|  | //===- FunctionComparator.h - Function Comparator -------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the FunctionComparator and GlobalNumberState classes | 
|  | // which are used by the MergeFunctions pass for comparing functions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/FunctionComparator.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/Hashing.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "functioncomparator" | 
|  |  | 
|  | int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { | 
|  | if (L < R) return -1; | 
|  | if (L > R) return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { | 
|  | if ((int)L < (int)R) return -1; | 
|  | if ((int)L > (int)R) return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { | 
|  | if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) | 
|  | return Res; | 
|  | if (L.ugt(R)) return 1; | 
|  | if (R.ugt(L)) return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { | 
|  | // Floats are ordered first by semantics (i.e. float, double, half, etc.), | 
|  | // then by value interpreted as a bitstring (aka APInt). | 
|  | const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); | 
|  | if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), | 
|  | APFloat::semanticsPrecision(SR))) | 
|  | return Res; | 
|  | if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), | 
|  | APFloat::semanticsMaxExponent(SR))) | 
|  | return Res; | 
|  | if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), | 
|  | APFloat::semanticsMinExponent(SR))) | 
|  | return Res; | 
|  | if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), | 
|  | APFloat::semanticsSizeInBits(SR))) | 
|  | return Res; | 
|  | return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); | 
|  | } | 
|  |  | 
|  | int FunctionComparator::cmpMem(StringRef L, StringRef R) const { | 
|  | // Prevent heavy comparison, compare sizes first. | 
|  | if (int Res = cmpNumbers(L.size(), R.size())) | 
|  | return Res; | 
|  |  | 
|  | // Compare strings lexicographically only when it is necessary: only when | 
|  | // strings are equal in size. | 
|  | return L.compare(R); | 
|  | } | 
|  |  | 
|  | int FunctionComparator::cmpAttrs(const AttributeList L, | 
|  | const AttributeList R) const { | 
|  | if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) | 
|  | return Res; | 
|  |  | 
|  | for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) { | 
|  | AttributeSet LAS = L.getAttributes(i); | 
|  | AttributeSet RAS = R.getAttributes(i); | 
|  | AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); | 
|  | AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); | 
|  | for (; LI != LE && RI != RE; ++LI, ++RI) { | 
|  | Attribute LA = *LI; | 
|  | Attribute RA = *RI; | 
|  | if (LA < RA) | 
|  | return -1; | 
|  | if (RA < LA) | 
|  | return 1; | 
|  | } | 
|  | if (LI != LE) | 
|  | return 1; | 
|  | if (RI != RE) | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int FunctionComparator::cmpRangeMetadata(const MDNode *L, | 
|  | const MDNode *R) const { | 
|  | if (L == R) | 
|  | return 0; | 
|  | if (!L) | 
|  | return -1; | 
|  | if (!R) | 
|  | return 1; | 
|  | // Range metadata is a sequence of numbers. Make sure they are the same | 
|  | // sequence. | 
|  | // TODO: Note that as this is metadata, it is possible to drop and/or merge | 
|  | // this data when considering functions to merge. Thus this comparison would | 
|  | // return 0 (i.e. equivalent), but merging would become more complicated | 
|  | // because the ranges would need to be unioned. It is not likely that | 
|  | // functions differ ONLY in this metadata if they are actually the same | 
|  | // function semantically. | 
|  | if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) | 
|  | return Res; | 
|  | for (size_t I = 0; I < L->getNumOperands(); ++I) { | 
|  | ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); | 
|  | ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); | 
|  | if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) | 
|  | return Res; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L, | 
|  | const Instruction *R) const { | 
|  | ImmutableCallSite LCS(L); | 
|  | ImmutableCallSite RCS(R); | 
|  |  | 
|  | assert(LCS && RCS && "Must be calls or invokes!"); | 
|  | assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!"); | 
|  |  | 
|  | if (int Res = | 
|  | cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) | 
|  | return Res; | 
|  |  | 
|  | for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) { | 
|  | auto OBL = LCS.getOperandBundleAt(i); | 
|  | auto OBR = RCS.getOperandBundleAt(i); | 
|  |  | 
|  | if (int Res = OBL.getTagName().compare(OBR.getTagName())) | 
|  | return Res; | 
|  |  | 
|  | if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Constants comparison: | 
|  | /// 1. Check whether type of L constant could be losslessly bitcasted to R | 
|  | /// type. | 
|  | /// 2. Compare constant contents. | 
|  | /// For more details see declaration comments. | 
|  | int FunctionComparator::cmpConstants(const Constant *L, | 
|  | const Constant *R) const { | 
|  | Type *TyL = L->getType(); | 
|  | Type *TyR = R->getType(); | 
|  |  | 
|  | // Check whether types are bitcastable. This part is just re-factored | 
|  | // Type::canLosslesslyBitCastTo method, but instead of returning true/false, | 
|  | // we also pack into result which type is "less" for us. | 
|  | int TypesRes = cmpTypes(TyL, TyR); | 
|  | if (TypesRes != 0) { | 
|  | // Types are different, but check whether we can bitcast them. | 
|  | if (!TyL->isFirstClassType()) { | 
|  | if (TyR->isFirstClassType()) | 
|  | return -1; | 
|  | // Neither TyL nor TyR are values of first class type. Return the result | 
|  | // of comparing the types | 
|  | return TypesRes; | 
|  | } | 
|  | if (!TyR->isFirstClassType()) { | 
|  | if (TyL->isFirstClassType()) | 
|  | return 1; | 
|  | return TypesRes; | 
|  | } | 
|  |  | 
|  | // Vector -> Vector conversions are always lossless if the two vector types | 
|  | // have the same size, otherwise not. | 
|  | unsigned TyLWidth = 0; | 
|  | unsigned TyRWidth = 0; | 
|  |  | 
|  | if (auto *VecTyL = dyn_cast<VectorType>(TyL)) | 
|  | TyLWidth = VecTyL->getBitWidth(); | 
|  | if (auto *VecTyR = dyn_cast<VectorType>(TyR)) | 
|  | TyRWidth = VecTyR->getBitWidth(); | 
|  |  | 
|  | if (TyLWidth != TyRWidth) | 
|  | return cmpNumbers(TyLWidth, TyRWidth); | 
|  |  | 
|  | // Zero bit-width means neither TyL nor TyR are vectors. | 
|  | if (!TyLWidth) { | 
|  | PointerType *PTyL = dyn_cast<PointerType>(TyL); | 
|  | PointerType *PTyR = dyn_cast<PointerType>(TyR); | 
|  | if (PTyL && PTyR) { | 
|  | unsigned AddrSpaceL = PTyL->getAddressSpace(); | 
|  | unsigned AddrSpaceR = PTyR->getAddressSpace(); | 
|  | if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) | 
|  | return Res; | 
|  | } | 
|  | if (PTyL) | 
|  | return 1; | 
|  | if (PTyR) | 
|  | return -1; | 
|  |  | 
|  | // TyL and TyR aren't vectors, nor pointers. We don't know how to | 
|  | // bitcast them. | 
|  | return TypesRes; | 
|  | } | 
|  | } | 
|  |  | 
|  | // OK, types are bitcastable, now check constant contents. | 
|  |  | 
|  | if (L->isNullValue() && R->isNullValue()) | 
|  | return TypesRes; | 
|  | if (L->isNullValue() && !R->isNullValue()) | 
|  | return 1; | 
|  | if (!L->isNullValue() && R->isNullValue()) | 
|  | return -1; | 
|  |  | 
|  | auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L)); | 
|  | auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R)); | 
|  | if (GlobalValueL && GlobalValueR) { | 
|  | return cmpGlobalValues(GlobalValueL, GlobalValueR); | 
|  | } | 
|  |  | 
|  | if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) | 
|  | return Res; | 
|  |  | 
|  | if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { | 
|  | const auto *SeqR = cast<ConstantDataSequential>(R); | 
|  | // This handles ConstantDataArray and ConstantDataVector. Note that we | 
|  | // compare the two raw data arrays, which might differ depending on the host | 
|  | // endianness. This isn't a problem though, because the endiness of a module | 
|  | // will affect the order of the constants, but this order is the same | 
|  | // for a given input module and host platform. | 
|  | return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); | 
|  | } | 
|  |  | 
|  | switch (L->getValueID()) { | 
|  | case Value::UndefValueVal: | 
|  | case Value::ConstantTokenNoneVal: | 
|  | return TypesRes; | 
|  | case Value::ConstantIntVal: { | 
|  | const APInt &LInt = cast<ConstantInt>(L)->getValue(); | 
|  | const APInt &RInt = cast<ConstantInt>(R)->getValue(); | 
|  | return cmpAPInts(LInt, RInt); | 
|  | } | 
|  | case Value::ConstantFPVal: { | 
|  | const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); | 
|  | const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); | 
|  | return cmpAPFloats(LAPF, RAPF); | 
|  | } | 
|  | case Value::ConstantArrayVal: { | 
|  | const ConstantArray *LA = cast<ConstantArray>(L); | 
|  | const ConstantArray *RA = cast<ConstantArray>(R); | 
|  | uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); | 
|  | uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); | 
|  | if (int Res = cmpNumbers(NumElementsL, NumElementsR)) | 
|  | return Res; | 
|  | for (uint64_t i = 0; i < NumElementsL; ++i) { | 
|  | if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), | 
|  | cast<Constant>(RA->getOperand(i)))) | 
|  | return Res; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | case Value::ConstantStructVal: { | 
|  | const ConstantStruct *LS = cast<ConstantStruct>(L); | 
|  | const ConstantStruct *RS = cast<ConstantStruct>(R); | 
|  | unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); | 
|  | unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); | 
|  | if (int Res = cmpNumbers(NumElementsL, NumElementsR)) | 
|  | return Res; | 
|  | for (unsigned i = 0; i != NumElementsL; ++i) { | 
|  | if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), | 
|  | cast<Constant>(RS->getOperand(i)))) | 
|  | return Res; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | case Value::ConstantVectorVal: { | 
|  | const ConstantVector *LV = cast<ConstantVector>(L); | 
|  | const ConstantVector *RV = cast<ConstantVector>(R); | 
|  | unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); | 
|  | unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); | 
|  | if (int Res = cmpNumbers(NumElementsL, NumElementsR)) | 
|  | return Res; | 
|  | for (uint64_t i = 0; i < NumElementsL; ++i) { | 
|  | if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), | 
|  | cast<Constant>(RV->getOperand(i)))) | 
|  | return Res; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | case Value::ConstantExprVal: { | 
|  | const ConstantExpr *LE = cast<ConstantExpr>(L); | 
|  | const ConstantExpr *RE = cast<ConstantExpr>(R); | 
|  | unsigned NumOperandsL = LE->getNumOperands(); | 
|  | unsigned NumOperandsR = RE->getNumOperands(); | 
|  | if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) | 
|  | return Res; | 
|  | for (unsigned i = 0; i < NumOperandsL; ++i) { | 
|  | if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), | 
|  | cast<Constant>(RE->getOperand(i)))) | 
|  | return Res; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | case Value::BlockAddressVal: { | 
|  | const BlockAddress *LBA = cast<BlockAddress>(L); | 
|  | const BlockAddress *RBA = cast<BlockAddress>(R); | 
|  | if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) | 
|  | return Res; | 
|  | if (LBA->getFunction() == RBA->getFunction()) { | 
|  | // They are BBs in the same function. Order by which comes first in the | 
|  | // BB order of the function. This order is deterministic. | 
|  | Function* F = LBA->getFunction(); | 
|  | BasicBlock *LBB = LBA->getBasicBlock(); | 
|  | BasicBlock *RBB = RBA->getBasicBlock(); | 
|  | if (LBB == RBB) | 
|  | return 0; | 
|  | for(BasicBlock &BB : F->getBasicBlockList()) { | 
|  | if (&BB == LBB) { | 
|  | assert(&BB != RBB); | 
|  | return -1; | 
|  | } | 
|  | if (&BB == RBB) | 
|  | return 1; | 
|  | } | 
|  | llvm_unreachable("Basic Block Address does not point to a basic block in " | 
|  | "its function."); | 
|  | return -1; | 
|  | } else { | 
|  | // cmpValues said the functions are the same. So because they aren't | 
|  | // literally the same pointer, they must respectively be the left and | 
|  | // right functions. | 
|  | assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); | 
|  | // cmpValues will tell us if these are equivalent BasicBlocks, in the | 
|  | // context of their respective functions. | 
|  | return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); | 
|  | } | 
|  | } | 
|  | default: // Unknown constant, abort. | 
|  | LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); | 
|  | llvm_unreachable("Constant ValueID not recognized."); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { | 
|  | uint64_t LNumber = GlobalNumbers->getNumber(L); | 
|  | uint64_t RNumber = GlobalNumbers->getNumber(R); | 
|  | return cmpNumbers(LNumber, RNumber); | 
|  | } | 
|  |  | 
|  | /// cmpType - compares two types, | 
|  | /// defines total ordering among the types set. | 
|  | /// See method declaration comments for more details. | 
|  | int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { | 
|  | PointerType *PTyL = dyn_cast<PointerType>(TyL); | 
|  | PointerType *PTyR = dyn_cast<PointerType>(TyR); | 
|  |  | 
|  | const DataLayout &DL = FnL->getParent()->getDataLayout(); | 
|  | if (PTyL && PTyL->getAddressSpace() == 0) | 
|  | TyL = DL.getIntPtrType(TyL); | 
|  | if (PTyR && PTyR->getAddressSpace() == 0) | 
|  | TyR = DL.getIntPtrType(TyR); | 
|  |  | 
|  | if (TyL == TyR) | 
|  | return 0; | 
|  |  | 
|  | if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) | 
|  | return Res; | 
|  |  | 
|  | switch (TyL->getTypeID()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown type!"); | 
|  | case Type::IntegerTyID: | 
|  | return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), | 
|  | cast<IntegerType>(TyR)->getBitWidth()); | 
|  | // TyL == TyR would have returned true earlier, because types are uniqued. | 
|  | case Type::VoidTyID: | 
|  | case Type::FloatTyID: | 
|  | case Type::DoubleTyID: | 
|  | case Type::X86_FP80TyID: | 
|  | case Type::FP128TyID: | 
|  | case Type::PPC_FP128TyID: | 
|  | case Type::LabelTyID: | 
|  | case Type::MetadataTyID: | 
|  | case Type::TokenTyID: | 
|  | return 0; | 
|  |  | 
|  | case Type::PointerTyID: | 
|  | assert(PTyL && PTyR && "Both types must be pointers here."); | 
|  | return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); | 
|  |  | 
|  | case Type::StructTyID: { | 
|  | StructType *STyL = cast<StructType>(TyL); | 
|  | StructType *STyR = cast<StructType>(TyR); | 
|  | if (STyL->getNumElements() != STyR->getNumElements()) | 
|  | return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); | 
|  |  | 
|  | if (STyL->isPacked() != STyR->isPacked()) | 
|  | return cmpNumbers(STyL->isPacked(), STyR->isPacked()); | 
|  |  | 
|  | for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { | 
|  | if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) | 
|  | return Res; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Type::FunctionTyID: { | 
|  | FunctionType *FTyL = cast<FunctionType>(TyL); | 
|  | FunctionType *FTyR = cast<FunctionType>(TyR); | 
|  | if (FTyL->getNumParams() != FTyR->getNumParams()) | 
|  | return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); | 
|  |  | 
|  | if (FTyL->isVarArg() != FTyR->isVarArg()) | 
|  | return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); | 
|  |  | 
|  | if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) | 
|  | return Res; | 
|  |  | 
|  | for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { | 
|  | if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) | 
|  | return Res; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Type::ArrayTyID: | 
|  | case Type::VectorTyID: { | 
|  | auto *STyL = cast<SequentialType>(TyL); | 
|  | auto *STyR = cast<SequentialType>(TyR); | 
|  | if (STyL->getNumElements() != STyR->getNumElements()) | 
|  | return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); | 
|  | return cmpTypes(STyL->getElementType(), STyR->getElementType()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine whether the two operations are the same except that pointer-to-A | 
|  | // and pointer-to-B are equivalent. This should be kept in sync with | 
|  | // Instruction::isSameOperationAs. | 
|  | // Read method declaration comments for more details. | 
|  | int FunctionComparator::cmpOperations(const Instruction *L, | 
|  | const Instruction *R, | 
|  | bool &needToCmpOperands) const { | 
|  | needToCmpOperands = true; | 
|  | if (int Res = cmpValues(L, R)) | 
|  | return Res; | 
|  |  | 
|  | // Differences from Instruction::isSameOperationAs: | 
|  | //  * replace type comparison with calls to cmpTypes. | 
|  | //  * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. | 
|  | //  * because of the above, we don't test for the tail bit on calls later on. | 
|  | if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) | 
|  | return Res; | 
|  |  | 
|  | if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { | 
|  | needToCmpOperands = false; | 
|  | const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); | 
|  | if (int Res = | 
|  | cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) | 
|  | return Res; | 
|  | return cmpGEPs(GEPL, GEPR); | 
|  | } | 
|  |  | 
|  | if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) | 
|  | return Res; | 
|  |  | 
|  | if (int Res = cmpTypes(L->getType(), R->getType())) | 
|  | return Res; | 
|  |  | 
|  | if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), | 
|  | R->getRawSubclassOptionalData())) | 
|  | return Res; | 
|  |  | 
|  | // We have two instructions of identical opcode and #operands.  Check to see | 
|  | // if all operands are the same type | 
|  | for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { | 
|  | if (int Res = | 
|  | cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // Check special state that is a part of some instructions. | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { | 
|  | if (int Res = cmpTypes(AI->getAllocatedType(), | 
|  | cast<AllocaInst>(R)->getAllocatedType())) | 
|  | return Res; | 
|  | return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()); | 
|  | } | 
|  | if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { | 
|  | if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) | 
|  | return Res; | 
|  | if (int Res = | 
|  | cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) | 
|  | return Res; | 
|  | if (int Res = | 
|  | cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) | 
|  | return Res; | 
|  | if (int Res = cmpNumbers(LI->getSyncScopeID(), | 
|  | cast<LoadInst>(R)->getSyncScopeID())) | 
|  | return Res; | 
|  | return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range), | 
|  | cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); | 
|  | } | 
|  | if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { | 
|  | if (int Res = | 
|  | cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) | 
|  | return Res; | 
|  | if (int Res = | 
|  | cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) | 
|  | return Res; | 
|  | if (int Res = | 
|  | cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) | 
|  | return Res; | 
|  | return cmpNumbers(SI->getSyncScopeID(), | 
|  | cast<StoreInst>(R)->getSyncScopeID()); | 
|  | } | 
|  | if (const CmpInst *CI = dyn_cast<CmpInst>(L)) | 
|  | return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); | 
|  | if (auto CSL = CallSite(const_cast<Instruction *>(L))) { | 
|  | auto CSR = CallSite(const_cast<Instruction *>(R)); | 
|  | if (int Res = cmpNumbers(CSL.getCallingConv(), CSR.getCallingConv())) | 
|  | return Res; | 
|  | if (int Res = cmpAttrs(CSL.getAttributes(), CSR.getAttributes())) | 
|  | return Res; | 
|  | if (int Res = cmpOperandBundlesSchema(L, R)) | 
|  | return Res; | 
|  | if (const CallInst *CI = dyn_cast<CallInst>(L)) | 
|  | if (int Res = cmpNumbers(CI->getTailCallKind(), | 
|  | cast<CallInst>(R)->getTailCallKind())) | 
|  | return Res; | 
|  | return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range), | 
|  | R->getMetadata(LLVMContext::MD_range)); | 
|  | } | 
|  | if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { | 
|  | ArrayRef<unsigned> LIndices = IVI->getIndices(); | 
|  | ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); | 
|  | if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) | 
|  | return Res; | 
|  | for (size_t i = 0, e = LIndices.size(); i != e; ++i) { | 
|  | if (int Res = cmpNumbers(LIndices[i], RIndices[i])) | 
|  | return Res; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { | 
|  | ArrayRef<unsigned> LIndices = EVI->getIndices(); | 
|  | ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); | 
|  | if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) | 
|  | return Res; | 
|  | for (size_t i = 0, e = LIndices.size(); i != e; ++i) { | 
|  | if (int Res = cmpNumbers(LIndices[i], RIndices[i])) | 
|  | return Res; | 
|  | } | 
|  | } | 
|  | if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { | 
|  | if (int Res = | 
|  | cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) | 
|  | return Res; | 
|  | return cmpNumbers(FI->getSyncScopeID(), | 
|  | cast<FenceInst>(R)->getSyncScopeID()); | 
|  | } | 
|  | if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { | 
|  | if (int Res = cmpNumbers(CXI->isVolatile(), | 
|  | cast<AtomicCmpXchgInst>(R)->isVolatile())) | 
|  | return Res; | 
|  | if (int Res = cmpNumbers(CXI->isWeak(), | 
|  | cast<AtomicCmpXchgInst>(R)->isWeak())) | 
|  | return Res; | 
|  | if (int Res = | 
|  | cmpOrderings(CXI->getSuccessOrdering(), | 
|  | cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) | 
|  | return Res; | 
|  | if (int Res = | 
|  | cmpOrderings(CXI->getFailureOrdering(), | 
|  | cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) | 
|  | return Res; | 
|  | return cmpNumbers(CXI->getSyncScopeID(), | 
|  | cast<AtomicCmpXchgInst>(R)->getSyncScopeID()); | 
|  | } | 
|  | if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { | 
|  | if (int Res = cmpNumbers(RMWI->getOperation(), | 
|  | cast<AtomicRMWInst>(R)->getOperation())) | 
|  | return Res; | 
|  | if (int Res = cmpNumbers(RMWI->isVolatile(), | 
|  | cast<AtomicRMWInst>(R)->isVolatile())) | 
|  | return Res; | 
|  | if (int Res = cmpOrderings(RMWI->getOrdering(), | 
|  | cast<AtomicRMWInst>(R)->getOrdering())) | 
|  | return Res; | 
|  | return cmpNumbers(RMWI->getSyncScopeID(), | 
|  | cast<AtomicRMWInst>(R)->getSyncScopeID()); | 
|  | } | 
|  | if (const PHINode *PNL = dyn_cast<PHINode>(L)) { | 
|  | const PHINode *PNR = cast<PHINode>(R); | 
|  | // Ensure that in addition to the incoming values being identical | 
|  | // (checked by the caller of this function), the incoming blocks | 
|  | // are also identical. | 
|  | for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { | 
|  | if (int Res = | 
|  | cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) | 
|  | return Res; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Determine whether two GEP operations perform the same underlying arithmetic. | 
|  | // Read method declaration comments for more details. | 
|  | int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, | 
|  | const GEPOperator *GEPR) const { | 
|  | unsigned int ASL = GEPL->getPointerAddressSpace(); | 
|  | unsigned int ASR = GEPR->getPointerAddressSpace(); | 
|  |  | 
|  | if (int Res = cmpNumbers(ASL, ASR)) | 
|  | return Res; | 
|  |  | 
|  | // When we have target data, we can reduce the GEP down to the value in bytes | 
|  | // added to the address. | 
|  | const DataLayout &DL = FnL->getParent()->getDataLayout(); | 
|  | unsigned BitWidth = DL.getPointerSizeInBits(ASL); | 
|  | APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); | 
|  | if (GEPL->accumulateConstantOffset(DL, OffsetL) && | 
|  | GEPR->accumulateConstantOffset(DL, OffsetR)) | 
|  | return cmpAPInts(OffsetL, OffsetR); | 
|  | if (int Res = cmpTypes(GEPL->getSourceElementType(), | 
|  | GEPR->getSourceElementType())) | 
|  | return Res; | 
|  |  | 
|  | if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) | 
|  | return Res; | 
|  |  | 
|  | for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { | 
|  | if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int FunctionComparator::cmpInlineAsm(const InlineAsm *L, | 
|  | const InlineAsm *R) const { | 
|  | // InlineAsm's are uniqued. If they are the same pointer, obviously they are | 
|  | // the same, otherwise compare the fields. | 
|  | if (L == R) | 
|  | return 0; | 
|  | if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) | 
|  | return Res; | 
|  | if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) | 
|  | return Res; | 
|  | if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) | 
|  | return Res; | 
|  | if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) | 
|  | return Res; | 
|  | if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) | 
|  | return Res; | 
|  | if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) | 
|  | return Res; | 
|  | assert(L->getFunctionType() != R->getFunctionType()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Compare two values used by the two functions under pair-wise comparison. If | 
|  | /// this is the first time the values are seen, they're added to the mapping so | 
|  | /// that we will detect mismatches on next use. | 
|  | /// See comments in declaration for more details. | 
|  | int FunctionComparator::cmpValues(const Value *L, const Value *R) const { | 
|  | // Catch self-reference case. | 
|  | if (L == FnL) { | 
|  | if (R == FnR) | 
|  | return 0; | 
|  | return -1; | 
|  | } | 
|  | if (R == FnR) { | 
|  | if (L == FnL) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | const Constant *ConstL = dyn_cast<Constant>(L); | 
|  | const Constant *ConstR = dyn_cast<Constant>(R); | 
|  | if (ConstL && ConstR) { | 
|  | if (L == R) | 
|  | return 0; | 
|  | return cmpConstants(ConstL, ConstR); | 
|  | } | 
|  |  | 
|  | if (ConstL) | 
|  | return 1; | 
|  | if (ConstR) | 
|  | return -1; | 
|  |  | 
|  | const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); | 
|  | const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); | 
|  |  | 
|  | if (InlineAsmL && InlineAsmR) | 
|  | return cmpInlineAsm(InlineAsmL, InlineAsmR); | 
|  | if (InlineAsmL) | 
|  | return 1; | 
|  | if (InlineAsmR) | 
|  | return -1; | 
|  |  | 
|  | auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), | 
|  | RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); | 
|  |  | 
|  | return cmpNumbers(LeftSN.first->second, RightSN.first->second); | 
|  | } | 
|  |  | 
|  | // Test whether two basic blocks have equivalent behaviour. | 
|  | int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, | 
|  | const BasicBlock *BBR) const { | 
|  | BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); | 
|  | BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); | 
|  |  | 
|  | do { | 
|  | bool needToCmpOperands = true; | 
|  | if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) | 
|  | return Res; | 
|  | if (needToCmpOperands) { | 
|  | assert(InstL->getNumOperands() == InstR->getNumOperands()); | 
|  |  | 
|  | for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { | 
|  | Value *OpL = InstL->getOperand(i); | 
|  | Value *OpR = InstR->getOperand(i); | 
|  | if (int Res = cmpValues(OpL, OpR)) | 
|  | return Res; | 
|  | // cmpValues should ensure this is true. | 
|  | assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | ++InstL; | 
|  | ++InstR; | 
|  | } while (InstL != InstLE && InstR != InstRE); | 
|  |  | 
|  | if (InstL != InstLE && InstR == InstRE) | 
|  | return 1; | 
|  | if (InstL == InstLE && InstR != InstRE) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int FunctionComparator::compareSignature() const { | 
|  | if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) | 
|  | return Res; | 
|  |  | 
|  | if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) | 
|  | return Res; | 
|  |  | 
|  | if (FnL->hasGC()) { | 
|  | if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) | 
|  | return Res; | 
|  |  | 
|  | if (FnL->hasSection()) { | 
|  | if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) | 
|  | return Res; | 
|  |  | 
|  | // TODO: if it's internal and only used in direct calls, we could handle this | 
|  | // case too. | 
|  | if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) | 
|  | return Res; | 
|  |  | 
|  | if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) | 
|  | return Res; | 
|  |  | 
|  | assert(FnL->arg_size() == FnR->arg_size() && | 
|  | "Identically typed functions have different numbers of args!"); | 
|  |  | 
|  | // Visit the arguments so that they get enumerated in the order they're | 
|  | // passed in. | 
|  | for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), | 
|  | ArgRI = FnR->arg_begin(), | 
|  | ArgLE = FnL->arg_end(); | 
|  | ArgLI != ArgLE; ++ArgLI, ++ArgRI) { | 
|  | if (cmpValues(&*ArgLI, &*ArgRI) != 0) | 
|  | llvm_unreachable("Arguments repeat!"); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Test whether the two functions have equivalent behaviour. | 
|  | int FunctionComparator::compare() { | 
|  | beginCompare(); | 
|  |  | 
|  | if (int Res = compareSignature()) | 
|  | return Res; | 
|  |  | 
|  | // We do a CFG-ordered walk since the actual ordering of the blocks in the | 
|  | // linked list is immaterial. Our walk starts at the entry block for both | 
|  | // functions, then takes each block from each terminator in order. As an | 
|  | // artifact, this also means that unreachable blocks are ignored. | 
|  | SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; | 
|  | SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. | 
|  |  | 
|  | FnLBBs.push_back(&FnL->getEntryBlock()); | 
|  | FnRBBs.push_back(&FnR->getEntryBlock()); | 
|  |  | 
|  | VisitedBBs.insert(FnLBBs[0]); | 
|  | while (!FnLBBs.empty()) { | 
|  | const BasicBlock *BBL = FnLBBs.pop_back_val(); | 
|  | const BasicBlock *BBR = FnRBBs.pop_back_val(); | 
|  |  | 
|  | if (int Res = cmpValues(BBL, BBR)) | 
|  | return Res; | 
|  |  | 
|  | if (int Res = cmpBasicBlocks(BBL, BBR)) | 
|  | return Res; | 
|  |  | 
|  | const Instruction *TermL = BBL->getTerminator(); | 
|  | const Instruction *TermR = BBR->getTerminator(); | 
|  |  | 
|  | assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); | 
|  | for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { | 
|  | if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) | 
|  | continue; | 
|  |  | 
|  | FnLBBs.push_back(TermL->getSuccessor(i)); | 
|  | FnRBBs.push_back(TermR->getSuccessor(i)); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Accumulate the hash of a sequence of 64-bit integers. This is similar to a | 
|  | // hash of a sequence of 64bit ints, but the entire input does not need to be | 
|  | // available at once. This interface is necessary for functionHash because it | 
|  | // needs to accumulate the hash as the structure of the function is traversed | 
|  | // without saving these values to an intermediate buffer. This form of hashing | 
|  | // is not often needed, as usually the object to hash is just read from a | 
|  | // buffer. | 
|  | class HashAccumulator64 { | 
|  | uint64_t Hash; | 
|  |  | 
|  | public: | 
|  | // Initialize to random constant, so the state isn't zero. | 
|  | HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } | 
|  |  | 
|  | void add(uint64_t V) { | 
|  | Hash = hashing::detail::hash_16_bytes(Hash, V); | 
|  | } | 
|  |  | 
|  | // No finishing is required, because the entire hash value is used. | 
|  | uint64_t getHash() { return Hash; } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // A function hash is calculated by considering only the number of arguments and | 
|  | // whether a function is varargs, the order of basic blocks (given by the | 
|  | // successors of each basic block in depth first order), and the order of | 
|  | // opcodes of each instruction within each of these basic blocks. This mirrors | 
|  | // the strategy compare() uses to compare functions by walking the BBs in depth | 
|  | // first order and comparing each instruction in sequence. Because this hash | 
|  | // does not look at the operands, it is insensitive to things such as the | 
|  | // target of calls and the constants used in the function, which makes it useful | 
|  | // when possibly merging functions which are the same modulo constants and call | 
|  | // targets. | 
|  | FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { | 
|  | HashAccumulator64 H; | 
|  | H.add(F.isVarArg()); | 
|  | H.add(F.arg_size()); | 
|  |  | 
|  | SmallVector<const BasicBlock *, 8> BBs; | 
|  | SmallPtrSet<const BasicBlock *, 16> VisitedBBs; | 
|  |  | 
|  | // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), | 
|  | // accumulating the hash of the function "structure." (BB and opcode sequence) | 
|  | BBs.push_back(&F.getEntryBlock()); | 
|  | VisitedBBs.insert(BBs[0]); | 
|  | while (!BBs.empty()) { | 
|  | const BasicBlock *BB = BBs.pop_back_val(); | 
|  | // This random value acts as a block header, as otherwise the partition of | 
|  | // opcodes into BBs wouldn't affect the hash, only the order of the opcodes | 
|  | H.add(45798); | 
|  | for (auto &Inst : *BB) { | 
|  | H.add(Inst.getOpcode()); | 
|  | } | 
|  | const Instruction *Term = BB->getTerminator(); | 
|  | for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { | 
|  | if (!VisitedBBs.insert(Term->getSuccessor(i)).second) | 
|  | continue; | 
|  | BBs.push_back(Term->getSuccessor(i)); | 
|  | } | 
|  | } | 
|  | return H.getHash(); | 
|  | } |