|  | #include "llvm/Transforms/Utils/VNCoercion.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/MemoryDependenceAnalysis.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  |  | 
|  | #define DEBUG_TYPE "vncoerce" | 
|  | namespace llvm { | 
|  | namespace VNCoercion { | 
|  |  | 
|  | /// Return true if coerceAvailableValueToLoadType will succeed. | 
|  | bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, | 
|  | const DataLayout &DL) { | 
|  | // If the loaded or stored value is an first class array or struct, don't try | 
|  | // to transform them.  We need to be able to bitcast to integer. | 
|  | if (LoadTy->isStructTy() || LoadTy->isArrayTy() || | 
|  | StoredVal->getType()->isStructTy() || StoredVal->getType()->isArrayTy()) | 
|  | return false; | 
|  |  | 
|  | uint64_t StoreSize = DL.getTypeSizeInBits(StoredVal->getType()); | 
|  |  | 
|  | // The store size must be byte-aligned to support future type casts. | 
|  | if (llvm::alignTo(StoreSize, 8) != StoreSize) | 
|  | return false; | 
|  |  | 
|  | // The store has to be at least as big as the load. | 
|  | if (StoreSize < DL.getTypeSizeInBits(LoadTy)) | 
|  | return false; | 
|  |  | 
|  | // Don't coerce non-integral pointers to integers or vice versa. | 
|  | if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) != | 
|  | DL.isNonIntegralPointerType(LoadTy->getScalarType())) { | 
|  | // As a special case, allow coercion of memset used to initialize | 
|  | // an array w/null.  Despite non-integral pointers not generally having a | 
|  | // specific bit pattern, we do assume null is zero. | 
|  | if (auto *CI = dyn_cast<Constant>(StoredVal)) | 
|  | return CI->isNullValue(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class T, class HelperClass> | 
|  | static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy, | 
|  | HelperClass &Helper, | 
|  | const DataLayout &DL) { | 
|  | assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) && | 
|  | "precondition violation - materialization can't fail"); | 
|  | if (auto *C = dyn_cast<Constant>(StoredVal)) | 
|  | if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) | 
|  | StoredVal = FoldedStoredVal; | 
|  |  | 
|  | // If this is already the right type, just return it. | 
|  | Type *StoredValTy = StoredVal->getType(); | 
|  |  | 
|  | uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy); | 
|  | uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy); | 
|  |  | 
|  | // If the store and reload are the same size, we can always reuse it. | 
|  | if (StoredValSize == LoadedValSize) { | 
|  | // Pointer to Pointer -> use bitcast. | 
|  | if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) { | 
|  | StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); | 
|  | } else { | 
|  | // Convert source pointers to integers, which can be bitcast. | 
|  | if (StoredValTy->isPtrOrPtrVectorTy()) { | 
|  | StoredValTy = DL.getIntPtrType(StoredValTy); | 
|  | StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); | 
|  | } | 
|  |  | 
|  | Type *TypeToCastTo = LoadedTy; | 
|  | if (TypeToCastTo->isPtrOrPtrVectorTy()) | 
|  | TypeToCastTo = DL.getIntPtrType(TypeToCastTo); | 
|  |  | 
|  | if (StoredValTy != TypeToCastTo) | 
|  | StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo); | 
|  |  | 
|  | // Cast to pointer if the load needs a pointer type. | 
|  | if (LoadedTy->isPtrOrPtrVectorTy()) | 
|  | StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); | 
|  | } | 
|  |  | 
|  | if (auto *C = dyn_cast<ConstantExpr>(StoredVal)) | 
|  | if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) | 
|  | StoredVal = FoldedStoredVal; | 
|  |  | 
|  | return StoredVal; | 
|  | } | 
|  | // If the loaded value is smaller than the available value, then we can | 
|  | // extract out a piece from it.  If the available value is too small, then we | 
|  | // can't do anything. | 
|  | assert(StoredValSize >= LoadedValSize && | 
|  | "canCoerceMustAliasedValueToLoad fail"); | 
|  |  | 
|  | // Convert source pointers to integers, which can be manipulated. | 
|  | if (StoredValTy->isPtrOrPtrVectorTy()) { | 
|  | StoredValTy = DL.getIntPtrType(StoredValTy); | 
|  | StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); | 
|  | } | 
|  |  | 
|  | // Convert vectors and fp to integer, which can be manipulated. | 
|  | if (!StoredValTy->isIntegerTy()) { | 
|  | StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize); | 
|  | StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy); | 
|  | } | 
|  |  | 
|  | // If this is a big-endian system, we need to shift the value down to the low | 
|  | // bits so that a truncate will work. | 
|  | if (DL.isBigEndian()) { | 
|  | uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) - | 
|  | DL.getTypeStoreSizeInBits(LoadedTy); | 
|  | StoredVal = Helper.CreateLShr( | 
|  | StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt)); | 
|  | } | 
|  |  | 
|  | // Truncate the integer to the right size now. | 
|  | Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize); | 
|  | StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy); | 
|  |  | 
|  | if (LoadedTy != NewIntTy) { | 
|  | // If the result is a pointer, inttoptr. | 
|  | if (LoadedTy->isPtrOrPtrVectorTy()) | 
|  | StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); | 
|  | else | 
|  | // Otherwise, bitcast. | 
|  | StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); | 
|  | } | 
|  |  | 
|  | if (auto *C = dyn_cast<Constant>(StoredVal)) | 
|  | if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) | 
|  | StoredVal = FoldedStoredVal; | 
|  |  | 
|  | return StoredVal; | 
|  | } | 
|  |  | 
|  | /// If we saw a store of a value to memory, and | 
|  | /// then a load from a must-aliased pointer of a different type, try to coerce | 
|  | /// the stored value.  LoadedTy is the type of the load we want to replace. | 
|  | /// IRB is IRBuilder used to insert new instructions. | 
|  | /// | 
|  | /// If we can't do it, return null. | 
|  | Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, | 
|  | IRBuilder<> &IRB, const DataLayout &DL) { | 
|  | return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL); | 
|  | } | 
|  |  | 
|  | /// This function is called when we have a memdep query of a load that ends up | 
|  | /// being a clobbering memory write (store, memset, memcpy, memmove).  This | 
|  | /// means that the write *may* provide bits used by the load but we can't be | 
|  | /// sure because the pointers don't must-alias. | 
|  | /// | 
|  | /// Check this case to see if there is anything more we can do before we give | 
|  | /// up.  This returns -1 if we have to give up, or a byte number in the stored | 
|  | /// value of the piece that feeds the load. | 
|  | static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, | 
|  | Value *WritePtr, | 
|  | uint64_t WriteSizeInBits, | 
|  | const DataLayout &DL) { | 
|  | // If the loaded or stored value is a first class array or struct, don't try | 
|  | // to transform them.  We need to be able to bitcast to integer. | 
|  | if (LoadTy->isStructTy() || LoadTy->isArrayTy()) | 
|  | return -1; | 
|  |  | 
|  | int64_t StoreOffset = 0, LoadOffset = 0; | 
|  | Value *StoreBase = | 
|  | GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL); | 
|  | Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL); | 
|  | if (StoreBase != LoadBase) | 
|  | return -1; | 
|  |  | 
|  | // If the load and store are to the exact same address, they should have been | 
|  | // a must alias.  AA must have gotten confused. | 
|  | // FIXME: Study to see if/when this happens.  One case is forwarding a memset | 
|  | // to a load from the base of the memset. | 
|  |  | 
|  | // If the load and store don't overlap at all, the store doesn't provide | 
|  | // anything to the load.  In this case, they really don't alias at all, AA | 
|  | // must have gotten confused. | 
|  | uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy); | 
|  |  | 
|  | if ((WriteSizeInBits & 7) | (LoadSize & 7)) | 
|  | return -1; | 
|  | uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes. | 
|  | LoadSize /= 8; | 
|  |  | 
|  | bool isAAFailure = false; | 
|  | if (StoreOffset < LoadOffset) | 
|  | isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset; | 
|  | else | 
|  | isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset; | 
|  |  | 
|  | if (isAAFailure) | 
|  | return -1; | 
|  |  | 
|  | // If the Load isn't completely contained within the stored bits, we don't | 
|  | // have all the bits to feed it.  We could do something crazy in the future | 
|  | // (issue a smaller load then merge the bits in) but this seems unlikely to be | 
|  | // valuable. | 
|  | if (StoreOffset > LoadOffset || | 
|  | StoreOffset + StoreSize < LoadOffset + LoadSize) | 
|  | return -1; | 
|  |  | 
|  | // Okay, we can do this transformation.  Return the number of bytes into the | 
|  | // store that the load is. | 
|  | return LoadOffset - StoreOffset; | 
|  | } | 
|  |  | 
|  | /// This function is called when we have a | 
|  | /// memdep query of a load that ends up being a clobbering store. | 
|  | int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, | 
|  | StoreInst *DepSI, const DataLayout &DL) { | 
|  | auto *StoredVal = DepSI->getValueOperand(); | 
|  |  | 
|  | // Cannot handle reading from store of first-class aggregate yet. | 
|  | if (StoredVal->getType()->isStructTy() || | 
|  | StoredVal->getType()->isArrayTy()) | 
|  | return -1; | 
|  |  | 
|  | // Don't coerce non-integral pointers to integers or vice versa. | 
|  | if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) != | 
|  | DL.isNonIntegralPointerType(LoadTy->getScalarType())) { | 
|  | // Allow casts of zero values to null as a special case | 
|  | auto *CI = dyn_cast<Constant>(StoredVal); | 
|  | if (!CI || !CI->isNullValue()) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | Value *StorePtr = DepSI->getPointerOperand(); | 
|  | uint64_t StoreSize = | 
|  | DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()); | 
|  | return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize, | 
|  | DL); | 
|  | } | 
|  |  | 
|  | /// This function is called when we have a | 
|  | /// memdep query of a load that ends up being clobbered by another load.  See if | 
|  | /// the other load can feed into the second load. | 
|  | int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, | 
|  | const DataLayout &DL) { | 
|  | // Cannot handle reading from store of first-class aggregate yet. | 
|  | if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) | 
|  | return -1; | 
|  |  | 
|  | // Don't coerce non-integral pointers to integers or vice versa. | 
|  | if (DL.isNonIntegralPointerType(DepLI->getType()->getScalarType()) != | 
|  | DL.isNonIntegralPointerType(LoadTy->getScalarType())) | 
|  | return -1; | 
|  |  | 
|  | Value *DepPtr = DepLI->getPointerOperand(); | 
|  | uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()); | 
|  | int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL); | 
|  | if (R != -1) | 
|  | return R; | 
|  |  | 
|  | // If we have a load/load clobber an DepLI can be widened to cover this load, | 
|  | // then we should widen it! | 
|  | int64_t LoadOffs = 0; | 
|  | const Value *LoadBase = | 
|  | GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL); | 
|  | unsigned LoadSize = DL.getTypeStoreSize(LoadTy); | 
|  |  | 
|  | unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize( | 
|  | LoadBase, LoadOffs, LoadSize, DepLI); | 
|  | if (Size == 0) | 
|  | return -1; | 
|  |  | 
|  | // Check non-obvious conditions enforced by MDA which we rely on for being | 
|  | // able to materialize this potentially available value | 
|  | assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!"); | 
|  | assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load"); | 
|  |  | 
|  | return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL); | 
|  | } | 
|  |  | 
|  | int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, | 
|  | MemIntrinsic *MI, const DataLayout &DL) { | 
|  | // If the mem operation is a non-constant size, we can't handle it. | 
|  | ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength()); | 
|  | if (!SizeCst) | 
|  | return -1; | 
|  | uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8; | 
|  |  | 
|  | // If this is memset, we just need to see if the offset is valid in the size | 
|  | // of the memset.. | 
|  | if (MI->getIntrinsicID() == Intrinsic::memset) { | 
|  | if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) { | 
|  | auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue()); | 
|  | if (!CI || !CI->isZero()) | 
|  | return -1; | 
|  | } | 
|  | return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), | 
|  | MemSizeInBits, DL); | 
|  | } | 
|  |  | 
|  | // If we have a memcpy/memmove, the only case we can handle is if this is a | 
|  | // copy from constant memory.  In that case, we can read directly from the | 
|  | // constant memory. | 
|  | MemTransferInst *MTI = cast<MemTransferInst>(MI); | 
|  |  | 
|  | Constant *Src = dyn_cast<Constant>(MTI->getSource()); | 
|  | if (!Src) | 
|  | return -1; | 
|  |  | 
|  | GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL)); | 
|  | if (!GV || !GV->isConstant()) | 
|  | return -1; | 
|  |  | 
|  | // See if the access is within the bounds of the transfer. | 
|  | int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), | 
|  | MemSizeInBits, DL); | 
|  | if (Offset == -1) | 
|  | return Offset; | 
|  |  | 
|  | // Don't coerce non-integral pointers to integers or vice versa, and the | 
|  | // memtransfer is implicitly a raw byte code | 
|  | if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) | 
|  | // TODO: Can allow nullptrs from constant zeros | 
|  | return -1; | 
|  |  | 
|  | unsigned AS = Src->getType()->getPointerAddressSpace(); | 
|  | // Otherwise, see if we can constant fold a load from the constant with the | 
|  | // offset applied as appropriate. | 
|  | Src = | 
|  | ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS)); | 
|  | Constant *OffsetCst = | 
|  | ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); | 
|  | Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src, | 
|  | OffsetCst); | 
|  | Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); | 
|  | if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL)) | 
|  | return Offset; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | template <class T, class HelperClass> | 
|  | static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy, | 
|  | HelperClass &Helper, | 
|  | const DataLayout &DL) { | 
|  | LLVMContext &Ctx = SrcVal->getType()->getContext(); | 
|  |  | 
|  | // If two pointers are in the same address space, they have the same size, | 
|  | // so we don't need to do any truncation, etc. This avoids introducing | 
|  | // ptrtoint instructions for pointers that may be non-integral. | 
|  | if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() && | 
|  | cast<PointerType>(SrcVal->getType())->getAddressSpace() == | 
|  | cast<PointerType>(LoadTy)->getAddressSpace()) { | 
|  | return SrcVal; | 
|  | } | 
|  |  | 
|  | uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8; | 
|  | uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8; | 
|  | // Compute which bits of the stored value are being used by the load.  Convert | 
|  | // to an integer type to start with. | 
|  | if (SrcVal->getType()->isPtrOrPtrVectorTy()) | 
|  | SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType())); | 
|  | if (!SrcVal->getType()->isIntegerTy()) | 
|  | SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8)); | 
|  |  | 
|  | // Shift the bits to the least significant depending on endianness. | 
|  | unsigned ShiftAmt; | 
|  | if (DL.isLittleEndian()) | 
|  | ShiftAmt = Offset * 8; | 
|  | else | 
|  | ShiftAmt = (StoreSize - LoadSize - Offset) * 8; | 
|  | if (ShiftAmt) | 
|  | SrcVal = Helper.CreateLShr(SrcVal, | 
|  | ConstantInt::get(SrcVal->getType(), ShiftAmt)); | 
|  |  | 
|  | if (LoadSize != StoreSize) | 
|  | SrcVal = Helper.CreateTruncOrBitCast(SrcVal, | 
|  | IntegerType::get(Ctx, LoadSize * 8)); | 
|  | return SrcVal; | 
|  | } | 
|  |  | 
|  | /// This function is called when we have a memdep query of a load that ends up | 
|  | /// being a clobbering store.  This means that the store provides bits used by | 
|  | /// the load but the pointers don't must-alias.  Check this case to see if | 
|  | /// there is anything more we can do before we give up. | 
|  | Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, | 
|  | Instruction *InsertPt, const DataLayout &DL) { | 
|  |  | 
|  | IRBuilder<> Builder(InsertPt); | 
|  | SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL); | 
|  | return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL); | 
|  | } | 
|  |  | 
|  | Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset, | 
|  | Type *LoadTy, const DataLayout &DL) { | 
|  | ConstantFolder F; | 
|  | SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL); | 
|  | return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL); | 
|  | } | 
|  |  | 
|  | /// This function is called when we have a memdep query of a load that ends up | 
|  | /// being a clobbering load.  This means that the load *may* provide bits used | 
|  | /// by the load but we can't be sure because the pointers don't must-alias. | 
|  | /// Check this case to see if there is anything more we can do before we give | 
|  | /// up. | 
|  | Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy, | 
|  | Instruction *InsertPt, const DataLayout &DL) { | 
|  | // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to | 
|  | // widen SrcVal out to a larger load. | 
|  | unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType()); | 
|  | unsigned LoadSize = DL.getTypeStoreSize(LoadTy); | 
|  | if (Offset + LoadSize > SrcValStoreSize) { | 
|  | assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); | 
|  | assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); | 
|  | // If we have a load/load clobber an DepLI can be widened to cover this | 
|  | // load, then we should widen it to the next power of 2 size big enough! | 
|  | unsigned NewLoadSize = Offset + LoadSize; | 
|  | if (!isPowerOf2_32(NewLoadSize)) | 
|  | NewLoadSize = NextPowerOf2(NewLoadSize); | 
|  |  | 
|  | Value *PtrVal = SrcVal->getPointerOperand(); | 
|  | // Insert the new load after the old load.  This ensures that subsequent | 
|  | // memdep queries will find the new load.  We can't easily remove the old | 
|  | // load completely because it is already in the value numbering table. | 
|  | IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); | 
|  | Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8); | 
|  | Type *DestPTy = | 
|  | PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace()); | 
|  | Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); | 
|  | PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); | 
|  | LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal); | 
|  | NewLoad->takeName(SrcVal); | 
|  | NewLoad->setAlignment(SrcVal->getAlignment()); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); | 
|  |  | 
|  | // Replace uses of the original load with the wider load.  On a big endian | 
|  | // system, we need to shift down to get the relevant bits. | 
|  | Value *RV = NewLoad; | 
|  | if (DL.isBigEndian()) | 
|  | RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8); | 
|  | RV = Builder.CreateTrunc(RV, SrcVal->getType()); | 
|  | SrcVal->replaceAllUsesWith(RV); | 
|  |  | 
|  | SrcVal = NewLoad; | 
|  | } | 
|  |  | 
|  | return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL); | 
|  | } | 
|  |  | 
|  | Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset, | 
|  | Type *LoadTy, const DataLayout &DL) { | 
|  | unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType()); | 
|  | unsigned LoadSize = DL.getTypeStoreSize(LoadTy); | 
|  | if (Offset + LoadSize > SrcValStoreSize) | 
|  | return nullptr; | 
|  | return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL); | 
|  | } | 
|  |  | 
|  | template <class T, class HelperClass> | 
|  | T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset, | 
|  | Type *LoadTy, HelperClass &Helper, | 
|  | const DataLayout &DL) { | 
|  | LLVMContext &Ctx = LoadTy->getContext(); | 
|  | uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy) / 8; | 
|  |  | 
|  | // We know that this method is only called when the mem transfer fully | 
|  | // provides the bits for the load. | 
|  | if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { | 
|  | // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and | 
|  | // independently of what the offset is. | 
|  | T *Val = cast<T>(MSI->getValue()); | 
|  | if (LoadSize != 1) | 
|  | Val = | 
|  | Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8)); | 
|  | T *OneElt = Val; | 
|  |  | 
|  | // Splat the value out to the right number of bits. | 
|  | for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) { | 
|  | // If we can double the number of bytes set, do it. | 
|  | if (NumBytesSet * 2 <= LoadSize) { | 
|  | T *ShVal = Helper.CreateShl( | 
|  | Val, ConstantInt::get(Val->getType(), NumBytesSet * 8)); | 
|  | Val = Helper.CreateOr(Val, ShVal); | 
|  | NumBytesSet <<= 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise insert one byte at a time. | 
|  | T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8)); | 
|  | Val = Helper.CreateOr(OneElt, ShVal); | 
|  | ++NumBytesSet; | 
|  | } | 
|  |  | 
|  | return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL); | 
|  | } | 
|  |  | 
|  | // Otherwise, this is a memcpy/memmove from a constant global. | 
|  | MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); | 
|  | Constant *Src = cast<Constant>(MTI->getSource()); | 
|  | unsigned AS = Src->getType()->getPointerAddressSpace(); | 
|  |  | 
|  | // Otherwise, see if we can constant fold a load from the constant with the | 
|  | // offset applied as appropriate. | 
|  | Src = | 
|  | ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS)); | 
|  | Constant *OffsetCst = | 
|  | ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); | 
|  | Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src, | 
|  | OffsetCst); | 
|  | Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); | 
|  | return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL); | 
|  | } | 
|  |  | 
|  | /// This function is called when we have a | 
|  | /// memdep query of a load that ends up being a clobbering mem intrinsic. | 
|  | Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, | 
|  | Type *LoadTy, Instruction *InsertPt, | 
|  | const DataLayout &DL) { | 
|  | IRBuilder<> Builder(InsertPt); | 
|  | return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset, | 
|  | LoadTy, Builder, DL); | 
|  | } | 
|  |  | 
|  | Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, | 
|  | Type *LoadTy, const DataLayout &DL) { | 
|  | // The only case analyzeLoadFromClobberingMemInst cannot be converted to a | 
|  | // constant is when it's a memset of a non-constant. | 
|  | if (auto *MSI = dyn_cast<MemSetInst>(SrcInst)) | 
|  | if (!isa<Constant>(MSI->getValue())) | 
|  | return nullptr; | 
|  | ConstantFolder F; | 
|  | return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset, | 
|  | LoadTy, F, DL); | 
|  | } | 
|  | } // namespace VNCoercion | 
|  | } // namespace llvm |