|  | //===-- SIInstructions.td - SI Instruction Defintions ---------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // This file was originally auto-generated from a GPU register header file and | 
|  | // all the instruction definitions were originally commented out.  Instructions | 
|  | // that are not yet supported remain commented out. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | def has16BankLDS : Predicate<"Subtarget->getLDSBankCount() == 16">; | 
|  | def has32BankLDS : Predicate<"Subtarget->getLDSBankCount() == 32">; | 
|  | def HasVGPRIndexMode : Predicate<"Subtarget->hasVGPRIndexMode()">, | 
|  | AssemblerPredicate<"FeatureVGPRIndexMode">; | 
|  | def HasMovrel : Predicate<"Subtarget->hasMovrel()">, | 
|  | AssemblerPredicate<"FeatureMovrel">; | 
|  |  | 
|  | class GCNPat<dag pattern, dag result> : AMDGPUPat<pattern, result> { | 
|  | let SubtargetPredicate = isGCN; | 
|  | } | 
|  |  | 
|  |  | 
|  | include "VOPInstructions.td" | 
|  | include "SOPInstructions.td" | 
|  | include "SMInstructions.td" | 
|  | include "FLATInstructions.td" | 
|  | include "BUFInstructions.td" | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // EXP Instructions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | defm EXP : EXP_m<0, AMDGPUexport>; | 
|  | defm EXP_DONE : EXP_m<1, AMDGPUexport_done>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // VINTRP Instructions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let Uses = [M0, EXEC] in { | 
|  |  | 
|  | // FIXME: Specify SchedRW for VINTRP insturctions. | 
|  |  | 
|  | multiclass V_INTERP_P1_F32_m : VINTRP_m < | 
|  | 0x00000000, | 
|  | (outs VGPR_32:$vdst), | 
|  | (ins VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), | 
|  | "v_interp_p1_f32 $vdst, $vsrc, $attr$attrchan", | 
|  | [(set f32:$vdst, (AMDGPUinterp_p1 f32:$vsrc, (i32 imm:$attrchan), | 
|  | (i32 imm:$attr)))] | 
|  | >; | 
|  |  | 
|  | let OtherPredicates = [has32BankLDS] in { | 
|  |  | 
|  | defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m; | 
|  |  | 
|  | } // End OtherPredicates = [has32BankLDS] | 
|  |  | 
|  | let OtherPredicates = [has16BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in { | 
|  |  | 
|  | defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m; | 
|  |  | 
|  | } // End OtherPredicates = [has32BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 | 
|  |  | 
|  | let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in { | 
|  |  | 
|  | defm V_INTERP_P2_F32 : VINTRP_m < | 
|  | 0x00000001, | 
|  | (outs VGPR_32:$vdst), | 
|  | (ins VGPR_32:$src0, VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), | 
|  | "v_interp_p2_f32 $vdst, $vsrc, $attr$attrchan", | 
|  | [(set f32:$vdst, (AMDGPUinterp_p2 f32:$src0, f32:$vsrc, (i32 imm:$attrchan), | 
|  | (i32 imm:$attr)))]>; | 
|  |  | 
|  | } // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst" | 
|  |  | 
|  | defm V_INTERP_MOV_F32 : VINTRP_m < | 
|  | 0x00000002, | 
|  | (outs VGPR_32:$vdst), | 
|  | (ins InterpSlot:$vsrc, Attr:$attr, AttrChan:$attrchan), | 
|  | "v_interp_mov_f32 $vdst, $vsrc, $attr$attrchan", | 
|  | [(set f32:$vdst, (AMDGPUinterp_mov (i32 imm:$vsrc), (i32 imm:$attrchan), | 
|  | (i32 imm:$attr)))]>; | 
|  |  | 
|  | } // End Uses = [M0, EXEC] | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Pseudo Instructions | 
|  | //===----------------------------------------------------------------------===// | 
|  | def ATOMIC_FENCE : SPseudoInstSI< | 
|  | (outs), (ins i32imm:$ordering, i32imm:$scope), | 
|  | [(atomic_fence (i32 imm:$ordering), (i32 imm:$scope))], | 
|  | "ATOMIC_FENCE $ordering, $scope"> { | 
|  | let hasSideEffects = 1; | 
|  | let maybeAtomic = 1; | 
|  | } | 
|  |  | 
|  | let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in { | 
|  |  | 
|  | // For use in patterns | 
|  | def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst), | 
|  | (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> { | 
|  | let isPseudo = 1; | 
|  | let isCodeGenOnly = 1; | 
|  | let usesCustomInserter = 1; | 
|  | } | 
|  |  | 
|  | // 64-bit vector move instruction. This is mainly used by the | 
|  | // SIFoldOperands pass to enable folding of inline immediates. | 
|  | def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst), | 
|  | (ins VSrc_b64:$src0)>; | 
|  |  | 
|  | // Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the | 
|  | // WQM pass processes it. | 
|  | def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; | 
|  |  | 
|  | // Pseudoinstruction for @llvm.amdgcn.wwm. It is turned into a copy post-RA, so | 
|  | // that the @earlyclobber is respected. The @earlyclobber is to make sure that | 
|  | // the instruction that defines $src0 (which is run in WWM) doesn't | 
|  | // accidentally clobber inactive channels of $vdst. | 
|  | let Constraints = "@earlyclobber $vdst" in { | 
|  | def WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; | 
|  | } | 
|  |  | 
|  | } // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] | 
|  |  | 
|  | def EXIT_WWM : SPseudoInstSI <(outs SReg_64:$sdst), (ins SReg_64:$src0)> { | 
|  | let hasSideEffects = 0; | 
|  | let mayLoad = 0; | 
|  | let mayStore = 0; | 
|  | } | 
|  |  | 
|  | // Invert the exec mask and overwrite the inactive lanes of dst with inactive, | 
|  | // restoring it after we're done. | 
|  | def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst), | 
|  | (ins VGPR_32: $src, VSrc_b32:$inactive), | 
|  | [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> { | 
|  | let Constraints = "$src = $vdst"; | 
|  | } | 
|  |  | 
|  | def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst), | 
|  | (ins VReg_64: $src, VSrc_b64:$inactive), | 
|  | [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> { | 
|  | let Constraints = "$src = $vdst"; | 
|  | } | 
|  |  | 
|  |  | 
|  | let usesCustomInserter = 1, Defs = [SCC] in { | 
|  | def S_ADD_U64_PSEUDO : SPseudoInstSI < | 
|  | (outs SReg_64:$vdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), | 
|  | [(set SReg_64:$vdst, (add i64:$src0, i64:$src1))] | 
|  | >; | 
|  |  | 
|  | def S_SUB_U64_PSEUDO : SPseudoInstSI < | 
|  | (outs SReg_64:$vdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), | 
|  | [(set SReg_64:$vdst, (sub i64:$src0, i64:$src1))] | 
|  | >; | 
|  |  | 
|  | def S_ADD_U64_CO_PSEUDO : SPseudoInstSI < | 
|  | (outs SReg_64:$vdst, VOPDstS64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1) | 
|  | >; | 
|  |  | 
|  | def S_SUB_U64_CO_PSEUDO : SPseudoInstSI < | 
|  | (outs SReg_64:$vdst, VOPDstS64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1) | 
|  | >; | 
|  |  | 
|  | } // End usesCustomInserter = 1, Defs = [SCC] | 
|  |  | 
|  | let usesCustomInserter = 1, SALU = 1 in { | 
|  | def GET_GROUPSTATICSIZE : PseudoInstSI <(outs SReg_32:$sdst), (ins), | 
|  | [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>; | 
|  | } // End let usesCustomInserter = 1, SALU = 1 | 
|  |  | 
|  | def S_MOV_B64_term : PseudoInstSI<(outs SReg_64:$dst), | 
|  | (ins SSrc_b64:$src0)> { | 
|  | let SALU = 1; | 
|  | let isAsCheapAsAMove = 1; | 
|  | let isTerminator = 1; | 
|  | } | 
|  |  | 
|  | def S_XOR_B64_term : PseudoInstSI<(outs SReg_64:$dst), | 
|  | (ins SSrc_b64:$src0, SSrc_b64:$src1)> { | 
|  | let SALU = 1; | 
|  | let isAsCheapAsAMove = 1; | 
|  | let isTerminator = 1; | 
|  | } | 
|  |  | 
|  | def S_ANDN2_B64_term : PseudoInstSI<(outs SReg_64:$dst), | 
|  | (ins SSrc_b64:$src0, SSrc_b64:$src1)> { | 
|  | let SALU = 1; | 
|  | let isAsCheapAsAMove = 1; | 
|  | let isTerminator = 1; | 
|  | } | 
|  |  | 
|  | def WAVE_BARRIER : SPseudoInstSI<(outs), (ins), | 
|  | [(int_amdgcn_wave_barrier)]> { | 
|  | let SchedRW = []; | 
|  | let hasNoSchedulingInfo = 1; | 
|  | let hasSideEffects = 1; | 
|  | let mayLoad = 1; | 
|  | let mayStore = 1; | 
|  | let isBarrier = 1; | 
|  | let isConvergent = 1; | 
|  | let FixedSize = 1; | 
|  | let Size = 0; | 
|  | } | 
|  |  | 
|  | // SI pseudo instructions. These are used by the CFG structurizer pass | 
|  | // and should be lowered to ISA instructions prior to codegen. | 
|  |  | 
|  | // Dummy terminator instruction to use after control flow instructions | 
|  | // replaced with exec mask operations. | 
|  | def SI_MASK_BRANCH : VPseudoInstSI < | 
|  | (outs), (ins brtarget:$target)> { | 
|  | let isBranch = 0; | 
|  | let isTerminator = 1; | 
|  | let isBarrier = 0; | 
|  | let SchedRW = []; | 
|  | let hasNoSchedulingInfo = 1; | 
|  | let FixedSize = 1; | 
|  | let Size = 0; | 
|  | } | 
|  |  | 
|  | let isTerminator = 1 in { | 
|  |  | 
|  | let OtherPredicates = [EnableLateCFGStructurize] in { | 
|  | def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI < | 
|  | (outs), | 
|  | (ins SReg_64:$vcc, brtarget:$target), | 
|  | [(brcond i1:$vcc, bb:$target)]> { | 
|  | let Size = 12; | 
|  | } | 
|  | } | 
|  |  | 
|  | def SI_IF: CFPseudoInstSI < | 
|  | (outs SReg_64:$dst), (ins SReg_64:$vcc, brtarget:$target), | 
|  | [(set i64:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> { | 
|  | let Constraints = ""; | 
|  | let Size = 12; | 
|  | let hasSideEffects = 1; | 
|  | } | 
|  |  | 
|  | def SI_ELSE : CFPseudoInstSI < | 
|  | (outs SReg_64:$dst), | 
|  | (ins SReg_64:$src, brtarget:$target, i1imm:$execfix), [], 1, 1> { | 
|  | let Constraints = "$src = $dst"; | 
|  | let Size = 12; | 
|  | let hasSideEffects = 1; | 
|  | } | 
|  |  | 
|  | def SI_LOOP : CFPseudoInstSI < | 
|  | (outs), (ins SReg_64:$saved, brtarget:$target), | 
|  | [(AMDGPUloop i64:$saved, bb:$target)], 1, 1> { | 
|  | let Size = 8; | 
|  | let isBranch = 0; | 
|  | let hasSideEffects = 1; | 
|  | } | 
|  |  | 
|  | } // End isTerminator = 1 | 
|  |  | 
|  | def SI_END_CF : CFPseudoInstSI < | 
|  | (outs), (ins SReg_64:$saved), | 
|  | [(int_amdgcn_end_cf i64:$saved)], 1, 1> { | 
|  | let Size = 4; | 
|  | let isAsCheapAsAMove = 1; | 
|  | let isReMaterializable = 1; | 
|  | let hasSideEffects = 1; | 
|  | let mayLoad = 1; // FIXME: Should not need memory flags | 
|  | let mayStore = 1; | 
|  | } | 
|  |  | 
|  | def SI_BREAK : CFPseudoInstSI < | 
|  | (outs SReg_64:$dst), (ins SReg_64:$src), | 
|  | [(set i64:$dst, (int_amdgcn_break i64:$src))], 1> { | 
|  | let Size = 4; | 
|  | let isAsCheapAsAMove = 1; | 
|  | let isReMaterializable = 1; | 
|  | } | 
|  |  | 
|  | def SI_IF_BREAK : CFPseudoInstSI < | 
|  | (outs SReg_64:$dst), (ins SReg_64:$vcc, SReg_64:$src), | 
|  | [(set i64:$dst, (int_amdgcn_if_break i1:$vcc, i64:$src))]> { | 
|  | let Size = 4; | 
|  | let isAsCheapAsAMove = 1; | 
|  | let isReMaterializable = 1; | 
|  | } | 
|  |  | 
|  | def SI_ELSE_BREAK : CFPseudoInstSI < | 
|  | (outs SReg_64:$dst), (ins SReg_64:$src0, SReg_64:$src1), | 
|  | [(set i64:$dst, (int_amdgcn_else_break i64:$src0, i64:$src1))]> { | 
|  | let Size = 4; | 
|  | let isAsCheapAsAMove = 1; | 
|  | let isReMaterializable = 1; | 
|  | } | 
|  |  | 
|  | let Uses = [EXEC], Defs = [EXEC,VCC] in { | 
|  |  | 
|  | multiclass PseudoInstKill <dag ins> { | 
|  | def _PSEUDO : PseudoInstSI <(outs), ins> { | 
|  | let isConvergent = 1; | 
|  | let usesCustomInserter = 1; | 
|  | } | 
|  |  | 
|  | def _TERMINATOR : SPseudoInstSI <(outs), ins> { | 
|  | let isTerminator = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | defm SI_KILL_I1 : PseudoInstKill <(ins SSrc_b64:$src, i1imm:$killvalue)>; | 
|  | defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>; | 
|  |  | 
|  | def SI_ILLEGAL_COPY : SPseudoInstSI < | 
|  | (outs unknown:$dst), (ins unknown:$src), | 
|  | [], " ; illegal copy $src to $dst">; | 
|  |  | 
|  | } // End Uses = [EXEC], Defs = [EXEC,VCC] | 
|  |  | 
|  | // Branch on undef scc. Used to avoid intermediate copy from | 
|  | // IMPLICIT_DEF to SCC. | 
|  | def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins sopp_brtarget:$simm16)> { | 
|  | let isTerminator = 1; | 
|  | let usesCustomInserter = 1; | 
|  | } | 
|  |  | 
|  | def SI_PS_LIVE : PseudoInstSI < | 
|  | (outs SReg_64:$dst), (ins), | 
|  | [(set i1:$dst, (int_amdgcn_ps_live))]> { | 
|  | let SALU = 1; | 
|  | } | 
|  |  | 
|  | def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins), | 
|  | [(int_amdgcn_unreachable)], | 
|  | "; divergent unreachable"> { | 
|  | let Size = 0; | 
|  | let hasNoSchedulingInfo = 1; | 
|  | let FixedSize = 1; | 
|  | } | 
|  |  | 
|  | // Used as an isel pseudo to directly emit initialization with an | 
|  | // s_mov_b32 rather than a copy of another initialized | 
|  | // register. MachineCSE skips copies, and we don't want to have to | 
|  | // fold operands before it runs. | 
|  | def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> { | 
|  | let Defs = [M0]; | 
|  | let usesCustomInserter = 1; | 
|  | let isAsCheapAsAMove = 1; | 
|  | let isReMaterializable = 1; | 
|  | } | 
|  |  | 
|  | def SI_INIT_EXEC : SPseudoInstSI < | 
|  | (outs), (ins i64imm:$src), []> { | 
|  | let Defs = [EXEC]; | 
|  | let usesCustomInserter = 1; | 
|  | let isAsCheapAsAMove = 1; | 
|  | } | 
|  |  | 
|  | def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI < | 
|  | (outs), (ins SSrc_b32:$input, i32imm:$shift), []> { | 
|  | let Defs = [EXEC]; | 
|  | let usesCustomInserter = 1; | 
|  | } | 
|  |  | 
|  | // Return for returning shaders to a shader variant epilog. | 
|  | def SI_RETURN_TO_EPILOG : SPseudoInstSI < | 
|  | (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> { | 
|  | let isTerminator = 1; | 
|  | let isBarrier = 1; | 
|  | let isReturn = 1; | 
|  | let hasNoSchedulingInfo = 1; | 
|  | let DisableWQM = 1; | 
|  | } | 
|  |  | 
|  | // Return for returning function calls. | 
|  | def SI_RETURN : SPseudoInstSI < | 
|  | (outs), (ins), [], | 
|  | "; return"> { | 
|  | let isTerminator = 1; | 
|  | let isBarrier = 1; | 
|  | let isReturn = 1; | 
|  | let SchedRW = [WriteBranch]; | 
|  | } | 
|  |  | 
|  | // Return for returning function calls without output register. | 
|  | // | 
|  | // This version is only needed so we can fill in the output regiter in | 
|  | // the custom inserter. | 
|  | def SI_CALL_ISEL : SPseudoInstSI < | 
|  | (outs), (ins SSrc_b64:$src0), [(AMDGPUcall i64:$src0)]> { | 
|  | let Size = 4; | 
|  | let isCall = 1; | 
|  | let SchedRW = [WriteBranch]; | 
|  | let usesCustomInserter = 1; | 
|  | } | 
|  |  | 
|  | // Wrapper around s_swappc_b64 with extra $callee parameter to track | 
|  | // the called function after regalloc. | 
|  | def SI_CALL : SPseudoInstSI < | 
|  | (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> { | 
|  | let Size = 4; | 
|  | let isCall = 1; | 
|  | let UseNamedOperandTable = 1; | 
|  | let SchedRW = [WriteBranch]; | 
|  | } | 
|  |  | 
|  | // Tail call handling pseudo | 
|  | def SI_TCRETURN_ISEL : SPseudoInstSI<(outs), | 
|  | (ins SSrc_b64:$src0, i32imm:$fpdiff), | 
|  | [(AMDGPUtc_return i64:$src0, i32:$fpdiff)]> { | 
|  | let isCall = 1; | 
|  | let isTerminator = 1; | 
|  | let isReturn = 1; | 
|  | let isBarrier = 1; | 
|  | let SchedRW = [WriteBranch]; | 
|  | let usesCustomInserter = 1; | 
|  | } | 
|  |  | 
|  | def SI_TCRETURN : SPseudoInstSI < | 
|  | (outs), | 
|  | (ins SSrc_b64:$src0, unknown:$callee, i32imm:$fpdiff)> { | 
|  | let Size = 4; | 
|  | let isCall = 1; | 
|  | let isTerminator = 1; | 
|  | let isReturn = 1; | 
|  | let isBarrier = 1; | 
|  | let UseNamedOperandTable = 1; | 
|  | let SchedRW = [WriteBranch]; | 
|  | } | 
|  |  | 
|  |  | 
|  | def ADJCALLSTACKUP : SPseudoInstSI< | 
|  | (outs), (ins i32imm:$amt0, i32imm:$amt1), | 
|  | [(callseq_start timm:$amt0, timm:$amt1)], | 
|  | "; adjcallstackup $amt0 $amt1"> { | 
|  | let Size = 8; // Worst case. (s_add_u32 + constant) | 
|  | let FixedSize = 1; | 
|  | let hasSideEffects = 1; | 
|  | let usesCustomInserter = 1; | 
|  | } | 
|  |  | 
|  | def ADJCALLSTACKDOWN : SPseudoInstSI< | 
|  | (outs), (ins i32imm:$amt1, i32imm:$amt2), | 
|  | [(callseq_end timm:$amt1, timm:$amt2)], | 
|  | "; adjcallstackdown $amt1"> { | 
|  | let Size = 8; // Worst case. (s_add_u32 + constant) | 
|  | let hasSideEffects = 1; | 
|  | let usesCustomInserter = 1; | 
|  | } | 
|  |  | 
|  | let Defs = [M0, EXEC], | 
|  | UseNamedOperandTable = 1 in { | 
|  |  | 
|  | class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI < | 
|  | (outs VGPR_32:$vdst), | 
|  | (ins rc:$src, VS_32:$idx, i32imm:$offset)> { | 
|  | let usesCustomInserter = 1; | 
|  | } | 
|  |  | 
|  | class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI < | 
|  | (outs rc:$vdst), | 
|  | (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> { | 
|  | let Constraints = "$src = $vdst"; | 
|  | let usesCustomInserter = 1; | 
|  | } | 
|  |  | 
|  | // TODO: We can support indirect SGPR access. | 
|  | def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>; | 
|  | def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>; | 
|  | def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>; | 
|  | def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>; | 
|  | def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>; | 
|  |  | 
|  | def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>; | 
|  | def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>; | 
|  | def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>; | 
|  | def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>; | 
|  | def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>; | 
|  |  | 
|  | } // End Uses = [EXEC], Defs = [M0, EXEC] | 
|  |  | 
|  | multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> { | 
|  | let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in { | 
|  | def _SAVE : PseudoInstSI < | 
|  | (outs), | 
|  | (ins sgpr_class:$data, i32imm:$addr)> { | 
|  | let mayStore = 1; | 
|  | let mayLoad = 0; | 
|  | } | 
|  |  | 
|  | def _RESTORE : PseudoInstSI < | 
|  | (outs sgpr_class:$data), | 
|  | (ins i32imm:$addr)> { | 
|  | let mayStore = 0; | 
|  | let mayLoad = 1; | 
|  | } | 
|  | } // End UseNamedOperandTable = 1 | 
|  | } | 
|  |  | 
|  | // You cannot use M0 as the output of v_readlane_b32 instructions or | 
|  | // use it in the sdata operand of SMEM instructions. We still need to | 
|  | // be able to spill the physical register m0, so allow it for | 
|  | // SI_SPILL_32_* instructions. | 
|  | defm SI_SPILL_S32  : SI_SPILL_SGPR <SReg_32>; | 
|  | defm SI_SPILL_S64  : SI_SPILL_SGPR <SReg_64>; | 
|  | defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>; | 
|  | defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>; | 
|  | defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>; | 
|  |  | 
|  | multiclass SI_SPILL_VGPR <RegisterClass vgpr_class> { | 
|  | let UseNamedOperandTable = 1, VGPRSpill = 1, | 
|  | SchedRW = [WriteVMEM] in { | 
|  | def _SAVE : VPseudoInstSI < | 
|  | (outs), | 
|  | (ins vgpr_class:$vdata, i32imm:$vaddr, SReg_128:$srsrc, | 
|  | SReg_32:$soffset, i32imm:$offset)> { | 
|  | let mayStore = 1; | 
|  | let mayLoad = 0; | 
|  | // (2 * 4) + (8 * num_subregs) bytes maximum | 
|  | let Size = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8); | 
|  | } | 
|  |  | 
|  | def _RESTORE : VPseudoInstSI < | 
|  | (outs vgpr_class:$vdata), | 
|  | (ins i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset, | 
|  | i32imm:$offset)> { | 
|  | let mayStore = 0; | 
|  | let mayLoad = 1; | 
|  |  | 
|  | // (2 * 4) + (8 * num_subregs) bytes maximum | 
|  | let Size = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8); | 
|  | } | 
|  | } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM] | 
|  | } | 
|  |  | 
|  | defm SI_SPILL_V32  : SI_SPILL_VGPR <VGPR_32>; | 
|  | defm SI_SPILL_V64  : SI_SPILL_VGPR <VReg_64>; | 
|  | defm SI_SPILL_V96  : SI_SPILL_VGPR <VReg_96>; | 
|  | defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>; | 
|  | defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>; | 
|  | defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>; | 
|  |  | 
|  | def SI_PC_ADD_REL_OFFSET : SPseudoInstSI < | 
|  | (outs SReg_64:$dst), | 
|  | (ins si_ga:$ptr_lo, si_ga:$ptr_hi), | 
|  | [(set SReg_64:$dst, | 
|  | (i64 (SIpc_add_rel_offset (tglobaladdr:$ptr_lo), (tglobaladdr:$ptr_hi))))]> { | 
|  | let Defs = [SCC]; | 
|  | } | 
|  |  | 
|  | def : GCNPat < | 
|  | (AMDGPUinit_exec i64:$src), | 
|  | (SI_INIT_EXEC (as_i64imm $src)) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (AMDGPUinit_exec_from_input i32:$input, i32:$shift), | 
|  | (SI_INIT_EXEC_FROM_INPUT (i32 $input), (as_i32imm $shift)) | 
|  | >; | 
|  |  | 
|  | def : GCNPat< | 
|  | (AMDGPUtrap timm:$trapid), | 
|  | (S_TRAP $trapid) | 
|  | >; | 
|  |  | 
|  | def : GCNPat< | 
|  | (AMDGPUelse i64:$src, bb:$target), | 
|  | (SI_ELSE $src, $target, 0) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (int_AMDGPU_kilp), | 
|  | (SI_KILL_I1_PSEUDO (i1 0), 0) | 
|  | >; | 
|  |  | 
|  | def : Pat < | 
|  | // -1.0 as i32 (LowerINTRINSIC_VOID converts all other constants to -1.0) | 
|  | (AMDGPUkill (i32 -1082130432)), | 
|  | (SI_KILL_I1_PSEUDO (i1 0), 0) | 
|  | >; | 
|  |  | 
|  | def : Pat < | 
|  | (int_amdgcn_kill i1:$src), | 
|  | (SI_KILL_I1_PSEUDO $src, 0) | 
|  | >; | 
|  |  | 
|  | def : Pat < | 
|  | (int_amdgcn_kill (i1 (not i1:$src))), | 
|  | (SI_KILL_I1_PSEUDO $src, -1) | 
|  | >; | 
|  |  | 
|  | def : Pat < | 
|  | (AMDGPUkill i32:$src), | 
|  | (SI_KILL_F32_COND_IMM_PSEUDO $src, 0, 3) // 3 means SETOGE | 
|  | >; | 
|  |  | 
|  | def : Pat < | 
|  | (int_amdgcn_kill (i1 (setcc f32:$src, InlineFPImm<f32>:$imm, cond:$cond))), | 
|  | (SI_KILL_F32_COND_IMM_PSEUDO $src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond)) | 
|  | >; | 
|  | // TODO: we could add more variants for other types of conditionals | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // VOP1 Patterns | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let SubtargetPredicate = isGCN, OtherPredicates = [UnsafeFPMath] in { | 
|  |  | 
|  | //def : RcpPat<V_RCP_F64_e32, f64>; | 
|  | //defm : RsqPat<V_RSQ_F64_e32, f64>; | 
|  | //defm : RsqPat<V_RSQ_F32_e32, f32>; | 
|  |  | 
|  | def : RsqPat<V_RSQ_F32_e32, f32>; | 
|  | def : RsqPat<V_RSQ_F64_e32, f64>; | 
|  |  | 
|  | // Convert (x - floor(x)) to fract(x) | 
|  | def : GCNPat < | 
|  | (f32 (fsub (f32 (VOP3Mods f32:$x, i32:$mods)), | 
|  | (f32 (ffloor (f32 (VOP3Mods f32:$x, i32:$mods)))))), | 
|  | (V_FRACT_F32_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE) | 
|  | >; | 
|  |  | 
|  | // Convert (x + (-floor(x))) to fract(x) | 
|  | def : GCNPat < | 
|  | (f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)), | 
|  | (f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))), | 
|  | (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE) | 
|  | >; | 
|  |  | 
|  | } // End SubtargetPredicate = isGCN, OtherPredicates = [UnsafeFPMath] | 
|  |  | 
|  |  | 
|  | // f16_to_fp patterns | 
|  | def : GCNPat < | 
|  | (f32 (f16_to_fp i32:$src0)), | 
|  | (V_CVT_F32_F16_e64 SRCMODS.NONE, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))), | 
|  | (V_CVT_F32_F16_e64 SRCMODS.ABS, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))), | 
|  | (V_CVT_F32_F16_e64 SRCMODS.NEG_ABS, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))), | 
|  | (V_CVT_F32_F16_e64 SRCMODS.NEG, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (f64 (fpextend f16:$src)), | 
|  | (V_CVT_F64_F32_e32 (V_CVT_F32_F16_e32 $src)) | 
|  | >; | 
|  |  | 
|  | // fp_to_fp16 patterns | 
|  | def : GCNPat < | 
|  | (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))), | 
|  | (V_CVT_F16_F32_e64 $src0_modifiers, f32:$src0, DSTCLAMP.NONE, DSTOMOD.NONE) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i32 (fp_to_sint f16:$src)), | 
|  | (V_CVT_I32_F32_e32 (V_CVT_F32_F16_e32 $src)) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i32 (fp_to_uint f16:$src)), | 
|  | (V_CVT_U32_F32_e32 (V_CVT_F32_F16_e32 $src)) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (f16 (sint_to_fp i32:$src)), | 
|  | (V_CVT_F16_F32_e32 (V_CVT_F32_I32_e32 $src)) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (f16 (uint_to_fp i32:$src)), | 
|  | (V_CVT_F16_F32_e32 (V_CVT_F32_U32_e32 $src)) | 
|  | >; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // VOP2 Patterns | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | multiclass FMADPat <ValueType vt, Instruction inst> { | 
|  | def : GCNPat < | 
|  | (vt (fmad (VOP3NoMods vt:$src0), | 
|  | (VOP3NoMods vt:$src1), | 
|  | (VOP3NoMods vt:$src2))), | 
|  | (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, | 
|  | SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) | 
|  | >; | 
|  | } | 
|  |  | 
|  | defm : FMADPat <f16, V_MAC_F16_e64>; | 
|  | defm : FMADPat <f32, V_MAC_F32_e64>; | 
|  |  | 
|  | class FMADModsPat<Instruction inst, SDPatternOperator mad_opr> : GCNPat< | 
|  | (f32 (mad_opr (VOP3Mods f32:$src0, i32:$src0_mod), | 
|  | (VOP3Mods f32:$src1, i32:$src1_mod), | 
|  | (VOP3Mods f32:$src2, i32:$src2_mod))), | 
|  | (inst $src0_mod, $src0, $src1_mod, $src1, | 
|  | $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) | 
|  | >; | 
|  |  | 
|  | def : FMADModsPat<V_MAD_F32, AMDGPUfmad_ftz>; | 
|  |  | 
|  | multiclass SelectPat <ValueType vt, Instruction inst> { | 
|  | def : GCNPat < | 
|  | (vt (select i1:$src0, vt:$src1, vt:$src2)), | 
|  | (inst $src2, $src1, $src0) | 
|  | >; | 
|  | } | 
|  |  | 
|  | defm : SelectPat <i16, V_CNDMASK_B32_e64>; | 
|  | defm : SelectPat <i32, V_CNDMASK_B32_e64>; | 
|  | defm : SelectPat <f16, V_CNDMASK_B32_e64>; | 
|  | defm : SelectPat <f32, V_CNDMASK_B32_e64>; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i32 (add (i32 (ctpop i32:$popcnt)), i32:$val)), | 
|  | (V_BCNT_U32_B32_e64 $popcnt, $val) | 
|  | >; | 
|  |  | 
|  | /********** ============================================ **********/ | 
|  | /********** Extraction, Insertion, Building and Casting  **********/ | 
|  | /********** ============================================ **********/ | 
|  |  | 
|  | foreach Index = 0-2 in { | 
|  | def Extract_Element_v2i32_#Index : Extract_Element < | 
|  | i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  | def Insert_Element_v2i32_#Index : Insert_Element < | 
|  | i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  |  | 
|  | def Extract_Element_v2f32_#Index : Extract_Element < | 
|  | f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  | def Insert_Element_v2f32_#Index : Insert_Element < | 
|  | f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  | } | 
|  |  | 
|  | foreach Index = 0-3 in { | 
|  | def Extract_Element_v4i32_#Index : Extract_Element < | 
|  | i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  | def Insert_Element_v4i32_#Index : Insert_Element < | 
|  | i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  |  | 
|  | def Extract_Element_v4f32_#Index : Extract_Element < | 
|  | f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  | def Insert_Element_v4f32_#Index : Insert_Element < | 
|  | f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  | } | 
|  |  | 
|  | foreach Index = 0-7 in { | 
|  | def Extract_Element_v8i32_#Index : Extract_Element < | 
|  | i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  | def Insert_Element_v8i32_#Index : Insert_Element < | 
|  | i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  |  | 
|  | def Extract_Element_v8f32_#Index : Extract_Element < | 
|  | f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  | def Insert_Element_v8f32_#Index : Insert_Element < | 
|  | f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  | } | 
|  |  | 
|  | foreach Index = 0-15 in { | 
|  | def Extract_Element_v16i32_#Index : Extract_Element < | 
|  | i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  | def Insert_Element_v16i32_#Index : Insert_Element < | 
|  | i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  |  | 
|  | def Extract_Element_v16f32_#Index : Extract_Element < | 
|  | f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  | def Insert_Element_v16f32_#Index : Insert_Element < | 
|  | f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) | 
|  | >; | 
|  | } | 
|  |  | 
|  | let SubtargetPredicate = isGCN in { | 
|  |  | 
|  | // FIXME: Why do only some of these type combinations for SReg and | 
|  | // VReg? | 
|  | // 16-bit bitcast | 
|  | def : BitConvert <i16, f16, VGPR_32>; | 
|  | def : BitConvert <f16, i16, VGPR_32>; | 
|  | def : BitConvert <i16, f16, SReg_32>; | 
|  | def : BitConvert <f16, i16, SReg_32>; | 
|  |  | 
|  | // 32-bit bitcast | 
|  | def : BitConvert <i32, f32, VGPR_32>; | 
|  | def : BitConvert <f32, i32, VGPR_32>; | 
|  | def : BitConvert <i32, f32, SReg_32>; | 
|  | def : BitConvert <f32, i32, SReg_32>; | 
|  | def : BitConvert <v2i16, i32, SReg_32>; | 
|  | def : BitConvert <i32, v2i16, SReg_32>; | 
|  | def : BitConvert <v2f16, i32, SReg_32>; | 
|  | def : BitConvert <i32, v2f16, SReg_32>; | 
|  | def : BitConvert <v2i16, v2f16, SReg_32>; | 
|  | def : BitConvert <v2f16, v2i16, SReg_32>; | 
|  | def : BitConvert <v2f16, f32, SReg_32>; | 
|  | def : BitConvert <f32, v2f16, SReg_32>; | 
|  | def : BitConvert <v2i16, f32, SReg_32>; | 
|  | def : BitConvert <f32, v2i16, SReg_32>; | 
|  |  | 
|  | // 64-bit bitcast | 
|  | def : BitConvert <i64, f64, VReg_64>; | 
|  | def : BitConvert <f64, i64, VReg_64>; | 
|  | def : BitConvert <v2i32, v2f32, VReg_64>; | 
|  | def : BitConvert <v2f32, v2i32, VReg_64>; | 
|  | def : BitConvert <i64, v2i32, VReg_64>; | 
|  | def : BitConvert <v2i32, i64, VReg_64>; | 
|  | def : BitConvert <i64, v2f32, VReg_64>; | 
|  | def : BitConvert <v2f32, i64, VReg_64>; | 
|  | def : BitConvert <f64, v2f32, VReg_64>; | 
|  | def : BitConvert <v2f32, f64, VReg_64>; | 
|  | def : BitConvert <f64, v2i32, VReg_64>; | 
|  | def : BitConvert <v2i32, f64, VReg_64>; | 
|  | def : BitConvert <v4i32, v4f32, VReg_128>; | 
|  | def : BitConvert <v4f32, v4i32, VReg_128>; | 
|  |  | 
|  | // 128-bit bitcast | 
|  | def : BitConvert <v2i64, v4i32, SReg_128>; | 
|  | def : BitConvert <v4i32, v2i64, SReg_128>; | 
|  | def : BitConvert <v2f64, v4f32, VReg_128>; | 
|  | def : BitConvert <v2f64, v4i32, VReg_128>; | 
|  | def : BitConvert <v4f32, v2f64, VReg_128>; | 
|  | def : BitConvert <v4i32, v2f64, VReg_128>; | 
|  | def : BitConvert <v2i64, v2f64, VReg_128>; | 
|  | def : BitConvert <v2f64, v2i64, VReg_128>; | 
|  |  | 
|  | // 256-bit bitcast | 
|  | def : BitConvert <v8i32, v8f32, SReg_256>; | 
|  | def : BitConvert <v8f32, v8i32, SReg_256>; | 
|  | def : BitConvert <v8i32, v8f32, VReg_256>; | 
|  | def : BitConvert <v8f32, v8i32, VReg_256>; | 
|  |  | 
|  | // 512-bit bitcast | 
|  | def : BitConvert <v16i32, v16f32, VReg_512>; | 
|  | def : BitConvert <v16f32, v16i32, VReg_512>; | 
|  |  | 
|  | } // End SubtargetPredicate = isGCN | 
|  |  | 
|  | /********** =================== **********/ | 
|  | /********** Src & Dst modifiers **********/ | 
|  | /********** =================== **********/ | 
|  |  | 
|  |  | 
|  | // If denormals are not enabled, it only impacts the compare of the | 
|  | // inputs. The output result is not flushed. | 
|  | class ClampPat<Instruction inst, ValueType vt> : GCNPat < | 
|  | (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))), | 
|  | (inst i32:$src0_modifiers, vt:$src0, | 
|  | i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE) | 
|  | >; | 
|  |  | 
|  | def : ClampPat<V_MAX_F32_e64, f32>; | 
|  | def : ClampPat<V_MAX_F64, f64>; | 
|  | def : ClampPat<V_MAX_F16_e64, f16>; | 
|  |  | 
|  | def : GCNPat < | 
|  | (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))), | 
|  | (V_PK_MAX_F16 $src0_modifiers, $src0, | 
|  | $src0_modifiers, $src0, DSTCLAMP.ENABLE) | 
|  | >; | 
|  |  | 
|  | /********** ================================ **********/ | 
|  | /********** Floating point absolute/negative **********/ | 
|  | /********** ================================ **********/ | 
|  |  | 
|  | // Prevent expanding both fneg and fabs. | 
|  |  | 
|  | def : GCNPat < | 
|  | (fneg (fabs f32:$src)), | 
|  | (S_OR_B32 $src, (S_MOV_B32(i32 0x80000000))) // Set sign bit | 
|  | >; | 
|  |  | 
|  | // FIXME: Should use S_OR_B32 | 
|  | def : GCNPat < | 
|  | (fneg (fabs f64:$src)), | 
|  | (REG_SEQUENCE VReg_64, | 
|  | (i32 (EXTRACT_SUBREG f64:$src, sub0)), | 
|  | sub0, | 
|  | (V_OR_B32_e32 (i32 (EXTRACT_SUBREG f64:$src, sub1)), | 
|  | (V_MOV_B32_e32 (i32 0x80000000))), // Set sign bit. | 
|  | sub1) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (fabs f32:$src), | 
|  | (V_AND_B32_e64 $src, (V_MOV_B32_e32 (i32 0x7fffffff))) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (fneg f32:$src), | 
|  | (V_XOR_B32_e32 $src, (V_MOV_B32_e32 (i32 0x80000000))) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (fabs f64:$src), | 
|  | (REG_SEQUENCE VReg_64, | 
|  | (i32 (EXTRACT_SUBREG f64:$src, sub0)), | 
|  | sub0, | 
|  | (V_AND_B32_e64 (i32 (EXTRACT_SUBREG f64:$src, sub1)), | 
|  | (V_MOV_B32_e32 (i32 0x7fffffff))), // Set sign bit. | 
|  | sub1) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (fneg f64:$src), | 
|  | (REG_SEQUENCE VReg_64, | 
|  | (i32 (EXTRACT_SUBREG f64:$src, sub0)), | 
|  | sub0, | 
|  | (V_XOR_B32_e32 (i32 (EXTRACT_SUBREG f64:$src, sub1)), | 
|  | (i32 (V_MOV_B32_e32 (i32 0x80000000)))), | 
|  | sub1) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (fcopysign f16:$src0, f16:$src1), | 
|  | (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (fcopysign f32:$src0, f16:$src1), | 
|  | (V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), $src0, | 
|  | (V_LSHLREV_B32_e64 (i32 16), $src1)) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (fcopysign f64:$src0, f16:$src1), | 
|  | (REG_SEQUENCE SReg_64, | 
|  | (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, | 
|  | (V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)), | 
|  | (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (fcopysign f16:$src0, f32:$src1), | 
|  | (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, | 
|  | (V_LSHRREV_B32_e64 (i32 16), $src1)) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (fcopysign f16:$src0, f64:$src1), | 
|  | (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, | 
|  | (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1))) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (fneg f16:$src), | 
|  | (V_XOR_B32_e32 $src, (V_MOV_B32_e32 (i32 0x00008000))) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (fabs f16:$src), | 
|  | (V_AND_B32_e64 $src, (V_MOV_B32_e32 (i32 0x00007fff))) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (fneg (fabs f16:$src)), | 
|  | (S_OR_B32 $src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (fneg v2f16:$src), | 
|  | (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80008000)), $src) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (fabs v2f16:$src), | 
|  | (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fff7fff)), $src) | 
|  | >; | 
|  |  | 
|  | // This is really (fneg (fabs v2f16:$src)) | 
|  | // | 
|  | // fabs is not reported as free because there is modifier for it in | 
|  | // VOP3P instructions, so it is turned into the bit op. | 
|  | def : GCNPat < | 
|  | (fneg (v2f16 (bitconvert (and_oneuse i32:$src, 0x7fff7fff)))), | 
|  | (S_OR_B32 (S_MOV_B32 (i32 0x80008000)), $src) // Set sign bit | 
|  | >; | 
|  |  | 
|  | /********** ================== **********/ | 
|  | /********** Immediate Patterns **********/ | 
|  | /********** ================== **********/ | 
|  |  | 
|  | def : GCNPat < | 
|  | (VGPRImm<(i32 imm)>:$imm), | 
|  | (V_MOV_B32_e32 imm:$imm) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (VGPRImm<(f32 fpimm)>:$imm), | 
|  | (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm))) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i32 imm:$imm), | 
|  | (S_MOV_B32 imm:$imm) | 
|  | >; | 
|  |  | 
|  | // FIXME: Workaround for ordering issue with peephole optimizer where | 
|  | // a register class copy interferes with immediate folding.  Should | 
|  | // use s_mov_b32, which can be shrunk to s_movk_i32 | 
|  | def : GCNPat < | 
|  | (VGPRImm<(f16 fpimm)>:$imm), | 
|  | (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm))) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (f32 fpimm:$imm), | 
|  | (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm))) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (f16 fpimm:$imm), | 
|  | (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm))) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i32 frameindex:$fi), | 
|  | (V_MOV_B32_e32 (i32 (frameindex_to_targetframeindex $fi))) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i64 InlineImm<i64>:$imm), | 
|  | (S_MOV_B64 InlineImm<i64>:$imm) | 
|  | >; | 
|  |  | 
|  | // XXX - Should this use a s_cmp to set SCC? | 
|  |  | 
|  | // Set to sign-extended 64-bit value (true = -1, false = 0) | 
|  | def : GCNPat < | 
|  | (i1 imm:$imm), | 
|  | (S_MOV_B64 (i64 (as_i64imm $imm))) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (f64 InlineFPImm<f64>:$imm), | 
|  | (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineFPImm<f64>:$imm))) | 
|  | >; | 
|  |  | 
|  | /********** ================== **********/ | 
|  | /********** Intrinsic Patterns **********/ | 
|  | /********** ================== **********/ | 
|  |  | 
|  | let SubtargetPredicate = isGCN in { | 
|  | def : POW_Common <V_LOG_F32_e32, V_EXP_F32_e32, V_MUL_LEGACY_F32_e32>; | 
|  | } | 
|  |  | 
|  | def : GCNPat < | 
|  | (i32 (sext i1:$src0)), | 
|  | (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src0) | 
|  | >; | 
|  |  | 
|  | class Ext32Pat <SDNode ext> : GCNPat < | 
|  | (i32 (ext i1:$src0)), | 
|  | (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src0) | 
|  | >; | 
|  |  | 
|  | def : Ext32Pat <zext>; | 
|  | def : Ext32Pat <anyext>; | 
|  |  | 
|  | // The multiplication scales from [0,1] to the unsigned integer range | 
|  | def : GCNPat < | 
|  | (AMDGPUurecip i32:$src0), | 
|  | (V_CVT_U32_F32_e32 | 
|  | (V_MUL_F32_e32 (i32 CONST.FP_UINT_MAX_PLUS_1), | 
|  | (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0)))) | 
|  | >; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // VOP3 Patterns | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let SubtargetPredicate = isGCN in { | 
|  |  | 
|  | def : IMad24Pat<V_MAD_I32_I24, 1>; | 
|  | def : UMad24Pat<V_MAD_U32_U24, 1>; | 
|  |  | 
|  | defm : BFIPatterns <V_BFI_B32, S_MOV_B32, SReg_64>; | 
|  | def : ROTRPattern <V_ALIGNBIT_B32>; | 
|  |  | 
|  | } | 
|  |  | 
|  | def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))), | 
|  | (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), | 
|  | (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; | 
|  |  | 
|  | def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))), | 
|  | (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), | 
|  | (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; | 
|  |  | 
|  | /********** ====================== **********/ | 
|  | /**********   Indirect addressing  **********/ | 
|  | /********** ====================== **********/ | 
|  |  | 
|  | multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> { | 
|  | // Extract with offset | 
|  | def : GCNPat< | 
|  | (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))), | 
|  | (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset) | 
|  | >; | 
|  |  | 
|  | // Insert with offset | 
|  | def : GCNPat< | 
|  | (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))), | 
|  | (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val) | 
|  | >; | 
|  | } | 
|  |  | 
|  | defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">; | 
|  | defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">; | 
|  | defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">; | 
|  | defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">; | 
|  |  | 
|  | defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">; | 
|  | defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">; | 
|  | defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">; | 
|  | defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // SAD Patterns | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | def : GCNPat < | 
|  | (add (sub_oneuse (umax i32:$src0, i32:$src1), | 
|  | (umin i32:$src0, i32:$src1)), | 
|  | i32:$src2), | 
|  | (V_SAD_U32 $src0, $src1, $src2, (i1 0)) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)), | 
|  | (sub i32:$src0, i32:$src1), | 
|  | (sub i32:$src1, i32:$src0)), | 
|  | i32:$src2), | 
|  | (V_SAD_U32 $src0, $src1, $src2, (i1 0)) | 
|  | >; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Conversion Patterns | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | def : GCNPat<(i32 (sext_inreg i32:$src, i1)), | 
|  | (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16 | 
|  |  | 
|  | // Handle sext_inreg in i64 | 
|  | def : GCNPat < | 
|  | (i64 (sext_inreg i64:$src, i1)), | 
|  | (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16 | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i16 (sext_inreg i16:$src, i1)), | 
|  | (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16 | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i16 (sext_inreg i16:$src, i8)), | 
|  | (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16 | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i64 (sext_inreg i64:$src, i8)), | 
|  | (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16 | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i64 (sext_inreg i64:$src, i16)), | 
|  | (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16 | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i64 (sext_inreg i64:$src, i32)), | 
|  | (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16 | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i64 (zext i32:$src)), | 
|  | (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i64 (anyext i32:$src)), | 
|  | (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1) | 
|  | >; | 
|  |  | 
|  | class ZExt_i64_i1_Pat <SDNode ext> : GCNPat < | 
|  | (i64 (ext i1:$src)), | 
|  | (REG_SEQUENCE VReg_64, | 
|  | (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src), sub0, | 
|  | (S_MOV_B32 (i32 0)), sub1) | 
|  | >; | 
|  |  | 
|  |  | 
|  | def : ZExt_i64_i1_Pat<zext>; | 
|  | def : ZExt_i64_i1_Pat<anyext>; | 
|  |  | 
|  | // FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that | 
|  | // REG_SEQUENCE patterns don't support instructions with multiple outputs. | 
|  | def : GCNPat < | 
|  | (i64 (sext i32:$src)), | 
|  | (REG_SEQUENCE SReg_64, $src, sub0, | 
|  | (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i64 (sext i1:$src)), | 
|  | (REG_SEQUENCE VReg_64, | 
|  | (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src), sub0, | 
|  | (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src), sub1) | 
|  | >; | 
|  |  | 
|  | class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat < | 
|  | (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))), | 
|  | (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE)) | 
|  | >; | 
|  |  | 
|  | def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>; | 
|  | def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>; | 
|  | def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>; | 
|  | def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>; | 
|  |  | 
|  | // If we need to perform a logical operation on i1 values, we need to | 
|  | // use vector comparisons since there is only one SCC register. Vector | 
|  | // comparisons still write to a pair of SGPRs, so treat these as | 
|  | // 64-bit comparisons. When legalizing SGPR copies, instructions | 
|  | // resulting in the copies from SCC to these instructions will be | 
|  | // moved to the VALU. | 
|  | def : GCNPat < | 
|  | (i1 (and i1:$src0, i1:$src1)), | 
|  | (S_AND_B64 $src0, $src1) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i1 (or i1:$src0, i1:$src1)), | 
|  | (S_OR_B64 $src0, $src1) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i1 (xor i1:$src0, i1:$src1)), | 
|  | (S_XOR_B64 $src0, $src1) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (f32 (sint_to_fp i1:$src)), | 
|  | (V_CNDMASK_B32_e64 (i32 0), (i32 CONST.FP32_NEG_ONE), $src) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (f32 (uint_to_fp i1:$src)), | 
|  | (V_CNDMASK_B32_e64 (i32 0), (i32 CONST.FP32_ONE), $src) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (f64 (sint_to_fp i1:$src)), | 
|  | (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src)) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (f64 (uint_to_fp i1:$src)), | 
|  | (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src)) | 
|  | >; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Miscellaneous Patterns | 
|  | //===----------------------------------------------------------------------===// | 
|  | def : GCNPat < | 
|  | (i32 (AMDGPUfp16_zext f16:$src)), | 
|  | (COPY $src) | 
|  | >; | 
|  |  | 
|  |  | 
|  | def : GCNPat < | 
|  | (i32 (trunc i64:$a)), | 
|  | (EXTRACT_SUBREG $a, sub0) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i1 (trunc i32:$a)), | 
|  | (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i1 (trunc i16:$a)), | 
|  | (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i1 (trunc i64:$a)), | 
|  | (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), | 
|  | (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1)) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (i32 (bswap i32:$a)), | 
|  | (V_BFI_B32 (S_MOV_B32 (i32 0x00ff00ff)), | 
|  | (V_ALIGNBIT_B32 $a, $a, (i32 24)), | 
|  | (V_ALIGNBIT_B32 $a, $a, (i32 8))) | 
|  | >; | 
|  |  | 
|  | let OtherPredicates = [NoFP16Denormals] in { | 
|  | def : GCNPat< | 
|  | (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), | 
|  | (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src, 0, 0) | 
|  | >; | 
|  |  | 
|  | def : GCNPat< | 
|  | (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), | 
|  | (V_PK_MUL_F16 0, (i32 CONST.V2FP16_ONE), $src_mods, $src, DSTCLAMP.NONE) | 
|  | >; | 
|  | } | 
|  |  | 
|  | let OtherPredicates = [FP16Denormals] in { | 
|  | def : GCNPat< | 
|  | (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), | 
|  | (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0) | 
|  | >; | 
|  |  | 
|  | def : GCNPat< | 
|  | (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), | 
|  | (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE) | 
|  | >; | 
|  | } | 
|  |  | 
|  | let OtherPredicates = [NoFP32Denormals] in { | 
|  | def : GCNPat< | 
|  | (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), | 
|  | (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src, 0, 0) | 
|  | >; | 
|  | } | 
|  |  | 
|  | let OtherPredicates = [FP32Denormals] in { | 
|  | def : GCNPat< | 
|  | (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), | 
|  | (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src, 0, 0) | 
|  | >; | 
|  | } | 
|  |  | 
|  | let OtherPredicates = [NoFP64Denormals] in { | 
|  | def : GCNPat< | 
|  | (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), | 
|  | (V_MUL_F64 0, CONST.FP64_ONE, $src_mods, $src, 0, 0) | 
|  | >; | 
|  | } | 
|  |  | 
|  | let OtherPredicates = [FP64Denormals] in { | 
|  | def : GCNPat< | 
|  | (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), | 
|  | (V_MAX_F64 $src_mods, $src, $src_mods, $src, 0, 0) | 
|  | >; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Allow integer inputs | 
|  | class ExpPattern<SDPatternOperator node, ValueType vt, Instruction Inst> : GCNPat< | 
|  | (node (i8 timm:$tgt), (i8 timm:$en), vt:$src0, vt:$src1, vt:$src2, vt:$src3, (i1 timm:$compr), (i1 timm:$vm)), | 
|  | (Inst i8:$tgt, vt:$src0, vt:$src1, vt:$src2, vt:$src3, i1:$vm, i1:$compr, i8:$en) | 
|  | >; | 
|  |  | 
|  | def : ExpPattern<AMDGPUexport, i32, EXP>; | 
|  | def : ExpPattern<AMDGPUexport_done, i32, EXP_DONE>; | 
|  |  | 
|  | def : GCNPat < | 
|  | (v2i16 (build_vector i16:$src0, i16:$src1)), | 
|  | (v2i16 (S_PACK_LL_B32_B16 $src0, $src1)) | 
|  | >; | 
|  |  | 
|  | // COPY_TO_REGCLASS is workaround tablegen bug from multiple outputs | 
|  | // from S_LSHL_B32's multiple outputs from implicit scc def. | 
|  | def : GCNPat < | 
|  | (v2i16 (build_vector (i16 0), i16:$src1)), | 
|  | (v2i16 (COPY_TO_REGCLASS (S_LSHL_B32 i16:$src1, (i16 16)), SReg_32_XM0)) | 
|  | >; | 
|  |  | 
|  | // With multiple uses of the shift, this will duplicate the shift and | 
|  | // increase register pressure. | 
|  | def : GCNPat < | 
|  | (v2i16 (build_vector i16:$src0, (i16 (trunc (srl_oneuse i32:$src1, (i32 16)))))), | 
|  | (v2i16 (S_PACK_LH_B32_B16 i16:$src0, i32:$src1)) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (v2i16 (build_vector (i16 (trunc (srl_oneuse i32:$src0, (i32 16)))), | 
|  | (i16 (trunc (srl_oneuse i32:$src1, (i32 16)))))), | 
|  | (v2i16 (S_PACK_HH_B32_B16 $src0, $src1)) | 
|  | >; | 
|  |  | 
|  | // TODO: Should source modifiers be matched to v_pack_b32_f16? | 
|  | def : GCNPat < | 
|  | (v2f16 (build_vector f16:$src0, f16:$src1)), | 
|  | (v2f16 (S_PACK_LL_B32_B16 $src0, $src1)) | 
|  | >; | 
|  |  | 
|  | // def : GCNPat < | 
|  | //   (v2f16 (scalar_to_vector f16:$src0)), | 
|  | //   (COPY $src0) | 
|  | // >; | 
|  |  | 
|  | // def : GCNPat < | 
|  | //   (v2i16 (scalar_to_vector i16:$src0)), | 
|  | //   (COPY $src0) | 
|  | // >; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Fract Patterns | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let SubtargetPredicate = isSI in { | 
|  |  | 
|  | // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is | 
|  | // used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient | 
|  | // way to implement it is using V_FRACT_F64. | 
|  | // The workaround for the V_FRACT bug is: | 
|  | //    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) | 
|  |  | 
|  | // Convert floor(x) to (x - fract(x)) | 
|  | def : GCNPat < | 
|  | (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))), | 
|  | (V_ADD_F64 | 
|  | $mods, | 
|  | $x, | 
|  | SRCMODS.NEG, | 
|  | (V_CNDMASK_B64_PSEUDO | 
|  | (V_MIN_F64 | 
|  | SRCMODS.NONE, | 
|  | (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE), | 
|  | SRCMODS.NONE, | 
|  | (V_MOV_B64_PSEUDO 0x3fefffffffffffff), | 
|  | DSTCLAMP.NONE, DSTOMOD.NONE), | 
|  | $x, | 
|  | (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))), | 
|  | DSTCLAMP.NONE, DSTOMOD.NONE) | 
|  | >; | 
|  |  | 
|  | } // End SubtargetPredicates = isSI | 
|  |  | 
|  | //============================================================================// | 
|  | // Miscellaneous Optimization Patterns | 
|  | //============================================================================// | 
|  |  | 
|  | // Undo sub x, c -> add x, -c canonicalization since c is more likely | 
|  | // an inline immediate than -c. | 
|  | // TODO: Also do for 64-bit. | 
|  | def : GCNPat< | 
|  | (add i32:$src0, (i32 NegSubInlineConst32:$src1)), | 
|  | (S_SUB_I32 $src0, NegSubInlineConst32:$src1) | 
|  | >; | 
|  |  | 
|  |  | 
|  | multiclass BFMPatterns <ValueType vt, InstSI BFM, InstSI MOV> { | 
|  | def : GCNPat < | 
|  | (vt (shl (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)), | 
|  | (BFM $a, $b) | 
|  | >; | 
|  |  | 
|  | def : GCNPat < | 
|  | (vt (add (vt (shl 1, vt:$a)), -1)), | 
|  | (BFM $a, (MOV (i32 0))) | 
|  | >; | 
|  | } | 
|  |  | 
|  | let SubtargetPredicate = isGCN in { | 
|  |  | 
|  | defm : BFMPatterns <i32, S_BFM_B32, S_MOV_B32>; | 
|  | // FIXME: defm : BFMPatterns <i64, S_BFM_B64, S_MOV_B64>; | 
|  |  | 
|  | defm : BFEPattern <V_BFE_U32, V_BFE_I32, S_MOV_B32>; | 
|  | def : SHA256MaPattern <V_BFI_B32, V_XOR_B32_e64>; | 
|  |  | 
|  | def : IntMed3Pat<V_MED3_I32, smax, smax_oneuse, smin_oneuse>; | 
|  | def : IntMed3Pat<V_MED3_U32, umax, umax_oneuse, umin_oneuse>; | 
|  |  | 
|  | } | 
|  |  | 
|  | // This matches 16 permutations of | 
|  | // max(min(x, y), min(max(x, y), z)) | 
|  | class FPMed3Pat<ValueType vt, | 
|  | Instruction med3Inst> : GCNPat< | 
|  | (fmaxnum (fminnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), | 
|  | (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), | 
|  | (fminnum_oneuse (fmaxnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), | 
|  | (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), | 
|  | (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))), | 
|  | (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) | 
|  | >; | 
|  |  | 
|  | class FP16Med3Pat<ValueType vt, | 
|  | Instruction med3Inst> : GCNPat< | 
|  | (fmaxnum (fminnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), | 
|  | (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), | 
|  | (fminnum_oneuse (fmaxnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), | 
|  | (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), | 
|  | (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))), | 
|  | (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE) | 
|  | >; | 
|  |  | 
|  | class Int16Med3Pat<Instruction med3Inst, | 
|  | SDPatternOperator max, | 
|  | SDPatternOperator max_oneuse, | 
|  | SDPatternOperator min_oneuse, | 
|  | ValueType vt = i32> : GCNPat< | 
|  | (max (min_oneuse vt:$src0, vt:$src1), | 
|  | (min_oneuse (max_oneuse vt:$src0, vt:$src1), vt:$src2)), | 
|  | (med3Inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, SRCMODS.NONE, $src2, DSTCLAMP.NONE) | 
|  | >; | 
|  |  | 
|  | def : FPMed3Pat<f32, V_MED3_F32>; | 
|  |  | 
|  | let OtherPredicates = [isGFX9] in { | 
|  | def : FP16Med3Pat<f16, V_MED3_F16>; | 
|  | def : Int16Med3Pat<V_MED3_I16, smax, smax_oneuse, smin_oneuse, i16>; | 
|  | def : Int16Med3Pat<V_MED3_U16, umax, umax_oneuse, umin_oneuse, i16>; | 
|  | } // End Predicates = [isGFX9] |