|  | //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This contains code to emit Stmt nodes as LLVM code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CGDebugInfo.h" | 
|  | #include "CodeGenModule.h" | 
|  | #include "CodeGenFunction.h" | 
|  | #include "clang/AST/StmtVisitor.h" | 
|  | #include "clang/Basic/PrettyStackTrace.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/InlineAsm.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | using namespace clang; | 
|  | using namespace CodeGen; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                              Statement Emission | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void CodeGenFunction::EmitStopPoint(const Stmt *S) { | 
|  | if (CGDebugInfo *DI = getDebugInfo()) { | 
|  | if (isa<DeclStmt>(S)) | 
|  | DI->setLocation(S->getLocEnd()); | 
|  | else | 
|  | DI->setLocation(S->getLocStart()); | 
|  | DI->UpdateLineDirectiveRegion(Builder); | 
|  | DI->EmitStopPoint(Builder); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitStmt(const Stmt *S) { | 
|  | assert(S && "Null statement?"); | 
|  |  | 
|  | // Check if we can handle this without bothering to generate an | 
|  | // insert point or debug info. | 
|  | if (EmitSimpleStmt(S)) | 
|  | return; | 
|  |  | 
|  | // Check if we are generating unreachable code. | 
|  | if (!HaveInsertPoint()) { | 
|  | // If so, and the statement doesn't contain a label, then we do not need to | 
|  | // generate actual code. This is safe because (1) the current point is | 
|  | // unreachable, so we don't need to execute the code, and (2) we've already | 
|  | // handled the statements which update internal data structures (like the | 
|  | // local variable map) which could be used by subsequent statements. | 
|  | if (!ContainsLabel(S)) { | 
|  | // Verify that any decl statements were handled as simple, they may be in | 
|  | // scope of subsequent reachable statements. | 
|  | assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, make a new block to hold the code. | 
|  | EnsureInsertPoint(); | 
|  | } | 
|  |  | 
|  | // Generate a stoppoint if we are emitting debug info. | 
|  | EmitStopPoint(S); | 
|  |  | 
|  | switch (S->getStmtClass()) { | 
|  | default: | 
|  | // Must be an expression in a stmt context.  Emit the value (to get | 
|  | // side-effects) and ignore the result. | 
|  | if (!isa<Expr>(S)) | 
|  | ErrorUnsupported(S, "statement"); | 
|  |  | 
|  | EmitAnyExpr(cast<Expr>(S), AggValueSlot::ignored(), true); | 
|  |  | 
|  | // Expression emitters don't handle unreachable blocks yet, so look for one | 
|  | // explicitly here. This handles the common case of a call to a noreturn | 
|  | // function. | 
|  | if (llvm::BasicBlock *CurBB = Builder.GetInsertBlock()) { | 
|  | if (CurBB->empty() && CurBB->use_empty()) { | 
|  | CurBB->eraseFromParent(); | 
|  | Builder.ClearInsertionPoint(); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Stmt::IndirectGotoStmtClass: | 
|  | EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; | 
|  |  | 
|  | case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break; | 
|  | case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break; | 
|  | case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break; | 
|  | case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break; | 
|  |  | 
|  | case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break; | 
|  |  | 
|  | case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break; | 
|  | case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break; | 
|  |  | 
|  | case Stmt::ObjCAtTryStmtClass: | 
|  | EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); | 
|  | break; | 
|  | case Stmt::ObjCAtCatchStmtClass: | 
|  | assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt"); | 
|  | break; | 
|  | case Stmt::ObjCAtFinallyStmtClass: | 
|  | assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt"); | 
|  | break; | 
|  | case Stmt::ObjCAtThrowStmtClass: | 
|  | EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); | 
|  | break; | 
|  | case Stmt::ObjCAtSynchronizedStmtClass: | 
|  | EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); | 
|  | break; | 
|  | case Stmt::ObjCForCollectionStmtClass: | 
|  | EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); | 
|  | break; | 
|  |  | 
|  | case Stmt::CXXTryStmtClass: | 
|  | EmitCXXTryStmt(cast<CXXTryStmt>(*S)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { | 
|  | switch (S->getStmtClass()) { | 
|  | default: return false; | 
|  | case Stmt::NullStmtClass: break; | 
|  | case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; | 
|  | case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break; | 
|  | case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break; | 
|  | case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break; | 
|  | case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break; | 
|  | case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; | 
|  | case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break; | 
|  | case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true, | 
|  | /// this captures the expression result of the last sub-statement and returns it | 
|  | /// (for use by the statement expression extension). | 
|  | RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, | 
|  | AggValueSlot AggSlot) { | 
|  | PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), | 
|  | "LLVM IR generation of compound statement ('{}')"); | 
|  |  | 
|  | CGDebugInfo *DI = getDebugInfo(); | 
|  | if (DI) { | 
|  | DI->setLocation(S.getLBracLoc()); | 
|  | DI->EmitRegionStart(Builder); | 
|  | } | 
|  |  | 
|  | // Keep track of the current cleanup stack depth. | 
|  | RunCleanupsScope Scope(*this); | 
|  |  | 
|  | for (CompoundStmt::const_body_iterator I = S.body_begin(), | 
|  | E = S.body_end()-GetLast; I != E; ++I) | 
|  | EmitStmt(*I); | 
|  |  | 
|  | if (DI) { | 
|  | DI->setLocation(S.getRBracLoc()); | 
|  | DI->EmitRegionEnd(Builder); | 
|  | } | 
|  |  | 
|  | RValue RV; | 
|  | if (!GetLast) | 
|  | RV = RValue::get(0); | 
|  | else { | 
|  | // We have to special case labels here.  They are statements, but when put | 
|  | // at the end of a statement expression, they yield the value of their | 
|  | // subexpression.  Handle this by walking through all labels we encounter, | 
|  | // emitting them before we evaluate the subexpr. | 
|  | const Stmt *LastStmt = S.body_back(); | 
|  | while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { | 
|  | EmitLabel(*LS); | 
|  | LastStmt = LS->getSubStmt(); | 
|  | } | 
|  |  | 
|  | EnsureInsertPoint(); | 
|  |  | 
|  | RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot); | 
|  | } | 
|  |  | 
|  | return RV; | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { | 
|  | llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); | 
|  |  | 
|  | // If there is a cleanup stack, then we it isn't worth trying to | 
|  | // simplify this block (we would need to remove it from the scope map | 
|  | // and cleanup entry). | 
|  | if (!EHStack.empty()) | 
|  | return; | 
|  |  | 
|  | // Can only simplify direct branches. | 
|  | if (!BI || !BI->isUnconditional()) | 
|  | return; | 
|  |  | 
|  | BB->replaceAllUsesWith(BI->getSuccessor(0)); | 
|  | BI->eraseFromParent(); | 
|  | BB->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { | 
|  | llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Fall out of the current block (if necessary). | 
|  | EmitBranch(BB); | 
|  |  | 
|  | if (IsFinished && BB->use_empty()) { | 
|  | delete BB; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Place the block after the current block, if possible, or else at | 
|  | // the end of the function. | 
|  | if (CurBB && CurBB->getParent()) | 
|  | CurFn->getBasicBlockList().insertAfter(CurBB, BB); | 
|  | else | 
|  | CurFn->getBasicBlockList().push_back(BB); | 
|  | Builder.SetInsertPoint(BB); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { | 
|  | // Emit a branch from the current block to the target one if this | 
|  | // was a real block.  If this was just a fall-through block after a | 
|  | // terminator, don't emit it. | 
|  | llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | if (!CurBB || CurBB->getTerminator()) { | 
|  | // If there is no insert point or the previous block is already | 
|  | // terminated, don't touch it. | 
|  | } else { | 
|  | // Otherwise, create a fall-through branch. | 
|  | Builder.CreateBr(Target); | 
|  | } | 
|  |  | 
|  | Builder.ClearInsertionPoint(); | 
|  | } | 
|  |  | 
|  | CodeGenFunction::JumpDest | 
|  | CodeGenFunction::getJumpDestForLabel(const LabelStmt *S) { | 
|  | JumpDest &Dest = LabelMap[S]; | 
|  | if (Dest.isValid()) return Dest; | 
|  |  | 
|  | // Create, but don't insert, the new block. | 
|  | Dest = JumpDest(createBasicBlock(S->getName()), | 
|  | EHScopeStack::stable_iterator::invalid(), | 
|  | NextCleanupDestIndex++); | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitLabel(const LabelStmt &S) { | 
|  | JumpDest &Dest = LabelMap[&S]; | 
|  |  | 
|  | // If we didn't need a forward reference to this label, just go | 
|  | // ahead and create a destination at the current scope. | 
|  | if (!Dest.isValid()) { | 
|  | Dest = getJumpDestInCurrentScope(S.getName()); | 
|  |  | 
|  | // Otherwise, we need to give this label a target depth and remove | 
|  | // it from the branch-fixups list. | 
|  | } else { | 
|  | assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); | 
|  | Dest = JumpDest(Dest.getBlock(), | 
|  | EHStack.stable_begin(), | 
|  | Dest.getDestIndex()); | 
|  |  | 
|  | ResolveBranchFixups(Dest.getBlock()); | 
|  | } | 
|  |  | 
|  | EmitBlock(Dest.getBlock()); | 
|  | } | 
|  |  | 
|  |  | 
|  | void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { | 
|  | EmitLabel(S); | 
|  | EmitStmt(S.getSubStmt()); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { | 
|  | // If this code is reachable then emit a stop point (if generating | 
|  | // debug info). We have to do this ourselves because we are on the | 
|  | // "simple" statement path. | 
|  | if (HaveInsertPoint()) | 
|  | EmitStopPoint(&S); | 
|  |  | 
|  | EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); | 
|  | } | 
|  |  | 
|  |  | 
|  | void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { | 
|  | if (const LabelStmt *Target = S.getConstantTarget()) { | 
|  | EmitBranchThroughCleanup(getJumpDestForLabel(Target)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Ensure that we have an i8* for our PHI node. | 
|  | llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), | 
|  | llvm::Type::getInt8PtrTy(VMContext), | 
|  | "addr"); | 
|  | llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); | 
|  |  | 
|  |  | 
|  | // Get the basic block for the indirect goto. | 
|  | llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); | 
|  |  | 
|  | // The first instruction in the block has to be the PHI for the switch dest, | 
|  | // add an entry for this branch. | 
|  | cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); | 
|  |  | 
|  | EmitBranch(IndGotoBB); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitIfStmt(const IfStmt &S) { | 
|  | // C99 6.8.4.1: The first substatement is executed if the expression compares | 
|  | // unequal to 0.  The condition must be a scalar type. | 
|  | RunCleanupsScope ConditionScope(*this); | 
|  |  | 
|  | if (S.getConditionVariable()) | 
|  | EmitAutoVarDecl(*S.getConditionVariable()); | 
|  |  | 
|  | // If the condition constant folds and can be elided, try to avoid emitting | 
|  | // the condition and the dead arm of the if/else. | 
|  | if (int Cond = ConstantFoldsToSimpleInteger(S.getCond())) { | 
|  | // Figure out which block (then or else) is executed. | 
|  | const Stmt *Executed = S.getThen(), *Skipped  = S.getElse(); | 
|  | if (Cond == -1)  // Condition false? | 
|  | std::swap(Executed, Skipped); | 
|  |  | 
|  | // If the skipped block has no labels in it, just emit the executed block. | 
|  | // This avoids emitting dead code and simplifies the CFG substantially. | 
|  | if (!ContainsLabel(Skipped)) { | 
|  | if (Executed) { | 
|  | RunCleanupsScope ExecutedScope(*this); | 
|  | EmitStmt(Executed); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit | 
|  | // the conditional branch. | 
|  | llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); | 
|  | llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); | 
|  | llvm::BasicBlock *ElseBlock = ContBlock; | 
|  | if (S.getElse()) | 
|  | ElseBlock = createBasicBlock("if.else"); | 
|  | EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock); | 
|  |  | 
|  | // Emit the 'then' code. | 
|  | EmitBlock(ThenBlock); | 
|  | { | 
|  | RunCleanupsScope ThenScope(*this); | 
|  | EmitStmt(S.getThen()); | 
|  | } | 
|  | EmitBranch(ContBlock); | 
|  |  | 
|  | // Emit the 'else' code if present. | 
|  | if (const Stmt *Else = S.getElse()) { | 
|  | EmitBlock(ElseBlock); | 
|  | { | 
|  | RunCleanupsScope ElseScope(*this); | 
|  | EmitStmt(Else); | 
|  | } | 
|  | EmitBranch(ContBlock); | 
|  | } | 
|  |  | 
|  | // Emit the continuation block for code after the if. | 
|  | EmitBlock(ContBlock, true); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { | 
|  | // Emit the header for the loop, which will also become | 
|  | // the continue target. | 
|  | JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); | 
|  | EmitBlock(LoopHeader.getBlock()); | 
|  |  | 
|  | // Create an exit block for when the condition fails, which will | 
|  | // also become the break target. | 
|  | JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); | 
|  |  | 
|  | // Store the blocks to use for break and continue. | 
|  | BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); | 
|  |  | 
|  | // C++ [stmt.while]p2: | 
|  | //   When the condition of a while statement is a declaration, the | 
|  | //   scope of the variable that is declared extends from its point | 
|  | //   of declaration (3.3.2) to the end of the while statement. | 
|  | //   [...] | 
|  | //   The object created in a condition is destroyed and created | 
|  | //   with each iteration of the loop. | 
|  | RunCleanupsScope ConditionScope(*this); | 
|  |  | 
|  | if (S.getConditionVariable()) | 
|  | EmitAutoVarDecl(*S.getConditionVariable()); | 
|  |  | 
|  | // Evaluate the conditional in the while header.  C99 6.8.5.1: The | 
|  | // evaluation of the controlling expression takes place before each | 
|  | // execution of the loop body. | 
|  | llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); | 
|  |  | 
|  | // while(1) is common, avoid extra exit blocks.  Be sure | 
|  | // to correctly handle break/continue though. | 
|  | bool EmitBoolCondBranch = true; | 
|  | if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) | 
|  | if (C->isOne()) | 
|  | EmitBoolCondBranch = false; | 
|  |  | 
|  | // As long as the condition is true, go to the loop body. | 
|  | llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); | 
|  | if (EmitBoolCondBranch) { | 
|  | llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); | 
|  | if (ConditionScope.requiresCleanups()) | 
|  | ExitBlock = createBasicBlock("while.exit"); | 
|  |  | 
|  | Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); | 
|  |  | 
|  | if (ExitBlock != LoopExit.getBlock()) { | 
|  | EmitBlock(ExitBlock); | 
|  | EmitBranchThroughCleanup(LoopExit); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the loop body.  We have to emit this in a cleanup scope | 
|  | // because it might be a singleton DeclStmt. | 
|  | { | 
|  | RunCleanupsScope BodyScope(*this); | 
|  | EmitBlock(LoopBody); | 
|  | EmitStmt(S.getBody()); | 
|  | } | 
|  |  | 
|  | BreakContinueStack.pop_back(); | 
|  |  | 
|  | // Immediately force cleanup. | 
|  | ConditionScope.ForceCleanup(); | 
|  |  | 
|  | // Branch to the loop header again. | 
|  | EmitBranch(LoopHeader.getBlock()); | 
|  |  | 
|  | // Emit the exit block. | 
|  | EmitBlock(LoopExit.getBlock(), true); | 
|  |  | 
|  | // The LoopHeader typically is just a branch if we skipped emitting | 
|  | // a branch, try to erase it. | 
|  | if (!EmitBoolCondBranch) | 
|  | SimplifyForwardingBlocks(LoopHeader.getBlock()); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitDoStmt(const DoStmt &S) { | 
|  | JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); | 
|  | JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); | 
|  |  | 
|  | // Store the blocks to use for break and continue. | 
|  | BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); | 
|  |  | 
|  | // Emit the body of the loop. | 
|  | llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); | 
|  | EmitBlock(LoopBody); | 
|  | { | 
|  | RunCleanupsScope BodyScope(*this); | 
|  | EmitStmt(S.getBody()); | 
|  | } | 
|  |  | 
|  | BreakContinueStack.pop_back(); | 
|  |  | 
|  | EmitBlock(LoopCond.getBlock()); | 
|  |  | 
|  | // C99 6.8.5.2: "The evaluation of the controlling expression takes place | 
|  | // after each execution of the loop body." | 
|  |  | 
|  | // Evaluate the conditional in the while header. | 
|  | // C99 6.8.5p2/p4: The first substatement is executed if the expression | 
|  | // compares unequal to 0.  The condition must be a scalar type. | 
|  | llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); | 
|  |  | 
|  | // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure | 
|  | // to correctly handle break/continue though. | 
|  | bool EmitBoolCondBranch = true; | 
|  | if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) | 
|  | if (C->isZero()) | 
|  | EmitBoolCondBranch = false; | 
|  |  | 
|  | // As long as the condition is true, iterate the loop. | 
|  | if (EmitBoolCondBranch) | 
|  | Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock()); | 
|  |  | 
|  | // Emit the exit block. | 
|  | EmitBlock(LoopExit.getBlock()); | 
|  |  | 
|  | // The DoCond block typically is just a branch if we skipped | 
|  | // emitting a branch, try to erase it. | 
|  | if (!EmitBoolCondBranch) | 
|  | SimplifyForwardingBlocks(LoopCond.getBlock()); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitForStmt(const ForStmt &S) { | 
|  | JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); | 
|  |  | 
|  | RunCleanupsScope ForScope(*this); | 
|  |  | 
|  | CGDebugInfo *DI = getDebugInfo(); | 
|  | if (DI) { | 
|  | DI->setLocation(S.getSourceRange().getBegin()); | 
|  | DI->EmitRegionStart(Builder); | 
|  | } | 
|  |  | 
|  | // Evaluate the first part before the loop. | 
|  | if (S.getInit()) | 
|  | EmitStmt(S.getInit()); | 
|  |  | 
|  | // Start the loop with a block that tests the condition. | 
|  | // If there's an increment, the continue scope will be overwritten | 
|  | // later. | 
|  | JumpDest Continue = getJumpDestInCurrentScope("for.cond"); | 
|  | llvm::BasicBlock *CondBlock = Continue.getBlock(); | 
|  | EmitBlock(CondBlock); | 
|  |  | 
|  | // Create a cleanup scope for the condition variable cleanups. | 
|  | RunCleanupsScope ConditionScope(*this); | 
|  |  | 
|  | llvm::Value *BoolCondVal = 0; | 
|  | if (S.getCond()) { | 
|  | // If the for statement has a condition scope, emit the local variable | 
|  | // declaration. | 
|  | llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); | 
|  | if (S.getConditionVariable()) { | 
|  | EmitAutoVarDecl(*S.getConditionVariable()); | 
|  | } | 
|  |  | 
|  | // If there are any cleanups between here and the loop-exit scope, | 
|  | // create a block to stage a loop exit along. | 
|  | if (ForScope.requiresCleanups()) | 
|  | ExitBlock = createBasicBlock("for.cond.cleanup"); | 
|  |  | 
|  | // As long as the condition is true, iterate the loop. | 
|  | llvm::BasicBlock *ForBody = createBasicBlock("for.body"); | 
|  |  | 
|  | // C99 6.8.5p2/p4: The first substatement is executed if the expression | 
|  | // compares unequal to 0.  The condition must be a scalar type. | 
|  | BoolCondVal = EvaluateExprAsBool(S.getCond()); | 
|  | Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); | 
|  |  | 
|  | if (ExitBlock != LoopExit.getBlock()) { | 
|  | EmitBlock(ExitBlock); | 
|  | EmitBranchThroughCleanup(LoopExit); | 
|  | } | 
|  |  | 
|  | EmitBlock(ForBody); | 
|  | } else { | 
|  | // Treat it as a non-zero constant.  Don't even create a new block for the | 
|  | // body, just fall into it. | 
|  | } | 
|  |  | 
|  | // If the for loop doesn't have an increment we can just use the | 
|  | // condition as the continue block.  Otherwise we'll need to create | 
|  | // a block for it (in the current scope, i.e. in the scope of the | 
|  | // condition), and that we will become our continue block. | 
|  | if (S.getInc()) | 
|  | Continue = getJumpDestInCurrentScope("for.inc"); | 
|  |  | 
|  | // Store the blocks to use for break and continue. | 
|  | BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); | 
|  |  | 
|  | { | 
|  | // Create a separate cleanup scope for the body, in case it is not | 
|  | // a compound statement. | 
|  | RunCleanupsScope BodyScope(*this); | 
|  | EmitStmt(S.getBody()); | 
|  | } | 
|  |  | 
|  | // If there is an increment, emit it next. | 
|  | if (S.getInc()) { | 
|  | EmitBlock(Continue.getBlock()); | 
|  | EmitStmt(S.getInc()); | 
|  | } | 
|  |  | 
|  | BreakContinueStack.pop_back(); | 
|  |  | 
|  | ConditionScope.ForceCleanup(); | 
|  | EmitBranch(CondBlock); | 
|  |  | 
|  | ForScope.ForceCleanup(); | 
|  |  | 
|  | if (DI) { | 
|  | DI->setLocation(S.getSourceRange().getEnd()); | 
|  | DI->EmitRegionEnd(Builder); | 
|  | } | 
|  |  | 
|  | // Emit the fall-through block. | 
|  | EmitBlock(LoopExit.getBlock(), true); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { | 
|  | if (RV.isScalar()) { | 
|  | Builder.CreateStore(RV.getScalarVal(), ReturnValue); | 
|  | } else if (RV.isAggregate()) { | 
|  | EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); | 
|  | } else { | 
|  | StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false); | 
|  | } | 
|  | EmitBranchThroughCleanup(ReturnBlock); | 
|  | } | 
|  |  | 
|  | /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand | 
|  | /// if the function returns void, or may be missing one if the function returns | 
|  | /// non-void.  Fun stuff :). | 
|  | void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { | 
|  | // Emit the result value, even if unused, to evalute the side effects. | 
|  | const Expr *RV = S.getRetValue(); | 
|  |  | 
|  | // FIXME: Clean this up by using an LValue for ReturnTemp, | 
|  | // EmitStoreThroughLValue, and EmitAnyExpr. | 
|  | if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() && | 
|  | !Target.useGlobalsForAutomaticVariables()) { | 
|  | // Apply the named return value optimization for this return statement, | 
|  | // which means doing nothing: the appropriate result has already been | 
|  | // constructed into the NRVO variable. | 
|  |  | 
|  | // If there is an NRVO flag for this variable, set it to 1 into indicate | 
|  | // that the cleanup code should not destroy the variable. | 
|  | if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) { | 
|  | const llvm::Type *BoolTy = llvm::Type::getInt1Ty(VMContext); | 
|  | llvm::Value *One = llvm::ConstantInt::get(BoolTy, 1); | 
|  | Builder.CreateStore(One, NRVOFlag); | 
|  | } | 
|  | } else if (!ReturnValue) { | 
|  | // Make sure not to return anything, but evaluate the expression | 
|  | // for side effects. | 
|  | if (RV) | 
|  | EmitAnyExpr(RV); | 
|  | } else if (RV == 0) { | 
|  | // Do nothing (return value is left uninitialized) | 
|  | } else if (FnRetTy->isReferenceType()) { | 
|  | // If this function returns a reference, take the address of the expression | 
|  | // rather than the value. | 
|  | RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0); | 
|  | Builder.CreateStore(Result.getScalarVal(), ReturnValue); | 
|  | } else if (!hasAggregateLLVMType(RV->getType())) { | 
|  | Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); | 
|  | } else if (RV->getType()->isAnyComplexType()) { | 
|  | EmitComplexExprIntoAddr(RV, ReturnValue, false); | 
|  | } else { | 
|  | EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, false, true)); | 
|  | } | 
|  |  | 
|  | EmitBranchThroughCleanup(ReturnBlock); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { | 
|  | // As long as debug info is modeled with instructions, we have to ensure we | 
|  | // have a place to insert here and write the stop point here. | 
|  | if (getDebugInfo()) { | 
|  | EnsureInsertPoint(); | 
|  | EmitStopPoint(&S); | 
|  | } | 
|  |  | 
|  | for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end(); | 
|  | I != E; ++I) | 
|  | EmitDecl(**I); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { | 
|  | assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); | 
|  |  | 
|  | // If this code is reachable then emit a stop point (if generating | 
|  | // debug info). We have to do this ourselves because we are on the | 
|  | // "simple" statement path. | 
|  | if (HaveInsertPoint()) | 
|  | EmitStopPoint(&S); | 
|  |  | 
|  | JumpDest Block = BreakContinueStack.back().BreakBlock; | 
|  | EmitBranchThroughCleanup(Block); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { | 
|  | assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); | 
|  |  | 
|  | // If this code is reachable then emit a stop point (if generating | 
|  | // debug info). We have to do this ourselves because we are on the | 
|  | // "simple" statement path. | 
|  | if (HaveInsertPoint()) | 
|  | EmitStopPoint(&S); | 
|  |  | 
|  | JumpDest Block = BreakContinueStack.back().ContinueBlock; | 
|  | EmitBranchThroughCleanup(Block); | 
|  | } | 
|  |  | 
|  | /// EmitCaseStmtRange - If case statement range is not too big then | 
|  | /// add multiple cases to switch instruction, one for each value within | 
|  | /// the range. If range is too big then emit "if" condition check. | 
|  | void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { | 
|  | assert(S.getRHS() && "Expected RHS value in CaseStmt"); | 
|  |  | 
|  | llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext()); | 
|  | llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext()); | 
|  |  | 
|  | // Emit the code for this case. We do this first to make sure it is | 
|  | // properly chained from our predecessor before generating the | 
|  | // switch machinery to enter this block. | 
|  | EmitBlock(createBasicBlock("sw.bb")); | 
|  | llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); | 
|  | EmitStmt(S.getSubStmt()); | 
|  |  | 
|  | // If range is empty, do nothing. | 
|  | if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) | 
|  | return; | 
|  |  | 
|  | llvm::APInt Range = RHS - LHS; | 
|  | // FIXME: parameters such as this should not be hardcoded. | 
|  | if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { | 
|  | // Range is small enough to add multiple switch instruction cases. | 
|  | for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) { | 
|  | SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, LHS), CaseDest); | 
|  | LHS++; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The range is too big. Emit "if" condition into a new block, | 
|  | // making sure to save and restore the current insertion point. | 
|  | llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Push this test onto the chain of range checks (which terminates | 
|  | // in the default basic block). The switch's default will be changed | 
|  | // to the top of this chain after switch emission is complete. | 
|  | llvm::BasicBlock *FalseDest = CaseRangeBlock; | 
|  | CaseRangeBlock = createBasicBlock("sw.caserange"); | 
|  |  | 
|  | CurFn->getBasicBlockList().push_back(CaseRangeBlock); | 
|  | Builder.SetInsertPoint(CaseRangeBlock); | 
|  |  | 
|  | // Emit range check. | 
|  | llvm::Value *Diff = | 
|  | Builder.CreateSub(SwitchInsn->getCondition(), | 
|  | llvm::ConstantInt::get(VMContext, LHS),  "tmp"); | 
|  | llvm::Value *Cond = | 
|  | Builder.CreateICmpULE(Diff, | 
|  | llvm::ConstantInt::get(VMContext, Range), "tmp"); | 
|  | Builder.CreateCondBr(Cond, CaseDest, FalseDest); | 
|  |  | 
|  | // Restore the appropriate insertion point. | 
|  | if (RestoreBB) | 
|  | Builder.SetInsertPoint(RestoreBB); | 
|  | else | 
|  | Builder.ClearInsertionPoint(); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { | 
|  | if (S.getRHS()) { | 
|  | EmitCaseStmtRange(S); | 
|  | return; | 
|  | } | 
|  |  | 
|  | EmitBlock(createBasicBlock("sw.bb")); | 
|  | llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); | 
|  | llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext()); | 
|  | SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest); | 
|  |  | 
|  | // Recursively emitting the statement is acceptable, but is not wonderful for | 
|  | // code where we have many case statements nested together, i.e.: | 
|  | //  case 1: | 
|  | //    case 2: | 
|  | //      case 3: etc. | 
|  | // Handling this recursively will create a new block for each case statement | 
|  | // that falls through to the next case which is IR intensive.  It also causes | 
|  | // deep recursion which can run into stack depth limitations.  Handle | 
|  | // sequential non-range case statements specially. | 
|  | const CaseStmt *CurCase = &S; | 
|  | const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); | 
|  |  | 
|  | // Otherwise, iteratively add consequtive cases to this switch stmt. | 
|  | while (NextCase && NextCase->getRHS() == 0) { | 
|  | CurCase = NextCase; | 
|  | CaseVal = CurCase->getLHS()->EvaluateAsInt(getContext()); | 
|  | SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest); | 
|  |  | 
|  | NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); | 
|  | } | 
|  |  | 
|  | // Normal default recursion for non-cases. | 
|  | EmitStmt(CurCase->getSubStmt()); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { | 
|  | llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); | 
|  | assert(DefaultBlock->empty() && | 
|  | "EmitDefaultStmt: Default block already defined?"); | 
|  | EmitBlock(DefaultBlock); | 
|  | EmitStmt(S.getSubStmt()); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { | 
|  | JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); | 
|  |  | 
|  | RunCleanupsScope ConditionScope(*this); | 
|  |  | 
|  | if (S.getConditionVariable()) | 
|  | EmitAutoVarDecl(*S.getConditionVariable()); | 
|  |  | 
|  | llvm::Value *CondV = EmitScalarExpr(S.getCond()); | 
|  |  | 
|  | // Handle nested switch statements. | 
|  | llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; | 
|  | llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; | 
|  |  | 
|  | // Create basic block to hold stuff that comes after switch | 
|  | // statement. We also need to create a default block now so that | 
|  | // explicit case ranges tests can have a place to jump to on | 
|  | // failure. | 
|  | llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); | 
|  | SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); | 
|  | CaseRangeBlock = DefaultBlock; | 
|  |  | 
|  | // Clear the insertion point to indicate we are in unreachable code. | 
|  | Builder.ClearInsertionPoint(); | 
|  |  | 
|  | // All break statements jump to NextBlock. If BreakContinueStack is non empty | 
|  | // then reuse last ContinueBlock. | 
|  | JumpDest OuterContinue; | 
|  | if (!BreakContinueStack.empty()) | 
|  | OuterContinue = BreakContinueStack.back().ContinueBlock; | 
|  |  | 
|  | BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); | 
|  |  | 
|  | // Emit switch body. | 
|  | EmitStmt(S.getBody()); | 
|  |  | 
|  | BreakContinueStack.pop_back(); | 
|  |  | 
|  | // Update the default block in case explicit case range tests have | 
|  | // been chained on top. | 
|  | SwitchInsn->setSuccessor(0, CaseRangeBlock); | 
|  |  | 
|  | // If a default was never emitted: | 
|  | if (!DefaultBlock->getParent()) { | 
|  | // If we have cleanups, emit the default block so that there's a | 
|  | // place to jump through the cleanups from. | 
|  | if (ConditionScope.requiresCleanups()) { | 
|  | EmitBlock(DefaultBlock); | 
|  |  | 
|  | // Otherwise, just forward the default block to the switch end. | 
|  | } else { | 
|  | DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); | 
|  | delete DefaultBlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | ConditionScope.ForceCleanup(); | 
|  |  | 
|  | // Emit continuation. | 
|  | EmitBlock(SwitchExit.getBlock(), true); | 
|  |  | 
|  | SwitchInsn = SavedSwitchInsn; | 
|  | CaseRangeBlock = SavedCRBlock; | 
|  | } | 
|  |  | 
|  | static std::string | 
|  | SimplifyConstraint(const char *Constraint, const TargetInfo &Target, | 
|  | llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) { | 
|  | std::string Result; | 
|  |  | 
|  | while (*Constraint) { | 
|  | switch (*Constraint) { | 
|  | default: | 
|  | Result += Target.convertConstraint(*Constraint); | 
|  | break; | 
|  | // Ignore these | 
|  | case '*': | 
|  | case '?': | 
|  | case '!': | 
|  | case '=': // Will see this and the following in mult-alt constraints. | 
|  | case '+': | 
|  | break; | 
|  | case ',': | 
|  | Result += "|"; | 
|  | break; | 
|  | case 'g': | 
|  | Result += "imr"; | 
|  | break; | 
|  | case '[': { | 
|  | assert(OutCons && | 
|  | "Must pass output names to constraints with a symbolic name"); | 
|  | unsigned Index; | 
|  | bool result = Target.resolveSymbolicName(Constraint, | 
|  | &(*OutCons)[0], | 
|  | OutCons->size(), Index); | 
|  | assert(result && "Could not resolve symbolic name"); result=result; | 
|  | Result += llvm::utostr(Index); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | Constraint++; | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | llvm::Value* | 
|  | CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S, | 
|  | const TargetInfo::ConstraintInfo &Info, | 
|  | LValue InputValue, QualType InputType, | 
|  | std::string &ConstraintStr) { | 
|  | llvm::Value *Arg; | 
|  | if (Info.allowsRegister() || !Info.allowsMemory()) { | 
|  | if (!CodeGenFunction::hasAggregateLLVMType(InputType)) { | 
|  | Arg = EmitLoadOfLValue(InputValue, InputType).getScalarVal(); | 
|  | } else { | 
|  | const llvm::Type *Ty = ConvertType(InputType); | 
|  | uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty); | 
|  | if (Size <= 64 && llvm::isPowerOf2_64(Size)) { | 
|  | Ty = llvm::IntegerType::get(VMContext, Size); | 
|  | Ty = llvm::PointerType::getUnqual(Ty); | 
|  |  | 
|  | Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), | 
|  | Ty)); | 
|  | } else { | 
|  | Arg = InputValue.getAddress(); | 
|  | ConstraintStr += '*'; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | Arg = InputValue.getAddress(); | 
|  | ConstraintStr += '*'; | 
|  | } | 
|  |  | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S, | 
|  | const TargetInfo::ConstraintInfo &Info, | 
|  | const Expr *InputExpr, | 
|  | std::string &ConstraintStr) { | 
|  | if (Info.allowsRegister() || !Info.allowsMemory()) | 
|  | if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType())) | 
|  | return EmitScalarExpr(InputExpr); | 
|  |  | 
|  | InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); | 
|  | LValue Dest = EmitLValue(InputExpr); | 
|  | return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { | 
|  | // Analyze the asm string to decompose it into its pieces.  We know that Sema | 
|  | // has already done this, so it is guaranteed to be successful. | 
|  | llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces; | 
|  | unsigned DiagOffs; | 
|  | S.AnalyzeAsmString(Pieces, getContext(), DiagOffs); | 
|  |  | 
|  | // Assemble the pieces into the final asm string. | 
|  | std::string AsmString; | 
|  | for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { | 
|  | if (Pieces[i].isString()) | 
|  | AsmString += Pieces[i].getString(); | 
|  | else if (Pieces[i].getModifier() == '\0') | 
|  | AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo()); | 
|  | else | 
|  | AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' + | 
|  | Pieces[i].getModifier() + '}'; | 
|  | } | 
|  |  | 
|  | // Get all the output and input constraints together. | 
|  | llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; | 
|  | llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; | 
|  |  | 
|  | for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { | 
|  | TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), | 
|  | S.getOutputName(i)); | 
|  | bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid; | 
|  | assert(IsValid && "Failed to parse output constraint"); | 
|  | OutputConstraintInfos.push_back(Info); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { | 
|  | TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), | 
|  | S.getInputName(i)); | 
|  | bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(), | 
|  | S.getNumOutputs(), Info); | 
|  | assert(IsValid && "Failed to parse input constraint"); (void)IsValid; | 
|  | InputConstraintInfos.push_back(Info); | 
|  | } | 
|  |  | 
|  | std::string Constraints; | 
|  |  | 
|  | std::vector<LValue> ResultRegDests; | 
|  | std::vector<QualType> ResultRegQualTys; | 
|  | std::vector<const llvm::Type *> ResultRegTypes; | 
|  | std::vector<const llvm::Type *> ResultTruncRegTypes; | 
|  | std::vector<const llvm::Type*> ArgTypes; | 
|  | std::vector<llvm::Value*> Args; | 
|  |  | 
|  | // Keep track of inout constraints. | 
|  | std::string InOutConstraints; | 
|  | std::vector<llvm::Value*> InOutArgs; | 
|  | std::vector<const llvm::Type*> InOutArgTypes; | 
|  |  | 
|  | for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { | 
|  | TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; | 
|  |  | 
|  | // Simplify the output constraint. | 
|  | std::string OutputConstraint(S.getOutputConstraint(i)); | 
|  | OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target); | 
|  |  | 
|  | const Expr *OutExpr = S.getOutputExpr(i); | 
|  | OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); | 
|  |  | 
|  | LValue Dest = EmitLValue(OutExpr); | 
|  | if (!Constraints.empty()) | 
|  | Constraints += ','; | 
|  |  | 
|  | // If this is a register output, then make the inline asm return it | 
|  | // by-value.  If this is a memory result, return the value by-reference. | 
|  | if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) { | 
|  | Constraints += "=" + OutputConstraint; | 
|  | ResultRegQualTys.push_back(OutExpr->getType()); | 
|  | ResultRegDests.push_back(Dest); | 
|  | ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); | 
|  | ResultTruncRegTypes.push_back(ResultRegTypes.back()); | 
|  |  | 
|  | // If this output is tied to an input, and if the input is larger, then | 
|  | // we need to set the actual result type of the inline asm node to be the | 
|  | // same as the input type. | 
|  | if (Info.hasMatchingInput()) { | 
|  | unsigned InputNo; | 
|  | for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { | 
|  | TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; | 
|  | if (Input.hasTiedOperand() && Input.getTiedOperand() == i) | 
|  | break; | 
|  | } | 
|  | assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); | 
|  |  | 
|  | QualType InputTy = S.getInputExpr(InputNo)->getType(); | 
|  | QualType OutputType = OutExpr->getType(); | 
|  |  | 
|  | uint64_t InputSize = getContext().getTypeSize(InputTy); | 
|  | if (getContext().getTypeSize(OutputType) < InputSize) { | 
|  | // Form the asm to return the value as a larger integer or fp type. | 
|  | ResultRegTypes.back() = ConvertType(InputTy); | 
|  | } | 
|  | } | 
|  | if (const llvm::Type* AdjTy = | 
|  | Target.adjustInlineAsmType(OutputConstraint, ResultRegTypes.back(), | 
|  | VMContext)) | 
|  | ResultRegTypes.back() = AdjTy; | 
|  | } else { | 
|  | ArgTypes.push_back(Dest.getAddress()->getType()); | 
|  | Args.push_back(Dest.getAddress()); | 
|  | Constraints += "=*"; | 
|  | Constraints += OutputConstraint; | 
|  | } | 
|  |  | 
|  | if (Info.isReadWrite()) { | 
|  | InOutConstraints += ','; | 
|  |  | 
|  | const Expr *InputExpr = S.getOutputExpr(i); | 
|  | llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), | 
|  | InOutConstraints); | 
|  |  | 
|  | if (Info.allowsRegister()) | 
|  | InOutConstraints += llvm::utostr(i); | 
|  | else | 
|  | InOutConstraints += OutputConstraint; | 
|  |  | 
|  | InOutArgTypes.push_back(Arg->getType()); | 
|  | InOutArgs.push_back(Arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); | 
|  |  | 
|  | for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { | 
|  | const Expr *InputExpr = S.getInputExpr(i); | 
|  |  | 
|  | TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; | 
|  |  | 
|  | if (!Constraints.empty()) | 
|  | Constraints += ','; | 
|  |  | 
|  | // Simplify the input constraint. | 
|  | std::string InputConstraint(S.getInputConstraint(i)); | 
|  | InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target, | 
|  | &OutputConstraintInfos); | 
|  |  | 
|  | llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints); | 
|  |  | 
|  | // If this input argument is tied to a larger output result, extend the | 
|  | // input to be the same size as the output.  The LLVM backend wants to see | 
|  | // the input and output of a matching constraint be the same size.  Note | 
|  | // that GCC does not define what the top bits are here.  We use zext because | 
|  | // that is usually cheaper, but LLVM IR should really get an anyext someday. | 
|  | if (Info.hasTiedOperand()) { | 
|  | unsigned Output = Info.getTiedOperand(); | 
|  | QualType OutputType = S.getOutputExpr(Output)->getType(); | 
|  | QualType InputTy = InputExpr->getType(); | 
|  |  | 
|  | if (getContext().getTypeSize(OutputType) > | 
|  | getContext().getTypeSize(InputTy)) { | 
|  | // Use ptrtoint as appropriate so that we can do our extension. | 
|  | if (isa<llvm::PointerType>(Arg->getType())) | 
|  | Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); | 
|  | const llvm::Type *OutputTy = ConvertType(OutputType); | 
|  | if (isa<llvm::IntegerType>(OutputTy)) | 
|  | Arg = Builder.CreateZExt(Arg, OutputTy); | 
|  | else | 
|  | Arg = Builder.CreateFPExt(Arg, OutputTy); | 
|  | } | 
|  | } | 
|  | if (const llvm::Type* AdjTy = | 
|  | Target.adjustInlineAsmType(InputConstraint, Arg->getType(), | 
|  | VMContext)) | 
|  | Arg = Builder.CreateBitCast(Arg, AdjTy); | 
|  |  | 
|  | ArgTypes.push_back(Arg->getType()); | 
|  | Args.push_back(Arg); | 
|  | Constraints += InputConstraint; | 
|  | } | 
|  |  | 
|  | // Append the "input" part of inout constraints last. | 
|  | for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { | 
|  | ArgTypes.push_back(InOutArgTypes[i]); | 
|  | Args.push_back(InOutArgs[i]); | 
|  | } | 
|  | Constraints += InOutConstraints; | 
|  |  | 
|  | // Clobbers | 
|  | for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { | 
|  | llvm::StringRef Clobber = S.getClobber(i)->getString(); | 
|  |  | 
|  | Clobber = Target.getNormalizedGCCRegisterName(Clobber); | 
|  |  | 
|  | if (i != 0 || NumConstraints != 0) | 
|  | Constraints += ','; | 
|  |  | 
|  | Constraints += "~{"; | 
|  | Constraints += Clobber; | 
|  | Constraints += '}'; | 
|  | } | 
|  |  | 
|  | // Add machine specific clobbers | 
|  | std::string MachineClobbers = Target.getClobbers(); | 
|  | if (!MachineClobbers.empty()) { | 
|  | if (!Constraints.empty()) | 
|  | Constraints += ','; | 
|  | Constraints += MachineClobbers; | 
|  | } | 
|  |  | 
|  | const llvm::Type *ResultType; | 
|  | if (ResultRegTypes.empty()) | 
|  | ResultType = llvm::Type::getVoidTy(VMContext); | 
|  | else if (ResultRegTypes.size() == 1) | 
|  | ResultType = ResultRegTypes[0]; | 
|  | else | 
|  | ResultType = llvm::StructType::get(VMContext, ResultRegTypes); | 
|  |  | 
|  | const llvm::FunctionType *FTy = | 
|  | llvm::FunctionType::get(ResultType, ArgTypes, false); | 
|  |  | 
|  | llvm::InlineAsm *IA = | 
|  | llvm::InlineAsm::get(FTy, AsmString, Constraints, | 
|  | S.isVolatile() || S.getNumOutputs() == 0); | 
|  | llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end()); | 
|  | Result->addAttribute(~0, llvm::Attribute::NoUnwind); | 
|  |  | 
|  | // Slap the source location of the inline asm into a !srcloc metadata on the | 
|  | // call. | 
|  | unsigned LocID = S.getAsmString()->getLocStart().getRawEncoding(); | 
|  | llvm::Value *LocIDC = | 
|  | llvm::ConstantInt::get(Int32Ty, LocID); | 
|  | Result->setMetadata("srcloc", llvm::MDNode::get(VMContext, &LocIDC, 1)); | 
|  |  | 
|  | // Extract all of the register value results from the asm. | 
|  | std::vector<llvm::Value*> RegResults; | 
|  | if (ResultRegTypes.size() == 1) { | 
|  | RegResults.push_back(Result); | 
|  | } else { | 
|  | for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { | 
|  | llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); | 
|  | RegResults.push_back(Tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { | 
|  | llvm::Value *Tmp = RegResults[i]; | 
|  |  | 
|  | // If the result type of the LLVM IR asm doesn't match the result type of | 
|  | // the expression, do the conversion. | 
|  | if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { | 
|  | const llvm::Type *TruncTy = ResultTruncRegTypes[i]; | 
|  |  | 
|  | // Truncate the integer result to the right size, note that TruncTy can be | 
|  | // a pointer. | 
|  | if (TruncTy->isFloatingPointTy()) | 
|  | Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); | 
|  | else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { | 
|  | uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy); | 
|  | Tmp = Builder.CreateTrunc(Tmp, llvm::IntegerType::get(VMContext, | 
|  | (unsigned)ResSize)); | 
|  | Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); | 
|  | } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { | 
|  | uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType()); | 
|  | Tmp = Builder.CreatePtrToInt(Tmp, llvm::IntegerType::get(VMContext, | 
|  | (unsigned)TmpSize)); | 
|  | Tmp = Builder.CreateTrunc(Tmp, TruncTy); | 
|  | } else if (TruncTy->isIntegerTy()) { | 
|  | Tmp = Builder.CreateTrunc(Tmp, TruncTy); | 
|  | } else if (TruncTy->isVectorTy()) { | 
|  | Tmp = Builder.CreateBitCast(Tmp, TruncTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i], | 
|  | ResultRegQualTys[i]); | 
|  | } | 
|  | } |