|  | //===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass eliminates machine instruction PHI nodes by inserting copy | 
|  | // instructions, using an intelligent copy-folding technique based on | 
|  | // dominator information.  This is technique is derived from: | 
|  | // | 
|  | //    Budimlic, et al. Fast copy coalescing and live-range identification. | 
|  | //    In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language | 
|  | //    Design and Implementation (Berlin, Germany, June 17 - 19, 2002). | 
|  | //    PLDI '02. ACM, New York, NY, 25-32. | 
|  | //    DOI= http://doi.acm.org/10.1145/512529.512534 | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "strongphielim" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/RegisterCoalescer.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | struct StrongPHIElimination : public MachineFunctionPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | StrongPHIElimination() : MachineFunctionPass(&ID) {} | 
|  |  | 
|  | // Waiting stores, for each MBB, the set of copies that need to | 
|  | // be inserted into that MBB | 
|  | DenseMap<MachineBasicBlock*, | 
|  | std::multimap<unsigned, unsigned> > Waiting; | 
|  |  | 
|  | // Stacks holds the renaming stack for each register | 
|  | std::map<unsigned, std::vector<unsigned> > Stacks; | 
|  |  | 
|  | // Registers in UsedByAnother are PHI nodes that are themselves | 
|  | // used as operands to another PHI node | 
|  | std::set<unsigned> UsedByAnother; | 
|  |  | 
|  | // RenameSets are the is a map from a PHI-defined register | 
|  | // to the input registers to be coalesced along with the | 
|  | // predecessor block for those input registers. | 
|  | std::map<unsigned, std::map<unsigned, MachineBasicBlock*> > RenameSets; | 
|  |  | 
|  | // PhiValueNumber holds the ID numbers of the VNs for each phi that we're | 
|  | // eliminating, indexed by the register defined by that phi. | 
|  | std::map<unsigned, unsigned> PhiValueNumber; | 
|  |  | 
|  | // Store the DFS-in number of each block | 
|  | DenseMap<MachineBasicBlock*, unsigned> preorder; | 
|  |  | 
|  | // Store the DFS-out number of each block | 
|  | DenseMap<MachineBasicBlock*, unsigned> maxpreorder; | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &Fn); | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addRequired<SlotIndexes>(); | 
|  | AU.addPreserved<SlotIndexes>(); | 
|  | AU.addRequired<LiveIntervals>(); | 
|  |  | 
|  | // TODO: Actually make this true. | 
|  | AU.addPreserved<LiveIntervals>(); | 
|  | AU.addPreserved<RegisterCoalescer>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | virtual void releaseMemory() { | 
|  | preorder.clear(); | 
|  | maxpreorder.clear(); | 
|  |  | 
|  | Waiting.clear(); | 
|  | Stacks.clear(); | 
|  | UsedByAnother.clear(); | 
|  | RenameSets.clear(); | 
|  | } | 
|  |  | 
|  | private: | 
|  |  | 
|  | /// DomForestNode - Represents a node in the "dominator forest".  This is | 
|  | /// a forest in which the nodes represent registers and the edges | 
|  | /// represent a dominance relation in the block defining those registers. | 
|  | struct DomForestNode { | 
|  | private: | 
|  | // Store references to our children | 
|  | std::vector<DomForestNode*> children; | 
|  | // The register we represent | 
|  | unsigned reg; | 
|  |  | 
|  | // Add another node as our child | 
|  | void addChild(DomForestNode* DFN) { children.push_back(DFN); } | 
|  |  | 
|  | public: | 
|  | typedef std::vector<DomForestNode*>::iterator iterator; | 
|  |  | 
|  | // Create a DomForestNode by providing the register it represents, and | 
|  | // the node to be its parent.  The virtual root node has register 0 | 
|  | // and a null parent. | 
|  | DomForestNode(unsigned r, DomForestNode* parent) : reg(r) { | 
|  | if (parent) | 
|  | parent->addChild(this); | 
|  | } | 
|  |  | 
|  | ~DomForestNode() { | 
|  | for (iterator I = begin(), E = end(); I != E; ++I) | 
|  | delete *I; | 
|  | } | 
|  |  | 
|  | /// getReg - Return the regiser that this node represents | 
|  | inline unsigned getReg() { return reg; } | 
|  |  | 
|  | // Provide iterator access to our children | 
|  | inline DomForestNode::iterator begin() { return children.begin(); } | 
|  | inline DomForestNode::iterator end() { return children.end(); } | 
|  | }; | 
|  |  | 
|  | void computeDFS(MachineFunction& MF); | 
|  | void processBlock(MachineBasicBlock* MBB); | 
|  |  | 
|  | std::vector<DomForestNode*> computeDomForest( | 
|  | std::map<unsigned, MachineBasicBlock*>& instrs, | 
|  | MachineRegisterInfo& MRI); | 
|  | void processPHIUnion(MachineInstr* Inst, | 
|  | std::map<unsigned, MachineBasicBlock*>& PHIUnion, | 
|  | std::vector<StrongPHIElimination::DomForestNode*>& DF, | 
|  | std::vector<std::pair<unsigned, unsigned> >& locals); | 
|  | void ScheduleCopies(MachineBasicBlock* MBB, std::set<unsigned>& pushed); | 
|  | void InsertCopies(MachineDomTreeNode* MBB, | 
|  | SmallPtrSet<MachineBasicBlock*, 16>& v); | 
|  | bool mergeLiveIntervals(unsigned primary, unsigned secondary); | 
|  | }; | 
|  | } | 
|  |  | 
|  | char StrongPHIElimination::ID = 0; | 
|  | static RegisterPass<StrongPHIElimination> | 
|  | X("strong-phi-node-elimination", | 
|  | "Eliminate PHI nodes for register allocation, intelligently"); | 
|  |  | 
|  | const PassInfo *const llvm::StrongPHIEliminationID = &X; | 
|  |  | 
|  | /// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree | 
|  | /// of the given MachineFunction.  These numbers are then used in other parts | 
|  | /// of the PHI elimination process. | 
|  | void StrongPHIElimination::computeDFS(MachineFunction& MF) { | 
|  | SmallPtrSet<MachineDomTreeNode*, 8> frontier; | 
|  | SmallPtrSet<MachineDomTreeNode*, 8> visited; | 
|  |  | 
|  | unsigned time = 0; | 
|  |  | 
|  | MachineDominatorTree& DT = getAnalysis<MachineDominatorTree>(); | 
|  |  | 
|  | MachineDomTreeNode* node = DT.getRootNode(); | 
|  |  | 
|  | std::vector<MachineDomTreeNode*> worklist; | 
|  | worklist.push_back(node); | 
|  |  | 
|  | while (!worklist.empty()) { | 
|  | MachineDomTreeNode* currNode = worklist.back(); | 
|  |  | 
|  | if (!frontier.count(currNode)) { | 
|  | frontier.insert(currNode); | 
|  | ++time; | 
|  | preorder.insert(std::make_pair(currNode->getBlock(), time)); | 
|  | } | 
|  |  | 
|  | bool inserted = false; | 
|  | for (MachineDomTreeNode::iterator I = currNode->begin(), E = currNode->end(); | 
|  | I != E; ++I) | 
|  | if (!frontier.count(*I) && !visited.count(*I)) { | 
|  | worklist.push_back(*I); | 
|  | inserted = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!inserted) { | 
|  | frontier.erase(currNode); | 
|  | visited.insert(currNode); | 
|  | maxpreorder.insert(std::make_pair(currNode->getBlock(), time)); | 
|  |  | 
|  | worklist.pop_back(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// PreorderSorter - a helper class that is used to sort registers | 
|  | /// according to the preorder number of their defining blocks | 
|  | class PreorderSorter { | 
|  | private: | 
|  | DenseMap<MachineBasicBlock*, unsigned>& preorder; | 
|  | MachineRegisterInfo& MRI; | 
|  |  | 
|  | public: | 
|  | PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p, | 
|  | MachineRegisterInfo& M) : preorder(p), MRI(M) { } | 
|  |  | 
|  | bool operator()(unsigned A, unsigned B) { | 
|  | if (A == B) | 
|  | return false; | 
|  |  | 
|  | MachineBasicBlock* ABlock = MRI.getVRegDef(A)->getParent(); | 
|  | MachineBasicBlock* BBlock = MRI.getVRegDef(B)->getParent(); | 
|  |  | 
|  | if (preorder[ABlock] < preorder[BBlock]) | 
|  | return true; | 
|  | else if (preorder[ABlock] > preorder[BBlock]) | 
|  | return false; | 
|  |  | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | /// computeDomForest - compute the subforest of the DomTree corresponding | 
|  | /// to the defining blocks of the registers in question | 
|  | std::vector<StrongPHIElimination::DomForestNode*> | 
|  | StrongPHIElimination::computeDomForest( | 
|  | std::map<unsigned, MachineBasicBlock*>& regs, | 
|  | MachineRegisterInfo& MRI) { | 
|  | // Begin by creating a virtual root node, since the actual results | 
|  | // may well be a forest.  Assume this node has maximum DFS-out number. | 
|  | DomForestNode* VirtualRoot = new DomForestNode(0, 0); | 
|  | maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL)); | 
|  |  | 
|  | // Populate a worklist with the registers | 
|  | std::vector<unsigned> worklist; | 
|  | worklist.reserve(regs.size()); | 
|  | for (std::map<unsigned, MachineBasicBlock*>::iterator I = regs.begin(), | 
|  | E = regs.end(); I != E; ++I) | 
|  | worklist.push_back(I->first); | 
|  |  | 
|  | // Sort the registers by the DFS-in number of their defining block | 
|  | PreorderSorter PS(preorder, MRI); | 
|  | std::sort(worklist.begin(), worklist.end(), PS); | 
|  |  | 
|  | // Create a "current parent" stack, and put the virtual root on top of it | 
|  | DomForestNode* CurrentParent = VirtualRoot; | 
|  | std::vector<DomForestNode*> stack; | 
|  | stack.push_back(VirtualRoot); | 
|  |  | 
|  | // Iterate over all the registers in the previously computed order | 
|  | for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end(); | 
|  | I != E; ++I) { | 
|  | unsigned pre = preorder[MRI.getVRegDef(*I)->getParent()]; | 
|  | MachineBasicBlock* parentBlock = CurrentParent->getReg() ? | 
|  | MRI.getVRegDef(CurrentParent->getReg())->getParent() : | 
|  | 0; | 
|  |  | 
|  | // If the DFS-in number of the register is greater than the DFS-out number | 
|  | // of the current parent, repeatedly pop the parent stack until it isn't. | 
|  | while (pre > maxpreorder[parentBlock]) { | 
|  | stack.pop_back(); | 
|  | CurrentParent = stack.back(); | 
|  |  | 
|  | parentBlock = CurrentParent->getReg() ? | 
|  | MRI.getVRegDef(CurrentParent->getReg())->getParent() : | 
|  | 0; | 
|  | } | 
|  |  | 
|  | // Now that we've found the appropriate parent, create a DomForestNode for | 
|  | // this register and attach it to the forest | 
|  | DomForestNode* child = new DomForestNode(*I, CurrentParent); | 
|  |  | 
|  | // Push this new node on the "current parent" stack | 
|  | stack.push_back(child); | 
|  | CurrentParent = child; | 
|  | } | 
|  |  | 
|  | // Return a vector containing the children of the virtual root node | 
|  | std::vector<DomForestNode*> ret; | 
|  | ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end()); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /// isLiveIn - helper method that determines, from a regno, if a register | 
|  | /// is live into a block | 
|  | static bool isLiveIn(unsigned r, MachineBasicBlock* MBB, | 
|  | LiveIntervals& LI) { | 
|  | LiveInterval& I = LI.getOrCreateInterval(r); | 
|  | SlotIndex idx = LI.getMBBStartIdx(MBB); | 
|  | return I.liveAt(idx); | 
|  | } | 
|  |  | 
|  | /// isLiveOut - help method that determines, from a regno, if a register is | 
|  | /// live out of a block. | 
|  | static bool isLiveOut(unsigned r, MachineBasicBlock* MBB, | 
|  | LiveIntervals& LI) { | 
|  | for (MachineBasicBlock::succ_iterator PI = MBB->succ_begin(), | 
|  | E = MBB->succ_end(); PI != E; ++PI) | 
|  | if (isLiveIn(r, *PI, LI)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// interferes - checks for local interferences by scanning a block.  The only | 
|  | /// trick parameter is 'mode' which tells it the relationship of the two | 
|  | /// registers. 0 - defined in the same block, 1 - first properly dominates | 
|  | /// second, 2 - second properly dominates first | 
|  | static bool interferes(unsigned a, unsigned b, MachineBasicBlock* scan, | 
|  | LiveIntervals& LV, unsigned mode) { | 
|  | MachineInstr* def = 0; | 
|  | MachineInstr* kill = 0; | 
|  |  | 
|  | // The code is still in SSA form at this point, so there is only one | 
|  | // definition per VReg.  Thus we can safely use MRI->getVRegDef(). | 
|  | const MachineRegisterInfo* MRI = &scan->getParent()->getRegInfo(); | 
|  |  | 
|  | bool interference = false; | 
|  |  | 
|  | // Wallk the block, checking for interferences | 
|  | for (MachineBasicBlock::iterator MBI = scan->begin(), MBE = scan->end(); | 
|  | MBI != MBE; ++MBI) { | 
|  | MachineInstr* curr = MBI; | 
|  |  | 
|  | // Same defining block... | 
|  | if (mode == 0) { | 
|  | if (curr == MRI->getVRegDef(a)) { | 
|  | // If we find our first definition, save it | 
|  | if (!def) { | 
|  | def = curr; | 
|  | // If there's already an unkilled definition, then | 
|  | // this is an interference | 
|  | } else if (!kill) { | 
|  | interference = true; | 
|  | break; | 
|  | // If there's a definition followed by a KillInst, then | 
|  | // they can't interfere | 
|  | } else { | 
|  | interference = false; | 
|  | break; | 
|  | } | 
|  | // Symmetric with the above | 
|  | } else if (curr == MRI->getVRegDef(b)) { | 
|  | if (!def) { | 
|  | def = curr; | 
|  | } else if (!kill) { | 
|  | interference = true; | 
|  | break; | 
|  | } else { | 
|  | interference = false; | 
|  | break; | 
|  | } | 
|  | // Store KillInsts if they match up with the definition | 
|  | } else if (curr->killsRegister(a)) { | 
|  | if (def == MRI->getVRegDef(a)) { | 
|  | kill = curr; | 
|  | } else if (curr->killsRegister(b)) { | 
|  | if (def == MRI->getVRegDef(b)) { | 
|  | kill = curr; | 
|  | } | 
|  | } | 
|  | } | 
|  | // First properly dominates second... | 
|  | } else if (mode == 1) { | 
|  | if (curr == MRI->getVRegDef(b)) { | 
|  | // Definition of second without kill of first is an interference | 
|  | if (!kill) { | 
|  | interference = true; | 
|  | break; | 
|  | // Definition after a kill is a non-interference | 
|  | } else { | 
|  | interference = false; | 
|  | break; | 
|  | } | 
|  | // Save KillInsts of First | 
|  | } else if (curr->killsRegister(a)) { | 
|  | kill = curr; | 
|  | } | 
|  | // Symmetric with the above | 
|  | } else if (mode == 2) { | 
|  | if (curr == MRI->getVRegDef(a)) { | 
|  | if (!kill) { | 
|  | interference = true; | 
|  | break; | 
|  | } else { | 
|  | interference = false; | 
|  | break; | 
|  | } | 
|  | } else if (curr->killsRegister(b)) { | 
|  | kill = curr; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return interference; | 
|  | } | 
|  |  | 
|  | /// processBlock - Determine how to break up PHIs in the current block.  Each | 
|  | /// PHI is broken up by some combination of renaming its operands and inserting | 
|  | /// copies.  This method is responsible for determining which operands receive | 
|  | /// which treatment. | 
|  | void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) { | 
|  | LiveIntervals& LI = getAnalysis<LiveIntervals>(); | 
|  | MachineRegisterInfo& MRI = MBB->getParent()->getRegInfo(); | 
|  |  | 
|  | // Holds names that have been added to a set in any PHI within this block | 
|  | // before the current one. | 
|  | std::set<unsigned> ProcessedNames; | 
|  |  | 
|  | // Iterate over all the PHI nodes in this block | 
|  | MachineBasicBlock::iterator P = MBB->begin(); | 
|  | while (P != MBB->end() && P->isPHI()) { | 
|  | unsigned DestReg = P->getOperand(0).getReg(); | 
|  |  | 
|  | // Don't both doing PHI elimination for dead PHI's. | 
|  | if (P->registerDefIsDead(DestReg)) { | 
|  | ++P; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LiveInterval& PI = LI.getOrCreateInterval(DestReg); | 
|  | SlotIndex pIdx = LI.getInstructionIndex(P).getDefIndex(); | 
|  | VNInfo* PVN = PI.getLiveRangeContaining(pIdx)->valno; | 
|  | PhiValueNumber.insert(std::make_pair(DestReg, PVN->id)); | 
|  |  | 
|  | // PHIUnion is the set of incoming registers to the PHI node that | 
|  | // are going to be renames rather than having copies inserted.  This set | 
|  | // is refinded over the course of this function.  UnionedBlocks is the set | 
|  | // of corresponding MBBs. | 
|  | std::map<unsigned, MachineBasicBlock*> PHIUnion; | 
|  | SmallPtrSet<MachineBasicBlock*, 8> UnionedBlocks; | 
|  |  | 
|  | // Iterate over the operands of the PHI node | 
|  | for (int i = P->getNumOperands() - 1; i >= 2; i-=2) { | 
|  | unsigned SrcReg = P->getOperand(i-1).getReg(); | 
|  |  | 
|  | // Don't need to try to coalesce a register with itself. | 
|  | if (SrcReg == DestReg) { | 
|  | ProcessedNames.insert(SrcReg); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We don't need to insert copies for implicit_defs. | 
|  | MachineInstr* DefMI = MRI.getVRegDef(SrcReg); | 
|  | if (DefMI->isImplicitDef()) | 
|  | ProcessedNames.insert(SrcReg); | 
|  |  | 
|  | // Check for trivial interferences via liveness information, allowing us | 
|  | // to avoid extra work later.  Any registers that interfere cannot both | 
|  | // be in the renaming set, so choose one and add copies for it instead. | 
|  | // The conditions are: | 
|  | //   1) if the operand is live into the PHI node's block OR | 
|  | //   2) if the PHI node is live out of the operand's defining block OR | 
|  | //   3) if the operand is itself a PHI node and the original PHI is | 
|  | //      live into the operand's defining block OR | 
|  | //   4) if the operand is already being renamed for another PHI node | 
|  | //      in this block OR | 
|  | //   5) if any two operands are defined in the same block, insert copies | 
|  | //      for one of them | 
|  | if (isLiveIn(SrcReg, P->getParent(), LI) || | 
|  | isLiveOut(P->getOperand(0).getReg(), | 
|  | MRI.getVRegDef(SrcReg)->getParent(), LI) || | 
|  | ( MRI.getVRegDef(SrcReg)->isPHI() && | 
|  | isLiveIn(P->getOperand(0).getReg(), | 
|  | MRI.getVRegDef(SrcReg)->getParent(), LI) ) || | 
|  | ProcessedNames.count(SrcReg) || | 
|  | UnionedBlocks.count(MRI.getVRegDef(SrcReg)->getParent())) { | 
|  |  | 
|  | // Add a copy for the selected register | 
|  | MachineBasicBlock* From = P->getOperand(i).getMBB(); | 
|  | Waiting[From].insert(std::make_pair(SrcReg, DestReg)); | 
|  | UsedByAnother.insert(SrcReg); | 
|  | } else { | 
|  | // Otherwise, add it to the renaming set | 
|  | PHIUnion.insert(std::make_pair(SrcReg,P->getOperand(i).getMBB())); | 
|  | UnionedBlocks.insert(MRI.getVRegDef(SrcReg)->getParent()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the dominator forest for the renaming set.  This is a forest | 
|  | // where the nodes are the registers and the edges represent dominance | 
|  | // relations between the defining blocks of the registers | 
|  | std::vector<StrongPHIElimination::DomForestNode*> DF = | 
|  | computeDomForest(PHIUnion, MRI); | 
|  |  | 
|  | // Walk DomForest to resolve interferences at an inter-block level.  This | 
|  | // will remove registers from the renaming set (and insert copies for them) | 
|  | // if interferences are found. | 
|  | std::vector<std::pair<unsigned, unsigned> > localInterferences; | 
|  | processPHIUnion(P, PHIUnion, DF, localInterferences); | 
|  |  | 
|  | // If one of the inputs is defined in the same block as the current PHI | 
|  | // then we need to check for a local interference between that input and | 
|  | // the PHI. | 
|  | for (std::map<unsigned, MachineBasicBlock*>::iterator I = PHIUnion.begin(), | 
|  | E = PHIUnion.end(); I != E; ++I) | 
|  | if (MRI.getVRegDef(I->first)->getParent() == P->getParent()) | 
|  | localInterferences.push_back(std::make_pair(I->first, | 
|  | P->getOperand(0).getReg())); | 
|  |  | 
|  | // The dominator forest walk may have returned some register pairs whose | 
|  | // interference cannot be determined from dominator analysis.  We now | 
|  | // examine these pairs for local interferences. | 
|  | for (std::vector<std::pair<unsigned, unsigned> >::iterator I = | 
|  | localInterferences.begin(), E = localInterferences.end(); I != E; ++I) { | 
|  | std::pair<unsigned, unsigned> p = *I; | 
|  |  | 
|  | MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>(); | 
|  |  | 
|  | // Determine the block we need to scan and the relationship between | 
|  | // the two registers | 
|  | MachineBasicBlock* scan = 0; | 
|  | unsigned mode = 0; | 
|  | if (MRI.getVRegDef(p.first)->getParent() == | 
|  | MRI.getVRegDef(p.second)->getParent()) { | 
|  | scan = MRI.getVRegDef(p.first)->getParent(); | 
|  | mode = 0; // Same block | 
|  | } else if (MDT.dominates(MRI.getVRegDef(p.first)->getParent(), | 
|  | MRI.getVRegDef(p.second)->getParent())) { | 
|  | scan = MRI.getVRegDef(p.second)->getParent(); | 
|  | mode = 1; // First dominates second | 
|  | } else { | 
|  | scan = MRI.getVRegDef(p.first)->getParent(); | 
|  | mode = 2; // Second dominates first | 
|  | } | 
|  |  | 
|  | // If there's an interference, we need to insert  copies | 
|  | if (interferes(p.first, p.second, scan, LI, mode)) { | 
|  | // Insert copies for First | 
|  | for (int i = P->getNumOperands() - 1; i >= 2; i-=2) { | 
|  | if (P->getOperand(i-1).getReg() == p.first) { | 
|  | unsigned SrcReg = p.first; | 
|  | MachineBasicBlock* From = P->getOperand(i).getMBB(); | 
|  |  | 
|  | Waiting[From].insert(std::make_pair(SrcReg, | 
|  | P->getOperand(0).getReg())); | 
|  | UsedByAnother.insert(SrcReg); | 
|  |  | 
|  | PHIUnion.erase(SrcReg); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the renaming set for this PHI node to our overall renaming information | 
|  | for (std::map<unsigned, MachineBasicBlock*>::iterator QI = PHIUnion.begin(), | 
|  | QE = PHIUnion.end(); QI != QE; ++QI) { | 
|  | DEBUG(dbgs() << "Adding Renaming: " << QI->first << " -> " | 
|  | << P->getOperand(0).getReg() << "\n"); | 
|  | } | 
|  |  | 
|  | RenameSets.insert(std::make_pair(P->getOperand(0).getReg(), PHIUnion)); | 
|  |  | 
|  | // Remember which registers are already renamed, so that we don't try to | 
|  | // rename them for another PHI node in this block | 
|  | for (std::map<unsigned, MachineBasicBlock*>::iterator I = PHIUnion.begin(), | 
|  | E = PHIUnion.end(); I != E; ++I) | 
|  | ProcessedNames.insert(I->first); | 
|  |  | 
|  | ++P; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// processPHIUnion - Take a set of candidate registers to be coalesced when | 
|  | /// decomposing the PHI instruction.  Use the DominanceForest to remove the ones | 
|  | /// that are known to interfere, and flag others that need to be checked for | 
|  | /// local interferences. | 
|  | void StrongPHIElimination::processPHIUnion(MachineInstr* Inst, | 
|  | std::map<unsigned, MachineBasicBlock*>& PHIUnion, | 
|  | std::vector<StrongPHIElimination::DomForestNode*>& DF, | 
|  | std::vector<std::pair<unsigned, unsigned> >& locals) { | 
|  |  | 
|  | std::vector<DomForestNode*> worklist(DF.begin(), DF.end()); | 
|  | SmallPtrSet<DomForestNode*, 4> visited; | 
|  |  | 
|  | // Code is still in SSA form, so we can use MRI::getVRegDef() | 
|  | MachineRegisterInfo& MRI = Inst->getParent()->getParent()->getRegInfo(); | 
|  |  | 
|  | LiveIntervals& LI = getAnalysis<LiveIntervals>(); | 
|  | unsigned DestReg = Inst->getOperand(0).getReg(); | 
|  |  | 
|  | // DF walk on the DomForest | 
|  | while (!worklist.empty()) { | 
|  | DomForestNode* DFNode = worklist.back(); | 
|  |  | 
|  | visited.insert(DFNode); | 
|  |  | 
|  | bool inserted = false; | 
|  | for (DomForestNode::iterator CI = DFNode->begin(), CE = DFNode->end(); | 
|  | CI != CE; ++CI) { | 
|  | DomForestNode* child = *CI; | 
|  |  | 
|  | // If the current node is live-out of the defining block of one of its | 
|  | // children, insert a copy for it.  NOTE: The paper actually calls for | 
|  | // a more elaborate heuristic for determining whether to insert copies | 
|  | // for the child or the parent.  In the interest of simplicity, we're | 
|  | // just always choosing the parent. | 
|  | if (isLiveOut(DFNode->getReg(), | 
|  | MRI.getVRegDef(child->getReg())->getParent(), LI)) { | 
|  | // Insert copies for parent | 
|  | for (int i = Inst->getNumOperands() - 1; i >= 2; i-=2) { | 
|  | if (Inst->getOperand(i-1).getReg() == DFNode->getReg()) { | 
|  | unsigned SrcReg = DFNode->getReg(); | 
|  | MachineBasicBlock* From = Inst->getOperand(i).getMBB(); | 
|  |  | 
|  | Waiting[From].insert(std::make_pair(SrcReg, DestReg)); | 
|  | UsedByAnother.insert(SrcReg); | 
|  |  | 
|  | PHIUnion.erase(SrcReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If a node is live-in to the defining block of one of its children, but | 
|  | // not live-out, then we need to scan that block for local interferences. | 
|  | } else if (isLiveIn(DFNode->getReg(), | 
|  | MRI.getVRegDef(child->getReg())->getParent(), LI) || | 
|  | MRI.getVRegDef(DFNode->getReg())->getParent() == | 
|  | MRI.getVRegDef(child->getReg())->getParent()) { | 
|  | // Add (p, c) to possible local interferences | 
|  | locals.push_back(std::make_pair(DFNode->getReg(), child->getReg())); | 
|  | } | 
|  |  | 
|  | if (!visited.count(child)) { | 
|  | worklist.push_back(child); | 
|  | inserted = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!inserted) worklist.pop_back(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ScheduleCopies - Insert copies into predecessor blocks, scheduling | 
|  | /// them properly so as to avoid the 'lost copy' and the 'virtual swap' | 
|  | /// problems. | 
|  | /// | 
|  | /// Based on "Practical Improvements to the Construction and Destruction | 
|  | /// of Static Single Assignment Form" by Briggs, et al. | 
|  | void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB, | 
|  | std::set<unsigned>& pushed) { | 
|  | // FIXME: This function needs to update LiveIntervals | 
|  | std::multimap<unsigned, unsigned>& copy_set= Waiting[MBB]; | 
|  |  | 
|  | std::multimap<unsigned, unsigned> worklist; | 
|  | std::map<unsigned, unsigned> map; | 
|  |  | 
|  | // Setup worklist of initial copies | 
|  | for (std::multimap<unsigned, unsigned>::iterator I = copy_set.begin(), | 
|  | E = copy_set.end(); I != E; ) { | 
|  | map.insert(std::make_pair(I->first, I->first)); | 
|  | map.insert(std::make_pair(I->second, I->second)); | 
|  |  | 
|  | if (!UsedByAnother.count(I->second)) { | 
|  | worklist.insert(*I); | 
|  |  | 
|  | // Avoid iterator invalidation | 
|  | std::multimap<unsigned, unsigned>::iterator OI = I; | 
|  | ++I; | 
|  | copy_set.erase(OI); | 
|  | } else { | 
|  | ++I; | 
|  | } | 
|  | } | 
|  |  | 
|  | LiveIntervals& LI = getAnalysis<LiveIntervals>(); | 
|  | MachineFunction* MF = MBB->getParent(); | 
|  | MachineRegisterInfo& MRI = MF->getRegInfo(); | 
|  | const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); | 
|  |  | 
|  | SmallVector<std::pair<unsigned, MachineInstr*>, 4> InsertedPHIDests; | 
|  |  | 
|  | // Iterate over the worklist, inserting copies | 
|  | while (!worklist.empty() || !copy_set.empty()) { | 
|  | while (!worklist.empty()) { | 
|  | std::multimap<unsigned, unsigned>::iterator WI = worklist.begin(); | 
|  | std::pair<unsigned, unsigned> curr = *WI; | 
|  | worklist.erase(WI); | 
|  |  | 
|  | const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(curr.first); | 
|  |  | 
|  | if (isLiveOut(curr.second, MBB, LI)) { | 
|  | // Create a temporary | 
|  | unsigned t = MF->getRegInfo().createVirtualRegister(RC); | 
|  |  | 
|  | // Insert copy from curr.second to a temporary at | 
|  | // the Phi defining curr.second | 
|  | MachineBasicBlock::iterator PI = MRI.getVRegDef(curr.second); | 
|  | TII->copyRegToReg(*PI->getParent(), PI, t, | 
|  | curr.second, RC, RC, DebugLoc()); | 
|  |  | 
|  | DEBUG(dbgs() << "Inserted copy from " << curr.second << " to " << t | 
|  | << "\n"); | 
|  |  | 
|  | // Push temporary on Stacks | 
|  | Stacks[curr.second].push_back(t); | 
|  |  | 
|  | // Insert curr.second in pushed | 
|  | pushed.insert(curr.second); | 
|  |  | 
|  | // Create a live interval for this temporary | 
|  | InsertedPHIDests.push_back(std::make_pair(t, --PI)); | 
|  | } | 
|  |  | 
|  | // Insert copy from map[curr.first] to curr.second | 
|  | TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), curr.second, | 
|  | map[curr.first], RC, RC, DebugLoc()); | 
|  | map[curr.first] = curr.second; | 
|  | DEBUG(dbgs() << "Inserted copy from " << curr.first << " to " | 
|  | << curr.second << "\n"); | 
|  |  | 
|  | // Push this copy onto InsertedPHICopies so we can | 
|  | // update LiveIntervals with it. | 
|  | MachineBasicBlock::iterator MI = MBB->getFirstTerminator(); | 
|  | InsertedPHIDests.push_back(std::make_pair(curr.second, --MI)); | 
|  |  | 
|  | // If curr.first is a destination in copy_set... | 
|  | for (std::multimap<unsigned, unsigned>::iterator I = copy_set.begin(), | 
|  | E = copy_set.end(); I != E; ) | 
|  | if (curr.first == I->second) { | 
|  | std::pair<unsigned, unsigned> temp = *I; | 
|  | worklist.insert(temp); | 
|  |  | 
|  | // Avoid iterator invalidation | 
|  | std::multimap<unsigned, unsigned>::iterator OI = I; | 
|  | ++I; | 
|  | copy_set.erase(OI); | 
|  |  | 
|  | break; | 
|  | } else { | 
|  | ++I; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!copy_set.empty()) { | 
|  | std::multimap<unsigned, unsigned>::iterator CI = copy_set.begin(); | 
|  | std::pair<unsigned, unsigned> curr = *CI; | 
|  | worklist.insert(curr); | 
|  | copy_set.erase(CI); | 
|  |  | 
|  | LiveInterval& I = LI.getInterval(curr.second); | 
|  | MachineBasicBlock::iterator term = MBB->getFirstTerminator(); | 
|  | SlotIndex endIdx = SlotIndex(); | 
|  | if (term != MBB->end()) | 
|  | endIdx = LI.getInstructionIndex(term); | 
|  | else | 
|  | endIdx = LI.getMBBEndIdx(MBB); | 
|  |  | 
|  | if (I.liveAt(endIdx)) { | 
|  | const TargetRegisterClass *RC = | 
|  | MF->getRegInfo().getRegClass(curr.first); | 
|  |  | 
|  | // Insert a copy from dest to a new temporary t at the end of b | 
|  | unsigned t = MF->getRegInfo().createVirtualRegister(RC); | 
|  | TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), t, | 
|  | curr.second, RC, RC, DebugLoc()); | 
|  | map[curr.second] = t; | 
|  |  | 
|  | MachineBasicBlock::iterator TI = MBB->getFirstTerminator(); | 
|  | InsertedPHIDests.push_back(std::make_pair(t, --TI)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Renumber the instructions so that we can perform the index computations | 
|  | // needed to create new live intervals. | 
|  | LI.renumber(); | 
|  |  | 
|  | // For copies that we inserted at the ends of predecessors, we construct | 
|  | // live intervals.  This is pretty easy, since we know that the destination | 
|  | // register cannot have be in live at that point previously.  We just have | 
|  | // to make sure that, for registers that serve as inputs to more than one | 
|  | // PHI, we don't create multiple overlapping live intervals. | 
|  | std::set<unsigned> RegHandled; | 
|  | for (SmallVector<std::pair<unsigned, MachineInstr*>, 4>::iterator I = | 
|  | InsertedPHIDests.begin(), E = InsertedPHIDests.end(); I != E; ++I) { | 
|  | if (RegHandled.insert(I->first).second) { | 
|  | LiveInterval& Int = LI.getOrCreateInterval(I->first); | 
|  | SlotIndex instrIdx = LI.getInstructionIndex(I->second); | 
|  | if (Int.liveAt(instrIdx.getDefIndex())) | 
|  | Int.removeRange(instrIdx.getDefIndex(), | 
|  | LI.getMBBEndIdx(I->second->getParent()).getNextSlot(), | 
|  | true); | 
|  |  | 
|  | LiveRange R = LI.addLiveRangeToEndOfBlock(I->first, I->second); | 
|  | R.valno->setCopy(I->second); | 
|  | R.valno->def = LI.getInstructionIndex(I->second).getDefIndex(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// InsertCopies - insert copies into MBB and all of its successors | 
|  | void StrongPHIElimination::InsertCopies(MachineDomTreeNode* MDTN, | 
|  | SmallPtrSet<MachineBasicBlock*, 16>& visited) { | 
|  | MachineBasicBlock* MBB = MDTN->getBlock(); | 
|  | visited.insert(MBB); | 
|  |  | 
|  | std::set<unsigned> pushed; | 
|  |  | 
|  | LiveIntervals& LI = getAnalysis<LiveIntervals>(); | 
|  | // Rewrite register uses from Stacks | 
|  | for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); | 
|  | I != E; ++I) { | 
|  | if (I->isPHI()) | 
|  | continue; | 
|  |  | 
|  | for (unsigned i = 0; i < I->getNumOperands(); ++i) | 
|  | if (I->getOperand(i).isReg() && | 
|  | Stacks[I->getOperand(i).getReg()].size()) { | 
|  | // Remove the live range for the old vreg. | 
|  | LiveInterval& OldInt = LI.getInterval(I->getOperand(i).getReg()); | 
|  | LiveInterval::iterator OldLR = | 
|  | OldInt.FindLiveRangeContaining(LI.getInstructionIndex(I).getUseIndex()); | 
|  | if (OldLR != OldInt.end()) | 
|  | OldInt.removeRange(*OldLR, true); | 
|  |  | 
|  | // Change the register | 
|  | I->getOperand(i).setReg(Stacks[I->getOperand(i).getReg()].back()); | 
|  |  | 
|  | // Add a live range for the new vreg | 
|  | LiveInterval& Int = LI.getInterval(I->getOperand(i).getReg()); | 
|  | VNInfo* FirstVN = *Int.vni_begin(); | 
|  | FirstVN->setHasPHIKill(false); | 
|  | if (I->getOperand(i).isKill()) | 
|  | FirstVN->addKill(LI.getInstructionIndex(I).getUseIndex()); | 
|  |  | 
|  | LiveRange LR (LI.getMBBStartIdx(I->getParent()), | 
|  | LI.getInstructionIndex(I).getUseIndex().getNextSlot(), | 
|  | FirstVN); | 
|  |  | 
|  | Int.addRange(LR); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Schedule the copies for this block | 
|  | ScheduleCopies(MBB, pushed); | 
|  |  | 
|  | // Recur down the dominator tree. | 
|  | for (MachineDomTreeNode::iterator I = MDTN->begin(), | 
|  | E = MDTN->end(); I != E; ++I) | 
|  | if (!visited.count((*I)->getBlock())) | 
|  | InsertCopies(*I, visited); | 
|  |  | 
|  | // As we exit this block, pop the names we pushed while processing it | 
|  | for (std::set<unsigned>::iterator I = pushed.begin(), | 
|  | E = pushed.end(); I != E; ++I) | 
|  | Stacks[*I].pop_back(); | 
|  | } | 
|  |  | 
|  | bool StrongPHIElimination::mergeLiveIntervals(unsigned primary, | 
|  | unsigned secondary) { | 
|  |  | 
|  | LiveIntervals& LI = getAnalysis<LiveIntervals>(); | 
|  | LiveInterval& LHS = LI.getOrCreateInterval(primary); | 
|  | LiveInterval& RHS = LI.getOrCreateInterval(secondary); | 
|  |  | 
|  | LI.renumber(); | 
|  |  | 
|  | DenseMap<VNInfo*, VNInfo*> VNMap; | 
|  | for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) { | 
|  | LiveRange R = *I; | 
|  |  | 
|  | SlotIndex Start = R.start; | 
|  | SlotIndex End = R.end; | 
|  | if (LHS.getLiveRangeContaining(Start)) | 
|  | return false; | 
|  |  | 
|  | if (LHS.getLiveRangeContaining(End)) | 
|  | return false; | 
|  |  | 
|  | LiveInterval::iterator RI = std::upper_bound(LHS.begin(), LHS.end(), R); | 
|  | if (RI != LHS.end() && RI->start < End) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) { | 
|  | LiveRange R = *I; | 
|  | VNInfo* OldVN = R.valno; | 
|  | VNInfo*& NewVN = VNMap[OldVN]; | 
|  | if (!NewVN) { | 
|  | NewVN = LHS.createValueCopy(OldVN, LI.getVNInfoAllocator()); | 
|  | } | 
|  |  | 
|  | LiveRange LR (R.start, R.end, NewVN); | 
|  | LHS.addRange(LR); | 
|  | } | 
|  |  | 
|  | LI.removeInterval(RHS.reg); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) { | 
|  | LiveIntervals& LI = getAnalysis<LiveIntervals>(); | 
|  |  | 
|  | // Compute DFS numbers of each block | 
|  | computeDFS(Fn); | 
|  |  | 
|  | // Determine which phi node operands need copies | 
|  | for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) | 
|  | if (!I->empty() && I->begin()->isPHI()) | 
|  | processBlock(I); | 
|  |  | 
|  | // Break interferences where two different phis want to coalesce | 
|  | // in the same register. | 
|  | std::set<unsigned> seen; | 
|  | typedef std::map<unsigned, std::map<unsigned, MachineBasicBlock*> > | 
|  | RenameSetType; | 
|  | for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end(); | 
|  | I != E; ++I) { | 
|  | for (std::map<unsigned, MachineBasicBlock*>::iterator | 
|  | OI = I->second.begin(), OE = I->second.end(); OI != OE; ) { | 
|  | if (!seen.count(OI->first)) { | 
|  | seen.insert(OI->first); | 
|  | ++OI; | 
|  | } else { | 
|  | Waiting[OI->second].insert(std::make_pair(OI->first, I->first)); | 
|  | unsigned reg = OI->first; | 
|  | ++OI; | 
|  | I->second.erase(reg); | 
|  | DEBUG(dbgs() << "Removing Renaming: " << reg << " -> " << I->first | 
|  | << "\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Insert copies | 
|  | // FIXME: This process should probably preserve LiveIntervals | 
|  | SmallPtrSet<MachineBasicBlock*, 16> visited; | 
|  | MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>(); | 
|  | InsertCopies(MDT.getRootNode(), visited); | 
|  |  | 
|  | // Perform renaming | 
|  | for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end(); | 
|  | I != E; ++I) | 
|  | while (I->second.size()) { | 
|  | std::map<unsigned, MachineBasicBlock*>::iterator SI = I->second.begin(); | 
|  |  | 
|  | DEBUG(dbgs() << "Renaming: " << SI->first << " -> " << I->first << "\n"); | 
|  |  | 
|  | if (SI->first != I->first) { | 
|  | if (mergeLiveIntervals(I->first, SI->first)) { | 
|  | Fn.getRegInfo().replaceRegWith(SI->first, I->first); | 
|  |  | 
|  | if (RenameSets.count(SI->first)) { | 
|  | I->second.insert(RenameSets[SI->first].begin(), | 
|  | RenameSets[SI->first].end()); | 
|  | RenameSets.erase(SI->first); | 
|  | } | 
|  | } else { | 
|  | // Insert a last-minute copy if a conflict was detected. | 
|  | const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo(); | 
|  | const TargetRegisterClass *RC = Fn.getRegInfo().getRegClass(I->first); | 
|  | TII->copyRegToReg(*SI->second, SI->second->getFirstTerminator(), | 
|  | I->first, SI->first, RC, RC, DebugLoc()); | 
|  |  | 
|  | LI.renumber(); | 
|  |  | 
|  | LiveInterval& Int = LI.getOrCreateInterval(I->first); | 
|  | SlotIndex instrIdx = | 
|  | LI.getInstructionIndex(--SI->second->getFirstTerminator()); | 
|  | if (Int.liveAt(instrIdx.getDefIndex())) | 
|  | Int.removeRange(instrIdx.getDefIndex(), | 
|  | LI.getMBBEndIdx(SI->second).getNextSlot(), true); | 
|  |  | 
|  | LiveRange R = LI.addLiveRangeToEndOfBlock(I->first, | 
|  | --SI->second->getFirstTerminator()); | 
|  | R.valno->setCopy(--SI->second->getFirstTerminator()); | 
|  | R.valno->def = instrIdx.getDefIndex(); | 
|  |  | 
|  | DEBUG(dbgs() << "Renaming failed: " << SI->first << " -> " | 
|  | << I->first << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | LiveInterval& Int = LI.getOrCreateInterval(I->first); | 
|  | const LiveRange* LR = | 
|  | Int.getLiveRangeContaining(LI.getMBBEndIdx(SI->second)); | 
|  | LR->valno->setHasPHIKill(true); | 
|  |  | 
|  | I->second.erase(SI->first); | 
|  | } | 
|  |  | 
|  | // Remove PHIs | 
|  | std::vector<MachineInstr*> phis; | 
|  | for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) { | 
|  | for (MachineBasicBlock::iterator BI = I->begin(), BE = I->end(); | 
|  | BI != BE; ++BI) | 
|  | if (BI->isPHI()) | 
|  | phis.push_back(BI); | 
|  | } | 
|  |  | 
|  | for (std::vector<MachineInstr*>::iterator I = phis.begin(), E = phis.end(); | 
|  | I != E; ) { | 
|  | MachineInstr* PInstr = *(I++); | 
|  |  | 
|  | // If this is a dead PHI node, then remove it from LiveIntervals. | 
|  | unsigned DestReg = PInstr->getOperand(0).getReg(); | 
|  | LiveInterval& PI = LI.getInterval(DestReg); | 
|  | if (PInstr->registerDefIsDead(DestReg)) { | 
|  | if (PI.containsOneValue()) { | 
|  | LI.removeInterval(DestReg); | 
|  | } else { | 
|  | SlotIndex idx = LI.getInstructionIndex(PInstr).getDefIndex(); | 
|  | PI.removeRange(*PI.getLiveRangeContaining(idx), true); | 
|  | } | 
|  | } else { | 
|  | // Trim live intervals of input registers.  They are no longer live into | 
|  | // this block if they died after the PHI.  If they lived after it, don't | 
|  | // trim them because they might have other legitimate uses. | 
|  | for (unsigned i = 1; i < PInstr->getNumOperands(); i += 2) { | 
|  | unsigned reg = PInstr->getOperand(i).getReg(); | 
|  |  | 
|  | MachineBasicBlock* MBB = PInstr->getOperand(i+1).getMBB(); | 
|  | LiveInterval& InputI = LI.getInterval(reg); | 
|  | if (MBB != PInstr->getParent() && | 
|  | InputI.liveAt(LI.getMBBStartIdx(PInstr->getParent())) && | 
|  | InputI.expiredAt(LI.getInstructionIndex(PInstr).getNextIndex())) | 
|  | InputI.removeRange(LI.getMBBStartIdx(PInstr->getParent()), | 
|  | LI.getInstructionIndex(PInstr), | 
|  | true); | 
|  | } | 
|  |  | 
|  | // If the PHI is not dead, then the valno defined by the PHI | 
|  | // now has an unknown def. | 
|  | SlotIndex idx = LI.getInstructionIndex(PInstr).getDefIndex(); | 
|  | const LiveRange* PLR = PI.getLiveRangeContaining(idx); | 
|  | PLR->valno->setIsPHIDef(true); | 
|  | LiveRange R (LI.getMBBStartIdx(PInstr->getParent()), | 
|  | PLR->start, PLR->valno); | 
|  | PI.addRange(R); | 
|  | } | 
|  |  | 
|  | LI.RemoveMachineInstrFromMaps(PInstr); | 
|  | PInstr->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | LI.renumber(); | 
|  |  | 
|  | return true; | 
|  | } |