayHaveSideEffects() || I->mayReadFromMemory()) | 
|  | continue; | 
|  |  | 
|  | // Skip debug info intrinsics. | 
|  | if (isa<DbgInfoIntrinsic>(I)) | 
|  | continue; | 
|  |  | 
|  | // Skip eh pad instructions. | 
|  | if (I->isEHPad()) | 
|  | continue; | 
|  |  | 
|  | // Don't sink alloca: we never want to sink static alloca's out of the | 
|  | // entry block, and correctly sinking dynamic alloca's requires | 
|  | // checks for stacksave/stackrestore intrinsics. | 
|  | // FIXME: Refactor this check somehow? | 
|  | if (isa<AllocaInst>(I)) | 
|  | continue; | 
|  |  | 
|  | // Determine if there is a use in or before the loop (direct or | 
|  | // otherwise). | 
|  | bool UsedInLoop = false; | 
|  | for (Use &U : I->uses()) { | 
|  | Instruction *User = cast<Instruction>(U.getUser()); | 
|  | BasicBlock *UseBB = User->getParent(); | 
|  | if (PHINode *P = dyn_cast<PHINode>(User)) { | 
|  | unsigned i = | 
|  | PHINode::getIncomingValueNumForOperand(U.getOperandNo()); | 
|  | UseBB = P->getIncomingBlock(i); | 
|  | } | 
|  | if (UseBB == Preheader || L->contains(UseBB)) { | 
|  | UsedInLoop = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is, the def must remain in the preheader. | 
|  | if (UsedInLoop) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, sink it to the exit block. | 
|  | Instruction *ToMove = &*I; | 
|  | bool Done = false; | 
|  |  | 
|  | if (I != Preheader->begin()) { | 
|  | // Skip debug info intrinsics. | 
|  | do { | 
|  | --I; | 
|  | } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); | 
|  |  | 
|  | if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) | 
|  | Done = true; | 
|  | } else { | 
|  | Done = true; | 
|  | } | 
|  |  | 
|  | ToMove->moveBefore(InsertPt); | 
|  | if (Done) break; | 
|  | InsertPt = ToMove; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  IndVarSimplify driver. Manage several subpasses of IV simplification. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool IndVarSimplify::run(Loop *L) { | 
|  | // We need (and expect!) the incoming loop to be in LCSSA. | 
|  | assert(L->isRecursivelyLCSSAForm(*DT) && "LCSSA required to run indvars!"); | 
|  |  | 
|  | // If LoopSimplify form is not available, stay out of trouble. Some notes: | 
|  | //  - LSR currently only supports LoopSimplify-form loops. Indvars' | 
|  | //    canonicalization can be a pessimization without LSR to "clean up" | 
|  | //    afterwards. | 
|  | //  - We depend on having a preheader; in particular, | 
|  | //    Loop::getCanonicalInductionVariable only supports loops with preheaders, | 
|  | //    and we're in trouble if we can't find the induction variable even when | 
|  | //    we've manually inserted one. | 
|  | if (!L->isLoopSimplifyForm()) | 
|  | return false; | 
|  |  | 
|  | // If there are any floating-point recurrences, attempt to | 
|  | // transform them to use integer recurrences. | 
|  | rewriteNonIntegerIVs(L); | 
|  |  | 
|  | const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); | 
|  |  | 
|  | // Create a rewriter object which we'll use to transform the code with. | 
|  | SCEVExpander Rewriter(*SE, DL, "indvars"); | 
|  | #ifndef NDEBUG | 
|  | Rewriter.setDebugType(DEBUG_TYPE); | 
|  | #endif | 
|  |  | 
|  | // Eliminate redundant IV users. | 
|  | // | 
|  | // Simplification works best when run before other consumers of SCEV. We | 
|  | // attempt to avoid evaluating SCEVs for sign/zero extend operations until | 
|  | // other expressions involving loop IVs have been evaluated. This helps SCEV | 
|  | // set no-wrap flags before normalizing sign/zero extension. | 
|  | Rewriter.disableCanonicalMode(); | 
|  | simplifyAndExtend(L, Rewriter, LI); | 
|  |  | 
|  | // Check to see if this loop has a computable loop-invariant execution count. | 
|  | // If so, this means that we can compute the final value of any expressions | 
|  | // that are recurrent in the loop, and substitute the exit values from the | 
|  | // loop into any instructions outside of the loop that use the final values of | 
|  | // the current expressions. | 
|  | // | 
|  | if (ReplaceExitValue != NeverRepl && | 
|  | !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) | 
|  | rewriteLoopExitValues(L, Rewriter); | 
|  |  | 
|  | // Eliminate redundant IV cycles. | 
|  | NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); | 
|  |  | 
|  | // If we have a trip count expression, rewrite the loop's exit condition | 
|  | // using it.  We can currently only handle loops with a single exit. | 
|  | if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { | 
|  | PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); | 
|  | if (IndVar) { | 
|  | // Check preconditions for proper SCEVExpander operation. SCEV does not | 
|  | // express SCEVExpander's dependencies, such as LoopSimplify. Instead any | 
|  | // pass that uses the SCEVExpander must do it. This does not work well for | 
|  | // loop passes because SCEVExpander makes assumptions about all loops, | 
|  | // while LoopPassManager only forces the current loop to be simplified. | 
|  | // | 
|  | // FIXME: SCEV expansion has no way to bail out, so the caller must | 
|  | // explicitly check any assumptions made by SCEV. Brittle. | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); | 
|  | if (!AR || AR->getLoop()->getLoopPreheader()) | 
|  | (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, | 
|  | Rewriter); | 
|  | } | 
|  | } | 
|  | // Clear the rewriter cache, because values that are in the rewriter's cache | 
|  | // can be deleted in the loop below, causing the AssertingVH in the cache to | 
|  | // trigger. | 
|  | Rewriter.clear(); | 
|  |  | 
|  | // Now that we're done iterating through lists, clean up any instructions | 
|  | // which are now dead. | 
|  | while (!DeadInsts.empty()) | 
|  | if (Instruction *Inst = | 
|  | dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); | 
|  |  | 
|  | // The Rewriter may not be used from this point on. | 
|  |  | 
|  | // Loop-invariant instructions in the preheader that aren't used in the | 
|  | // loop may be sunk below the loop to reduce register pressure. | 
|  | sinkUnusedInvariants(L); | 
|  |  | 
|  | // rewriteFirstIterationLoopExitValues does not rely on the computation of | 
|  | // trip count and therefore can further simplify exit values in addition to | 
|  | // rewriteLoopExitValues. | 
|  | rewriteFirstIterationLoopExitValues(L); | 
|  |  | 
|  | // Clean up dead instructions. | 
|  | Changed |= DeleteDeadPHIs(L->getHeader(), TLI); | 
|  |  | 
|  | // Check a post-condition. | 
|  | assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); | 
|  |  | 
|  | // Verify that LFTR, and any other change have not interfered with SCEV's | 
|  | // ability to compute trip count. | 
|  | #ifndef NDEBUG | 
|  | if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { | 
|  | SE->forgetLoop(L); | 
|  | const SCEV *NewBECount = SE->getBackedgeTakenCount(L); | 
|  | if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < | 
|  | SE->getTypeSizeInBits(NewBECount->getType())) | 
|  | NewBECount = SE->getTruncateOrNoop(NewBECount, | 
|  | BackedgeTakenCount->getType()); | 
|  | else | 
|  | BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, | 
|  | NewBECount->getType()); | 
|  | assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM) { | 
|  | auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); | 
|  | Function *F = L.getHeader()->getParent(); | 
|  | const DataLayout &DL = F->getParent()->getDataLayout(); | 
|  |  | 
|  | auto *LI = FAM.getCachedResult<LoopAnalysis>(*F); | 
|  | auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); | 
|  | auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); | 
|  |  | 
|  | assert((LI && SE && DT) && | 
|  | "Analyses required for indvarsimplify not available!"); | 
|  |  | 
|  | // Optional analyses. | 
|  | auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); | 
|  | auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(*F); | 
|  |  | 
|  | IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); | 
|  | if (!IVS.run(&L)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | // FIXME: This should also 'preserve the CFG'. | 
|  | return getLoopPassPreservedAnalyses(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct IndVarSimplifyLegacyPass : public LoopPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | IndVarSimplifyLegacyPass() : LoopPass(ID) { | 
|  | initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnLoop(Loop *L, LPPassManager &LPM) override { | 
|  | if (skipLoop(L)) | 
|  | return false; | 
|  |  | 
|  | auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); | 
|  | auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); | 
|  | auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; | 
|  | auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); | 
|  | auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; | 
|  | const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); | 
|  |  | 
|  | IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); | 
|  | return IVS.run(L); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | getLoopAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char IndVarSimplifyLegacyPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", | 
|  | "Induction Variable Simplification", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopPass) | 
|  | INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", | 
|  | "Induction Variable Simplification", false, false) | 
|  |  | 
|  | Pass *llvm::createIndVarSimplifyPass() { | 
|  | return new IndVarSimplifyLegacyPass(); | 
|  | } |