|  | //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs several transformations to transform natural loops into a | 
|  | // simpler form, which makes subsequent analyses and transformations simpler and | 
|  | // more effective. | 
|  | // | 
|  | // Loop pre-header insertion guarantees that there is a single, non-critical | 
|  | // entry edge from outside of the loop to the loop header.  This simplifies a | 
|  | // number of analyses and transformations, such as LICM. | 
|  | // | 
|  | // Loop exit-block insertion guarantees that all exit blocks from the loop | 
|  | // (blocks which are outside of the loop that have predecessors inside of the | 
|  | // loop) only have predecessors from inside of the loop (and are thus dominated | 
|  | // by the loop header).  This simplifies transformations such as store-sinking | 
|  | // that are built into LICM. | 
|  | // | 
|  | // This pass also guarantees that loops will have exactly one backedge. | 
|  | // | 
|  | // Indirectbr instructions introduce several complications. If the loop | 
|  | // contains or is entered by an indirectbr instruction, it may not be possible | 
|  | // to transform the loop and make these guarantees. Client code should check | 
|  | // that these conditions are true before relying on them. | 
|  | // | 
|  | // Similar complications arise from callbr instructions, particularly in | 
|  | // asm-goto where blockaddress expressions are used. | 
|  | // | 
|  | // Note that the simplifycfg pass will clean up blocks which are split out but | 
|  | // end up being unnecessary, so usage of this pass should not pessimize | 
|  | // generated code. | 
|  | // | 
|  | // This pass obviously modifies the CFG, but updates loop information and | 
|  | // dominator information. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/LoopSimplify.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/SetOperations.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/BasicAliasAnalysis.h" | 
|  | #include "llvm/Analysis/DependenceAnalysis.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "loop-simplify" | 
|  |  | 
|  | STATISTIC(NumNested  , "Number of nested loops split out"); | 
|  |  | 
|  | // If the block isn't already, move the new block to right after some 'outside | 
|  | // block' block.  This prevents the preheader from being placed inside the loop | 
|  | // body, e.g. when the loop hasn't been rotated. | 
|  | static void placeSplitBlockCarefully(BasicBlock *NewBB, | 
|  | SmallVectorImpl<BasicBlock *> &SplitPreds, | 
|  | Loop *L) { | 
|  | // Check to see if NewBB is already well placed. | 
|  | Function::iterator BBI = --NewBB->getIterator(); | 
|  | for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { | 
|  | if (&*BBI == SplitPreds[i]) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If it isn't already after an outside block, move it after one.  This is | 
|  | // always good as it makes the uncond branch from the outside block into a | 
|  | // fall-through. | 
|  |  | 
|  | // Figure out *which* outside block to put this after.  Prefer an outside | 
|  | // block that neighbors a BB actually in the loop. | 
|  | BasicBlock *FoundBB = nullptr; | 
|  | for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { | 
|  | Function::iterator BBI = SplitPreds[i]->getIterator(); | 
|  | if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { | 
|  | FoundBB = SplitPreds[i]; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If our heuristic for a *good* bb to place this after doesn't find | 
|  | // anything, just pick something.  It's likely better than leaving it within | 
|  | // the loop. | 
|  | if (!FoundBB) | 
|  | FoundBB = SplitPreds[0]; | 
|  | NewBB->moveAfter(FoundBB); | 
|  | } | 
|  |  | 
|  | /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a | 
|  | /// preheader, this method is called to insert one.  This method has two phases: | 
|  | /// preheader insertion and analysis updating. | 
|  | /// | 
|  | BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, | 
|  | LoopInfo *LI, bool PreserveLCSSA) { | 
|  | BasicBlock *Header = L->getHeader(); | 
|  |  | 
|  | // Compute the set of predecessors of the loop that are not in the loop. | 
|  | SmallVector<BasicBlock*, 8> OutsideBlocks; | 
|  | for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); | 
|  | PI != PE; ++PI) { | 
|  | BasicBlock *P = *PI; | 
|  | if (!L->contains(P)) {         // Coming in from outside the loop? | 
|  | // If the loop is branched to from an indirect terminator, we won't | 
|  | // be able to fully transform the loop, because it prohibits | 
|  | // edge splitting. | 
|  | if (P->getTerminator()->isIndirectTerminator()) | 
|  | return nullptr; | 
|  |  | 
|  | // Keep track of it. | 
|  | OutsideBlocks.push_back(P); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Split out the loop pre-header. | 
|  | BasicBlock *PreheaderBB; | 
|  | PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, | 
|  | LI, nullptr, PreserveLCSSA); | 
|  | if (!PreheaderBB) | 
|  | return nullptr; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " | 
|  | << PreheaderBB->getName() << "\n"); | 
|  |  | 
|  | // Make sure that NewBB is put someplace intelligent, which doesn't mess up | 
|  | // code layout too horribly. | 
|  | placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); | 
|  |  | 
|  | return PreheaderBB; | 
|  | } | 
|  |  | 
|  | /// Add the specified block, and all of its predecessors, to the specified set, | 
|  | /// if it's not already in there.  Stop predecessor traversal when we reach | 
|  | /// StopBlock. | 
|  | static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, | 
|  | std::set<BasicBlock*> &Blocks) { | 
|  | SmallVector<BasicBlock *, 8> Worklist; | 
|  | Worklist.push_back(InputBB); | 
|  | do { | 
|  | BasicBlock *BB = Worklist.pop_back_val(); | 
|  | if (Blocks.insert(BB).second && BB != StopBlock) | 
|  | // If BB is not already processed and it is not a stop block then | 
|  | // insert its predecessor in the work list | 
|  | for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { | 
|  | BasicBlock *WBB = *I; | 
|  | Worklist.push_back(WBB); | 
|  | } | 
|  | } while (!Worklist.empty()); | 
|  | } | 
|  |  | 
|  | /// The first part of loop-nestification is to find a PHI node that tells | 
|  | /// us how to partition the loops. | 
|  | static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, | 
|  | AssumptionCache *AC) { | 
|  | const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); | 
|  | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | ++I; | 
|  | if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { | 
|  | // This is a degenerate PHI already, don't modify it! | 
|  | PN->replaceAllUsesWith(V); | 
|  | PN->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Scan this PHI node looking for a use of the PHI node by itself. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (PN->getIncomingValue(i) == PN && | 
|  | L->contains(PN->getIncomingBlock(i))) | 
|  | // We found something tasty to remove. | 
|  | return PN; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// If this loop has multiple backedges, try to pull one of them out into | 
|  | /// a nested loop. | 
|  | /// | 
|  | /// This is important for code that looks like | 
|  | /// this: | 
|  | /// | 
|  | ///  Loop: | 
|  | ///     ... | 
|  | ///     br cond, Loop, Next | 
|  | ///     ... | 
|  | ///     br cond2, Loop, Out | 
|  | /// | 
|  | /// To identify this common case, we look at the PHI nodes in the header of the | 
|  | /// loop.  PHI nodes with unchanging values on one backedge correspond to values | 
|  | /// that change in the "outer" loop, but not in the "inner" loop. | 
|  | /// | 
|  | /// If we are able to separate out a loop, return the new outer loop that was | 
|  | /// created. | 
|  | /// | 
|  | static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, | 
|  | DominatorTree *DT, LoopInfo *LI, | 
|  | ScalarEvolution *SE, bool PreserveLCSSA, | 
|  | AssumptionCache *AC) { | 
|  | // Don't try to separate loops without a preheader. | 
|  | if (!Preheader) | 
|  | return nullptr; | 
|  |  | 
|  | // The header is not a landing pad; preheader insertion should ensure this. | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); | 
|  |  | 
|  | PHINode *PN = findPHIToPartitionLoops(L, DT, AC); | 
|  | if (!PN) return nullptr;  // No known way to partition. | 
|  |  | 
|  | // Pull out all predecessors that have varying values in the loop.  This | 
|  | // handles the case when a PHI node has multiple instances of itself as | 
|  | // arguments. | 
|  | SmallVector<BasicBlock*, 8> OuterLoopPreds; | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | if (PN->getIncomingValue(i) != PN || | 
|  | !L->contains(PN->getIncomingBlock(i))) { | 
|  | // We can't split indirect control flow edges. | 
|  | if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator()) | 
|  | return nullptr; | 
|  | OuterLoopPreds.push_back(PN->getIncomingBlock(i)); | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); | 
|  |  | 
|  | // If ScalarEvolution is around and knows anything about values in | 
|  | // this loop, tell it to forget them, because we're about to | 
|  | // substantially change it. | 
|  | if (SE) | 
|  | SE->forgetLoop(L); | 
|  |  | 
|  | BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", | 
|  | DT, LI, nullptr, PreserveLCSSA); | 
|  |  | 
|  | // Make sure that NewBB is put someplace intelligent, which doesn't mess up | 
|  | // code layout too horribly. | 
|  | placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); | 
|  |  | 
|  | // Create the new outer loop. | 
|  | Loop *NewOuter = LI->AllocateLoop(); | 
|  |  | 
|  | // Change the parent loop to use the outer loop as its child now. | 
|  | if (Loop *Parent = L->getParentLoop()) | 
|  | Parent->replaceChildLoopWith(L, NewOuter); | 
|  | else | 
|  | LI->changeTopLevelLoop(L, NewOuter); | 
|  |  | 
|  | // L is now a subloop of our outer loop. | 
|  | NewOuter->addChildLoop(L); | 
|  |  | 
|  | for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); | 
|  | I != E; ++I) | 
|  | NewOuter->addBlockEntry(*I); | 
|  |  | 
|  | // Now reset the header in L, which had been moved by | 
|  | // SplitBlockPredecessors for the outer loop. | 
|  | L->moveToHeader(Header); | 
|  |  | 
|  | // Determine which blocks should stay in L and which should be moved out to | 
|  | // the Outer loop now. | 
|  | std::set<BasicBlock*> BlocksInL; | 
|  | for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { | 
|  | BasicBlock *P = *PI; | 
|  | if (DT->dominates(Header, P)) | 
|  | addBlockAndPredsToSet(P, Header, BlocksInL); | 
|  | } | 
|  |  | 
|  | // Scan all of the loop children of L, moving them to OuterLoop if they are | 
|  | // not part of the inner loop. | 
|  | const std::vector<Loop*> &SubLoops = L->getSubLoops(); | 
|  | for (size_t I = 0; I != SubLoops.size(); ) | 
|  | if (BlocksInL.count(SubLoops[I]->getHeader())) | 
|  | ++I;   // Loop remains in L | 
|  | else | 
|  | NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); | 
|  |  | 
|  | SmallVector<BasicBlock *, 8> OuterLoopBlocks; | 
|  | OuterLoopBlocks.push_back(NewBB); | 
|  | // Now that we know which blocks are in L and which need to be moved to | 
|  | // OuterLoop, move any blocks that need it. | 
|  | for (unsigned i = 0; i != L->getBlocks().size(); ++i) { | 
|  | BasicBlock *BB = L->getBlocks()[i]; | 
|  | if (!BlocksInL.count(BB)) { | 
|  | // Move this block to the parent, updating the exit blocks sets | 
|  | L->removeBlockFromLoop(BB); | 
|  | if ((*LI)[BB] == L) { | 
|  | LI->changeLoopFor(BB, NewOuter); | 
|  | OuterLoopBlocks.push_back(BB); | 
|  | } | 
|  | --i; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Split edges to exit blocks from the inner loop, if they emerged in the | 
|  | // process of separating the outer one. | 
|  | formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA); | 
|  |  | 
|  | if (PreserveLCSSA) { | 
|  | // Fix LCSSA form for L. Some values, which previously were only used inside | 
|  | // L, can now be used in NewOuter loop. We need to insert phi-nodes for them | 
|  | // in corresponding exit blocks. | 
|  | // We don't need to form LCSSA recursively, because there cannot be uses | 
|  | // inside a newly created loop of defs from inner loops as those would | 
|  | // already be a use of an LCSSA phi node. | 
|  | formLCSSA(*L, *DT, LI, SE); | 
|  |  | 
|  | assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && | 
|  | "LCSSA is broken after separating nested loops!"); | 
|  | } | 
|  |  | 
|  | return NewOuter; | 
|  | } | 
|  |  | 
|  | /// This method is called when the specified loop has more than one | 
|  | /// backedge in it. | 
|  | /// | 
|  | /// If this occurs, revector all of these backedges to target a new basic block | 
|  | /// and have that block branch to the loop header.  This ensures that loops | 
|  | /// have exactly one backedge. | 
|  | static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, | 
|  | DominatorTree *DT, LoopInfo *LI) { | 
|  | assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); | 
|  |  | 
|  | // Get information about the loop | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | Function *F = Header->getParent(); | 
|  |  | 
|  | // Unique backedge insertion currently depends on having a preheader. | 
|  | if (!Preheader) | 
|  | return nullptr; | 
|  |  | 
|  | // The header is not an EH pad; preheader insertion should ensure this. | 
|  | assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); | 
|  |  | 
|  | // Figure out which basic blocks contain back-edges to the loop header. | 
|  | std::vector<BasicBlock*> BackedgeBlocks; | 
|  | for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ | 
|  | BasicBlock *P = *I; | 
|  |  | 
|  | // Indirect edges cannot be split, so we must fail if we find one. | 
|  | if (P->getTerminator()->isIndirectTerminator()) | 
|  | return nullptr; | 
|  |  | 
|  | if (P != Preheader) BackedgeBlocks.push_back(P); | 
|  | } | 
|  |  | 
|  | // Create and insert the new backedge block... | 
|  | BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), | 
|  | Header->getName() + ".backedge", F); | 
|  | BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); | 
|  | BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " | 
|  | << BEBlock->getName() << "\n"); | 
|  |  | 
|  | // Move the new backedge block to right after the last backedge block. | 
|  | Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); | 
|  | F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); | 
|  |  | 
|  | // Now that the block has been inserted into the function, create PHI nodes in | 
|  | // the backedge block which correspond to any PHI nodes in the header block. | 
|  | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), | 
|  | PN->getName()+".be", BETerminator); | 
|  |  | 
|  | // Loop over the PHI node, moving all entries except the one for the | 
|  | // preheader over to the new PHI node. | 
|  | unsigned PreheaderIdx = ~0U; | 
|  | bool HasUniqueIncomingValue = true; | 
|  | Value *UniqueValue = nullptr; | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | BasicBlock *IBB = PN->getIncomingBlock(i); | 
|  | Value *IV = PN->getIncomingValue(i); | 
|  | if (IBB == Preheader) { | 
|  | PreheaderIdx = i; | 
|  | } else { | 
|  | NewPN->addIncoming(IV, IBB); | 
|  | if (HasUniqueIncomingValue) { | 
|  | if (!UniqueValue) | 
|  | UniqueValue = IV; | 
|  | else if (UniqueValue != IV) | 
|  | HasUniqueIncomingValue = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Delete all of the incoming values from the old PN except the preheader's | 
|  | assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); | 
|  | if (PreheaderIdx != 0) { | 
|  | PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); | 
|  | PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); | 
|  | } | 
|  | // Nuke all entries except the zero'th. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) | 
|  | PN->removeIncomingValue(e-i, false); | 
|  |  | 
|  | // Finally, add the newly constructed PHI node as the entry for the BEBlock. | 
|  | PN->addIncoming(NewPN, BEBlock); | 
|  |  | 
|  | // As an optimization, if all incoming values in the new PhiNode (which is a | 
|  | // subset of the incoming values of the old PHI node) have the same value, | 
|  | // eliminate the PHI Node. | 
|  | if (HasUniqueIncomingValue) { | 
|  | NewPN->replaceAllUsesWith(UniqueValue); | 
|  | BEBlock->getInstList().erase(NewPN); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that all of the PHI nodes have been inserted and adjusted, modify the | 
|  | // backedge blocks to jump to the BEBlock instead of the header. | 
|  | // If one of the backedges has llvm.loop metadata attached, we remove | 
|  | // it from the backedge and add it to BEBlock. | 
|  | unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop"); | 
|  | MDNode *LoopMD = nullptr; | 
|  | for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { | 
|  | Instruction *TI = BackedgeBlocks[i]->getTerminator(); | 
|  | if (!LoopMD) | 
|  | LoopMD = TI->getMetadata(LoopMDKind); | 
|  | TI->setMetadata(LoopMDKind, nullptr); | 
|  | for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) | 
|  | if (TI->getSuccessor(Op) == Header) | 
|  | TI->setSuccessor(Op, BEBlock); | 
|  | } | 
|  | BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD); | 
|  |  | 
|  | //===--- Update all analyses which we must preserve now -----------------===// | 
|  |  | 
|  | // Update Loop Information - we know that this block is now in the current | 
|  | // loop and all parent loops. | 
|  | L->addBasicBlockToLoop(BEBlock, *LI); | 
|  |  | 
|  | // Update dominator information | 
|  | DT->splitBlock(BEBlock); | 
|  |  | 
|  | return BEBlock; | 
|  | } | 
|  |  | 
|  | /// Simplify one loop and queue further loops for simplification. | 
|  | static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, | 
|  | DominatorTree *DT, LoopInfo *LI, | 
|  | ScalarEvolution *SE, AssumptionCache *AC, | 
|  | bool PreserveLCSSA) { | 
|  | bool Changed = false; | 
|  | ReprocessLoop: | 
|  |  | 
|  | // Check to see that no blocks (other than the header) in this loop have | 
|  | // predecessors that are not in the loop.  This is not valid for natural | 
|  | // loops, but can occur if the blocks are unreachable.  Since they are | 
|  | // unreachable we can just shamelessly delete those CFG edges! | 
|  | for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); | 
|  | BB != E; ++BB) { | 
|  | if (*BB == L->getHeader()) continue; | 
|  |  | 
|  | SmallPtrSet<BasicBlock*, 4> BadPreds; | 
|  | for (pred_iterator PI = pred_begin(*BB), | 
|  | PE = pred_end(*BB); PI != PE; ++PI) { | 
|  | BasicBlock *P = *PI; | 
|  | if (!L->contains(P)) | 
|  | BadPreds.insert(P); | 
|  | } | 
|  |  | 
|  | // Delete each unique out-of-loop (and thus dead) predecessor. | 
|  | for (BasicBlock *P : BadPreds) { | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " | 
|  | << P->getName() << "\n"); | 
|  |  | 
|  | // Zap the dead pred's terminator and replace it with unreachable. | 
|  | Instruction *TI = P->getTerminator(); | 
|  | changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there are exiting blocks with branches on undef, resolve the undef in | 
|  | // the direction which will exit the loop. This will help simplify loop | 
|  | // trip count computations. | 
|  | SmallVector<BasicBlock*, 8> ExitingBlocks; | 
|  | L->getExitingBlocks(ExitingBlocks); | 
|  | for (BasicBlock *ExitingBlock : ExitingBlocks) | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) | 
|  | if (BI->isConditional()) { | 
|  | if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { | 
|  |  | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "LoopSimplify: Resolving \"br i1 undef\" to exit in " | 
|  | << ExitingBlock->getName() << "\n"); | 
|  |  | 
|  | BI->setCondition(ConstantInt::get(Cond->getType(), | 
|  | !L->contains(BI->getSuccessor(0)))); | 
|  |  | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Does the loop already have a preheader?  If so, don't insert one. | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | if (!Preheader) { | 
|  | Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA); | 
|  | if (Preheader) | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // Next, check to make sure that all exit nodes of the loop only have | 
|  | // predecessors that are inside of the loop.  This check guarantees that the | 
|  | // loop preheader/header will dominate the exit blocks.  If the exit block has | 
|  | // predecessors from outside of the loop, split the edge now. | 
|  | if (formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA)) | 
|  | Changed = true; | 
|  |  | 
|  | // If the header has more than two predecessors at this point (from the | 
|  | // preheader and from multiple backedges), we must adjust the loop. | 
|  | BasicBlock *LoopLatch = L->getLoopLatch(); | 
|  | if (!LoopLatch) { | 
|  | // If this is really a nested loop, rip it out into a child loop.  Don't do | 
|  | // this for loops with a giant number of backedges, just factor them into a | 
|  | // common backedge instead. | 
|  | if (L->getNumBackEdges() < 8) { | 
|  | if (Loop *OuterL = | 
|  | separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) { | 
|  | ++NumNested; | 
|  | // Enqueue the outer loop as it should be processed next in our | 
|  | // depth-first nest walk. | 
|  | Worklist.push_back(OuterL); | 
|  |  | 
|  | // This is a big restructuring change, reprocess the whole loop. | 
|  | Changed = true; | 
|  | // GCC doesn't tail recursion eliminate this. | 
|  | // FIXME: It isn't clear we can't rely on LLVM to TRE this. | 
|  | goto ReprocessLoop; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we either couldn't, or didn't want to, identify nesting of the loops, | 
|  | // insert a new block that all backedges target, then make it jump to the | 
|  | // loop header. | 
|  | LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI); | 
|  | if (LoopLatch) | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); | 
|  |  | 
|  | // Scan over the PHI nodes in the loop header.  Since they now have only two | 
|  | // incoming values (the loop is canonicalized), we may have simplified the PHI | 
|  | // down to 'X = phi [X, Y]', which should be replaced with 'Y'. | 
|  | PHINode *PN; | 
|  | for (BasicBlock::iterator I = L->getHeader()->begin(); | 
|  | (PN = dyn_cast<PHINode>(I++)); ) | 
|  | if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { | 
|  | if (SE) SE->forgetValue(PN); | 
|  | if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) { | 
|  | PN->replaceAllUsesWith(V); | 
|  | PN->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this loop has multiple exits and the exits all go to the same | 
|  | // block, attempt to merge the exits. This helps several passes, such | 
|  | // as LoopRotation, which do not support loops with multiple exits. | 
|  | // SimplifyCFG also does this (and this code uses the same utility | 
|  | // function), however this code is loop-aware, where SimplifyCFG is | 
|  | // not. That gives it the advantage of being able to hoist | 
|  | // loop-invariant instructions out of the way to open up more | 
|  | // opportunities, and the disadvantage of having the responsibility | 
|  | // to preserve dominator information. | 
|  | auto HasUniqueExitBlock = [&]() { | 
|  | BasicBlock *UniqueExit = nullptr; | 
|  | for (auto *ExitingBB : ExitingBlocks) | 
|  | for (auto *SuccBB : successors(ExitingBB)) { | 
|  | if (L->contains(SuccBB)) | 
|  | continue; | 
|  |  | 
|  | if (!UniqueExit) | 
|  | UniqueExit = SuccBB; | 
|  | else if (UniqueExit != SuccBB) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | }; | 
|  | if (HasUniqueExitBlock()) { | 
|  | for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { | 
|  | BasicBlock *ExitingBlock = ExitingBlocks[i]; | 
|  | if (!ExitingBlock->getSinglePredecessor()) continue; | 
|  | BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); | 
|  | if (!BI || !BI->isConditional()) continue; | 
|  | CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); | 
|  | if (!CI || CI->getParent() != ExitingBlock) continue; | 
|  |  | 
|  | // Attempt to hoist out all instructions except for the | 
|  | // comparison and the branch. | 
|  | bool AllInvariant = true; | 
|  | bool AnyInvariant = false; | 
|  | for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { | 
|  | Instruction *Inst = &*I++; | 
|  | if (Inst == CI) | 
|  | continue; | 
|  | if (!L->makeLoopInvariant(Inst, AnyInvariant, | 
|  | Preheader ? Preheader->getTerminator() | 
|  | : nullptr)) { | 
|  | AllInvariant = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (AnyInvariant) { | 
|  | Changed = true; | 
|  | // The loop disposition of all SCEV expressions that depend on any | 
|  | // hoisted values have also changed. | 
|  | if (SE) | 
|  | SE->forgetLoopDispositions(L); | 
|  | } | 
|  | if (!AllInvariant) continue; | 
|  |  | 
|  | // The block has now been cleared of all instructions except for | 
|  | // a comparison and a conditional branch. SimplifyCFG may be able | 
|  | // to fold it now. | 
|  | if (!FoldBranchToCommonDest(BI)) | 
|  | continue; | 
|  |  | 
|  | // Success. The block is now dead, so remove it from the loop, | 
|  | // update the dominator tree and delete it. | 
|  | LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " | 
|  | << ExitingBlock->getName() << "\n"); | 
|  |  | 
|  | assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); | 
|  | Changed = true; | 
|  | LI->removeBlock(ExitingBlock); | 
|  |  | 
|  | DomTreeNode *Node = DT->getNode(ExitingBlock); | 
|  | const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = | 
|  | Node->getChildren(); | 
|  | while (!Children.empty()) { | 
|  | DomTreeNode *Child = Children.front(); | 
|  | DT->changeImmediateDominator(Child, Node->getIDom()); | 
|  | } | 
|  | DT->eraseNode(ExitingBlock); | 
|  |  | 
|  | BI->getSuccessor(0)->removePredecessor( | 
|  | ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA); | 
|  | BI->getSuccessor(1)->removePredecessor( | 
|  | ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA); | 
|  | ExitingBlock->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Changing exit conditions for blocks may affect exit counts of this loop and | 
|  | // any of its paretns, so we must invalidate the entire subtree if we've made | 
|  | // any changes. | 
|  | if (Changed && SE) | 
|  | SE->forgetTopmostLoop(L); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, | 
|  | ScalarEvolution *SE, AssumptionCache *AC, | 
|  | bool PreserveLCSSA) { | 
|  | bool Changed = false; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA | 
|  | // form. | 
|  | if (PreserveLCSSA) { | 
|  | assert(DT && "DT not available."); | 
|  | assert(LI && "LI not available."); | 
|  | assert(L->isRecursivelyLCSSAForm(*DT, *LI) && | 
|  | "Requested to preserve LCSSA, but it's already broken."); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Worklist maintains our depth-first queue of loops in this nest to process. | 
|  | SmallVector<Loop *, 4> Worklist; | 
|  | Worklist.push_back(L); | 
|  |  | 
|  | // Walk the worklist from front to back, pushing newly found sub loops onto | 
|  | // the back. This will let us process loops from back to front in depth-first | 
|  | // order. We can use this simple process because loops form a tree. | 
|  | for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { | 
|  | Loop *L2 = Worklist[Idx]; | 
|  | Worklist.append(L2->begin(), L2->end()); | 
|  | } | 
|  |  | 
|  | while (!Worklist.empty()) | 
|  | Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, | 
|  | AC, PreserveLCSSA); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct LoopSimplify : public FunctionPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | LoopSimplify() : FunctionPass(ID) { | 
|  | initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  |  | 
|  | // We need loop information to identify the loops... | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  |  | 
|  | AU.addRequired<LoopInfoWrapperPass>(); | 
|  | AU.addPreserved<LoopInfoWrapperPass>(); | 
|  |  | 
|  | AU.addPreserved<BasicAAWrapperPass>(); | 
|  | AU.addPreserved<AAResultsWrapperPass>(); | 
|  | AU.addPreserved<GlobalsAAWrapperPass>(); | 
|  | AU.addPreserved<ScalarEvolutionWrapperPass>(); | 
|  | AU.addPreserved<SCEVAAWrapperPass>(); | 
|  | AU.addPreservedID(LCSSAID); | 
|  | AU.addPreserved<DependenceAnalysisWrapperPass>(); | 
|  | AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added. | 
|  | } | 
|  |  | 
|  | /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. | 
|  | void verifyAnalysis() const override; | 
|  | }; | 
|  | } | 
|  |  | 
|  | char LoopSimplify::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", | 
|  | "Canonicalize natural loops", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", | 
|  | "Canonicalize natural loops", false, false) | 
|  |  | 
|  | // Publicly exposed interface to pass... | 
|  | char &llvm::LoopSimplifyID = LoopSimplify::ID; | 
|  | Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } | 
|  |  | 
|  | /// runOnFunction - Run down all loops in the CFG (recursively, but we could do | 
|  | /// it in any convenient order) inserting preheaders... | 
|  | /// | 
|  | bool LoopSimplify::runOnFunction(Function &F) { | 
|  | bool Changed = false; | 
|  | LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); | 
|  | ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; | 
|  | AssumptionCache *AC = | 
|  | &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
|  |  | 
|  | bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); | 
|  |  | 
|  | // Simplify each loop nest in the function. | 
|  | for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) | 
|  | Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | if (PreserveLCSSA) { | 
|  | bool InLCSSA = all_of( | 
|  | *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); | 
|  | assert(InLCSSA && "LCSSA is broken after loop-simplify."); | 
|  | } | 
|  | #endif | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses LoopSimplifyPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | bool Changed = false; | 
|  | LoopInfo *LI = &AM.getResult<LoopAnalysis>(F); | 
|  | DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); | 
|  | ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); | 
|  | AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F); | 
|  |  | 
|  | // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA | 
|  | // after simplifying the loops. | 
|  | for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) | 
|  | Changed |= simplifyLoop(*I, DT, LI, SE, AC, /*PreserveLCSSA*/ false); | 
|  |  | 
|  | if (!Changed) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | PreservedAnalyses PA; | 
|  | PA.preserve<DominatorTreeAnalysis>(); | 
|  | PA.preserve<LoopAnalysis>(); | 
|  | PA.preserve<BasicAA>(); | 
|  | PA.preserve<GlobalsAA>(); | 
|  | PA.preserve<SCEVAA>(); | 
|  | PA.preserve<ScalarEvolutionAnalysis>(); | 
|  | PA.preserve<DependenceAnalysis>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | // FIXME: Restore this code when we re-enable verification in verifyAnalysis | 
|  | // below. | 
|  | #if 0 | 
|  | static void verifyLoop(Loop *L) { | 
|  | // Verify subloops. | 
|  | for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) | 
|  | verifyLoop(*I); | 
|  |  | 
|  | // It used to be possible to just assert L->isLoopSimplifyForm(), however | 
|  | // with the introduction of indirectbr, there are now cases where it's | 
|  | // not possible to transform a loop as necessary. We can at least check | 
|  | // that there is an indirectbr near any time there's trouble. | 
|  |  | 
|  | // Indirectbr can interfere with preheader and unique backedge insertion. | 
|  | if (!L->getLoopPreheader() || !L->getLoopLatch()) { | 
|  | bool HasIndBrPred = false; | 
|  | for (pred_iterator PI = pred_begin(L->getHeader()), | 
|  | PE = pred_end(L->getHeader()); PI != PE; ++PI) | 
|  | if (isa<IndirectBrInst>((*PI)->getTerminator())) { | 
|  | HasIndBrPred = true; | 
|  | break; | 
|  | } | 
|  | assert(HasIndBrPred && | 
|  | "LoopSimplify has no excuse for missing loop header info!"); | 
|  | (void)HasIndBrPred; | 
|  | } | 
|  |  | 
|  | // Indirectbr can interfere with exit block canonicalization. | 
|  | if (!L->hasDedicatedExits()) { | 
|  | bool HasIndBrExiting = false; | 
|  | SmallVector<BasicBlock*, 8> ExitingBlocks; | 
|  | L->getExitingBlocks(ExitingBlocks); | 
|  | for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { | 
|  | if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { | 
|  | HasIndBrExiting = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(HasIndBrExiting && | 
|  | "LoopSimplify has no excuse for missing exit block info!"); | 
|  | (void)HasIndBrExiting; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void LoopSimplify::verifyAnalysis() const { | 
|  | // FIXME: This routine is being called mid-way through the loop pass manager | 
|  | // as loop passes destroy this analysis. That's actually fine, but we have no | 
|  | // way of expressing that here. Once all of the passes that destroy this are | 
|  | // hoisted out of the loop pass manager we can add back verification here. | 
|  | #if 0 | 
|  | for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) | 
|  | verifyLoop(*I); | 
|  | #endif | 
|  | } |