|  | //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The LiveRangeEdit class represents changes done to a virtual register when it | 
|  | // is spilled or split. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/LiveRangeEdit.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/CalcSpillWeights.h" | 
|  | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/VirtRegMap.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "regalloc" | 
|  |  | 
|  | STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE"); | 
|  | STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); | 
|  | STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE"); | 
|  |  | 
|  | void LiveRangeEdit::Delegate::anchor() { } | 
|  |  | 
|  | LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) { | 
|  | unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); | 
|  | if (VRM) { | 
|  | VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); | 
|  | } | 
|  | LiveInterval &LI = LIS.createEmptyInterval(VReg); | 
|  | if (Parent && !Parent->isSpillable()) | 
|  | LI.markNotSpillable(); | 
|  | // Create empty subranges if the OldReg's interval has them. Do not create | 
|  | // the main range here---it will be constructed later after the subranges | 
|  | // have been finalized. | 
|  | LiveInterval &OldLI = LIS.getInterval(OldReg); | 
|  | VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); | 
|  | for (LiveInterval::SubRange &S : OldLI.subranges()) | 
|  | LI.createSubRange(Alloc, S.LaneMask); | 
|  | return LI; | 
|  | } | 
|  |  | 
|  | unsigned LiveRangeEdit::createFrom(unsigned OldReg) { | 
|  | unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); | 
|  | if (VRM) { | 
|  | VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); | 
|  | } | 
|  | // FIXME: Getting the interval here actually computes it. | 
|  | // In theory, this may not be what we want, but in practice | 
|  | // the createEmptyIntervalFrom API is used when this is not | 
|  | // the case. Generally speaking we just want to annotate the | 
|  | // LiveInterval when it gets created but we cannot do that at | 
|  | // the moment. | 
|  | if (Parent && !Parent->isSpillable()) | 
|  | LIS.getInterval(VReg).markNotSpillable(); | 
|  | return VReg; | 
|  | } | 
|  |  | 
|  | bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, | 
|  | const MachineInstr *DefMI, | 
|  | AliasAnalysis *aa) { | 
|  | assert(DefMI && "Missing instruction"); | 
|  | ScannedRemattable = true; | 
|  | if (!TII.isTriviallyReMaterializable(*DefMI, aa)) | 
|  | return false; | 
|  | Remattable.insert(VNI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) { | 
|  | for (VNInfo *VNI : getParent().valnos) { | 
|  | if (VNI->isUnused()) | 
|  | continue; | 
|  | unsigned Original = VRM->getOriginal(getReg()); | 
|  | LiveInterval &OrigLI = LIS.getInterval(Original); | 
|  | VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); | 
|  | if (!OrigVNI) | 
|  | continue; | 
|  | MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def); | 
|  | if (!DefMI) | 
|  | continue; | 
|  | checkRematerializable(OrigVNI, DefMI, aa); | 
|  | } | 
|  | ScannedRemattable = true; | 
|  | } | 
|  |  | 
|  | bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) { | 
|  | if (!ScannedRemattable) | 
|  | scanRemattable(aa); | 
|  | return !Remattable.empty(); | 
|  | } | 
|  |  | 
|  | /// allUsesAvailableAt - Return true if all registers used by OrigMI at | 
|  | /// OrigIdx are also available with the same value at UseIdx. | 
|  | bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, | 
|  | SlotIndex OrigIdx, | 
|  | SlotIndex UseIdx) const { | 
|  | OrigIdx = OrigIdx.getRegSlot(true); | 
|  | UseIdx = UseIdx.getRegSlot(true); | 
|  | for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = OrigMI->getOperand(i); | 
|  | if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) | 
|  | continue; | 
|  |  | 
|  | // We can't remat physreg uses, unless it is a constant. | 
|  | if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { | 
|  | if (MRI.isConstantPhysReg(MO.getReg())) | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LiveInterval &li = LIS.getInterval(MO.getReg()); | 
|  | const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); | 
|  | if (!OVNI) | 
|  | continue; | 
|  |  | 
|  | // Don't allow rematerialization immediately after the original def. | 
|  | // It would be incorrect if OrigMI redefines the register. | 
|  | // See PR14098. | 
|  | if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) | 
|  | return false; | 
|  |  | 
|  | if (OVNI != li.getVNInfoAt(UseIdx)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI, | 
|  | SlotIndex UseIdx, bool cheapAsAMove) { | 
|  | assert(ScannedRemattable && "Call anyRematerializable first"); | 
|  |  | 
|  | // Use scanRemattable info. | 
|  | if (!Remattable.count(OrigVNI)) | 
|  | return false; | 
|  |  | 
|  | // No defining instruction provided. | 
|  | SlotIndex DefIdx; | 
|  | assert(RM.OrigMI && "No defining instruction for remattable value"); | 
|  | DefIdx = LIS.getInstructionIndex(*RM.OrigMI); | 
|  |  | 
|  | // If only cheap remats were requested, bail out early. | 
|  | if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI)) | 
|  | return false; | 
|  |  | 
|  | // Verify that all used registers are available with the same values. | 
|  | if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned DestReg, | 
|  | const Remat &RM, | 
|  | const TargetRegisterInfo &tri, | 
|  | bool Late) { | 
|  | assert(RM.OrigMI && "Invalid remat"); | 
|  | TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri); | 
|  | // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg | 
|  | // to false anyway in case the isDead flag of RM.OrigMI's dest register | 
|  | // is true. | 
|  | (*--MI).getOperand(0).setIsDead(false); | 
|  | Rematted.insert(RM.ParentVNI); | 
|  | return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot(); | 
|  | } | 
|  |  | 
|  | void LiveRangeEdit::eraseVirtReg(unsigned Reg) { | 
|  | if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) | 
|  | LIS.removeInterval(Reg); | 
|  | } | 
|  |  | 
|  | bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, | 
|  | SmallVectorImpl<MachineInstr*> &Dead) { | 
|  | MachineInstr *DefMI = nullptr, *UseMI = nullptr; | 
|  |  | 
|  | // Check that there is a single def and a single use. | 
|  | for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) { | 
|  | MachineInstr *MI = MO.getParent(); | 
|  | if (MO.isDef()) { | 
|  | if (DefMI && DefMI != MI) | 
|  | return false; | 
|  | if (!MI->canFoldAsLoad()) | 
|  | return false; | 
|  | DefMI = MI; | 
|  | } else if (!MO.isUndef()) { | 
|  | if (UseMI && UseMI != MI) | 
|  | return false; | 
|  | // FIXME: Targets don't know how to fold subreg uses. | 
|  | if (MO.getSubReg()) | 
|  | return false; | 
|  | UseMI = MI; | 
|  | } | 
|  | } | 
|  | if (!DefMI || !UseMI) | 
|  | return false; | 
|  |  | 
|  | // Since we're moving the DefMI load, make sure we're not extending any live | 
|  | // ranges. | 
|  | if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI), | 
|  | LIS.getInstructionIndex(*UseMI))) | 
|  | return false; | 
|  |  | 
|  | // We also need to make sure it is safe to move the load. | 
|  | // Assume there are stores between DefMI and UseMI. | 
|  | bool SawStore = true; | 
|  | if (!DefMI->isSafeToMove(nullptr, SawStore)) | 
|  | return false; | 
|  |  | 
|  | DEBUG(dbgs() << "Try to fold single def: " << *DefMI | 
|  | << "       into single use: " << *UseMI); | 
|  |  | 
|  | SmallVector<unsigned, 8> Ops; | 
|  | if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS); | 
|  | if (!FoldMI) | 
|  | return false; | 
|  | DEBUG(dbgs() << "                folded: " << *FoldMI); | 
|  | LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI); | 
|  | UseMI->eraseFromParent(); | 
|  | DefMI->addRegisterDead(LI->reg, nullptr); | 
|  | Dead.push_back(DefMI); | 
|  | ++NumDCEFoldedLoads; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LiveRangeEdit::useIsKill(const LiveInterval &LI, | 
|  | const MachineOperand &MO) const { | 
|  | const MachineInstr &MI = *MO.getParent(); | 
|  | SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); | 
|  | if (LI.Query(Idx).isKill()) | 
|  | return true; | 
|  | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); | 
|  | unsigned SubReg = MO.getSubReg(); | 
|  | LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg); | 
|  | for (const LiveInterval::SubRange &S : LI.subranges()) { | 
|  | if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Find all live intervals that need to shrink, then remove the instruction. | 
|  | void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink, | 
|  | AliasAnalysis *AA) { | 
|  | assert(MI->allDefsAreDead() && "Def isn't really dead"); | 
|  | SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); | 
|  |  | 
|  | // Never delete a bundled instruction. | 
|  | if (MI->isBundled()) { | 
|  | return; | 
|  | } | 
|  | // Never delete inline asm. | 
|  | if (MI->isInlineAsm()) { | 
|  | DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Use the same criteria as DeadMachineInstructionElim. | 
|  | bool SawStore = false; | 
|  | if (!MI->isSafeToMove(nullptr, SawStore)) { | 
|  | DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); | 
|  |  | 
|  | // Collect virtual registers to be erased after MI is gone. | 
|  | SmallVector<unsigned, 8> RegsToErase; | 
|  | bool ReadsPhysRegs = false; | 
|  | bool isOrigDef = false; | 
|  | unsigned Dest; | 
|  | // Only optimize rematerialize case when the instruction has one def, since | 
|  | // otherwise we could leave some dead defs in the code.  This case is | 
|  | // extremely rare. | 
|  | if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() && | 
|  | MI->getDesc().getNumDefs() == 1) { | 
|  | Dest = MI->getOperand(0).getReg(); | 
|  | unsigned Original = VRM->getOriginal(Dest); | 
|  | LiveInterval &OrigLI = LIS.getInterval(Original); | 
|  | VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); | 
|  | // The original live-range may have been shrunk to | 
|  | // an empty live-range. It happens when it is dead, but | 
|  | // we still keep it around to be able to rematerialize | 
|  | // other values that depend on it. | 
|  | if (OrigVNI) | 
|  | isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx); | 
|  | } | 
|  |  | 
|  | // Check for live intervals that may shrink | 
|  | for (MachineInstr::mop_iterator MOI = MI->operands_begin(), | 
|  | MOE = MI->operands_end(); MOI != MOE; ++MOI) { | 
|  | if (!MOI->isReg()) | 
|  | continue; | 
|  | unsigned Reg = MOI->getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | // Check if MI reads any unreserved physregs. | 
|  | if (Reg && MOI->readsReg() && !MRI.isReserved(Reg)) | 
|  | ReadsPhysRegs = true; | 
|  | else if (MOI->isDef()) | 
|  | LIS.removePhysRegDefAt(Reg, Idx); | 
|  | continue; | 
|  | } | 
|  | LiveInterval &LI = LIS.getInterval(Reg); | 
|  |  | 
|  | // Shrink read registers, unless it is likely to be expensive and | 
|  | // unlikely to change anything. We typically don't want to shrink the | 
|  | // PIC base register that has lots of uses everywhere. | 
|  | // Always shrink COPY uses that probably come from live range splitting. | 
|  | if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) || | 
|  | (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI)))) | 
|  | ToShrink.insert(&LI); | 
|  |  | 
|  | // Remove defined value. | 
|  | if (MOI->isDef()) { | 
|  | if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) | 
|  | TheDelegate->LRE_WillShrinkVirtReg(LI.reg); | 
|  | LIS.removeVRegDefAt(LI, Idx); | 
|  | if (LI.empty()) | 
|  | RegsToErase.push_back(Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Currently, we don't support DCE of physreg live ranges. If MI reads | 
|  | // any unreserved physregs, don't erase the instruction, but turn it into | 
|  | // a KILL instead. This way, the physreg live ranges don't end up | 
|  | // dangling. | 
|  | // FIXME: It would be better to have something like shrinkToUses() for | 
|  | // physregs. That could potentially enable more DCE and it would free up | 
|  | // the physreg. It would not happen often, though. | 
|  | if (ReadsPhysRegs) { | 
|  | MI->setDesc(TII.get(TargetOpcode::KILL)); | 
|  | // Remove all operands that aren't physregs. | 
|  | for (unsigned i = MI->getNumOperands(); i; --i) { | 
|  | const MachineOperand &MO = MI->getOperand(i-1); | 
|  | if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) | 
|  | continue; | 
|  | MI->RemoveOperand(i-1); | 
|  | } | 
|  | DEBUG(dbgs() << "Converted physregs to:\t" << *MI); | 
|  | } else { | 
|  | // If the dest of MI is an original reg and MI is reMaterializable, | 
|  | // don't delete the inst. Replace the dest with a new reg, and keep | 
|  | // the inst for remat of other siblings. The inst is saved in | 
|  | // LiveRangeEdit::DeadRemats and will be deleted after all the | 
|  | // allocations of the func are done. | 
|  | if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) { | 
|  | LiveInterval &NewLI = createEmptyIntervalFrom(Dest); | 
|  | NewLI.removeEmptySubRanges(); | 
|  | VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator()); | 
|  | NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI)); | 
|  | pop_back(); | 
|  | markDeadRemat(MI); | 
|  | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); | 
|  | MI->substituteRegister(Dest, NewLI.reg, 0, TRI); | 
|  | MI->getOperand(0).setIsDead(true); | 
|  | } else { | 
|  | if (TheDelegate) | 
|  | TheDelegate->LRE_WillEraseInstruction(MI); | 
|  | LIS.RemoveMachineInstrFromMaps(*MI); | 
|  | MI->eraseFromParent(); | 
|  | ++NumDCEDeleted; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Erase any virtregs that are now empty and unused. There may be <undef> | 
|  | // uses around. Keep the empty live range in that case. | 
|  | for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { | 
|  | unsigned Reg = RegsToErase[i]; | 
|  | if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { | 
|  | ToShrink.remove(&LIS.getInterval(Reg)); | 
|  | eraseVirtReg(Reg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, | 
|  | ArrayRef<unsigned> RegsBeingSpilled, | 
|  | AliasAnalysis *AA) { | 
|  | ToShrinkSet ToShrink; | 
|  |  | 
|  | for (;;) { | 
|  | // Erase all dead defs. | 
|  | while (!Dead.empty()) | 
|  | eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA); | 
|  |  | 
|  | if (ToShrink.empty()) | 
|  | break; | 
|  |  | 
|  | // Shrink just one live interval. Then delete new dead defs. | 
|  | LiveInterval *LI = ToShrink.back(); | 
|  | ToShrink.pop_back(); | 
|  | if (foldAsLoad(LI, Dead)) | 
|  | continue; | 
|  | unsigned VReg = LI->reg; | 
|  | if (TheDelegate) | 
|  | TheDelegate->LRE_WillShrinkVirtReg(VReg); | 
|  | if (!LIS.shrinkToUses(LI, &Dead)) | 
|  | continue; | 
|  |  | 
|  | // Don't create new intervals for a register being spilled. | 
|  | // The new intervals would have to be spilled anyway so its not worth it. | 
|  | // Also they currently aren't spilled so creating them and not spilling | 
|  | // them results in incorrect code. | 
|  | bool BeingSpilled = false; | 
|  | for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) { | 
|  | if (VReg == RegsBeingSpilled[i]) { | 
|  | BeingSpilled = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BeingSpilled) continue; | 
|  |  | 
|  | // LI may have been separated, create new intervals. | 
|  | LI->RenumberValues(); | 
|  | SmallVector<LiveInterval*, 8> SplitLIs; | 
|  | LIS.splitSeparateComponents(*LI, SplitLIs); | 
|  | if (!SplitLIs.empty()) | 
|  | ++NumFracRanges; | 
|  |  | 
|  | unsigned Original = VRM ? VRM->getOriginal(VReg) : 0; | 
|  | for (const LiveInterval *SplitLI : SplitLIs) { | 
|  | // If LI is an original interval that hasn't been split yet, make the new | 
|  | // intervals their own originals instead of referring to LI. The original | 
|  | // interval must contain all the split products, and LI doesn't. | 
|  | if (Original != VReg && Original != 0) | 
|  | VRM->setIsSplitFromReg(SplitLI->reg, Original); | 
|  | if (TheDelegate) | 
|  | TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Keep track of new virtual registers created via | 
|  | // MachineRegisterInfo::createVirtualRegister. | 
|  | void | 
|  | LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg) | 
|  | { | 
|  | if (VRM) | 
|  | VRM->grow(); | 
|  |  | 
|  | NewRegs.push_back(VReg); | 
|  | } | 
|  |  | 
|  | void | 
|  | LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, | 
|  | const MachineLoopInfo &Loops, | 
|  | const MachineBlockFrequencyInfo &MBFI) { | 
|  | VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI); | 
|  | for (unsigned I = 0, Size = size(); I < Size; ++I) { | 
|  | LiveInterval &LI = LIS.getInterval(get(I)); | 
|  | if (MRI.recomputeRegClass(LI.reg)) | 
|  | DEBUG({ | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | dbgs() << "Inflated " << PrintReg(LI.reg) << " to " | 
|  | << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n'; | 
|  | }); | 
|  | VRAI.calculateSpillWeightAndHint(LI); | 
|  | } | 
|  | } |