|  | //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This transformation implements the well known scalar replacement of | 
|  | // aggregates transformation.  This xform breaks up alloca instructions of | 
|  | // aggregate type (structure or array) into individual alloca instructions for | 
|  | // each member (if possible).  Then, if possible, it transforms the individual | 
|  | // alloca instructions into nice clean scalar SSA form. | 
|  | // | 
|  | // This combines a simple SRoA algorithm with the Mem2Reg algorithm because they | 
|  | // often interact, especially for C++ programs.  As such, iterating between | 
|  | // SRoA, then Mem2Reg until we run out of things to promote works well. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DIBuilder.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfo.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/PromoteMemToReg.h" | 
|  | #include "llvm/Transforms/Utils/SSAUpdater.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "scalarrepl" | 
|  |  | 
|  | STATISTIC(NumReplaced,  "Number of allocas broken up"); | 
|  | STATISTIC(NumPromoted,  "Number of allocas promoted"); | 
|  | STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion"); | 
|  | STATISTIC(NumConverted, "Number of aggregates converted to scalar"); | 
|  |  | 
|  | namespace { | 
|  | #define SROA SROA_ | 
|  | struct SROA : public FunctionPass { | 
|  | SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT) | 
|  | : FunctionPass(ID), HasDomTree(hasDT) { | 
|  | if (T == -1) | 
|  | SRThreshold = 128; | 
|  | else | 
|  | SRThreshold = T; | 
|  | if (ST == -1) | 
|  | StructMemberThreshold = 32; | 
|  | else | 
|  | StructMemberThreshold = ST; | 
|  | if (AT == -1) | 
|  | ArrayElementThreshold = 8; | 
|  | else | 
|  | ArrayElementThreshold = AT; | 
|  | if (SLT == -1) | 
|  | // Do not limit the scalar integer load size if no threshold is given. | 
|  | ScalarLoadThreshold = -1; | 
|  | else | 
|  | ScalarLoadThreshold = SLT; | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | bool performScalarRepl(Function &F); | 
|  | bool performPromotion(Function &F); | 
|  |  | 
|  | private: | 
|  | bool HasDomTree; | 
|  |  | 
|  | /// DeadInsts - Keep track of instructions we have made dead, so that | 
|  | /// we can remove them after we are done working. | 
|  | SmallVector<Value*, 32> DeadInsts; | 
|  |  | 
|  | /// AllocaInfo - When analyzing uses of an alloca instruction, this captures | 
|  | /// information about the uses.  All these fields are initialized to false | 
|  | /// and set to true when something is learned. | 
|  | struct AllocaInfo { | 
|  | /// The alloca to promote. | 
|  | AllocaInst *AI; | 
|  |  | 
|  | /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite | 
|  | /// looping and avoid redundant work. | 
|  | SmallPtrSet<PHINode*, 8> CheckedPHIs; | 
|  |  | 
|  | /// isUnsafe - This is set to true if the alloca cannot be SROA'd. | 
|  | bool isUnsafe : 1; | 
|  |  | 
|  | /// isMemCpySrc - This is true if this aggregate is memcpy'd from. | 
|  | bool isMemCpySrc : 1; | 
|  |  | 
|  | /// isMemCpyDst - This is true if this aggregate is memcpy'd into. | 
|  | bool isMemCpyDst : 1; | 
|  |  | 
|  | /// hasSubelementAccess - This is true if a subelement of the alloca is | 
|  | /// ever accessed, or false if the alloca is only accessed with mem | 
|  | /// intrinsics or load/store that only access the entire alloca at once. | 
|  | bool hasSubelementAccess : 1; | 
|  |  | 
|  | /// hasALoadOrStore - This is true if there are any loads or stores to it. | 
|  | /// The alloca may just be accessed with memcpy, for example, which would | 
|  | /// not set this. | 
|  | bool hasALoadOrStore : 1; | 
|  |  | 
|  | explicit AllocaInfo(AllocaInst *ai) | 
|  | : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false), | 
|  | hasSubelementAccess(false), hasALoadOrStore(false) {} | 
|  | }; | 
|  |  | 
|  | /// SRThreshold - The maximum alloca size to considered for SROA. | 
|  | unsigned SRThreshold; | 
|  |  | 
|  | /// StructMemberThreshold - The maximum number of members a struct can | 
|  | /// contain to be considered for SROA. | 
|  | unsigned StructMemberThreshold; | 
|  |  | 
|  | /// ArrayElementThreshold - The maximum number of elements an array can | 
|  | /// have to be considered for SROA. | 
|  | unsigned ArrayElementThreshold; | 
|  |  | 
|  | /// ScalarLoadThreshold - The maximum size in bits of scalars to load when | 
|  | /// converting to scalar | 
|  | unsigned ScalarLoadThreshold; | 
|  |  | 
|  | void MarkUnsafe(AllocaInfo &I, Instruction *User) { | 
|  | I.isUnsafe = true; | 
|  | DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n'); | 
|  | } | 
|  |  | 
|  | bool isSafeAllocaToScalarRepl(AllocaInst *AI); | 
|  |  | 
|  | void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info); | 
|  | void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset, | 
|  | AllocaInfo &Info); | 
|  | void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info); | 
|  | void isSafeMemAccess(uint64_t Offset, uint64_t MemSize, | 
|  | Type *MemOpType, bool isStore, AllocaInfo &Info, | 
|  | Instruction *TheAccess, bool AllowWholeAccess); | 
|  | bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size, | 
|  | const DataLayout &DL); | 
|  | uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy, | 
|  | const DataLayout &DL); | 
|  |  | 
|  | void DoScalarReplacement(AllocaInst *AI, | 
|  | std::vector<AllocaInst*> &WorkList); | 
|  | void DeleteDeadInstructions(); | 
|  |  | 
|  | void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset, | 
|  | SmallVectorImpl<AllocaInst *> &NewElts); | 
|  | void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset, | 
|  | SmallVectorImpl<AllocaInst *> &NewElts); | 
|  | void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset, | 
|  | SmallVectorImpl<AllocaInst *> &NewElts); | 
|  | void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI, | 
|  | uint64_t Offset, | 
|  | SmallVectorImpl<AllocaInst *> &NewElts); | 
|  | void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst, | 
|  | AllocaInst *AI, | 
|  | SmallVectorImpl<AllocaInst *> &NewElts); | 
|  | void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI, | 
|  | SmallVectorImpl<AllocaInst *> &NewElts); | 
|  | void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI, | 
|  | SmallVectorImpl<AllocaInst *> &NewElts); | 
|  | bool ShouldAttemptScalarRepl(AllocaInst *AI); | 
|  | }; | 
|  |  | 
|  | // SROA_DT - SROA that uses DominatorTree. | 
|  | struct SROA_DT : public SROA { | 
|  | static char ID; | 
|  | public: | 
|  | SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) : | 
|  | SROA(T, true, ID, ST, AT, SLT) { | 
|  | initializeSROA_DTPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | // getAnalysisUsage - This pass does not require any passes, but we know it | 
|  | // will not alter the CFG, so say so. | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.setPreservesCFG(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // SROA_SSAUp - SROA that uses SSAUpdater. | 
|  | struct SROA_SSAUp : public SROA { | 
|  | static char ID; | 
|  | public: | 
|  | SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) : | 
|  | SROA(T, false, ID, ST, AT, SLT) { | 
|  | initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | // getAnalysisUsage - This pass does not require any passes, but we know it | 
|  | // will not alter the CFG, so say so. | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.setPreservesCFG(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | char SROA_DT::ID = 0; | 
|  | char SROA_SSAUp::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl", | 
|  | "Scalar Replacement of Aggregates (DT)", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_END(SROA_DT, "scalarrepl", | 
|  | "Scalar Replacement of Aggregates (DT)", false, false) | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa", | 
|  | "Scalar Replacement of Aggregates (SSAUp)", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa", | 
|  | "Scalar Replacement of Aggregates (SSAUp)", false, false) | 
|  |  | 
|  | // Public interface to the ScalarReplAggregates pass | 
|  | FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold, | 
|  | bool UseDomTree, | 
|  | int StructMemberThreshold, | 
|  | int ArrayElementThreshold, | 
|  | int ScalarLoadThreshold) { | 
|  | if (UseDomTree) | 
|  | return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold, | 
|  | ScalarLoadThreshold); | 
|  | return new SROA_SSAUp(Threshold, StructMemberThreshold, | 
|  | ArrayElementThreshold, ScalarLoadThreshold); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Convert To Scalar Optimization. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// ConvertToScalarInfo - This class implements the "Convert To Scalar" | 
|  | /// optimization, which scans the uses of an alloca and determines if it can | 
|  | /// rewrite it in terms of a single new alloca that can be mem2reg'd. | 
|  | class ConvertToScalarInfo { | 
|  | /// AllocaSize - The size of the alloca being considered in bytes. | 
|  | unsigned AllocaSize; | 
|  | const DataLayout &DL; | 
|  | unsigned ScalarLoadThreshold; | 
|  |  | 
|  | /// IsNotTrivial - This is set to true if there is some access to the object | 
|  | /// which means that mem2reg can't promote it. | 
|  | bool IsNotTrivial; | 
|  |  | 
|  | /// ScalarKind - Tracks the kind of alloca being considered for promotion, | 
|  | /// computed based on the uses of the alloca rather than the LLVM type system. | 
|  | enum { | 
|  | Unknown, | 
|  |  | 
|  | // Accesses via GEPs that are consistent with element access of a vector | 
|  | // type. This will not be converted into a vector unless there is a later | 
|  | // access using an actual vector type. | 
|  | ImplicitVector, | 
|  |  | 
|  | // Accesses via vector operations and GEPs that are consistent with the | 
|  | // layout of a vector type. | 
|  | Vector, | 
|  |  | 
|  | // An integer bag-of-bits with bitwise operations for insertion and | 
|  | // extraction. Any combination of types can be converted into this kind | 
|  | // of scalar. | 
|  | Integer | 
|  | } ScalarKind; | 
|  |  | 
|  | /// VectorTy - This tracks the type that we should promote the vector to if | 
|  | /// it is possible to turn it into a vector.  This starts out null, and if it | 
|  | /// isn't possible to turn into a vector type, it gets set to VoidTy. | 
|  | VectorType *VectorTy; | 
|  |  | 
|  | /// HadNonMemTransferAccess - True if there is at least one access to the | 
|  | /// alloca that is not a MemTransferInst.  We don't want to turn structs into | 
|  | /// large integers unless there is some potential for optimization. | 
|  | bool HadNonMemTransferAccess; | 
|  |  | 
|  | /// HadDynamicAccess - True if some element of this alloca was dynamic. | 
|  | /// We don't yet have support for turning a dynamic access into a large | 
|  | /// integer. | 
|  | bool HadDynamicAccess; | 
|  |  | 
|  | public: | 
|  | explicit ConvertToScalarInfo(unsigned Size, const DataLayout &DL, | 
|  | unsigned SLT) | 
|  | : AllocaSize(Size), DL(DL), ScalarLoadThreshold(SLT), IsNotTrivial(false), | 
|  | ScalarKind(Unknown), VectorTy(nullptr), HadNonMemTransferAccess(false), | 
|  | HadDynamicAccess(false) { } | 
|  |  | 
|  | AllocaInst *TryConvert(AllocaInst *AI); | 
|  |  | 
|  | private: | 
|  | bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx); | 
|  | void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset); | 
|  | bool MergeInVectorType(VectorType *VInTy, uint64_t Offset); | 
|  | void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset, | 
|  | Value *NonConstantIdx); | 
|  |  | 
|  | Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType, | 
|  | uint64_t Offset, Value* NonConstantIdx, | 
|  | IRBuilder<> &Builder); | 
|  | Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal, | 
|  | uint64_t Offset, Value* NonConstantIdx, | 
|  | IRBuilder<> &Builder); | 
|  | }; | 
|  | } // end anonymous namespace. | 
|  |  | 
|  |  | 
|  | /// TryConvert - Analyze the specified alloca, and if it is safe to do so, | 
|  | /// rewrite it to be a new alloca which is mem2reg'able.  This returns the new | 
|  | /// alloca if possible or null if not. | 
|  | AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) { | 
|  | // If we can't convert this scalar, or if mem2reg can trivially do it, bail | 
|  | // out. | 
|  | if (!CanConvertToScalar(AI, 0, nullptr) || !IsNotTrivial) | 
|  | return nullptr; | 
|  |  | 
|  | // If an alloca has only memset / memcpy uses, it may still have an Unknown | 
|  | // ScalarKind. Treat it as an Integer below. | 
|  | if (ScalarKind == Unknown) | 
|  | ScalarKind = Integer; | 
|  |  | 
|  | if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8) | 
|  | ScalarKind = Integer; | 
|  |  | 
|  | // If we were able to find a vector type that can handle this with | 
|  | // insert/extract elements, and if there was at least one use that had | 
|  | // a vector type, promote this to a vector.  We don't want to promote | 
|  | // random stuff that doesn't use vectors (e.g. <9 x double>) because then | 
|  | // we just get a lot of insert/extracts.  If at least one vector is | 
|  | // involved, then we probably really do have a union of vector/array. | 
|  | Type *NewTy; | 
|  | if (ScalarKind == Vector) { | 
|  | assert(VectorTy && "Missing type for vector scalar."); | 
|  | DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = " | 
|  | << *VectorTy << '\n'); | 
|  | NewTy = VectorTy;  // Use the vector type. | 
|  | } else { | 
|  | unsigned BitWidth = AllocaSize * 8; | 
|  |  | 
|  | // Do not convert to scalar integer if the alloca size exceeds the | 
|  | // scalar load threshold. | 
|  | if (BitWidth > ScalarLoadThreshold) | 
|  | return nullptr; | 
|  |  | 
|  | if ((ScalarKind == ImplicitVector || ScalarKind == Integer) && | 
|  | !HadNonMemTransferAccess && !DL.fitsInLegalInteger(BitWidth)) | 
|  | return nullptr; | 
|  | // Dynamic accesses on integers aren't yet supported.  They need us to shift | 
|  | // by a dynamic amount which could be difficult to work out as we might not | 
|  | // know whether to use a left or right shift. | 
|  | if (ScalarKind == Integer && HadDynamicAccess) | 
|  | return nullptr; | 
|  |  | 
|  | DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n"); | 
|  | // Create and insert the integer alloca. | 
|  | NewTy = IntegerType::get(AI->getContext(), BitWidth); | 
|  | } | 
|  | AllocaInst *NewAI = | 
|  | new AllocaInst(NewTy, nullptr, "", &AI->getParent()->front()); | 
|  | ConvertUsesToScalar(AI, NewAI, 0, nullptr); | 
|  | return NewAI; | 
|  | } | 
|  |  | 
|  | /// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type | 
|  | /// (VectorTy) so far at the offset specified by Offset (which is specified in | 
|  | /// bytes). | 
|  | /// | 
|  | /// There are two cases we handle here: | 
|  | ///   1) A union of vector types of the same size and potentially its elements. | 
|  | ///      Here we turn element accesses into insert/extract element operations. | 
|  | ///      This promotes a <4 x float> with a store of float to the third element | 
|  | ///      into a <4 x float> that uses insert element. | 
|  | ///   2) A fully general blob of memory, which we turn into some (potentially | 
|  | ///      large) integer type with extract and insert operations where the loads | 
|  | ///      and stores would mutate the memory.  We mark this by setting VectorTy | 
|  | ///      to VoidTy. | 
|  | void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In, | 
|  | uint64_t Offset) { | 
|  | // If we already decided to turn this into a blob of integer memory, there is | 
|  | // nothing to be done. | 
|  | if (ScalarKind == Integer) | 
|  | return; | 
|  |  | 
|  | // If this could be contributing to a vector, analyze it. | 
|  |  | 
|  | // If the In type is a vector that is the same size as the alloca, see if it | 
|  | // matches the existing VecTy. | 
|  | if (VectorType *VInTy = dyn_cast<VectorType>(In)) { | 
|  | if (MergeInVectorType(VInTy, Offset)) | 
|  | return; | 
|  | } else if (In->isFloatTy() || In->isDoubleTy() || | 
|  | (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 && | 
|  | isPowerOf2_32(In->getPrimitiveSizeInBits()))) { | 
|  | // Full width accesses can be ignored, because they can always be turned | 
|  | // into bitcasts. | 
|  | unsigned EltSize = In->getPrimitiveSizeInBits()/8; | 
|  | if (EltSize == AllocaSize) | 
|  | return; | 
|  |  | 
|  | // If we're accessing something that could be an element of a vector, see | 
|  | // if the implied vector agrees with what we already have and if Offset is | 
|  | // compatible with it. | 
|  | if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 && | 
|  | (!VectorTy || EltSize == VectorTy->getElementType() | 
|  | ->getPrimitiveSizeInBits()/8)) { | 
|  | if (!VectorTy) { | 
|  | ScalarKind = ImplicitVector; | 
|  | VectorTy = VectorType::get(In, AllocaSize/EltSize); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we have a case that we can't handle with an optimized vector | 
|  | // form.  We can still turn this into a large integer. | 
|  | ScalarKind = Integer; | 
|  | } | 
|  |  | 
|  | /// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore, | 
|  | /// returning true if the type was successfully merged and false otherwise. | 
|  | bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy, | 
|  | uint64_t Offset) { | 
|  | if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) { | 
|  | // If we're storing/loading a vector of the right size, allow it as a | 
|  | // vector.  If this the first vector we see, remember the type so that | 
|  | // we know the element size. If this is a subsequent access, ignore it | 
|  | // even if it is a differing type but the same size. Worst case we can | 
|  | // bitcast the resultant vectors. | 
|  | if (!VectorTy) | 
|  | VectorTy = VInTy; | 
|  | ScalarKind = Vector; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all | 
|  | /// its accesses to a single vector type, return true and set VecTy to | 
|  | /// the new type.  If we could convert the alloca into a single promotable | 
|  | /// integer, return true but set VecTy to VoidTy.  Further, if the use is not a | 
|  | /// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset | 
|  | /// is the current offset from the base of the alloca being analyzed. | 
|  | /// | 
|  | /// If we see at least one access to the value that is as a vector type, set the | 
|  | /// SawVec flag. | 
|  | bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset, | 
|  | Value* NonConstantIdx) { | 
|  | for (User *U : V->users()) { | 
|  | Instruction *UI = cast<Instruction>(U); | 
|  |  | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { | 
|  | // Don't break volatile loads. | 
|  | if (!LI->isSimple()) | 
|  | return false; | 
|  | // Don't touch MMX operations. | 
|  | if (LI->getType()->isX86_MMXTy()) | 
|  | return false; | 
|  | HadNonMemTransferAccess = true; | 
|  | MergeInTypeForLoadOrStore(LI->getType(), Offset); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { | 
|  | // Storing the pointer, not into the value? | 
|  | if (SI->getOperand(0) == V || !SI->isSimple()) return false; | 
|  | // Don't touch MMX operations. | 
|  | if (SI->getOperand(0)->getType()->isX86_MMXTy()) | 
|  | return false; | 
|  | HadNonMemTransferAccess = true; | 
|  | MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (BitCastInst *BCI = dyn_cast<BitCastInst>(UI)) { | 
|  | if (!onlyUsedByLifetimeMarkers(BCI)) | 
|  | IsNotTrivial = true;  // Can't be mem2reg'd. | 
|  | if (!CanConvertToScalar(BCI, Offset, NonConstantIdx)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UI)) { | 
|  | // If this is a GEP with a variable indices, we can't handle it. | 
|  | PointerType* PtrTy = dyn_cast<PointerType>(GEP->getPointerOperandType()); | 
|  | if (!PtrTy) | 
|  | return false; | 
|  |  | 
|  | // Compute the offset that this GEP adds to the pointer. | 
|  | SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); | 
|  | Value *GEPNonConstantIdx = nullptr; | 
|  | if (!GEP->hasAllConstantIndices()) { | 
|  | if (!isa<VectorType>(PtrTy->getElementType())) | 
|  | return false; | 
|  | if (NonConstantIdx) | 
|  | return false; | 
|  | GEPNonConstantIdx = Indices.pop_back_val(); | 
|  | if (!GEPNonConstantIdx->getType()->isIntegerTy(32)) | 
|  | return false; | 
|  | HadDynamicAccess = true; | 
|  | } else | 
|  | GEPNonConstantIdx = NonConstantIdx; | 
|  | uint64_t GEPOffset = DL.getIndexedOffset(PtrTy, | 
|  | Indices); | 
|  | // See if all uses can be converted. | 
|  | if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx)) | 
|  | return false; | 
|  | IsNotTrivial = true;  // Can't be mem2reg'd. | 
|  | HadNonMemTransferAccess = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this is a constant sized memset of a constant value (e.g. 0) we can | 
|  | // handle it. | 
|  | if (MemSetInst *MSI = dyn_cast<MemSetInst>(UI)) { | 
|  | // Store to dynamic index. | 
|  | if (NonConstantIdx) | 
|  | return false; | 
|  | // Store of constant value. | 
|  | if (!isa<ConstantInt>(MSI->getValue())) | 
|  | return false; | 
|  |  | 
|  | // Store of constant size. | 
|  | ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength()); | 
|  | if (!Len) | 
|  | return false; | 
|  |  | 
|  | // If the size differs from the alloca, we can only convert the alloca to | 
|  | // an integer bag-of-bits. | 
|  | // FIXME: This should handle all of the cases that are currently accepted | 
|  | // as vector element insertions. | 
|  | if (Len->getZExtValue() != AllocaSize || Offset != 0) | 
|  | ScalarKind = Integer; | 
|  |  | 
|  | IsNotTrivial = true;  // Can't be mem2reg'd. | 
|  | HadNonMemTransferAccess = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this is a memcpy or memmove into or out of the whole allocation, we | 
|  | // can handle it like a load or store of the scalar type. | 
|  | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(UI)) { | 
|  | // Store to dynamic index. | 
|  | if (NonConstantIdx) | 
|  | return false; | 
|  | ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()); | 
|  | if (!Len || Len->getZExtValue() != AllocaSize || Offset != 0) | 
|  | return false; | 
|  |  | 
|  | IsNotTrivial = true;  // Can't be mem2reg'd. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this is a lifetime intrinsic, we can handle it. | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(UI)) { | 
|  | if (II->getIntrinsicID() == Intrinsic::lifetime_start || | 
|  | II->getIntrinsicID() == Intrinsic::lifetime_end) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we cannot handle this! | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca | 
|  | /// directly.  This happens when we are converting an "integer union" to a | 
|  | /// single integer scalar, or when we are converting a "vector union" to a | 
|  | /// vector with insert/extractelement instructions. | 
|  | /// | 
|  | /// Offset is an offset from the original alloca, in bits that need to be | 
|  | /// shifted to the right.  By the end of this, there should be no uses of Ptr. | 
|  | void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, | 
|  | uint64_t Offset, | 
|  | Value* NonConstantIdx) { | 
|  | while (!Ptr->use_empty()) { | 
|  | Instruction *User = cast<Instruction>(Ptr->user_back()); | 
|  |  | 
|  | if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) { | 
|  | ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx); | 
|  | CI->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) { | 
|  | // Compute the offset that this GEP adds to the pointer. | 
|  | SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); | 
|  | Value* GEPNonConstantIdx = nullptr; | 
|  | if (!GEP->hasAllConstantIndices()) { | 
|  | assert(!NonConstantIdx && | 
|  | "Dynamic GEP reading from dynamic GEP unsupported"); | 
|  | GEPNonConstantIdx = Indices.pop_back_val(); | 
|  | } else | 
|  | GEPNonConstantIdx = NonConstantIdx; | 
|  | uint64_t GEPOffset = DL.getIndexedOffset(GEP->getPointerOperandType(), | 
|  | Indices); | 
|  | ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx); | 
|  | GEP->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | IRBuilder<> Builder(User); | 
|  |  | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(User)) { | 
|  | // The load is a bit extract from NewAI shifted right by Offset bits. | 
|  | Value *LoadedVal = Builder.CreateLoad(NewAI); | 
|  | Value *NewLoadVal | 
|  | = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, | 
|  | NonConstantIdx, Builder); | 
|  | LI->replaceAllUsesWith(NewLoadVal); | 
|  | LI->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(User)) { | 
|  | assert(SI->getOperand(0) != Ptr && "Consistency error!"); | 
|  | Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in"); | 
|  | Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset, | 
|  | NonConstantIdx, Builder); | 
|  | Builder.CreateStore(New, NewAI); | 
|  | SI->eraseFromParent(); | 
|  |  | 
|  | // If the load we just inserted is now dead, then the inserted store | 
|  | // overwrote the entire thing. | 
|  | if (Old->use_empty()) | 
|  | Old->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this is a constant sized memset of a constant value (e.g. 0) we can | 
|  | // transform it into a store of the expanded constant value. | 
|  | if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) { | 
|  | assert(MSI->getRawDest() == Ptr && "Consistency error!"); | 
|  | assert(!NonConstantIdx && "Cannot replace dynamic memset with insert"); | 
|  | int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue(); | 
|  | if (SNumBytes > 0 && (SNumBytes >> 32) == 0) { | 
|  | unsigned NumBytes = static_cast<unsigned>(SNumBytes); | 
|  | unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue(); | 
|  |  | 
|  | // Compute the value replicated the right number of times. | 
|  | APInt APVal(NumBytes*8, Val); | 
|  |  | 
|  | // Splat the value if non-zero. | 
|  | if (Val) | 
|  | for (unsigned i = 1; i != NumBytes; ++i) | 
|  | APVal |= APVal << 8; | 
|  |  | 
|  | Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in"); | 
|  | Value *New = ConvertScalar_InsertValue( | 
|  | ConstantInt::get(User->getContext(), APVal), | 
|  | Old, Offset, nullptr, Builder); | 
|  | Builder.CreateStore(New, NewAI); | 
|  |  | 
|  | // If the load we just inserted is now dead, then the memset overwrote | 
|  | // the entire thing. | 
|  | if (Old->use_empty()) | 
|  | Old->eraseFromParent(); | 
|  | } | 
|  | MSI->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this is a memcpy or memmove into or out of the whole allocation, we | 
|  | // can handle it like a load or store of the scalar type. | 
|  | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) { | 
|  | assert(Offset == 0 && "must be store to start of alloca"); | 
|  | assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert"); | 
|  |  | 
|  | // If the source and destination are both to the same alloca, then this is | 
|  | // a noop copy-to-self, just delete it.  Otherwise, emit a load and store | 
|  | // as appropriate. | 
|  | AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, DL, 0)); | 
|  |  | 
|  | if (GetUnderlyingObject(MTI->getSource(), DL, 0) != OrigAI) { | 
|  | // Dest must be OrigAI, change this to be a load from the original | 
|  | // pointer (bitcasted), then a store to our new alloca. | 
|  | assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?"); | 
|  | Value *SrcPtr = MTI->getSource(); | 
|  | PointerType* SPTy = cast<PointerType>(SrcPtr->getType()); | 
|  | PointerType* AIPTy = cast<PointerType>(NewAI->getType()); | 
|  | if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) { | 
|  | AIPTy = PointerType::get(AIPTy->getElementType(), | 
|  | SPTy->getAddressSpace()); | 
|  | } | 
|  | SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy); | 
|  |  | 
|  | LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval"); | 
|  | SrcVal->setAlignment(MTI->getAlignment()); | 
|  | Builder.CreateStore(SrcVal, NewAI); | 
|  | } else if (GetUnderlyingObject(MTI->getDest(), DL, 0) != OrigAI) { | 
|  | // Src must be OrigAI, change this to be a load from NewAI then a store | 
|  | // through the original dest pointer (bitcasted). | 
|  | assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?"); | 
|  | LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval"); | 
|  |  | 
|  | PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType()); | 
|  | PointerType* AIPTy = cast<PointerType>(NewAI->getType()); | 
|  | if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) { | 
|  | AIPTy = PointerType::get(AIPTy->getElementType(), | 
|  | DPTy->getAddressSpace()); | 
|  | } | 
|  | Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy); | 
|  |  | 
|  | StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr); | 
|  | NewStore->setAlignment(MTI->getAlignment()); | 
|  | } else { | 
|  | // Noop transfer. Src == Dst | 
|  | } | 
|  |  | 
|  | MTI->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) { | 
|  | if (II->getIntrinsicID() == Intrinsic::lifetime_start || | 
|  | II->getIntrinsicID() == Intrinsic::lifetime_end) { | 
|  | // There's no need to preserve these, as the resulting alloca will be | 
|  | // converted to a register anyways. | 
|  | II->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unsupported operation!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer | 
|  | /// or vector value FromVal, extracting the bits from the offset specified by | 
|  | /// Offset.  This returns the value, which is of type ToType. | 
|  | /// | 
|  | /// This happens when we are converting an "integer union" to a single | 
|  | /// integer scalar, or when we are converting a "vector union" to a vector with | 
|  | /// insert/extractelement instructions. | 
|  | /// | 
|  | /// Offset is an offset from the original alloca, in bits that need to be | 
|  | /// shifted to the right. | 
|  | Value *ConvertToScalarInfo:: | 
|  | ConvertScalar_ExtractValue(Value *FromVal, Type *ToType, | 
|  | uint64_t Offset, Value* NonConstantIdx, | 
|  | IRBuilder<> &Builder) { | 
|  | // If the load is of the whole new alloca, no conversion is needed. | 
|  | Type *FromType = FromVal->getType(); | 
|  | if (FromType == ToType && Offset == 0) | 
|  | return FromVal; | 
|  |  | 
|  | // If the result alloca is a vector type, this is either an element | 
|  | // access or a bitcast to another vector type of the same size. | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(FromType)) { | 
|  | unsigned FromTypeSize = DL.getTypeAllocSize(FromType); | 
|  | unsigned ToTypeSize = DL.getTypeAllocSize(ToType); | 
|  | if (FromTypeSize == ToTypeSize) | 
|  | return Builder.CreateBitCast(FromVal, ToType); | 
|  |  | 
|  | // Otherwise it must be an element access. | 
|  | unsigned Elt = 0; | 
|  | if (Offset) { | 
|  | unsigned EltSize = DL.getTypeAllocSizeInBits(VTy->getElementType()); | 
|  | Elt = Offset/EltSize; | 
|  | assert(EltSize*Elt == Offset && "Invalid modulus in validity checking"); | 
|  | } | 
|  | // Return the element extracted out of it. | 
|  | Value *Idx; | 
|  | if (NonConstantIdx) { | 
|  | if (Elt) | 
|  | Idx = Builder.CreateAdd(NonConstantIdx, | 
|  | Builder.getInt32(Elt), | 
|  | "dyn.offset"); | 
|  | else | 
|  | Idx = NonConstantIdx; | 
|  | } else | 
|  | Idx = Builder.getInt32(Elt); | 
|  | Value *V = Builder.CreateExtractElement(FromVal, Idx); | 
|  | if (V->getType() != ToType) | 
|  | V = Builder.CreateBitCast(V, ToType); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // If ToType is a first class aggregate, extract out each of the pieces and | 
|  | // use insertvalue's to form the FCA. | 
|  | if (StructType *ST = dyn_cast<StructType>(ToType)) { | 
|  | assert(!NonConstantIdx && | 
|  | "Dynamic indexing into struct types not supported"); | 
|  | const StructLayout &Layout = *DL.getStructLayout(ST); | 
|  | Value *Res = UndefValue::get(ST); | 
|  | for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { | 
|  | Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i), | 
|  | Offset+Layout.getElementOffsetInBits(i), | 
|  | nullptr, Builder); | 
|  | Res = Builder.CreateInsertValue(Res, Elt, i); | 
|  | } | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) { | 
|  | assert(!NonConstantIdx && | 
|  | "Dynamic indexing into array types not supported"); | 
|  | uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType()); | 
|  | Value *Res = UndefValue::get(AT); | 
|  | for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { | 
|  | Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(), | 
|  | Offset+i*EltSize, nullptr, | 
|  | Builder); | 
|  | Res = Builder.CreateInsertValue(Res, Elt, i); | 
|  | } | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // Otherwise, this must be a union that was converted to an integer value. | 
|  | IntegerType *NTy = cast<IntegerType>(FromVal->getType()); | 
|  |  | 
|  | // If this is a big-endian system and the load is narrower than the | 
|  | // full alloca type, we need to do a shift to get the right bits. | 
|  | int ShAmt = 0; | 
|  | if (DL.isBigEndian()) { | 
|  | // On big-endian machines, the lowest bit is stored at the bit offset | 
|  | // from the pointer given by getTypeStoreSizeInBits.  This matters for | 
|  | // integers with a bitwidth that is not a multiple of 8. | 
|  | ShAmt = DL.getTypeStoreSizeInBits(NTy) - | 
|  | DL.getTypeStoreSizeInBits(ToType) - Offset; | 
|  | } else { | 
|  | ShAmt = Offset; | 
|  | } | 
|  |  | 
|  | // Note: we support negative bitwidths (with shl) which are not defined. | 
|  | // We do this to support (f.e.) loads off the end of a structure where | 
|  | // only some bits are used. | 
|  | if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth()) | 
|  | FromVal = Builder.CreateLShr(FromVal, | 
|  | ConstantInt::get(FromVal->getType(), ShAmt)); | 
|  | else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth()) | 
|  | FromVal = Builder.CreateShl(FromVal, | 
|  | ConstantInt::get(FromVal->getType(), -ShAmt)); | 
|  |  | 
|  | // Finally, unconditionally truncate the integer to the right width. | 
|  | unsigned LIBitWidth = DL.getTypeSizeInBits(ToType); | 
|  | if (LIBitWidth < NTy->getBitWidth()) | 
|  | FromVal = | 
|  | Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(), | 
|  | LIBitWidth)); | 
|  | else if (LIBitWidth > NTy->getBitWidth()) | 
|  | FromVal = | 
|  | Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(), | 
|  | LIBitWidth)); | 
|  |  | 
|  | // If the result is an integer, this is a trunc or bitcast. | 
|  | if (ToType->isIntegerTy()) { | 
|  | // Should be done. | 
|  | } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) { | 
|  | // Just do a bitcast, we know the sizes match up. | 
|  | FromVal = Builder.CreateBitCast(FromVal, ToType); | 
|  | } else { | 
|  | // Otherwise must be a pointer. | 
|  | FromVal = Builder.CreateIntToPtr(FromVal, ToType); | 
|  | } | 
|  | assert(FromVal->getType() == ToType && "Didn't convert right?"); | 
|  | return FromVal; | 
|  | } | 
|  |  | 
|  | /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer | 
|  | /// or vector value "Old" at the offset specified by Offset. | 
|  | /// | 
|  | /// This happens when we are converting an "integer union" to a | 
|  | /// single integer scalar, or when we are converting a "vector union" to a | 
|  | /// vector with insert/extractelement instructions. | 
|  | /// | 
|  | /// Offset is an offset from the original alloca, in bits that need to be | 
|  | /// shifted to the right. | 
|  | /// | 
|  | /// NonConstantIdx is an index value if there was a GEP with a non-constant | 
|  | /// index value.  If this is 0 then all GEPs used to find this insert address | 
|  | /// are constant. | 
|  | Value *ConvertToScalarInfo:: | 
|  | ConvertScalar_InsertValue(Value *SV, Value *Old, | 
|  | uint64_t Offset, Value* NonConstantIdx, | 
|  | IRBuilder<> &Builder) { | 
|  | // Convert the stored type to the actual type, shift it left to insert | 
|  | // then 'or' into place. | 
|  | Type *AllocaType = Old->getType(); | 
|  | LLVMContext &Context = Old->getContext(); | 
|  |  | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) { | 
|  | uint64_t VecSize = DL.getTypeAllocSizeInBits(VTy); | 
|  | uint64_t ValSize = DL.getTypeAllocSizeInBits(SV->getType()); | 
|  |  | 
|  | // Changing the whole vector with memset or with an access of a different | 
|  | // vector type? | 
|  | if (ValSize == VecSize) | 
|  | return Builder.CreateBitCast(SV, AllocaType); | 
|  |  | 
|  | // Must be an element insertion. | 
|  | Type *EltTy = VTy->getElementType(); | 
|  | if (SV->getType() != EltTy) | 
|  | SV = Builder.CreateBitCast(SV, EltTy); | 
|  | uint64_t EltSize = DL.getTypeAllocSizeInBits(EltTy); | 
|  | unsigned Elt = Offset/EltSize; | 
|  | Value *Idx; | 
|  | if (NonConstantIdx) { | 
|  | if (Elt) | 
|  | Idx = Builder.CreateAdd(NonConstantIdx, | 
|  | Builder.getInt32(Elt), | 
|  | "dyn.offset"); | 
|  | else | 
|  | Idx = NonConstantIdx; | 
|  | } else | 
|  | Idx = Builder.getInt32(Elt); | 
|  | return Builder.CreateInsertElement(Old, SV, Idx); | 
|  | } | 
|  |  | 
|  | // If SV is a first-class aggregate value, insert each value recursively. | 
|  | if (StructType *ST = dyn_cast<StructType>(SV->getType())) { | 
|  | assert(!NonConstantIdx && | 
|  | "Dynamic indexing into struct types not supported"); | 
|  | const StructLayout &Layout = *DL.getStructLayout(ST); | 
|  | for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { | 
|  | Value *Elt = Builder.CreateExtractValue(SV, i); | 
|  | Old = ConvertScalar_InsertValue(Elt, Old, | 
|  | Offset+Layout.getElementOffsetInBits(i), | 
|  | nullptr, Builder); | 
|  | } | 
|  | return Old; | 
|  | } | 
|  |  | 
|  | if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) { | 
|  | assert(!NonConstantIdx && | 
|  | "Dynamic indexing into array types not supported"); | 
|  | uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType()); | 
|  | for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { | 
|  | Value *Elt = Builder.CreateExtractValue(SV, i); | 
|  | Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, nullptr, | 
|  | Builder); | 
|  | } | 
|  | return Old; | 
|  | } | 
|  |  | 
|  | // If SV is a float, convert it to the appropriate integer type. | 
|  | // If it is a pointer, do the same. | 
|  | unsigned SrcWidth = DL.getTypeSizeInBits(SV->getType()); | 
|  | unsigned DestWidth = DL.getTypeSizeInBits(AllocaType); | 
|  | unsigned SrcStoreWidth = DL.getTypeStoreSizeInBits(SV->getType()); | 
|  | unsigned DestStoreWidth = DL.getTypeStoreSizeInBits(AllocaType); | 
|  | if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy()) | 
|  | SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth)); | 
|  | else if (SV->getType()->isPointerTy()) | 
|  | SV = Builder.CreatePtrToInt(SV, DL.getIntPtrType(SV->getType())); | 
|  |  | 
|  | // Zero extend or truncate the value if needed. | 
|  | if (SV->getType() != AllocaType) { | 
|  | if (SV->getType()->getPrimitiveSizeInBits() < | 
|  | AllocaType->getPrimitiveSizeInBits()) | 
|  | SV = Builder.CreateZExt(SV, AllocaType); | 
|  | else { | 
|  | // Truncation may be needed if storing more than the alloca can hold | 
|  | // (undefined behavior). | 
|  | SV = Builder.CreateTrunc(SV, AllocaType); | 
|  | SrcWidth = DestWidth; | 
|  | SrcStoreWidth = DestStoreWidth; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a big-endian system and the store is narrower than the | 
|  | // full alloca type, we need to do a shift to get the right bits. | 
|  | int ShAmt = 0; | 
|  | if (DL.isBigEndian()) { | 
|  | // On big-endian machines, the lowest bit is stored at the bit offset | 
|  | // from the pointer given by getTypeStoreSizeInBits.  This matters for | 
|  | // integers with a bitwidth that is not a multiple of 8. | 
|  | ShAmt = DestStoreWidth - SrcStoreWidth - Offset; | 
|  | } else { | 
|  | ShAmt = Offset; | 
|  | } | 
|  |  | 
|  | // Note: we support negative bitwidths (with shr) which are not defined. | 
|  | // We do this to support (f.e.) stores off the end of a structure where | 
|  | // only some bits in the structure are set. | 
|  | APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth)); | 
|  | if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) { | 
|  | SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt)); | 
|  | Mask <<= ShAmt; | 
|  | } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) { | 
|  | SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt)); | 
|  | Mask = Mask.lshr(-ShAmt); | 
|  | } | 
|  |  | 
|  | // Mask out the bits we are about to insert from the old value, and or | 
|  | // in the new bits. | 
|  | if (SrcWidth != DestWidth) { | 
|  | assert(DestWidth > SrcWidth); | 
|  | Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask"); | 
|  | SV = Builder.CreateOr(Old, SV, "ins"); | 
|  | } | 
|  | return SV; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // SRoA Driver | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | bool SROA::runOnFunction(Function &F) { | 
|  | if (skipOptnoneFunction(F)) | 
|  | return false; | 
|  |  | 
|  | bool Changed = performPromotion(F); | 
|  |  | 
|  | while (1) { | 
|  | bool LocalChange = performScalarRepl(F); | 
|  | if (!LocalChange) break;   // No need to repromote if no scalarrepl | 
|  | Changed = true; | 
|  | LocalChange = performPromotion(F); | 
|  | if (!LocalChange) break;   // No need to re-scalarrepl if no promotion | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class AllocaPromoter : public LoadAndStorePromoter { | 
|  | AllocaInst *AI; | 
|  | DIBuilder *DIB; | 
|  | SmallVector<DbgDeclareInst *, 4> DDIs; | 
|  | SmallVector<DbgValueInst *, 4> DVIs; | 
|  | public: | 
|  | AllocaPromoter(ArrayRef<Instruction*> Insts, SSAUpdater &S, | 
|  | DIBuilder *DB) | 
|  | : LoadAndStorePromoter(Insts, S), AI(nullptr), DIB(DB) {} | 
|  |  | 
|  | void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) { | 
|  | // Remember which alloca we're promoting (for isInstInList). | 
|  | this->AI = AI; | 
|  | if (auto *L = LocalAsMetadata::getIfExists(AI)) { | 
|  | if (auto *DINode = MetadataAsValue::getIfExists(AI->getContext(), L)) { | 
|  | for (User *U : DINode->users()) | 
|  | if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) | 
|  | DDIs.push_back(DDI); | 
|  | else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) | 
|  | DVIs.push_back(DVI); | 
|  | } | 
|  | } | 
|  |  | 
|  | LoadAndStorePromoter::run(Insts); | 
|  | AI->eraseFromParent(); | 
|  | for (SmallVectorImpl<DbgDeclareInst *>::iterator I = DDIs.begin(), | 
|  | E = DDIs.end(); I != E; ++I) { | 
|  | DbgDeclareInst *DDI = *I; | 
|  | DDI->eraseFromParent(); | 
|  | } | 
|  | for (SmallVectorImpl<DbgValueInst *>::iterator I = DVIs.begin(), | 
|  | E = DVIs.end(); I != E; ++I) { | 
|  | DbgValueInst *DVI = *I; | 
|  | DVI->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool isInstInList(Instruction *I, | 
|  | const SmallVectorImpl<Instruction*> &Insts) const override { | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) | 
|  | return LI->getOperand(0) == AI; | 
|  | return cast<StoreInst>(I)->getPointerOperand() == AI; | 
|  | } | 
|  |  | 
|  | void updateDebugInfo(Instruction *Inst) const override { | 
|  | for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(), | 
|  | E = DDIs.end(); I != E; ++I) { | 
|  | DbgDeclareInst *DDI = *I; | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) | 
|  | ConvertDebugDeclareToDebugValue(DDI, SI, *DIB); | 
|  | else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) | 
|  | ConvertDebugDeclareToDebugValue(DDI, LI, *DIB); | 
|  | } | 
|  | for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(), | 
|  | E = DVIs.end(); I != E; ++I) { | 
|  | DbgValueInst *DVI = *I; | 
|  | Value *Arg = nullptr; | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { | 
|  | // If an argument is zero extended then use argument directly. The ZExt | 
|  | // may be zapped by an optimization pass in future. | 
|  | if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) | 
|  | Arg = dyn_cast<Argument>(ZExt->getOperand(0)); | 
|  | if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) | 
|  | Arg = dyn_cast<Argument>(SExt->getOperand(0)); | 
|  | if (!Arg) | 
|  | Arg = SI->getOperand(0); | 
|  | } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { | 
|  | Arg = LI->getOperand(0); | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | DIB->insertDbgValueIntrinsic(Arg, 0, DVI->getVariable(), | 
|  | DVI->getExpression(), DVI->getDebugLoc(), | 
|  | Inst); | 
|  | } | 
|  | } | 
|  | }; | 
|  | } // end anon namespace | 
|  |  | 
|  | /// isSafeSelectToSpeculate - Select instructions that use an alloca and are | 
|  | /// subsequently loaded can be rewritten to load both input pointers and then | 
|  | /// select between the result, allowing the load of the alloca to be promoted. | 
|  | /// From this: | 
|  | ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other | 
|  | ///   %V = load i32* %P2 | 
|  | /// to: | 
|  | ///   %V1 = load i32* %Alloca      -> will be mem2reg'd | 
|  | ///   %V2 = load i32* %Other | 
|  | ///   %V = select i1 %cond, i32 %V1, i32 %V2 | 
|  | /// | 
|  | /// We can do this to a select if its only uses are loads and if the operand to | 
|  | /// the select can be loaded unconditionally. | 
|  | static bool isSafeSelectToSpeculate(SelectInst *SI) { | 
|  | const DataLayout &DL = SI->getModule()->getDataLayout(); | 
|  | bool TDerefable = isDereferenceablePointer(SI->getTrueValue(), DL); | 
|  | bool FDerefable = isDereferenceablePointer(SI->getFalseValue(), DL); | 
|  |  | 
|  | for (User *U : SI->users()) { | 
|  | LoadInst *LI = dyn_cast<LoadInst>(U); | 
|  | if (!LI || !LI->isSimple()) return false; | 
|  |  | 
|  | // Both operands to the select need to be dereferencable, either absolutely | 
|  | // (e.g. allocas) or at this point because we can see other accesses to it. | 
|  | if (!TDerefable && | 
|  | !isSafeToLoadUnconditionally(SI->getTrueValue(), LI, | 
|  | LI->getAlignment())) | 
|  | return false; | 
|  | if (!FDerefable && | 
|  | !isSafeToLoadUnconditionally(SI->getFalseValue(), LI, | 
|  | LI->getAlignment())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isSafePHIToSpeculate - PHI instructions that use an alloca and are | 
|  | /// subsequently loaded can be rewritten to load both input pointers in the pred | 
|  | /// blocks and then PHI the results, allowing the load of the alloca to be | 
|  | /// promoted. | 
|  | /// From this: | 
|  | ///   %P2 = phi [i32* %Alloca, i32* %Other] | 
|  | ///   %V = load i32* %P2 | 
|  | /// to: | 
|  | ///   %V1 = load i32* %Alloca      -> will be mem2reg'd | 
|  | ///   ... | 
|  | ///   %V2 = load i32* %Other | 
|  | ///   ... | 
|  | ///   %V = phi [i32 %V1, i32 %V2] | 
|  | /// | 
|  | /// We can do this to a select if its only uses are loads and if the operand to | 
|  | /// the select can be loaded unconditionally. | 
|  | static bool isSafePHIToSpeculate(PHINode *PN) { | 
|  | // For now, we can only do this promotion if the load is in the same block as | 
|  | // the PHI, and if there are no stores between the phi and load. | 
|  | // TODO: Allow recursive phi users. | 
|  | // TODO: Allow stores. | 
|  | BasicBlock *BB = PN->getParent(); | 
|  | unsigned MaxAlign = 0; | 
|  | for (User *U : PN->users()) { | 
|  | LoadInst *LI = dyn_cast<LoadInst>(U); | 
|  | if (!LI || !LI->isSimple()) return false; | 
|  |  | 
|  | // For now we only allow loads in the same block as the PHI.  This is a | 
|  | // common case that happens when instcombine merges two loads through a PHI. | 
|  | if (LI->getParent() != BB) return false; | 
|  |  | 
|  | // Ensure that there are no instructions between the PHI and the load that | 
|  | // could store. | 
|  | for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) | 
|  | if (BBI->mayWriteToMemory()) | 
|  | return false; | 
|  |  | 
|  | MaxAlign = std::max(MaxAlign, LI->getAlignment()); | 
|  | } | 
|  |  | 
|  | const DataLayout &DL = PN->getModule()->getDataLayout(); | 
|  |  | 
|  | // Okay, we know that we have one or more loads in the same block as the PHI. | 
|  | // We can transform this if it is safe to push the loads into the predecessor | 
|  | // blocks.  The only thing to watch out for is that we can't put a possibly | 
|  | // trapping load in the predecessor if it is a critical edge. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | BasicBlock *Pred = PN->getIncomingBlock(i); | 
|  | Value *InVal = PN->getIncomingValue(i); | 
|  |  | 
|  | // If the terminator of the predecessor has side-effects (an invoke), | 
|  | // there is no safe place to put a load in the predecessor. | 
|  | if (Pred->getTerminator()->mayHaveSideEffects()) | 
|  | return false; | 
|  |  | 
|  | // If the value is produced by the terminator of the predecessor | 
|  | // (an invoke), there is no valid place to put a load in the predecessor. | 
|  | if (Pred->getTerminator() == InVal) | 
|  | return false; | 
|  |  | 
|  | // If the predecessor has a single successor, then the edge isn't critical. | 
|  | if (Pred->getTerminator()->getNumSuccessors() == 1) | 
|  | continue; | 
|  |  | 
|  | // If this pointer is always safe to load, or if we can prove that there is | 
|  | // already a load in the block, then we can move the load to the pred block. | 
|  | if (isDereferenceablePointer(InVal, DL) || | 
|  | isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign)) | 
|  | continue; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// tryToMakeAllocaBePromotable - This returns true if the alloca only has | 
|  | /// direct (non-volatile) loads and stores to it.  If the alloca is close but | 
|  | /// not quite there, this will transform the code to allow promotion.  As such, | 
|  | /// it is a non-pure predicate. | 
|  | static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout &DL) { | 
|  | SetVector<Instruction*, SmallVector<Instruction*, 4>, | 
|  | SmallPtrSet<Instruction*, 4> > InstsToRewrite; | 
|  | for (User *U : AI->users()) { | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(U)) { | 
|  | if (!LI->isSimple()) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(U)) { | 
|  | if (SI->getOperand(0) == AI || !SI->isSimple()) | 
|  | return false;   // Don't allow a store OF the AI, only INTO the AI. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(U)) { | 
|  | // If the condition being selected on is a constant, fold the select, yes | 
|  | // this does (rarely) happen early on. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) { | 
|  | Value *Result = SI->getOperand(1+CI->isZero()); | 
|  | SI->replaceAllUsesWith(Result); | 
|  | SI->eraseFromParent(); | 
|  |  | 
|  | // This is very rare and we just scrambled the use list of AI, start | 
|  | // over completely. | 
|  | return tryToMakeAllocaBePromotable(AI, DL); | 
|  | } | 
|  |  | 
|  | // If it is safe to turn "load (select c, AI, ptr)" into a select of two | 
|  | // loads, then we can transform this by rewriting the select. | 
|  | if (!isSafeSelectToSpeculate(SI)) | 
|  | return false; | 
|  |  | 
|  | InstsToRewrite.insert(SI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (PHINode *PN = dyn_cast<PHINode>(U)) { | 
|  | if (PN->use_empty()) {  // Dead PHIs can be stripped. | 
|  | InstsToRewrite.insert(PN); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads | 
|  | // in the pred blocks, then we can transform this by rewriting the PHI. | 
|  | if (!isSafePHIToSpeculate(PN)) | 
|  | return false; | 
|  |  | 
|  | InstsToRewrite.insert(PN); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { | 
|  | if (onlyUsedByLifetimeMarkers(BCI)) { | 
|  | InstsToRewrite.insert(BCI); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If there are no instructions to rewrite, then all uses are load/stores and | 
|  | // we're done! | 
|  | if (InstsToRewrite.empty()) | 
|  | return true; | 
|  |  | 
|  | // If we have instructions that need to be rewritten for this to be promotable | 
|  | // take care of it now. | 
|  | for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) { | 
|  | if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) { | 
|  | // This could only be a bitcast used by nothing but lifetime intrinsics. | 
|  | for (BitCastInst::user_iterator I = BCI->user_begin(), E = BCI->user_end(); | 
|  | I != E;) | 
|  | cast<Instruction>(*I++)->eraseFromParent(); | 
|  | BCI->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) { | 
|  | // Selects in InstsToRewrite only have load uses.  Rewrite each as two | 
|  | // loads with a new select. | 
|  | while (!SI->use_empty()) { | 
|  | LoadInst *LI = cast<LoadInst>(SI->user_back()); | 
|  |  | 
|  | IRBuilder<> Builder(LI); | 
|  | LoadInst *TrueLoad = | 
|  | Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t"); | 
|  | LoadInst *FalseLoad = | 
|  | Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f"); | 
|  |  | 
|  | // Transfer alignment and AA info if present. | 
|  | TrueLoad->setAlignment(LI->getAlignment()); | 
|  | FalseLoad->setAlignment(LI->getAlignment()); | 
|  |  | 
|  | AAMDNodes Tags; | 
|  | LI->getAAMetadata(Tags); | 
|  | if (Tags) { | 
|  | TrueLoad->setAAMetadata(Tags); | 
|  | FalseLoad->setAAMetadata(Tags); | 
|  | } | 
|  |  | 
|  | Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad); | 
|  | V->takeName(LI); | 
|  | LI->replaceAllUsesWith(V); | 
|  | LI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Now that all the loads are gone, the select is gone too. | 
|  | SI->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, we have a PHI node which allows us to push the loads into the | 
|  | // predecessors. | 
|  | PHINode *PN = cast<PHINode>(InstsToRewrite[i]); | 
|  | if (PN->use_empty()) { | 
|  | PN->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Type *LoadTy = cast<PointerType>(PN->getType())->getElementType(); | 
|  | PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(), | 
|  | PN->getName()+".ld", PN); | 
|  |  | 
|  | // Get the AA tags and alignment to use from one of the loads.  It doesn't | 
|  | // matter which one we get and if any differ, it doesn't matter. | 
|  | LoadInst *SomeLoad = cast<LoadInst>(PN->user_back()); | 
|  |  | 
|  | AAMDNodes AATags; | 
|  | SomeLoad->getAAMetadata(AATags); | 
|  | unsigned Align = SomeLoad->getAlignment(); | 
|  |  | 
|  | // Rewrite all loads of the PN to use the new PHI. | 
|  | while (!PN->use_empty()) { | 
|  | LoadInst *LI = cast<LoadInst>(PN->user_back()); | 
|  | LI->replaceAllUsesWith(NewPN); | 
|  | LI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Inject loads into all of the pred blocks.  Keep track of which blocks we | 
|  | // insert them into in case we have multiple edges from the same block. | 
|  | DenseMap<BasicBlock*, LoadInst*> InsertedLoads; | 
|  |  | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | BasicBlock *Pred = PN->getIncomingBlock(i); | 
|  | LoadInst *&Load = InsertedLoads[Pred]; | 
|  | if (!Load) { | 
|  | Load = new LoadInst(PN->getIncomingValue(i), | 
|  | PN->getName() + "." + Pred->getName(), | 
|  | Pred->getTerminator()); | 
|  | Load->setAlignment(Align); | 
|  | if (AATags) Load->setAAMetadata(AATags); | 
|  | } | 
|  |  | 
|  | NewPN->addIncoming(Load, Pred); | 
|  | } | 
|  |  | 
|  | PN->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | ++NumAdjusted; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SROA::performPromotion(Function &F) { | 
|  | std::vector<AllocaInst*> Allocas; | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | DominatorTree *DT = nullptr; | 
|  | if (HasDomTree) | 
|  | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | AssumptionCache &AC = | 
|  | getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
|  |  | 
|  | BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function | 
|  | DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); | 
|  | bool Changed = false; | 
|  | SmallVector<Instruction*, 64> Insts; | 
|  | while (1) { | 
|  | Allocas.clear(); | 
|  |  | 
|  | // Find allocas that are safe to promote, by looking at all instructions in | 
|  | // the entry node | 
|  | for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca? | 
|  | if (tryToMakeAllocaBePromotable(AI, DL)) | 
|  | Allocas.push_back(AI); | 
|  |  | 
|  | if (Allocas.empty()) break; | 
|  |  | 
|  | if (HasDomTree) | 
|  | PromoteMemToReg(Allocas, *DT, nullptr, &AC); | 
|  | else { | 
|  | SSAUpdater SSA; | 
|  | for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { | 
|  | AllocaInst *AI = Allocas[i]; | 
|  |  | 
|  | // Build list of instructions to promote. | 
|  | for (User *U : AI->users()) | 
|  | Insts.push_back(cast<Instruction>(U)); | 
|  | AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts); | 
|  | Insts.clear(); | 
|  | } | 
|  | } | 
|  | NumPromoted += Allocas.size(); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for | 
|  | /// SROA.  It must be a struct or array type with a small number of elements. | 
|  | bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) { | 
|  | Type *T = AI->getAllocatedType(); | 
|  | // Do not promote any struct that has too many members. | 
|  | if (StructType *ST = dyn_cast<StructType>(T)) | 
|  | return ST->getNumElements() <= StructMemberThreshold; | 
|  | // Do not promote any array that has too many elements. | 
|  | if (ArrayType *AT = dyn_cast<ArrayType>(T)) | 
|  | return AT->getNumElements() <= ArrayElementThreshold; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // performScalarRepl - This algorithm is a simple worklist driven algorithm, | 
|  | // which runs on all of the alloca instructions in the entry block, removing | 
|  | // them if they are only used by getelementptr instructions. | 
|  | // | 
|  | bool SROA::performScalarRepl(Function &F) { | 
|  | std::vector<AllocaInst*> WorkList; | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  |  | 
|  | // Scan the entry basic block, adding allocas to the worklist. | 
|  | BasicBlock &BB = F.getEntryBlock(); | 
|  | for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) | 
|  | if (AllocaInst *A = dyn_cast<AllocaInst>(I)) | 
|  | WorkList.push_back(A); | 
|  |  | 
|  | // Process the worklist | 
|  | bool Changed = false; | 
|  | while (!WorkList.empty()) { | 
|  | AllocaInst *AI = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  |  | 
|  | // Handle dead allocas trivially.  These can be formed by SROA'ing arrays | 
|  | // with unused elements. | 
|  | if (AI->use_empty()) { | 
|  | AI->eraseFromParent(); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this alloca is impossible for us to promote, reject it early. | 
|  | if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized()) | 
|  | continue; | 
|  |  | 
|  | // Check to see if we can perform the core SROA transformation.  We cannot | 
|  | // transform the allocation instruction if it is an array allocation | 
|  | // (allocations OF arrays are ok though), and an allocation of a scalar | 
|  | // value cannot be decomposed at all. | 
|  | uint64_t AllocaSize = DL.getTypeAllocSize(AI->getAllocatedType()); | 
|  |  | 
|  | // Do not promote [0 x %struct]. | 
|  | if (AllocaSize == 0) continue; | 
|  |  | 
|  | // Do not promote any struct whose size is too big. | 
|  | if (AllocaSize > SRThreshold) continue; | 
|  |  | 
|  | // If the alloca looks like a good candidate for scalar replacement, and if | 
|  | // all its users can be transformed, then split up the aggregate into its | 
|  | // separate elements. | 
|  | if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) { | 
|  | DoScalarReplacement(AI, WorkList); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we can turn this aggregate value (potentially with casts) into a | 
|  | // simple scalar value that can be mem2reg'd into a register value. | 
|  | // IsNotTrivial tracks whether this is something that mem2reg could have | 
|  | // promoted itself.  If so, we don't want to transform it needlessly.  Note | 
|  | // that we can't just check based on the type: the alloca may be of an i32 | 
|  | // but that has pointer arithmetic to set byte 3 of it or something. | 
|  | if (AllocaInst *NewAI = | 
|  | ConvertToScalarInfo((unsigned)AllocaSize, DL, ScalarLoadThreshold) | 
|  | .TryConvert(AI)) { | 
|  | NewAI->takeName(AI); | 
|  | AI->eraseFromParent(); | 
|  | ++NumConverted; | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, couldn't process this alloca. | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl | 
|  | /// predicate, do SROA now. | 
|  | void SROA::DoScalarReplacement(AllocaInst *AI, | 
|  | std::vector<AllocaInst*> &WorkList) { | 
|  | DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n'); | 
|  | SmallVector<AllocaInst*, 32> ElementAllocas; | 
|  | if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) { | 
|  | ElementAllocas.reserve(ST->getNumContainedTypes()); | 
|  | for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) { | 
|  | AllocaInst *NA = new AllocaInst(ST->getContainedType(i), nullptr, | 
|  | AI->getAlignment(), | 
|  | AI->getName() + "." + Twine(i), AI); | 
|  | ElementAllocas.push_back(NA); | 
|  | WorkList.push_back(NA);  // Add to worklist for recursive processing | 
|  | } | 
|  | } else { | 
|  | ArrayType *AT = cast<ArrayType>(AI->getAllocatedType()); | 
|  | ElementAllocas.reserve(AT->getNumElements()); | 
|  | Type *ElTy = AT->getElementType(); | 
|  | for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { | 
|  | AllocaInst *NA = new AllocaInst(ElTy, nullptr, AI->getAlignment(), | 
|  | AI->getName() + "." + Twine(i), AI); | 
|  | ElementAllocas.push_back(NA); | 
|  | WorkList.push_back(NA);  // Add to worklist for recursive processing | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we have created the new alloca instructions, rewrite all the | 
|  | // uses of the old alloca. | 
|  | RewriteForScalarRepl(AI, AI, 0, ElementAllocas); | 
|  |  | 
|  | // Now erase any instructions that were made dead while rewriting the alloca. | 
|  | DeleteDeadInstructions(); | 
|  | AI->eraseFromParent(); | 
|  |  | 
|  | ++NumReplaced; | 
|  | } | 
|  |  | 
|  | /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list, | 
|  | /// recursively including all their operands that become trivially dead. | 
|  | void SROA::DeleteDeadInstructions() { | 
|  | while (!DeadInsts.empty()) { | 
|  | Instruction *I = cast<Instruction>(DeadInsts.pop_back_val()); | 
|  |  | 
|  | for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) | 
|  | if (Instruction *U = dyn_cast<Instruction>(*OI)) { | 
|  | // Zero out the operand and see if it becomes trivially dead. | 
|  | // (But, don't add allocas to the dead instruction list -- they are | 
|  | // already on the worklist and will be deleted separately.) | 
|  | *OI = nullptr; | 
|  | if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U)) | 
|  | DeadInsts.push_back(U); | 
|  | } | 
|  |  | 
|  | I->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to | 
|  | /// performing scalar replacement of alloca AI.  The results are flagged in | 
|  | /// the Info parameter.  Offset indicates the position within AI that is | 
|  | /// referenced by this instruction. | 
|  | void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset, | 
|  | AllocaInfo &Info) { | 
|  | const DataLayout &DL = I->getModule()->getDataLayout(); | 
|  | for (Use &U : I->uses()) { | 
|  | Instruction *User = cast<Instruction>(U.getUser()); | 
|  |  | 
|  | if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) { | 
|  | isSafeForScalarRepl(BC, Offset, Info); | 
|  | } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { | 
|  | uint64_t GEPOffset = Offset; | 
|  | isSafeGEP(GEPI, GEPOffset, Info); | 
|  | if (!Info.isUnsafe) | 
|  | isSafeForScalarRepl(GEPI, GEPOffset, Info); | 
|  | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) { | 
|  | ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength()); | 
|  | if (!Length || Length->isNegative()) | 
|  | return MarkUnsafe(Info, User); | 
|  |  | 
|  | isSafeMemAccess(Offset, Length->getZExtValue(), nullptr, | 
|  | U.getOperandNo() == 0, Info, MI, | 
|  | true /*AllowWholeAccess*/); | 
|  | } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) { | 
|  | if (!LI->isSimple()) | 
|  | return MarkUnsafe(Info, User); | 
|  | Type *LIType = LI->getType(); | 
|  | isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info, | 
|  | LI, true /*AllowWholeAccess*/); | 
|  | Info.hasALoadOrStore = true; | 
|  |  | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) { | 
|  | // Store is ok if storing INTO the pointer, not storing the pointer | 
|  | if (!SI->isSimple() || SI->getOperand(0) == I) | 
|  | return MarkUnsafe(Info, User); | 
|  |  | 
|  | Type *SIType = SI->getOperand(0)->getType(); | 
|  | isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info, | 
|  | SI, true /*AllowWholeAccess*/); | 
|  | Info.hasALoadOrStore = true; | 
|  | } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) { | 
|  | if (II->getIntrinsicID() != Intrinsic::lifetime_start && | 
|  | II->getIntrinsicID() != Intrinsic::lifetime_end) | 
|  | return MarkUnsafe(Info, User); | 
|  | } else if (isa<PHINode>(User) || isa<SelectInst>(User)) { | 
|  | isSafePHISelectUseForScalarRepl(User, Offset, Info); | 
|  | } else { | 
|  | return MarkUnsafe(Info, User); | 
|  | } | 
|  | if (Info.isUnsafe) return; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer | 
|  | /// derived from the alloca, we can often still split the alloca into elements. | 
|  | /// This is useful if we have a large alloca where one element is phi'd | 
|  | /// together somewhere: we can SRoA and promote all the other elements even if | 
|  | /// we end up not being able to promote this one. | 
|  | /// | 
|  | /// All we require is that the uses of the PHI do not index into other parts of | 
|  | /// the alloca.  The most important use case for this is single load and stores | 
|  | /// that are PHI'd together, which can happen due to code sinking. | 
|  | void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset, | 
|  | AllocaInfo &Info) { | 
|  | // If we've already checked this PHI, don't do it again. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(I)) | 
|  | if (!Info.CheckedPHIs.insert(PN).second) | 
|  | return; | 
|  |  | 
|  | const DataLayout &DL = I->getModule()->getDataLayout(); | 
|  | for (User *U : I->users()) { | 
|  | Instruction *UI = cast<Instruction>(U); | 
|  |  | 
|  | if (BitCastInst *BC = dyn_cast<BitCastInst>(UI)) { | 
|  | isSafePHISelectUseForScalarRepl(BC, Offset, Info); | 
|  | } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { | 
|  | // Only allow "bitcast" GEPs for simplicity.  We could generalize this, | 
|  | // but would have to prove that we're staying inside of an element being | 
|  | // promoted. | 
|  | if (!GEPI->hasAllZeroIndices()) | 
|  | return MarkUnsafe(Info, UI); | 
|  | isSafePHISelectUseForScalarRepl(GEPI, Offset, Info); | 
|  | } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { | 
|  | if (!LI->isSimple()) | 
|  | return MarkUnsafe(Info, UI); | 
|  | Type *LIType = LI->getType(); | 
|  | isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info, | 
|  | LI, false /*AllowWholeAccess*/); | 
|  | Info.hasALoadOrStore = true; | 
|  |  | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { | 
|  | // Store is ok if storing INTO the pointer, not storing the pointer | 
|  | if (!SI->isSimple() || SI->getOperand(0) == I) | 
|  | return MarkUnsafe(Info, UI); | 
|  |  | 
|  | Type *SIType = SI->getOperand(0)->getType(); | 
|  | isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info, | 
|  | SI, false /*AllowWholeAccess*/); | 
|  | Info.hasALoadOrStore = true; | 
|  | } else if (isa<PHINode>(UI) || isa<SelectInst>(UI)) { | 
|  | isSafePHISelectUseForScalarRepl(UI, Offset, Info); | 
|  | } else { | 
|  | return MarkUnsafe(Info, UI); | 
|  | } | 
|  | if (Info.isUnsafe) return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isSafeGEP - Check if a GEP instruction can be handled for scalar | 
|  | /// replacement.  It is safe when all the indices are constant, in-bounds | 
|  | /// references, and when the resulting offset corresponds to an element within | 
|  | /// the alloca type.  The results are flagged in the Info parameter.  Upon | 
|  | /// return, Offset is adjusted as specified by the GEP indices. | 
|  | void SROA::isSafeGEP(GetElementPtrInst *GEPI, | 
|  | uint64_t &Offset, AllocaInfo &Info) { | 
|  | gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI); | 
|  | if (GEPIt == E) | 
|  | return; | 
|  | bool NonConstant = false; | 
|  | unsigned NonConstantIdxSize = 0; | 
|  |  | 
|  | // Walk through the GEP type indices, checking the types that this indexes | 
|  | // into. | 
|  | for (; GEPIt != E; ++GEPIt) { | 
|  | // Ignore struct elements, no extra checking needed for these. | 
|  | if ((*GEPIt)->isStructTy()) | 
|  | continue; | 
|  |  | 
|  | ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand()); | 
|  | if (!IdxVal) | 
|  | return MarkUnsafe(Info, GEPI); | 
|  | } | 
|  |  | 
|  | // Compute the offset due to this GEP and check if the alloca has a | 
|  | // component element at that offset. | 
|  | SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end()); | 
|  | // If this GEP is non-constant then the last operand must have been a | 
|  | // dynamic index into a vector.  Pop this now as it has no impact on the | 
|  | // constant part of the offset. | 
|  | if (NonConstant) | 
|  | Indices.pop_back(); | 
|  |  | 
|  | const DataLayout &DL = GEPI->getModule()->getDataLayout(); | 
|  | Offset += DL.getIndexedOffset(GEPI->getPointerOperandType(), Indices); | 
|  | if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, NonConstantIdxSize, | 
|  | DL)) | 
|  | MarkUnsafe(Info, GEPI); | 
|  | } | 
|  |  | 
|  | /// isHomogeneousAggregate - Check if type T is a struct or array containing | 
|  | /// elements of the same type (which is always true for arrays).  If so, | 
|  | /// return true with NumElts and EltTy set to the number of elements and the | 
|  | /// element type, respectively. | 
|  | static bool isHomogeneousAggregate(Type *T, unsigned &NumElts, | 
|  | Type *&EltTy) { | 
|  | if (ArrayType *AT = dyn_cast<ArrayType>(T)) { | 
|  | NumElts = AT->getNumElements(); | 
|  | EltTy = (NumElts == 0 ? nullptr : AT->getElementType()); | 
|  | return true; | 
|  | } | 
|  | if (StructType *ST = dyn_cast<StructType>(T)) { | 
|  | NumElts = ST->getNumContainedTypes(); | 
|  | EltTy = (NumElts == 0 ? nullptr : ST->getContainedType(0)); | 
|  | for (unsigned n = 1; n < NumElts; ++n) { | 
|  | if (ST->getContainedType(n) != EltTy) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are | 
|  | /// "homogeneous" aggregates with the same element type and number of elements. | 
|  | static bool isCompatibleAggregate(Type *T1, Type *T2) { | 
|  | if (T1 == T2) | 
|  | return true; | 
|  |  | 
|  | unsigned NumElts1, NumElts2; | 
|  | Type *EltTy1, *EltTy2; | 
|  | if (isHomogeneousAggregate(T1, NumElts1, EltTy1) && | 
|  | isHomogeneousAggregate(T2, NumElts2, EltTy2) && | 
|  | NumElts1 == NumElts2 && | 
|  | EltTy1 == EltTy2) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI | 
|  | /// alloca or has an offset and size that corresponds to a component element | 
|  | /// within it.  The offset checked here may have been formed from a GEP with a | 
|  | /// pointer bitcasted to a different type. | 
|  | /// | 
|  | /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a | 
|  | /// unit.  If false, it only allows accesses known to be in a single element. | 
|  | void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize, | 
|  | Type *MemOpType, bool isStore, | 
|  | AllocaInfo &Info, Instruction *TheAccess, | 
|  | bool AllowWholeAccess) { | 
|  | const DataLayout &DL = TheAccess->getModule()->getDataLayout(); | 
|  | // Check if this is a load/store of the entire alloca. | 
|  | if (Offset == 0 && AllowWholeAccess && | 
|  | MemSize == DL.getTypeAllocSize(Info.AI->getAllocatedType())) { | 
|  | // This can be safe for MemIntrinsics (where MemOpType is 0) and integer | 
|  | // loads/stores (which are essentially the same as the MemIntrinsics with | 
|  | // regard to copying padding between elements).  But, if an alloca is | 
|  | // flagged as both a source and destination of such operations, we'll need | 
|  | // to check later for padding between elements. | 
|  | if (!MemOpType || MemOpType->isIntegerTy()) { | 
|  | if (isStore) | 
|  | Info.isMemCpyDst = true; | 
|  | else | 
|  | Info.isMemCpySrc = true; | 
|  | return; | 
|  | } | 
|  | // This is also safe for references using a type that is compatible with | 
|  | // the type of the alloca, so that loads/stores can be rewritten using | 
|  | // insertvalue/extractvalue. | 
|  | if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) { | 
|  | Info.hasSubelementAccess = true; | 
|  | return; | 
|  | } | 
|  | } | 
|  | // Check if the offset/size correspond to a component within the alloca type. | 
|  | Type *T = Info.AI->getAllocatedType(); | 
|  | if (TypeHasComponent(T, Offset, MemSize, DL)) { | 
|  | Info.hasSubelementAccess = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | return MarkUnsafe(Info, TheAccess); | 
|  | } | 
|  |  | 
|  | /// TypeHasComponent - Return true if T has a component type with the | 
|  | /// specified offset and size.  If Size is zero, do not check the size. | 
|  | bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size, | 
|  | const DataLayout &DL) { | 
|  | Type *EltTy; | 
|  | uint64_t EltSize; | 
|  | if (StructType *ST = dyn_cast<StructType>(T)) { | 
|  | const StructLayout *Layout = DL.getStructLayout(ST); | 
|  | unsigned EltIdx = Layout->getElementContainingOffset(Offset); | 
|  | EltTy = ST->getContainedType(EltIdx); | 
|  | EltSize = DL.getTypeAllocSize(EltTy); | 
|  | Offset -= Layout->getElementOffset(EltIdx); | 
|  | } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) { | 
|  | EltTy = AT->getElementType(); | 
|  | EltSize = DL.getTypeAllocSize(EltTy); | 
|  | if (Offset >= AT->getNumElements() * EltSize) | 
|  | return false; | 
|  | Offset %= EltSize; | 
|  | } else if (VectorType *VT = dyn_cast<VectorType>(T)) { | 
|  | EltTy = VT->getElementType(); | 
|  | EltSize = DL.getTypeAllocSize(EltTy); | 
|  | if (Offset >= VT->getNumElements() * EltSize) | 
|  | return false; | 
|  | Offset %= EltSize; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | if (Offset == 0 && (Size == 0 || EltSize == Size)) | 
|  | return true; | 
|  | // Check if the component spans multiple elements. | 
|  | if (Offset + Size > EltSize) | 
|  | return false; | 
|  | return TypeHasComponent(EltTy, Offset, Size, DL); | 
|  | } | 
|  |  | 
|  | /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite | 
|  | /// the instruction I, which references it, to use the separate elements. | 
|  | /// Offset indicates the position within AI that is referenced by this | 
|  | /// instruction. | 
|  | void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset, | 
|  | SmallVectorImpl<AllocaInst *> &NewElts) { | 
|  | const DataLayout &DL = I->getModule()->getDataLayout(); | 
|  | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) { | 
|  | Use &TheUse = *UI++; | 
|  | Instruction *User = cast<Instruction>(TheUse.getUser()); | 
|  |  | 
|  | if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) { | 
|  | RewriteBitCast(BC, AI, Offset, NewElts); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { | 
|  | RewriteGEP(GEPI, AI, Offset, NewElts); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) { | 
|  | ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength()); | 
|  | uint64_t MemSize = Length->getZExtValue(); | 
|  | if (Offset == 0 && MemSize == DL.getTypeAllocSize(AI->getAllocatedType())) | 
|  | RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts); | 
|  | // Otherwise the intrinsic can only touch a single element and the | 
|  | // address operand will be updated, so nothing else needs to be done. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) { | 
|  | if (II->getIntrinsicID() == Intrinsic::lifetime_start || | 
|  | II->getIntrinsicID() == Intrinsic::lifetime_end) { | 
|  | RewriteLifetimeIntrinsic(II, AI, Offset, NewElts); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(User)) { | 
|  | Type *LIType = LI->getType(); | 
|  |  | 
|  | if (isCompatibleAggregate(LIType, AI->getAllocatedType())) { | 
|  | // Replace: | 
|  | //   %res = load { i32, i32 }* %alloc | 
|  | // with: | 
|  | //   %load.0 = load i32* %alloc.0 | 
|  | //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0 | 
|  | //   %load.1 = load i32* %alloc.1 | 
|  | //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1 | 
|  | // (Also works for arrays instead of structs) | 
|  | Value *Insert = UndefValue::get(LIType); | 
|  | IRBuilder<> Builder(LI); | 
|  | for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { | 
|  | Value *Load = Builder.CreateLoad(NewElts[i], "load"); | 
|  | Insert = Builder.CreateInsertValue(Insert, Load, i, "insert"); | 
|  | } | 
|  | LI->replaceAllUsesWith(Insert); | 
|  | DeadInsts.push_back(LI); | 
|  | } else if (LIType->isIntegerTy() && | 
|  | DL.getTypeAllocSize(LIType) == | 
|  | DL.getTypeAllocSize(AI->getAllocatedType())) { | 
|  | // If this is a load of the entire alloca to an integer, rewrite it. | 
|  | RewriteLoadUserOfWholeAlloca(LI, AI, NewElts); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(User)) { | 
|  | Value *Val = SI->getOperand(0); | 
|  | Type *SIType = Val->getType(); | 
|  | if (isCompatibleAggregate(SIType, AI->getAllocatedType())) { | 
|  | // Replace: | 
|  | //   store { i32, i32 } %val, { i32, i32 }* %alloc | 
|  | // with: | 
|  | //   %val.0 = extractvalue { i32, i32 } %val, 0 | 
|  | //   store i32 %val.0, i32* %alloc.0 | 
|  | //   %val.1 = extractvalue { i32, i32 } %val, 1 | 
|  | //   store i32 %val.1, i32* %alloc.1 | 
|  | // (Also works for arrays instead of structs) | 
|  | IRBuilder<> Builder(SI); | 
|  | for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { | 
|  | Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName()); | 
|  | Builder.CreateStore(Extract, NewElts[i]); | 
|  | } | 
|  | DeadInsts.push_back(SI); | 
|  | } else if (SIType->isIntegerTy() && | 
|  | DL.getTypeAllocSize(SIType) == | 
|  | DL.getTypeAllocSize(AI->getAllocatedType())) { | 
|  | // If this is a store of the entire alloca from an integer, rewrite it. | 
|  | RewriteStoreUserOfWholeAlloca(SI, AI, NewElts); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (isa<SelectInst>(User) || isa<PHINode>(User)) { | 
|  | // If we have a PHI user of the alloca itself (as opposed to a GEP or | 
|  | // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to | 
|  | // the new pointer. | 
|  | if (!isa<AllocaInst>(I)) continue; | 
|  |  | 
|  | assert(Offset == 0 && NewElts[0] && | 
|  | "Direct alloca use should have a zero offset"); | 
|  |  | 
|  | // If we have a use of the alloca, we know the derived uses will be | 
|  | // utilizing just the first element of the scalarized result.  Insert a | 
|  | // bitcast of the first alloca before the user as required. | 
|  | AllocaInst *NewAI = NewElts[0]; | 
|  | BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI); | 
|  | NewAI->moveBefore(BCI); | 
|  | TheUse = BCI; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// RewriteBitCast - Update a bitcast reference to the alloca being replaced | 
|  | /// and recursively continue updating all of its uses. | 
|  | void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset, | 
|  | SmallVectorImpl<AllocaInst *> &NewElts) { | 
|  | RewriteForScalarRepl(BC, AI, Offset, NewElts); | 
|  | if (BC->getOperand(0) != AI) | 
|  | return; | 
|  |  | 
|  | // The bitcast references the original alloca.  Replace its uses with | 
|  | // references to the alloca containing offset zero (which is normally at | 
|  | // index zero, but might not be in cases involving structs with elements | 
|  | // of size zero). | 
|  | Type *T = AI->getAllocatedType(); | 
|  | uint64_t EltOffset = 0; | 
|  | Type *IdxTy; | 
|  | uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy, | 
|  | BC->getModule()->getDataLayout()); | 
|  | Instruction *Val = NewElts[Idx]; | 
|  | if (Val->getType() != BC->getDestTy()) { | 
|  | Val = new BitCastInst(Val, BC->getDestTy(), "", BC); | 
|  | Val->takeName(BC); | 
|  | } | 
|  | BC->replaceAllUsesWith(Val); | 
|  | DeadInsts.push_back(BC); | 
|  | } | 
|  |  | 
|  | /// FindElementAndOffset - Return the index of the element containing Offset | 
|  | /// within the specified type, which must be either a struct or an array. | 
|  | /// Sets T to the type of the element and Offset to the offset within that | 
|  | /// element.  IdxTy is set to the type of the index result to be used in a | 
|  | /// GEP instruction. | 
|  | uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy, | 
|  | const DataLayout &DL) { | 
|  | uint64_t Idx = 0; | 
|  |  | 
|  | if (StructType *ST = dyn_cast<StructType>(T)) { | 
|  | const StructLayout *Layout = DL.getStructLayout(ST); | 
|  | Idx = Layout->getElementContainingOffset(Offset); | 
|  | T = ST->getContainedType(Idx); | 
|  | Offset -= Layout->getElementOffset(Idx); | 
|  | IdxTy = Type::getInt32Ty(T->getContext()); | 
|  | return Idx; | 
|  | } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) { | 
|  | T = AT->getElementType(); | 
|  | uint64_t EltSize = DL.getTypeAllocSize(T); | 
|  | Idx = Offset / EltSize; | 
|  | Offset -= Idx * EltSize; | 
|  | IdxTy = Type::getInt64Ty(T->getContext()); | 
|  | return Idx; | 
|  | } | 
|  | VectorType *VT = cast<VectorType>(T); | 
|  | T = VT->getElementType(); | 
|  | uint64_t EltSize = DL.getTypeAllocSize(T); | 
|  | Idx = Offset / EltSize; | 
|  | Offset -= Idx * EltSize; | 
|  | IdxTy = Type::getInt64Ty(T->getContext()); | 
|  | return Idx; | 
|  | } | 
|  |  | 
|  | /// RewriteGEP - Check if this GEP instruction moves the pointer across | 
|  | /// elements of the alloca that are being split apart, and if so, rewrite | 
|  | /// the GEP to be relative to the new element. | 
|  | void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset, | 
|  | SmallVectorImpl<AllocaInst *> &NewElts) { | 
|  | uint64_t OldOffset = Offset; | 
|  | const DataLayout &DL = GEPI->getModule()->getDataLayout(); | 
|  | SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end()); | 
|  | // If the GEP was dynamic then it must have been a dynamic vector lookup. | 
|  | // In this case, it must be the last GEP operand which is dynamic so keep that | 
|  | // aside until we've found the constant GEP offset then add it back in at the | 
|  | // end. | 
|  | Value* NonConstantIdx = nullptr; | 
|  | if (!GEPI->hasAllConstantIndices()) | 
|  | NonConstantIdx = Indices.pop_back_val(); | 
|  | Offset += DL.getIndexedOffset(GEPI->getPointerOperandType(), Indices); | 
|  |  | 
|  | RewriteForScalarRepl(GEPI, AI, Offset, NewElts); | 
|  |  | 
|  | Type *T = AI->getAllocatedType(); | 
|  | Type *IdxTy; | 
|  | uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy, DL); | 
|  | if (GEPI->getOperand(0) == AI) | 
|  | OldIdx = ~0ULL; // Force the GEP to be rewritten. | 
|  |  | 
|  | T = AI->getAllocatedType(); | 
|  | uint64_t EltOffset = Offset; | 
|  | uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy, DL); | 
|  |  | 
|  | // If this GEP does not move the pointer across elements of the alloca | 
|  | // being split, then it does not needs to be rewritten. | 
|  | if (Idx == OldIdx) | 
|  | return; | 
|  |  | 
|  | Type *i32Ty = Type::getInt32Ty(AI->getContext()); | 
|  | SmallVector<Value*, 8> NewArgs; | 
|  | NewArgs.push_back(Constant::getNullValue(i32Ty)); | 
|  | while (EltOffset != 0) { | 
|  | uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy, DL); | 
|  | NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx)); | 
|  | } | 
|  | if (NonConstantIdx) { | 
|  | Type* GepTy = T; | 
|  | // This GEP has a dynamic index.  We need to add "i32 0" to index through | 
|  | // any structs or arrays in the original type until we get to the vector | 
|  | // to index. | 
|  | while (!isa<VectorType>(GepTy)) { | 
|  | NewArgs.push_back(Constant::getNullValue(i32Ty)); | 
|  | GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U); | 
|  | } | 
|  | NewArgs.push_back(NonConstantIdx); | 
|  | } | 
|  | Instruction *Val = NewElts[Idx]; | 
|  | if (NewArgs.size() > 1) { | 
|  | Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI); | 
|  | Val->takeName(GEPI); | 
|  | } | 
|  | if (Val->getType() != GEPI->getType()) | 
|  | Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI); | 
|  | GEPI->replaceAllUsesWith(Val); | 
|  | DeadInsts.push_back(GEPI); | 
|  | } | 
|  |  | 
|  | /// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it | 
|  | /// to mark the lifetime of the scalarized memory. | 
|  | void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI, | 
|  | uint64_t Offset, | 
|  | SmallVectorImpl<AllocaInst *> &NewElts) { | 
|  | ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0)); | 
|  | // Put matching lifetime markers on everything from Offset up to | 
|  | // Offset+OldSize. | 
|  | Type *AIType = AI->getAllocatedType(); | 
|  | const DataLayout &DL = II->getModule()->getDataLayout(); | 
|  | uint64_t NewOffset = Offset; | 
|  | Type *IdxTy; | 
|  | uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy, DL); | 
|  |  | 
|  | IRBuilder<> Builder(II); | 
|  | uint64_t Size = OldSize->getLimitedValue(); | 
|  |  | 
|  | if (NewOffset) { | 
|  | // Splice the first element and index 'NewOffset' bytes in.  SROA will | 
|  | // split the alloca again later. | 
|  | unsigned AS = AI->getType()->getAddressSpace(); | 
|  | Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy(AS)); | 
|  | V = Builder.CreateGEP(Builder.getInt8Ty(), V, Builder.getInt64(NewOffset)); | 
|  |  | 
|  | IdxTy = NewElts[Idx]->getAllocatedType(); | 
|  | uint64_t EltSize = DL.getTypeAllocSize(IdxTy) - NewOffset; | 
|  | if (EltSize > Size) { | 
|  | EltSize = Size; | 
|  | Size = 0; | 
|  | } else { | 
|  | Size -= EltSize; | 
|  | } | 
|  | if (II->getIntrinsicID() == Intrinsic::lifetime_start) | 
|  | Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize)); | 
|  | else | 
|  | Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize)); | 
|  | ++Idx; | 
|  | } | 
|  |  | 
|  | for (; Idx != NewElts.size() && Size; ++Idx) { | 
|  | IdxTy = NewElts[Idx]->getAllocatedType(); | 
|  | uint64_t EltSize = DL.getTypeAllocSize(IdxTy); | 
|  | if (EltSize > Size) { | 
|  | EltSize = Size; | 
|  | Size = 0; | 
|  | } else { | 
|  | Size -= EltSize; | 
|  | } | 
|  | if (II->getIntrinsicID() == Intrinsic::lifetime_start) | 
|  | Builder.CreateLifetimeStart(NewElts[Idx], | 
|  | Builder.getInt64(EltSize)); | 
|  | else | 
|  | Builder.CreateLifetimeEnd(NewElts[Idx], | 
|  | Builder.getInt64(EltSize)); | 
|  | } | 
|  | DeadInsts.push_back(II); | 
|  | } | 
|  |  | 
|  | /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI. | 
|  | /// Rewrite it to copy or set the elements of the scalarized memory. | 
|  | void | 
|  | SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst, | 
|  | AllocaInst *AI, | 
|  | SmallVectorImpl<AllocaInst *> &NewElts) { | 
|  | // If this is a memcpy/memmove, construct the other pointer as the | 
|  | // appropriate type.  The "Other" pointer is the pointer that goes to memory | 
|  | // that doesn't have anything to do with the alloca that we are promoting. For | 
|  | // memset, this Value* stays null. | 
|  | Value *OtherPtr = nullptr; | 
|  | unsigned MemAlignment = MI->getAlignment(); | 
|  | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy | 
|  | if (Inst == MTI->getRawDest()) | 
|  | OtherPtr = MTI->getRawSource(); | 
|  | else { | 
|  | assert(Inst == MTI->getRawSource()); | 
|  | OtherPtr = MTI->getRawDest(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is an other pointer, we want to convert it to the same pointer | 
|  | // type as AI has, so we can GEP through it safely. | 
|  | if (OtherPtr) { | 
|  | unsigned AddrSpace = | 
|  | cast<PointerType>(OtherPtr->getType())->getAddressSpace(); | 
|  |  | 
|  | // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an | 
|  | // optimization, but it's also required to detect the corner case where | 
|  | // both pointer operands are referencing the same memory, and where | 
|  | // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This | 
|  | // function is only called for mem intrinsics that access the whole | 
|  | // aggregate, so non-zero GEPs are not an issue here.) | 
|  | OtherPtr = OtherPtr->stripPointerCasts(); | 
|  |  | 
|  | // Copying the alloca to itself is a no-op: just delete it. | 
|  | if (OtherPtr == AI || OtherPtr == NewElts[0]) { | 
|  | // This code will run twice for a no-op memcpy -- once for each operand. | 
|  | // Put only one reference to MI on the DeadInsts list. | 
|  | for (SmallVectorImpl<Value *>::const_iterator I = DeadInsts.begin(), | 
|  | E = DeadInsts.end(); I != E; ++I) | 
|  | if (*I == MI) return; | 
|  | DeadInsts.push_back(MI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the pointer is not the right type, insert a bitcast to the right | 
|  | // type. | 
|  | Type *NewTy = | 
|  | PointerType::get(AI->getType()->getElementType(), AddrSpace); | 
|  |  | 
|  | if (OtherPtr->getType() != NewTy) | 
|  | OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI); | 
|  | } | 
|  |  | 
|  | // Process each element of the aggregate. | 
|  | bool SROADest = MI->getRawDest() == Inst; | 
|  |  | 
|  | Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext())); | 
|  | const DataLayout &DL = MI->getModule()->getDataLayout(); | 
|  |  | 
|  | for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { | 
|  | // If this is a memcpy/memmove, emit a GEP of the other element address. | 
|  | Value *OtherElt = nullptr; | 
|  | unsigned OtherEltAlign = MemAlignment; | 
|  |  | 
|  | if (OtherPtr) { | 
|  | Value *Idx[2] = { Zero, | 
|  | ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) }; | 
|  | OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, | 
|  | OtherPtr->getName()+"."+Twine(i), | 
|  | MI); | 
|  | uint64_t EltOffset; | 
|  | PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType()); | 
|  | Type *OtherTy = OtherPtrTy->getElementType(); | 
|  | if (StructType *ST = dyn_cast<StructType>(OtherTy)) { | 
|  | EltOffset = DL.getStructLayout(ST)->getElementOffset(i); | 
|  | } else { | 
|  | Type *EltTy = cast<SequentialType>(OtherTy)->getElementType(); | 
|  | EltOffset = DL.getTypeAllocSize(EltTy) * i; | 
|  | } | 
|  |  | 
|  | // The alignment of the other pointer is the guaranteed alignment of the | 
|  | // element, which is affected by both the known alignment of the whole | 
|  | // mem intrinsic and the alignment of the element.  If the alignment of | 
|  | // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the | 
|  | // known alignment is just 4 bytes. | 
|  | OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset); | 
|  | } | 
|  |  | 
|  | Value *EltPtr = NewElts[i]; | 
|  | Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType(); | 
|  |  | 
|  | // If we got down to a scalar, insert a load or store as appropriate. | 
|  | if (EltTy->isSingleValueType()) { | 
|  | if (isa<MemTransferInst>(MI)) { | 
|  | if (SROADest) { | 
|  | // From Other to Alloca. | 
|  | Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI); | 
|  | new StoreInst(Elt, EltPtr, MI); | 
|  | } else { | 
|  | // From Alloca to Other. | 
|  | Value *Elt = new LoadInst(EltPtr, "tmp", MI); | 
|  | new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | assert(isa<MemSetInst>(MI)); | 
|  |  | 
|  | // If the stored element is zero (common case), just store a null | 
|  | // constant. | 
|  | Constant *StoreVal; | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) { | 
|  | if (CI->isZero()) { | 
|  | StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0> | 
|  | } else { | 
|  | // If EltTy is a vector type, get the element type. | 
|  | Type *ValTy = EltTy->getScalarType(); | 
|  |  | 
|  | // Construct an integer with the right value. | 
|  | unsigned EltSize = DL.getTypeSizeInBits(ValTy); | 
|  | APInt OneVal(EltSize, CI->getZExtValue()); | 
|  | APInt TotalVal(OneVal); | 
|  | // Set each byte. | 
|  | for (unsigned i = 0; 8*i < EltSize; ++i) { | 
|  | TotalVal = TotalVal.shl(8); | 
|  | TotalVal |= OneVal; | 
|  | } | 
|  |  | 
|  | // Convert the integer value to the appropriate type. | 
|  | StoreVal = ConstantInt::get(CI->getContext(), TotalVal); | 
|  | if (ValTy->isPointerTy()) | 
|  | StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy); | 
|  | else if (ValTy->isFloatingPointTy()) | 
|  | StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy); | 
|  | assert(StoreVal->getType() == ValTy && "Type mismatch!"); | 
|  |  | 
|  | // If the requested value was a vector constant, create it. | 
|  | if (EltTy->isVectorTy()) { | 
|  | unsigned NumElts = cast<VectorType>(EltTy)->getNumElements(); | 
|  | StoreVal = ConstantVector::getSplat(NumElts, StoreVal); | 
|  | } | 
|  | } | 
|  | new StoreInst(StoreVal, EltPtr, MI); | 
|  | continue; | 
|  | } | 
|  | // Otherwise, if we're storing a byte variable, use a memset call for | 
|  | // this element. | 
|  | } | 
|  |  | 
|  | unsigned EltSize = DL.getTypeAllocSize(EltTy); | 
|  | if (!EltSize) | 
|  | continue; | 
|  |  | 
|  | IRBuilder<> Builder(MI); | 
|  |  | 
|  | // Finally, insert the meminst for this element. | 
|  | if (isa<MemSetInst>(MI)) { | 
|  | Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize, | 
|  | MI->isVolatile()); | 
|  | } else { | 
|  | assert(isa<MemTransferInst>(MI)); | 
|  | Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr | 
|  | Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr | 
|  |  | 
|  | if (isa<MemCpyInst>(MI)) | 
|  | Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile()); | 
|  | else | 
|  | Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile()); | 
|  | } | 
|  | } | 
|  | DeadInsts.push_back(MI); | 
|  | } | 
|  |  | 
|  | /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that | 
|  | /// overwrites the entire allocation.  Extract out the pieces of the stored | 
|  | /// integer and store them individually. | 
|  | void | 
|  | SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI, | 
|  | SmallVectorImpl<AllocaInst *> &NewElts) { | 
|  | // Extract each element out of the integer according to its structure offset | 
|  | // and store the element value to the individual alloca. | 
|  | Value *SrcVal = SI->getOperand(0); | 
|  | Type *AllocaEltTy = AI->getAllocatedType(); | 
|  | const DataLayout &DL = SI->getModule()->getDataLayout(); | 
|  | uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy); | 
|  |  | 
|  | IRBuilder<> Builder(SI); | 
|  |  | 
|  | // Handle tail padding by extending the operand | 
|  | if (DL.getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits) | 
|  | SrcVal = Builder.CreateZExt(SrcVal, | 
|  | IntegerType::get(SI->getContext(), AllocaSizeBits)); | 
|  |  | 
|  | DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI | 
|  | << '\n'); | 
|  |  | 
|  | // There are two forms here: AI could be an array or struct.  Both cases | 
|  | // have different ways to compute the element offset. | 
|  | if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) { | 
|  | const StructLayout *Layout = DL.getStructLayout(EltSTy); | 
|  |  | 
|  | for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { | 
|  | // Get the number of bits to shift SrcVal to get the value. | 
|  | Type *FieldTy = EltSTy->getElementType(i); | 
|  | uint64_t Shift = Layout->getElementOffsetInBits(i); | 
|  |  | 
|  | if (DL.isBigEndian()) | 
|  | Shift = AllocaSizeBits - Shift - DL.getTypeAllocSizeInBits(FieldTy); | 
|  |  | 
|  | Value *EltVal = SrcVal; | 
|  | if (Shift) { | 
|  | Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift); | 
|  | EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt"); | 
|  | } | 
|  |  | 
|  | // Truncate down to an integer of the right size. | 
|  | uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy); | 
|  |  | 
|  | // Ignore zero sized fields like {}, they obviously contain no data. | 
|  | if (FieldSizeBits == 0) continue; | 
|  |  | 
|  | if (FieldSizeBits != AllocaSizeBits) | 
|  | EltVal = Builder.CreateTrunc(EltVal, | 
|  | IntegerType::get(SI->getContext(), FieldSizeBits)); | 
|  | Value *DestField = NewElts[i]; | 
|  | if (EltVal->getType() == FieldTy) { | 
|  | // Storing to an integer field of this size, just do it. | 
|  | } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) { | 
|  | // Bitcast to the right element type (for fp/vector values). | 
|  | EltVal = Builder.CreateBitCast(EltVal, FieldTy); | 
|  | } else { | 
|  | // Otherwise, bitcast the dest pointer (for aggregates). | 
|  | DestField = Builder.CreateBitCast(DestField, | 
|  | PointerType::getUnqual(EltVal->getType())); | 
|  | } | 
|  | new StoreInst(EltVal, DestField, SI); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | ArrayType *ATy = cast<ArrayType>(AllocaEltTy); | 
|  | Type *ArrayEltTy = ATy->getElementType(); | 
|  | uint64_t ElementOffset = DL.getTypeAllocSizeInBits(ArrayEltTy); | 
|  | uint64_t ElementSizeBits = DL.getTypeSizeInBits(ArrayEltTy); | 
|  |  | 
|  | uint64_t Shift; | 
|  |  | 
|  | if (DL.isBigEndian()) | 
|  | Shift = AllocaSizeBits-ElementOffset; | 
|  | else | 
|  | Shift = 0; | 
|  |  | 
|  | for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { | 
|  | // Ignore zero sized fields like {}, they obviously contain no data. | 
|  | if (ElementSizeBits == 0) continue; | 
|  |  | 
|  | Value *EltVal = SrcVal; | 
|  | if (Shift) { | 
|  | Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift); | 
|  | EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt"); | 
|  | } | 
|  |  | 
|  | // Truncate down to an integer of the right size. | 
|  | if (ElementSizeBits != AllocaSizeBits) | 
|  | EltVal = Builder.CreateTrunc(EltVal, | 
|  | IntegerType::get(SI->getContext(), | 
|  | ElementSizeBits)); | 
|  | Value *DestField = NewElts[i]; | 
|  | if (EltVal->getType() == ArrayEltTy) { | 
|  | // Storing to an integer field of this size, just do it. | 
|  | } else if (ArrayEltTy->isFloatingPointTy() || | 
|  | ArrayEltTy->isVectorTy()) { | 
|  | // Bitcast to the right element type (for fp/vector values). | 
|  | EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy); | 
|  | } else { | 
|  | // Otherwise, bitcast the dest pointer (for aggregates). | 
|  | DestField = Builder.CreateBitCast(DestField, | 
|  | PointerType::getUnqual(EltVal->getType())); | 
|  | } | 
|  | new StoreInst(EltVal, DestField, SI); | 
|  |  | 
|  | if (DL.isBigEndian()) | 
|  | Shift -= ElementOffset; | 
|  | else | 
|  | Shift += ElementOffset; | 
|  | } | 
|  | } | 
|  |  | 
|  | DeadInsts.push_back(SI); | 
|  | } | 
|  |  | 
|  | /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to | 
|  | /// an integer.  Load the individual pieces to form the aggregate value. | 
|  | void | 
|  | SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI, | 
|  | SmallVectorImpl<AllocaInst *> &NewElts) { | 
|  | // Extract each element out of the NewElts according to its structure offset | 
|  | // and form the result value. | 
|  | Type *AllocaEltTy = AI->getAllocatedType(); | 
|  | const DataLayout &DL = LI->getModule()->getDataLayout(); | 
|  | uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy); | 
|  |  | 
|  | DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI | 
|  | << '\n'); | 
|  |  | 
|  | // There are two forms here: AI could be an array or struct.  Both cases | 
|  | // have different ways to compute the element offset. | 
|  | const StructLayout *Layout = nullptr; | 
|  | uint64_t ArrayEltBitOffset = 0; | 
|  | if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) { | 
|  | Layout = DL.getStructLayout(EltSTy); | 
|  | } else { | 
|  | Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType(); | 
|  | ArrayEltBitOffset = DL.getTypeAllocSizeInBits(ArrayEltTy); | 
|  | } | 
|  |  | 
|  | Value *ResultVal = | 
|  | Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits)); | 
|  |  | 
|  | for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { | 
|  | // Load the value from the alloca.  If the NewElt is an aggregate, cast | 
|  | // the pointer to an integer of the same size before doing the load. | 
|  | Value *SrcField = NewElts[i]; | 
|  | Type *FieldTy = | 
|  | cast<PointerType>(SrcField->getType())->getElementType(); | 
|  | uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy); | 
|  |  | 
|  | // Ignore zero sized fields like {}, they obviously contain no data. | 
|  | if (FieldSizeBits == 0) continue; | 
|  |  | 
|  | IntegerType *FieldIntTy = IntegerType::get(LI->getContext(), | 
|  | FieldSizeBits); | 
|  | if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() && | 
|  | !FieldTy->isVectorTy()) | 
|  | SrcField = new BitCastInst(SrcField, | 
|  | PointerType::getUnqual(FieldIntTy), | 
|  | "", LI); | 
|  | SrcField = new LoadInst(SrcField, "sroa.load.elt", LI); | 
|  |  | 
|  | // If SrcField is a fp or vector of the right size but that isn't an | 
|  | // integer type, bitcast to an integer so we can shift it. | 
|  | if (SrcField->getType() != FieldIntTy) | 
|  | SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI); | 
|  |  | 
|  | // Zero extend the field to be the same size as the final alloca so that | 
|  | // we can shift and insert it. | 
|  | if (SrcField->getType() != ResultVal->getType()) | 
|  | SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI); | 
|  |  | 
|  | // Determine the number of bits to shift SrcField. | 
|  | uint64_t Shift; | 
|  | if (Layout) // Struct case. | 
|  | Shift = Layout->getElementOffsetInBits(i); | 
|  | else  // Array case. | 
|  | Shift = i*ArrayEltBitOffset; | 
|  |  | 
|  | if (DL.isBigEndian()) | 
|  | Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth(); | 
|  |  | 
|  | if (Shift) { | 
|  | Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift); | 
|  | SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI); | 
|  | } | 
|  |  | 
|  | // Don't create an 'or x, 0' on the first iteration. | 
|  | if (!isa<Constant>(ResultVal) || | 
|  | !cast<Constant>(ResultVal)->isNullValue()) | 
|  | ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI); | 
|  | else | 
|  | ResultVal = SrcField; | 
|  | } | 
|  |  | 
|  | // Handle tail padding by truncating the result | 
|  | if (DL.getTypeSizeInBits(LI->getType()) != AllocaSizeBits) | 
|  | ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI); | 
|  |  | 
|  | LI->replaceAllUsesWith(ResultVal); | 
|  | DeadInsts.push_back(LI); | 
|  | } | 
|  |  | 
|  | /// HasPadding - Return true if the specified type has any structure or | 
|  | /// alignment padding in between the elements that would be split apart | 
|  | /// by SROA; return false otherwise. | 
|  | static bool HasPadding(Type *Ty, const DataLayout &DL) { | 
|  | if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | Ty = ATy->getElementType(); | 
|  | return DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty); | 
|  | } | 
|  |  | 
|  | // SROA currently handles only Arrays and Structs. | 
|  | StructType *STy = cast<StructType>(Ty); | 
|  | const StructLayout *SL = DL.getStructLayout(STy); | 
|  | unsigned PrevFieldBitOffset = 0; | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | unsigned FieldBitOffset = SL->getElementOffsetInBits(i); | 
|  |  | 
|  | // Check to see if there is any padding between this element and the | 
|  | // previous one. | 
|  | if (i) { | 
|  | unsigned PrevFieldEnd = | 
|  | PrevFieldBitOffset+DL.getTypeSizeInBits(STy->getElementType(i-1)); | 
|  | if (PrevFieldEnd < FieldBitOffset) | 
|  | return true; | 
|  | } | 
|  | PrevFieldBitOffset = FieldBitOffset; | 
|  | } | 
|  | // Check for tail padding. | 
|  | if (unsigned EltCount = STy->getNumElements()) { | 
|  | unsigned PrevFieldEnd = PrevFieldBitOffset + | 
|  | DL.getTypeSizeInBits(STy->getElementType(EltCount-1)); | 
|  | if (PrevFieldEnd < SL->getSizeInBits()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of | 
|  | /// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe, | 
|  | /// or 1 if safe after canonicalization has been performed. | 
|  | bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) { | 
|  | // Loop over the use list of the alloca.  We can only transform it if all of | 
|  | // the users are safe to transform. | 
|  | AllocaInfo Info(AI); | 
|  |  | 
|  | isSafeForScalarRepl(AI, 0, Info); | 
|  | if (Info.isUnsafe) { | 
|  | DEBUG(dbgs() << "Cannot transform: " << *AI << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const DataLayout &DL = AI->getModule()->getDataLayout(); | 
|  |  | 
|  | // Okay, we know all the users are promotable.  If the aggregate is a memcpy | 
|  | // source and destination, we have to be careful.  In particular, the memcpy | 
|  | // could be moving around elements that live in structure padding of the LLVM | 
|  | // types, but may actually be used.  In these cases, we refuse to promote the | 
|  | // struct. | 
|  | if (Info.isMemCpySrc && Info.isMemCpyDst && | 
|  | HasPadding(AI->getAllocatedType(), DL)) | 
|  | return false; | 
|  |  | 
|  | // If the alloca never has an access to just *part* of it, but is accessed | 
|  | // via loads and stores, then we should use ConvertToScalarInfo to promote | 
|  | // the alloca instead of promoting each piece at a time and inserting fission | 
|  | // and fusion code. | 
|  | if (!Info.hasSubelementAccess && Info.hasALoadOrStore) { | 
|  | // If the struct/array just has one element, use basic SRoA. | 
|  | if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) { | 
|  | if (ST->getNumElements() > 1) return false; | 
|  | } else { | 
|  | if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } |