|  | //===- InlineFunction.cpp - Code to perform function inlining -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements inlining of a function into a call site, resolving | 
|  | // parameters and the return value as appropriate. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/Attributes.h" | 
|  | #include "llvm/Analysis/CallGraph.h" | 
|  | #include "llvm/Analysis/DebugInfo.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/Support/CallSite.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD, | 
|  | SmallVectorImpl<AllocaInst*> *StaticAllocas) { | 
|  | return InlineFunction(CallSite(CI), CG, TD, StaticAllocas); | 
|  | } | 
|  | bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD, | 
|  | SmallVectorImpl<AllocaInst*> *StaticAllocas) { | 
|  | return InlineFunction(CallSite(II), CG, TD, StaticAllocas); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into | 
|  | /// an invoke, we have to turn all of the calls that can throw into | 
|  | /// invokes.  This function analyze BB to see if there are any calls, and if so, | 
|  | /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI | 
|  | /// nodes in that block with the values specified in InvokeDestPHIValues. | 
|  | /// | 
|  | static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, | 
|  | BasicBlock *InvokeDest, | 
|  | const SmallVectorImpl<Value*> &InvokeDestPHIValues) { | 
|  | for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { | 
|  | Instruction *I = BBI++; | 
|  |  | 
|  | // We only need to check for function calls: inlined invoke | 
|  | // instructions require no special handling. | 
|  | CallInst *CI = dyn_cast<CallInst>(I); | 
|  | if (CI == 0) continue; | 
|  |  | 
|  | // If this call cannot unwind, don't convert it to an invoke. | 
|  | if (CI->doesNotThrow()) | 
|  | continue; | 
|  |  | 
|  | // Convert this function call into an invoke instruction. | 
|  | // First, split the basic block. | 
|  | BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); | 
|  |  | 
|  | // Next, create the new invoke instruction, inserting it at the end | 
|  | // of the old basic block. | 
|  | SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end()); | 
|  | InvokeInst *II = | 
|  | InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest, | 
|  | InvokeArgs.begin(), InvokeArgs.end(), | 
|  | CI->getName(), BB->getTerminator()); | 
|  | II->setCallingConv(CI->getCallingConv()); | 
|  | II->setAttributes(CI->getAttributes()); | 
|  |  | 
|  | // Make sure that anything using the call now uses the invoke!  This also | 
|  | // updates the CallGraph if present. | 
|  | CI->replaceAllUsesWith(II); | 
|  |  | 
|  | // Delete the unconditional branch inserted by splitBasicBlock | 
|  | BB->getInstList().pop_back(); | 
|  | Split->getInstList().pop_front();  // Delete the original call | 
|  |  | 
|  | // Update any PHI nodes in the exceptional block to indicate that | 
|  | // there is now a new entry in them. | 
|  | unsigned i = 0; | 
|  | for (BasicBlock::iterator I = InvokeDest->begin(); | 
|  | isa<PHINode>(I); ++I, ++i) | 
|  | cast<PHINode>(I)->addIncoming(InvokeDestPHIValues[i], BB); | 
|  |  | 
|  | // This basic block is now complete, the caller will continue scanning the | 
|  | // next one. | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls | 
|  | /// in the body of the inlined function into invokes and turn unwind | 
|  | /// instructions into branches to the invoke unwind dest. | 
|  | /// | 
|  | /// II is the invoke instruction being inlined.  FirstNewBlock is the first | 
|  | /// block of the inlined code (the last block is the end of the function), | 
|  | /// and InlineCodeInfo is information about the code that got inlined. | 
|  | static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, | 
|  | ClonedCodeInfo &InlinedCodeInfo) { | 
|  | BasicBlock *InvokeDest = II->getUnwindDest(); | 
|  | SmallVector<Value*, 8> InvokeDestPHIValues; | 
|  |  | 
|  | // If there are PHI nodes in the unwind destination block, we need to | 
|  | // keep track of which values came into them from this invoke, then remove | 
|  | // the entry for this block. | 
|  | BasicBlock *InvokeBlock = II->getParent(); | 
|  | for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) { | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | // Save the value to use for this edge. | 
|  | InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock)); | 
|  | } | 
|  |  | 
|  | Function *Caller = FirstNewBlock->getParent(); | 
|  |  | 
|  | // The inlined code is currently at the end of the function, scan from the | 
|  | // start of the inlined code to its end, checking for stuff we need to | 
|  | // rewrite.  If the code doesn't have calls or unwinds, we know there is | 
|  | // nothing to rewrite. | 
|  | if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) { | 
|  | // Now that everything is happy, we have one final detail.  The PHI nodes in | 
|  | // the exception destination block still have entries due to the original | 
|  | // invoke instruction.  Eliminate these entries (which might even delete the | 
|  | // PHI node) now. | 
|  | InvokeDest->removePredecessor(II->getParent()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ | 
|  | if (InlinedCodeInfo.ContainsCalls) | 
|  | HandleCallsInBlockInlinedThroughInvoke(BB, InvokeDest, | 
|  | InvokeDestPHIValues); | 
|  |  | 
|  | if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { | 
|  | // An UnwindInst requires special handling when it gets inlined into an | 
|  | // invoke site.  Once this happens, we know that the unwind would cause | 
|  | // a control transfer to the invoke exception destination, so we can | 
|  | // transform it into a direct branch to the exception destination. | 
|  | BranchInst::Create(InvokeDest, UI); | 
|  |  | 
|  | // Delete the unwind instruction! | 
|  | UI->eraseFromParent(); | 
|  |  | 
|  | // Update any PHI nodes in the exceptional block to indicate that | 
|  | // there is now a new entry in them. | 
|  | unsigned i = 0; | 
|  | for (BasicBlock::iterator I = InvokeDest->begin(); | 
|  | isa<PHINode>(I); ++I, ++i) { | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | PN->addIncoming(InvokeDestPHIValues[i], BB); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that everything is happy, we have one final detail.  The PHI nodes in | 
|  | // the exception destination block still have entries due to the original | 
|  | // invoke instruction.  Eliminate these entries (which might even delete the | 
|  | // PHI node) now. | 
|  | InvokeDest->removePredecessor(II->getParent()); | 
|  | } | 
|  |  | 
|  | /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee | 
|  | /// into the caller, update the specified callgraph to reflect the changes we | 
|  | /// made.  Note that it's possible that not all code was copied over, so only | 
|  | /// some edges of the callgraph may remain. | 
|  | static void UpdateCallGraphAfterInlining(CallSite CS, | 
|  | Function::iterator FirstNewBlock, | 
|  | DenseMap<const Value*, Value*> &ValueMap, | 
|  | CallGraph &CG) { | 
|  | const Function *Caller = CS.getInstruction()->getParent()->getParent(); | 
|  | const Function *Callee = CS.getCalledFunction(); | 
|  | CallGraphNode *CalleeNode = CG[Callee]; | 
|  | CallGraphNode *CallerNode = CG[Caller]; | 
|  |  | 
|  | // Since we inlined some uninlined call sites in the callee into the caller, | 
|  | // add edges from the caller to all of the callees of the callee. | 
|  | CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); | 
|  |  | 
|  | // Consider the case where CalleeNode == CallerNode. | 
|  | CallGraphNode::CalledFunctionsVector CallCache; | 
|  | if (CalleeNode == CallerNode) { | 
|  | CallCache.assign(I, E); | 
|  | I = CallCache.begin(); | 
|  | E = CallCache.end(); | 
|  | } | 
|  |  | 
|  | for (; I != E; ++I) { | 
|  | const Value *OrigCall = I->first; | 
|  |  | 
|  | DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall); | 
|  | // Only copy the edge if the call was inlined! | 
|  | if (VMI == ValueMap.end() || VMI->second == 0) | 
|  | continue; | 
|  |  | 
|  | // If the call was inlined, but then constant folded, there is no edge to | 
|  | // add.  Check for this case. | 
|  | if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second)) | 
|  | CallerNode->addCalledFunction(CallSite::get(NewCall), I->second); | 
|  | } | 
|  |  | 
|  | // Update the call graph by deleting the edge from Callee to Caller.  We must | 
|  | // do this after the loop above in case Caller and Callee are the same. | 
|  | CallerNode->removeCallEdgeFor(CS); | 
|  | } | 
|  |  | 
|  | // InlineFunction - This function inlines the called function into the basic | 
|  | // block of the caller.  This returns false if it is not possible to inline this | 
|  | // call.  The program is still in a well defined state if this occurs though. | 
|  | // | 
|  | // Note that this only does one level of inlining.  For example, if the | 
|  | // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now | 
|  | // exists in the instruction stream.  Similiarly this will inline a recursive | 
|  | // function by one level. | 
|  | // | 
|  | bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD, | 
|  | SmallVectorImpl<AllocaInst*> *StaticAllocas) { | 
|  | Instruction *TheCall = CS.getInstruction(); | 
|  | LLVMContext &Context = TheCall->getContext(); | 
|  | assert(TheCall->getParent() && TheCall->getParent()->getParent() && | 
|  | "Instruction not in function!"); | 
|  |  | 
|  | const Function *CalledFunc = CS.getCalledFunction(); | 
|  | if (CalledFunc == 0 ||          // Can't inline external function or indirect | 
|  | CalledFunc->isDeclaration() || // call, or call to a vararg function! | 
|  | CalledFunc->getFunctionType()->isVarArg()) return false; | 
|  |  | 
|  |  | 
|  | // If the call to the callee is not a tail call, we must clear the 'tail' | 
|  | // flags on any calls that we inline. | 
|  | bool MustClearTailCallFlags = | 
|  | !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall()); | 
|  |  | 
|  | // If the call to the callee cannot throw, set the 'nounwind' flag on any | 
|  | // calls that we inline. | 
|  | bool MarkNoUnwind = CS.doesNotThrow(); | 
|  |  | 
|  | BasicBlock *OrigBB = TheCall->getParent(); | 
|  | Function *Caller = OrigBB->getParent(); | 
|  |  | 
|  | // GC poses two hazards to inlining, which only occur when the callee has GC: | 
|  | //  1. If the caller has no GC, then the callee's GC must be propagated to the | 
|  | //     caller. | 
|  | //  2. If the caller has a differing GC, it is invalid to inline. | 
|  | if (CalledFunc->hasGC()) { | 
|  | if (!Caller->hasGC()) | 
|  | Caller->setGC(CalledFunc->getGC()); | 
|  | else if (CalledFunc->getGC() != Caller->getGC()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Get an iterator to the last basic block in the function, which will have | 
|  | // the new function inlined after it. | 
|  | // | 
|  | Function::iterator LastBlock = &Caller->back(); | 
|  |  | 
|  | // Make sure to capture all of the return instructions from the cloned | 
|  | // function. | 
|  | SmallVector<ReturnInst*, 8> Returns; | 
|  | ClonedCodeInfo InlinedFunctionInfo; | 
|  | Function::iterator FirstNewBlock; | 
|  |  | 
|  | { // Scope to destroy ValueMap after cloning. | 
|  | DenseMap<const Value*, Value*> ValueMap; | 
|  |  | 
|  | assert(CalledFunc->arg_size() == CS.arg_size() && | 
|  | "No varargs calls can be inlined!"); | 
|  |  | 
|  | // Calculate the vector of arguments to pass into the function cloner, which | 
|  | // matches up the formal to the actual argument values. | 
|  | CallSite::arg_iterator AI = CS.arg_begin(); | 
|  | unsigned ArgNo = 0; | 
|  | for (Function::const_arg_iterator I = CalledFunc->arg_begin(), | 
|  | E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { | 
|  | Value *ActualArg = *AI; | 
|  |  | 
|  | // When byval arguments actually inlined, we need to make the copy implied | 
|  | // by them explicit.  However, we don't do this if the callee is readonly | 
|  | // or readnone, because the copy would be unneeded: the callee doesn't | 
|  | // modify the struct. | 
|  | if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) && | 
|  | !CalledFunc->onlyReadsMemory()) { | 
|  | const Type *AggTy = cast<PointerType>(I->getType())->getElementType(); | 
|  | const Type *VoidPtrTy = | 
|  | Type::getInt8PtrTy(Context); | 
|  |  | 
|  | // Create the alloca.  If we have TargetData, use nice alignment. | 
|  | unsigned Align = 1; | 
|  | if (TD) Align = TD->getPrefTypeAlignment(AggTy); | 
|  | Value *NewAlloca = new AllocaInst(AggTy, 0, Align, | 
|  | I->getName(), | 
|  | &*Caller->begin()->begin()); | 
|  | // Emit a memcpy. | 
|  | const Type *Tys[] = { Type::getInt64Ty(Context) }; | 
|  | Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), | 
|  | Intrinsic::memcpy, | 
|  | Tys, 1); | 
|  | Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); | 
|  | Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall); | 
|  |  | 
|  | Value *Size; | 
|  | if (TD == 0) | 
|  | Size = ConstantExpr::getSizeOf(AggTy); | 
|  | else | 
|  | Size = ConstantInt::get(Type::getInt64Ty(Context), | 
|  | TD->getTypeStoreSize(AggTy)); | 
|  |  | 
|  | // Always generate a memcpy of alignment 1 here because we don't know | 
|  | // the alignment of the src pointer.  Other optimizations can infer | 
|  | // better alignment. | 
|  | Value *CallArgs[] = { | 
|  | DestCast, SrcCast, Size, | 
|  | ConstantInt::get(Type::getInt32Ty(Context), 1) | 
|  | }; | 
|  | CallInst *TheMemCpy = | 
|  | CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall); | 
|  |  | 
|  | // If we have a call graph, update it. | 
|  | if (CG) { | 
|  | CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn); | 
|  | CallGraphNode *CallerNode = (*CG)[Caller]; | 
|  | CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN); | 
|  | } | 
|  |  | 
|  | // Uses of the argument in the function should use our new alloca | 
|  | // instead. | 
|  | ActualArg = NewAlloca; | 
|  | } | 
|  |  | 
|  | ValueMap[I] = ActualArg; | 
|  | } | 
|  |  | 
|  | // We want the inliner to prune the code as it copies.  We would LOVE to | 
|  | // have no dead or constant instructions leftover after inlining occurs | 
|  | // (which can happen, e.g., because an argument was constant), but we'll be | 
|  | // happy with whatever the cloner can do. | 
|  | CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i", | 
|  | &InlinedFunctionInfo, TD, TheCall); | 
|  |  | 
|  | // Remember the first block that is newly cloned over. | 
|  | FirstNewBlock = LastBlock; ++FirstNewBlock; | 
|  |  | 
|  | // Update the callgraph if requested. | 
|  | if (CG) | 
|  | UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG); | 
|  | } | 
|  |  | 
|  | // If there are any alloca instructions in the block that used to be the entry | 
|  | // block for the callee, move them to the entry block of the caller.  First | 
|  | // calculate which instruction they should be inserted before.  We insert the | 
|  | // instructions at the end of the current alloca list. | 
|  | // | 
|  | { | 
|  | BasicBlock::iterator InsertPoint = Caller->begin()->begin(); | 
|  | for (BasicBlock::iterator I = FirstNewBlock->begin(), | 
|  | E = FirstNewBlock->end(); I != E; ) { | 
|  | AllocaInst *AI = dyn_cast<AllocaInst>(I++); | 
|  | if (AI == 0) continue; | 
|  |  | 
|  | // If the alloca is now dead, remove it.  This often occurs due to code | 
|  | // specialization. | 
|  | if (AI->use_empty()) { | 
|  | AI->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!isa<Constant>(AI->getArraySize())) | 
|  | continue; | 
|  |  | 
|  | // Keep track of the static allocas that we inline into the caller if the | 
|  | // StaticAllocas pointer is non-null. | 
|  | if (StaticAllocas) StaticAllocas->push_back(AI); | 
|  |  | 
|  | // Scan for the block of allocas that we can move over, and move them | 
|  | // all at once. | 
|  | while (isa<AllocaInst>(I) && | 
|  | isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { | 
|  | if (StaticAllocas) StaticAllocas->push_back(cast<AllocaInst>(I)); | 
|  | ++I; | 
|  | } | 
|  |  | 
|  | // Transfer all of the allocas over in a block.  Using splice means | 
|  | // that the instructions aren't removed from the symbol table, then | 
|  | // reinserted. | 
|  | Caller->getEntryBlock().getInstList().splice(InsertPoint, | 
|  | FirstNewBlock->getInstList(), | 
|  | AI, I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the inlined code contained dynamic alloca instructions, wrap the inlined | 
|  | // code with llvm.stacksave/llvm.stackrestore intrinsics. | 
|  | if (InlinedFunctionInfo.ContainsDynamicAllocas) { | 
|  | Module *M = Caller->getParent(); | 
|  | // Get the two intrinsics we care about. | 
|  | Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); | 
|  | Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); | 
|  |  | 
|  | // If we are preserving the callgraph, add edges to the stacksave/restore | 
|  | // functions for the calls we insert. | 
|  | CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0; | 
|  | if (CG) { | 
|  | StackSaveCGN    = CG->getOrInsertFunction(StackSave); | 
|  | StackRestoreCGN = CG->getOrInsertFunction(StackRestore); | 
|  | CallerNode = (*CG)[Caller]; | 
|  | } | 
|  |  | 
|  | // Insert the llvm.stacksave. | 
|  | CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack", | 
|  | FirstNewBlock->begin()); | 
|  | if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN); | 
|  |  | 
|  | // Insert a call to llvm.stackrestore before any return instructions in the | 
|  | // inlined function. | 
|  | for (unsigned i = 0, e = Returns.size(); i != e; ++i) { | 
|  | CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]); | 
|  | if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN); | 
|  | } | 
|  |  | 
|  | // Count the number of StackRestore calls we insert. | 
|  | unsigned NumStackRestores = Returns.size(); | 
|  |  | 
|  | // If we are inlining an invoke instruction, insert restores before each | 
|  | // unwind.  These unwinds will be rewritten into branches later. | 
|  | if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) { | 
|  | for (Function::iterator BB = FirstNewBlock, E = Caller->end(); | 
|  | BB != E; ++BB) | 
|  | if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { | 
|  | CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", UI); | 
|  | if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN); | 
|  | ++NumStackRestores; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we are inlining tail call instruction through a call site that isn't | 
|  | // marked 'tail', we must remove the tail marker for any calls in the inlined | 
|  | // code.  Also, calls inlined through a 'nounwind' call site should be marked | 
|  | // 'nounwind'. | 
|  | if (InlinedFunctionInfo.ContainsCalls && | 
|  | (MustClearTailCallFlags || MarkNoUnwind)) { | 
|  | for (Function::iterator BB = FirstNewBlock, E = Caller->end(); | 
|  | BB != E; ++BB) | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
|  | if (CallInst *CI = dyn_cast<CallInst>(I)) { | 
|  | if (MustClearTailCallFlags) | 
|  | CI->setTailCall(false); | 
|  | if (MarkNoUnwind) | 
|  | CI->setDoesNotThrow(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we are inlining through a 'nounwind' call site then any inlined 'unwind' | 
|  | // instructions are unreachable. | 
|  | if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind) | 
|  | for (Function::iterator BB = FirstNewBlock, E = Caller->end(); | 
|  | BB != E; ++BB) { | 
|  | TerminatorInst *Term = BB->getTerminator(); | 
|  | if (isa<UnwindInst>(Term)) { | 
|  | new UnreachableInst(Context, Term); | 
|  | BB->getInstList().erase(Term); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we are inlining for an invoke instruction, we must make sure to rewrite | 
|  | // any inlined 'unwind' instructions into branches to the invoke exception | 
|  | // destination, and call instructions into invoke instructions. | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) | 
|  | HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); | 
|  |  | 
|  | // If we cloned in _exactly one_ basic block, and if that block ends in a | 
|  | // return instruction, we splice the body of the inlined callee directly into | 
|  | // the calling basic block. | 
|  | if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { | 
|  | // Move all of the instructions right before the call. | 
|  | OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), | 
|  | FirstNewBlock->begin(), FirstNewBlock->end()); | 
|  | // Remove the cloned basic block. | 
|  | Caller->getBasicBlockList().pop_back(); | 
|  |  | 
|  | // If the call site was an invoke instruction, add a branch to the normal | 
|  | // destination. | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) | 
|  | BranchInst::Create(II->getNormalDest(), TheCall); | 
|  |  | 
|  | // If the return instruction returned a value, replace uses of the call with | 
|  | // uses of the returned value. | 
|  | if (!TheCall->use_empty()) { | 
|  | ReturnInst *R = Returns[0]; | 
|  | if (TheCall == R->getReturnValue()) | 
|  | TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); | 
|  | else | 
|  | TheCall->replaceAllUsesWith(R->getReturnValue()); | 
|  | } | 
|  | // Since we are now done with the Call/Invoke, we can delete it. | 
|  | TheCall->eraseFromParent(); | 
|  |  | 
|  | // Since we are now done with the return instruction, delete it also. | 
|  | Returns[0]->eraseFromParent(); | 
|  |  | 
|  | // We are now done with the inlining. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, we have the normal case, of more than one block to inline or | 
|  | // multiple return sites. | 
|  |  | 
|  | // We want to clone the entire callee function into the hole between the | 
|  | // "starter" and "ender" blocks.  How we accomplish this depends on whether | 
|  | // this is an invoke instruction or a call instruction. | 
|  | BasicBlock *AfterCallBB; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { | 
|  |  | 
|  | // Add an unconditional branch to make this look like the CallInst case... | 
|  | BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); | 
|  |  | 
|  | // Split the basic block.  This guarantees that no PHI nodes will have to be | 
|  | // updated due to new incoming edges, and make the invoke case more | 
|  | // symmetric to the call case. | 
|  | AfterCallBB = OrigBB->splitBasicBlock(NewBr, | 
|  | CalledFunc->getName()+".exit"); | 
|  |  | 
|  | } else {  // It's a call | 
|  | // If this is a call instruction, we need to split the basic block that | 
|  | // the call lives in. | 
|  | // | 
|  | AfterCallBB = OrigBB->splitBasicBlock(TheCall, | 
|  | CalledFunc->getName()+".exit"); | 
|  | } | 
|  |  | 
|  | // Change the branch that used to go to AfterCallBB to branch to the first | 
|  | // basic block of the inlined function. | 
|  | // | 
|  | TerminatorInst *Br = OrigBB->getTerminator(); | 
|  | assert(Br && Br->getOpcode() == Instruction::Br && | 
|  | "splitBasicBlock broken!"); | 
|  | Br->setOperand(0, FirstNewBlock); | 
|  |  | 
|  |  | 
|  | // Now that the function is correct, make it a little bit nicer.  In | 
|  | // particular, move the basic blocks inserted from the end of the function | 
|  | // into the space made by splitting the source basic block. | 
|  | Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), | 
|  | FirstNewBlock, Caller->end()); | 
|  |  | 
|  | // Handle all of the return instructions that we just cloned in, and eliminate | 
|  | // any users of the original call/invoke instruction. | 
|  | const Type *RTy = CalledFunc->getReturnType(); | 
|  |  | 
|  | if (Returns.size() > 1) { | 
|  | // The PHI node should go at the front of the new basic block to merge all | 
|  | // possible incoming values. | 
|  | PHINode *PHI = 0; | 
|  | if (!TheCall->use_empty()) { | 
|  | PHI = PHINode::Create(RTy, TheCall->getName(), | 
|  | AfterCallBB->begin()); | 
|  | // Anything that used the result of the function call should now use the | 
|  | // PHI node as their operand. | 
|  | TheCall->replaceAllUsesWith(PHI); | 
|  | } | 
|  |  | 
|  | // Loop over all of the return instructions adding entries to the PHI node | 
|  | // as appropriate. | 
|  | if (PHI) { | 
|  | for (unsigned i = 0, e = Returns.size(); i != e; ++i) { | 
|  | ReturnInst *RI = Returns[i]; | 
|  | assert(RI->getReturnValue()->getType() == PHI->getType() && | 
|  | "Ret value not consistent in function!"); | 
|  | PHI->addIncoming(RI->getReturnValue(), RI->getParent()); | 
|  | } | 
|  |  | 
|  | // Now that we inserted the PHI, check to see if it has a single value | 
|  | // (e.g. all the entries are the same or undef).  If so, remove the PHI so | 
|  | // it doesn't block other optimizations. | 
|  | if (Value *V = PHI->hasConstantValue()) { | 
|  | PHI->replaceAllUsesWith(V); | 
|  | PHI->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Add a branch to the merge points and remove return instructions. | 
|  | for (unsigned i = 0, e = Returns.size(); i != e; ++i) { | 
|  | ReturnInst *RI = Returns[i]; | 
|  | BranchInst::Create(AfterCallBB, RI); | 
|  | RI->eraseFromParent(); | 
|  | } | 
|  | } else if (!Returns.empty()) { | 
|  | // Otherwise, if there is exactly one return value, just replace anything | 
|  | // using the return value of the call with the computed value. | 
|  | if (!TheCall->use_empty()) { | 
|  | if (TheCall == Returns[0]->getReturnValue()) | 
|  | TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); | 
|  | else | 
|  | TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); | 
|  | } | 
|  |  | 
|  | // Splice the code from the return block into the block that it will return | 
|  | // to, which contains the code that was after the call. | 
|  | BasicBlock *ReturnBB = Returns[0]->getParent(); | 
|  | AfterCallBB->getInstList().splice(AfterCallBB->begin(), | 
|  | ReturnBB->getInstList()); | 
|  |  | 
|  | // Update PHI nodes that use the ReturnBB to use the AfterCallBB. | 
|  | ReturnBB->replaceAllUsesWith(AfterCallBB); | 
|  |  | 
|  | // Delete the return instruction now and empty ReturnBB now. | 
|  | Returns[0]->eraseFromParent(); | 
|  | ReturnBB->eraseFromParent(); | 
|  | } else if (!TheCall->use_empty()) { | 
|  | // No returns, but something is using the return value of the call.  Just | 
|  | // nuke the result. | 
|  | TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); | 
|  | } | 
|  |  | 
|  | // Since we are now done with the Call/Invoke, we can delete it. | 
|  | TheCall->eraseFromParent(); | 
|  |  | 
|  | // We should always be able to fold the entry block of the function into the | 
|  | // single predecessor of the block... | 
|  | assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); | 
|  | BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); | 
|  |  | 
|  | // Splice the code entry block into calling block, right before the | 
|  | // unconditional branch. | 
|  | OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); | 
|  | CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes | 
|  |  | 
|  | // Remove the unconditional branch. | 
|  | OrigBB->getInstList().erase(Br); | 
|  |  | 
|  | // Now we can remove the CalleeEntry block, which is now empty. | 
|  | Caller->getBasicBlockList().erase(CalleeEntry); | 
|  |  | 
|  | return true; | 
|  | } |