|  | //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements induction variable simplification. It does | 
|  | // not define any actual pass or policy, but provides a single function to | 
|  | // simplify a loop's induction variables based on ScalarEvolution. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/SimplifyIndVar.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpander.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "indvars" | 
|  |  | 
|  | STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); | 
|  | STATISTIC(NumElimOperand,  "Number of IV operands folded into a use"); | 
|  | STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); | 
|  | STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated"); | 
|  | STATISTIC( | 
|  | NumSimplifiedSDiv, | 
|  | "Number of IV signed division operations converted to unsigned division"); | 
|  | STATISTIC( | 
|  | NumSimplifiedSRem, | 
|  | "Number of IV signed remainder operations converted to unsigned remainder"); | 
|  | STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated"); | 
|  |  | 
|  | namespace { | 
|  | /// This is a utility for simplifying induction variables | 
|  | /// based on ScalarEvolution. It is the primary instrument of the | 
|  | /// IndvarSimplify pass, but it may also be directly invoked to cleanup after | 
|  | /// other loop passes that preserve SCEV. | 
|  | class SimplifyIndvar { | 
|  | Loop             *L; | 
|  | LoopInfo         *LI; | 
|  | ScalarEvolution  *SE; | 
|  | DominatorTree    *DT; | 
|  | SCEVExpander     &Rewriter; | 
|  | SmallVectorImpl<WeakTrackingVH> &DeadInsts; | 
|  |  | 
|  | bool Changed; | 
|  |  | 
|  | public: | 
|  | SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, | 
|  | LoopInfo *LI, SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakTrackingVH> &Dead) | 
|  | : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead), | 
|  | Changed(false) { | 
|  | assert(LI && "IV simplification requires LoopInfo"); | 
|  | } | 
|  |  | 
|  | bool hasChanged() const { return Changed; } | 
|  |  | 
|  | /// Iteratively perform simplification on a worklist of users of the | 
|  | /// specified induction variable. This is the top-level driver that applies | 
|  | /// all simplifications to users of an IV. | 
|  | void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); | 
|  |  | 
|  | Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); | 
|  |  | 
|  | bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); | 
|  | bool replaceIVUserWithLoopInvariant(Instruction *UseInst); | 
|  |  | 
|  | bool eliminateOverflowIntrinsic(CallInst *CI); | 
|  | bool eliminateTrunc(TruncInst *TI); | 
|  | bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); | 
|  | bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand); | 
|  | void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); | 
|  | void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, | 
|  | bool IsSigned); | 
|  | void replaceRemWithNumerator(BinaryOperator *Rem); | 
|  | void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); | 
|  | void replaceSRemWithURem(BinaryOperator *Rem); | 
|  | bool eliminateSDiv(BinaryOperator *SDiv); | 
|  | bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); | 
|  | bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Fold an IV operand into its use.  This removes increments of an | 
|  | /// aligned IV when used by a instruction that ignores the low bits. | 
|  | /// | 
|  | /// IVOperand is guaranteed SCEVable, but UseInst may not be. | 
|  | /// | 
|  | /// Return the operand of IVOperand for this induction variable if IVOperand can | 
|  | /// be folded (in case more folding opportunities have been exposed). | 
|  | /// Otherwise return null. | 
|  | Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { | 
|  | Value *IVSrc = nullptr; | 
|  | const unsigned OperIdx = 0; | 
|  | const SCEV *FoldedExpr = nullptr; | 
|  | bool MustDropExactFlag = false; | 
|  | switch (UseInst->getOpcode()) { | 
|  | default: | 
|  | return nullptr; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::LShr: | 
|  | // We're only interested in the case where we know something about | 
|  | // the numerator and have a constant denominator. | 
|  | if (IVOperand != UseInst->getOperand(OperIdx) || | 
|  | !isa<ConstantInt>(UseInst->getOperand(1))) | 
|  | return nullptr; | 
|  |  | 
|  | // Attempt to fold a binary operator with constant operand. | 
|  | // e.g. ((I + 1) >> 2) => I >> 2 | 
|  | if (!isa<BinaryOperator>(IVOperand) | 
|  | || !isa<ConstantInt>(IVOperand->getOperand(1))) | 
|  | return nullptr; | 
|  |  | 
|  | IVSrc = IVOperand->getOperand(0); | 
|  | // IVSrc must be the (SCEVable) IV, since the other operand is const. | 
|  | assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); | 
|  |  | 
|  | ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); | 
|  | if (UseInst->getOpcode() == Instruction::LShr) { | 
|  | // Get a constant for the divisor. See createSCEV. | 
|  | uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); | 
|  | if (D->getValue().uge(BitWidth)) | 
|  | return nullptr; | 
|  |  | 
|  | D = ConstantInt::get(UseInst->getContext(), | 
|  | APInt::getOneBitSet(BitWidth, D->getZExtValue())); | 
|  | } | 
|  | FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); | 
|  | // We might have 'exact' flag set at this point which will no longer be | 
|  | // correct after we make the replacement. | 
|  | if (UseInst->isExact() && | 
|  | SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D))) | 
|  | MustDropExactFlag = true; | 
|  | } | 
|  | // We have something that might fold it's operand. Compare SCEVs. | 
|  | if (!SE->isSCEVable(UseInst->getType())) | 
|  | return nullptr; | 
|  |  | 
|  | // Bypass the operand if SCEV can prove it has no effect. | 
|  | if (SE->getSCEV(UseInst) != FoldedExpr) | 
|  | return nullptr; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand | 
|  | << " -> " << *UseInst << '\n'); | 
|  |  | 
|  | UseInst->setOperand(OperIdx, IVSrc); | 
|  | assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); | 
|  |  | 
|  | if (MustDropExactFlag) | 
|  | UseInst->dropPoisonGeneratingFlags(); | 
|  |  | 
|  | ++NumElimOperand; | 
|  | Changed = true; | 
|  | if (IVOperand->use_empty()) | 
|  | DeadInsts.emplace_back(IVOperand); | 
|  | return IVSrc; | 
|  | } | 
|  |  | 
|  | bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, | 
|  | Value *IVOperand) { | 
|  | unsigned IVOperIdx = 0; | 
|  | ICmpInst::Predicate Pred = ICmp->getPredicate(); | 
|  | if (IVOperand != ICmp->getOperand(0)) { | 
|  | // Swapped | 
|  | assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); | 
|  | IVOperIdx = 1; | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  |  | 
|  | // Get the SCEVs for the ICmp operands (in the specific context of the | 
|  | // current loop) | 
|  | const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); | 
|  | const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); | 
|  | const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); | 
|  |  | 
|  | ICmpInst::Predicate InvariantPredicate; | 
|  | const SCEV *InvariantLHS, *InvariantRHS; | 
|  |  | 
|  | auto *PN = dyn_cast<PHINode>(IVOperand); | 
|  | if (!PN) | 
|  | return false; | 
|  | if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, | 
|  | InvariantLHS, InvariantRHS)) | 
|  | return false; | 
|  |  | 
|  | // Rewrite the comparison to a loop invariant comparison if it can be done | 
|  | // cheaply, where cheaply means "we don't need to emit any new | 
|  | // instructions". | 
|  |  | 
|  | SmallDenseMap<const SCEV*, Value*> CheapExpansions; | 
|  | CheapExpansions[S] = ICmp->getOperand(IVOperIdx); | 
|  | CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx); | 
|  |  | 
|  | // TODO: Support multiple entry loops?  (We currently bail out of these in | 
|  | // the IndVarSimplify pass) | 
|  | if (auto *BB = L->getLoopPredecessor()) { | 
|  | const int Idx = PN->getBasicBlockIndex(BB); | 
|  | if (Idx >= 0) { | 
|  | Value *Incoming = PN->getIncomingValue(Idx); | 
|  | const SCEV *IncomingS = SE->getSCEV(Incoming); | 
|  | CheapExpansions[IncomingS] = Incoming; | 
|  | } | 
|  | } | 
|  | Value *NewLHS = CheapExpansions[InvariantLHS]; | 
|  | Value *NewRHS = CheapExpansions[InvariantRHS]; | 
|  |  | 
|  | if (!NewLHS) | 
|  | if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS)) | 
|  | NewLHS = ConstLHS->getValue(); | 
|  | if (!NewRHS) | 
|  | if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS)) | 
|  | NewRHS = ConstRHS->getValue(); | 
|  |  | 
|  | if (!NewLHS || !NewRHS) | 
|  | // We could not find an existing value to replace either LHS or RHS. | 
|  | // Generating new instructions has subtler tradeoffs, so avoid doing that | 
|  | // for now. | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); | 
|  | ICmp->setPredicate(InvariantPredicate); | 
|  | ICmp->setOperand(0, NewLHS); | 
|  | ICmp->setOperand(1, NewRHS); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SimplifyIVUsers helper for eliminating useless | 
|  | /// comparisons against an induction variable. | 
|  | void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { | 
|  | unsigned IVOperIdx = 0; | 
|  | ICmpInst::Predicate Pred = ICmp->getPredicate(); | 
|  | ICmpInst::Predicate OriginalPred = Pred; | 
|  | if (IVOperand != ICmp->getOperand(0)) { | 
|  | // Swapped | 
|  | assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); | 
|  | IVOperIdx = 1; | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  |  | 
|  | // Get the SCEVs for the ICmp operands (in the specific context of the | 
|  | // current loop) | 
|  | const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); | 
|  | const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); | 
|  | const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); | 
|  |  | 
|  | // If the condition is always true or always false, replace it with | 
|  | // a constant value. | 
|  | if (SE->isKnownPredicate(Pred, S, X)) { | 
|  | ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); | 
|  | DeadInsts.emplace_back(ICmp); | 
|  | LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); | 
|  | } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { | 
|  | ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); | 
|  | DeadInsts.emplace_back(ICmp); | 
|  | LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); | 
|  | } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { | 
|  | // fallthrough to end of function | 
|  | } else if (ICmpInst::isSigned(OriginalPred) && | 
|  | SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { | 
|  | // If we were unable to make anything above, all we can is to canonicalize | 
|  | // the comparison hoping that it will open the doors for other | 
|  | // optimizations. If we find out that we compare two non-negative values, | 
|  | // we turn the instruction's predicate to its unsigned version. Note that | 
|  | // we cannot rely on Pred here unless we check if we have swapped it. | 
|  | assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); | 
|  | LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp | 
|  | << '\n'); | 
|  | ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); | 
|  | } else | 
|  | return; | 
|  |  | 
|  | ++NumElimCmp; | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { | 
|  | // Get the SCEVs for the ICmp operands. | 
|  | auto *N = SE->getSCEV(SDiv->getOperand(0)); | 
|  | auto *D = SE->getSCEV(SDiv->getOperand(1)); | 
|  |  | 
|  | // Simplify unnecessary loops away. | 
|  | const Loop *L = LI->getLoopFor(SDiv->getParent()); | 
|  | N = SE->getSCEVAtScope(N, L); | 
|  | D = SE->getSCEVAtScope(D, L); | 
|  |  | 
|  | // Replace sdiv by udiv if both of the operands are non-negative | 
|  | if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { | 
|  | auto *UDiv = BinaryOperator::Create( | 
|  | BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), | 
|  | SDiv->getName() + ".udiv", SDiv); | 
|  | UDiv->setIsExact(SDiv->isExact()); | 
|  | SDiv->replaceAllUsesWith(UDiv); | 
|  | LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); | 
|  | ++NumSimplifiedSDiv; | 
|  | Changed = true; | 
|  | DeadInsts.push_back(SDiv); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // i %s n -> i %u n if i >= 0 and n >= 0 | 
|  | void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { | 
|  | auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); | 
|  | auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, | 
|  | Rem->getName() + ".urem", Rem); | 
|  | Rem->replaceAllUsesWith(URem); | 
|  | LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); | 
|  | ++NumSimplifiedSRem; | 
|  | Changed = true; | 
|  | DeadInsts.emplace_back(Rem); | 
|  | } | 
|  |  | 
|  | // i % n  -->  i  if i is in [0,n). | 
|  | void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { | 
|  | Rem->replaceAllUsesWith(Rem->getOperand(0)); | 
|  | LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); | 
|  | ++NumElimRem; | 
|  | Changed = true; | 
|  | DeadInsts.emplace_back(Rem); | 
|  | } | 
|  |  | 
|  | // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n). | 
|  | void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { | 
|  | auto *T = Rem->getType(); | 
|  | auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); | 
|  | ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); | 
|  | SelectInst *Sel = | 
|  | SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); | 
|  | Rem->replaceAllUsesWith(Sel); | 
|  | LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); | 
|  | ++NumElimRem; | 
|  | Changed = true; | 
|  | DeadInsts.emplace_back(Rem); | 
|  | } | 
|  |  | 
|  | /// SimplifyIVUsers helper for eliminating useless remainder operations | 
|  | /// operating on an induction variable or replacing srem by urem. | 
|  | void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, | 
|  | bool IsSigned) { | 
|  | auto *NValue = Rem->getOperand(0); | 
|  | auto *DValue = Rem->getOperand(1); | 
|  | // We're only interested in the case where we know something about | 
|  | // the numerator, unless it is a srem, because we want to replace srem by urem | 
|  | // in general. | 
|  | bool UsedAsNumerator = IVOperand == NValue; | 
|  | if (!UsedAsNumerator && !IsSigned) | 
|  | return; | 
|  |  | 
|  | const SCEV *N = SE->getSCEV(NValue); | 
|  |  | 
|  | // Simplify unnecessary loops away. | 
|  | const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); | 
|  | N = SE->getSCEVAtScope(N, ICmpLoop); | 
|  |  | 
|  | bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); | 
|  |  | 
|  | // Do not proceed if the Numerator may be negative | 
|  | if (!IsNumeratorNonNegative) | 
|  | return; | 
|  |  | 
|  | const SCEV *D = SE->getSCEV(DValue); | 
|  | D = SE->getSCEVAtScope(D, ICmpLoop); | 
|  |  | 
|  | if (UsedAsNumerator) { | 
|  | auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; | 
|  | if (SE->isKnownPredicate(LT, N, D)) { | 
|  | replaceRemWithNumerator(Rem); | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto *T = Rem->getType(); | 
|  | const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); | 
|  | if (SE->isKnownPredicate(LT, NLessOne, D)) { | 
|  | replaceRemWithNumeratorOrZero(Rem); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to replace SRem with URem, if both N and D are known non-negative. | 
|  | // Since we had already check N, we only need to check D now | 
|  | if (!IsSigned || !SE->isKnownNonNegative(D)) | 
|  | return; | 
|  |  | 
|  | replaceSRemWithURem(Rem); | 
|  | } | 
|  |  | 
|  | bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) { | 
|  | auto *F = CI->getCalledFunction(); | 
|  | if (!F) | 
|  | return false; | 
|  |  | 
|  | typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)( | 
|  | const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned); | 
|  | typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)( | 
|  | const SCEV *, Type *, unsigned); | 
|  |  | 
|  | OperationFunctionTy Operation; | 
|  | ExtensionFunctionTy Extension; | 
|  |  | 
|  | Instruction::BinaryOps RawOp; | 
|  |  | 
|  | // We always have exactly one of nsw or nuw.  If NoSignedOverflow is false, we | 
|  | // have nuw. | 
|  | bool NoSignedOverflow; | 
|  |  | 
|  | switch (F->getIntrinsicID()) { | 
|  | default: | 
|  | return false; | 
|  |  | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | Operation = &ScalarEvolution::getAddExpr; | 
|  | Extension = &ScalarEvolution::getSignExtendExpr; | 
|  | RawOp = Instruction::Add; | 
|  | NoSignedOverflow = true; | 
|  | break; | 
|  |  | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | Operation = &ScalarEvolution::getAddExpr; | 
|  | Extension = &ScalarEvolution::getZeroExtendExpr; | 
|  | RawOp = Instruction::Add; | 
|  | NoSignedOverflow = false; | 
|  | break; | 
|  |  | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | Operation = &ScalarEvolution::getMinusSCEV; | 
|  | Extension = &ScalarEvolution::getSignExtendExpr; | 
|  | RawOp = Instruction::Sub; | 
|  | NoSignedOverflow = true; | 
|  | break; | 
|  |  | 
|  | case Intrinsic::usub_with_overflow: | 
|  | Operation = &ScalarEvolution::getMinusSCEV; | 
|  | Extension = &ScalarEvolution::getZeroExtendExpr; | 
|  | RawOp = Instruction::Sub; | 
|  | NoSignedOverflow = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0)); | 
|  | const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1)); | 
|  |  | 
|  | auto *NarrowTy = cast<IntegerType>(LHS->getType()); | 
|  | auto *WideTy = | 
|  | IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); | 
|  |  | 
|  | const SCEV *A = | 
|  | (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), | 
|  | WideTy, 0); | 
|  | const SCEV *B = | 
|  | (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0), | 
|  | (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0); | 
|  |  | 
|  | if (A != B) | 
|  | return false; | 
|  |  | 
|  | // Proved no overflow, nuke the overflow check and, if possible, the overflow | 
|  | // intrinsic as well. | 
|  |  | 
|  | BinaryOperator *NewResult = BinaryOperator::Create( | 
|  | RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI); | 
|  |  | 
|  | if (NoSignedOverflow) | 
|  | NewResult->setHasNoSignedWrap(true); | 
|  | else | 
|  | NewResult->setHasNoUnsignedWrap(true); | 
|  |  | 
|  | SmallVector<ExtractValueInst *, 4> ToDelete; | 
|  |  | 
|  | for (auto *U : CI->users()) { | 
|  | if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { | 
|  | if (EVI->getIndices()[0] == 1) | 
|  | EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext())); | 
|  | else { | 
|  | assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); | 
|  | EVI->replaceAllUsesWith(NewResult); | 
|  | } | 
|  | ToDelete.push_back(EVI); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (auto *EVI : ToDelete) | 
|  | EVI->eraseFromParent(); | 
|  |  | 
|  | if (CI->use_empty()) | 
|  | CI->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { | 
|  | // It is always legal to replace | 
|  | //   icmp <pred> i32 trunc(iv), n | 
|  | // with | 
|  | //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. | 
|  | // Or with | 
|  | //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. | 
|  | // Or with either of these if pred is an equality predicate. | 
|  | // | 
|  | // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for | 
|  | // every comparison which uses trunc, it means that we can replace each of | 
|  | // them with comparison of iv against sext/zext(n). We no longer need trunc | 
|  | // after that. | 
|  | // | 
|  | // TODO: Should we do this if we can widen *some* comparisons, but not all | 
|  | // of them? Sometimes it is enough to enable other optimizations, but the | 
|  | // trunc instruction will stay in the loop. | 
|  | Value *IV = TI->getOperand(0); | 
|  | Type *IVTy = IV->getType(); | 
|  | const SCEV *IVSCEV = SE->getSCEV(IV); | 
|  | const SCEV *TISCEV = SE->getSCEV(TI); | 
|  |  | 
|  | // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can | 
|  | // get rid of trunc | 
|  | bool DoesSExtCollapse = false; | 
|  | bool DoesZExtCollapse = false; | 
|  | if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) | 
|  | DoesSExtCollapse = true; | 
|  | if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) | 
|  | DoesZExtCollapse = true; | 
|  |  | 
|  | // If neither sext nor zext does collapse, it is not profitable to do any | 
|  | // transform. Bail. | 
|  | if (!DoesSExtCollapse && !DoesZExtCollapse) | 
|  | return false; | 
|  |  | 
|  | // Collect users of the trunc that look like comparisons against invariants. | 
|  | // Bail if we find something different. | 
|  | SmallVector<ICmpInst *, 4> ICmpUsers; | 
|  | for (auto *U : TI->users()) { | 
|  | // We don't care about users in unreachable blocks. | 
|  | if (isa<Instruction>(U) && | 
|  | !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) | 
|  | continue; | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) { | 
|  | if (ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) { | 
|  | assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); | 
|  | // If we cannot get rid of trunc, bail. | 
|  | if (ICI->isSigned() && !DoesSExtCollapse) | 
|  | return false; | 
|  | if (ICI->isUnsigned() && !DoesZExtCollapse) | 
|  | return false; | 
|  | // For equality, either signed or unsigned works. | 
|  | ICmpUsers.push_back(ICI); | 
|  | } else | 
|  | return false; | 
|  | } else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto CanUseZExt = [&](ICmpInst *ICI) { | 
|  | // Unsigned comparison can be widened as unsigned. | 
|  | if (ICI->isUnsigned()) | 
|  | return true; | 
|  | // Is it profitable to do zext? | 
|  | if (!DoesZExtCollapse) | 
|  | return false; | 
|  | // For equality, we can safely zext both parts. | 
|  | if (ICI->isEquality()) | 
|  | return true; | 
|  | // Otherwise we can only use zext when comparing two non-negative or two | 
|  | // negative values. But in practice, we will never pass DoesZExtCollapse | 
|  | // check for a negative value, because zext(trunc(x)) is non-negative. So | 
|  | // it only make sense to check for non-negativity here. | 
|  | const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); | 
|  | const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); | 
|  | return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); | 
|  | }; | 
|  | // Replace all comparisons against trunc with comparisons against IV. | 
|  | for (auto *ICI : ICmpUsers) { | 
|  | auto *Op1 = ICI->getOperand(1); | 
|  | Instruction *Ext = nullptr; | 
|  | // For signed/unsigned predicate, replace the old comparison with comparison | 
|  | // of immediate IV against sext/zext of the invariant argument. If we can | 
|  | // use either sext or zext (i.e. we are dealing with equality predicate), | 
|  | // then prefer zext as a more canonical form. | 
|  | // TODO: If we see a signed comparison which can be turned into unsigned, | 
|  | // we can do it here for canonicalization purposes. | 
|  | ICmpInst::Predicate Pred = ICI->getPredicate(); | 
|  | if (CanUseZExt(ICI)) { | 
|  | assert(DoesZExtCollapse && "Unprofitable zext?"); | 
|  | Ext = new ZExtInst(Op1, IVTy, "zext", ICI); | 
|  | Pred = ICmpInst::getUnsignedPredicate(Pred); | 
|  | } else { | 
|  | assert(DoesSExtCollapse && "Unprofitable sext?"); | 
|  | Ext = new SExtInst(Op1, IVTy, "sext", ICI); | 
|  | assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); | 
|  | } | 
|  | bool Changed; | 
|  | L->makeLoopInvariant(Ext, Changed); | 
|  | (void)Changed; | 
|  | ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext); | 
|  | ICI->replaceAllUsesWith(NewICI); | 
|  | DeadInsts.emplace_back(ICI); | 
|  | } | 
|  |  | 
|  | // Trunc no longer needed. | 
|  | TI->replaceAllUsesWith(UndefValue::get(TI->getType())); | 
|  | DeadInsts.emplace_back(TI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Eliminate an operation that consumes a simple IV and has no observable | 
|  | /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable, | 
|  | /// but UseInst may not be. | 
|  | bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, | 
|  | Instruction *IVOperand) { | 
|  | if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { | 
|  | eliminateIVComparison(ICmp, IVOperand); | 
|  | return true; | 
|  | } | 
|  | if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { | 
|  | bool IsSRem = Bin->getOpcode() == Instruction::SRem; | 
|  | if (IsSRem || Bin->getOpcode() == Instruction::URem) { | 
|  | simplifyIVRemainder(Bin, IVOperand, IsSRem); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Bin->getOpcode() == Instruction::SDiv) | 
|  | return eliminateSDiv(Bin); | 
|  | } | 
|  |  | 
|  | if (auto *CI = dyn_cast<CallInst>(UseInst)) | 
|  | if (eliminateOverflowIntrinsic(CI)) | 
|  | return true; | 
|  |  | 
|  | if (auto *TI = dyn_cast<TruncInst>(UseInst)) | 
|  | if (eliminateTrunc(TI)) | 
|  | return true; | 
|  |  | 
|  | if (eliminateIdentitySCEV(UseInst, IVOperand)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { | 
|  | if (auto *BB = L->getLoopPreheader()) | 
|  | return BB->getTerminator(); | 
|  |  | 
|  | return Hint; | 
|  | } | 
|  |  | 
|  | /// Replace the UseInst with a constant if possible. | 
|  | bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { | 
|  | if (!SE->isSCEVable(I->getType())) | 
|  | return false; | 
|  |  | 
|  | // Get the symbolic expression for this instruction. | 
|  | const SCEV *S = SE->getSCEV(I); | 
|  |  | 
|  | if (!SE->isLoopInvariant(S, L)) | 
|  | return false; | 
|  |  | 
|  | // Do not generate something ridiculous even if S is loop invariant. | 
|  | if (Rewriter.isHighCostExpansion(S, L, I)) | 
|  | return false; | 
|  |  | 
|  | auto *IP = GetLoopInvariantInsertPosition(L, I); | 
|  | auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); | 
|  |  | 
|  | I->replaceAllUsesWith(Invariant); | 
|  | LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I | 
|  | << " with loop invariant: " << *S << '\n'); | 
|  | ++NumFoldedUser; | 
|  | Changed = true; | 
|  | DeadInsts.emplace_back(I); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Eliminate any operation that SCEV can prove is an identity function. | 
|  | bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, | 
|  | Instruction *IVOperand) { | 
|  | if (!SE->isSCEVable(UseInst->getType()) || | 
|  | (UseInst->getType() != IVOperand->getType()) || | 
|  | (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) | 
|  | return false; | 
|  |  | 
|  | // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the | 
|  | // dominator tree, even if X is an operand to Y.  For instance, in | 
|  | // | 
|  | //     %iv = phi i32 {0,+,1} | 
|  | //     br %cond, label %left, label %merge | 
|  | // | 
|  | //   left: | 
|  | //     %X = add i32 %iv, 0 | 
|  | //     br label %merge | 
|  | // | 
|  | //   merge: | 
|  | //     %M = phi (%X, %iv) | 
|  | // | 
|  | // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and | 
|  | // %M.replaceAllUsesWith(%X) would be incorrect. | 
|  |  | 
|  | if (isa<PHINode>(UseInst)) | 
|  | // If UseInst is not a PHI node then we know that IVOperand dominates | 
|  | // UseInst directly from the legality of SSA. | 
|  | if (!DT || !DT->dominates(IVOperand, UseInst)) | 
|  | return false; | 
|  |  | 
|  | if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); | 
|  |  | 
|  | UseInst->replaceAllUsesWith(IVOperand); | 
|  | ++NumElimIdentity; | 
|  | Changed = true; | 
|  | DeadInsts.emplace_back(UseInst); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Annotate BO with nsw / nuw if it provably does not signed-overflow / | 
|  | /// unsigned-overflow.  Returns true if anything changed, false otherwise. | 
|  | bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, | 
|  | Value *IVOperand) { | 
|  |  | 
|  | // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. | 
|  | if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) | 
|  | return false; | 
|  |  | 
|  | const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, | 
|  | SCEV::NoWrapFlags, unsigned); | 
|  | switch (BO->getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  |  | 
|  | case Instruction::Add: | 
|  | GetExprForBO = &ScalarEvolution::getAddExpr; | 
|  | break; | 
|  |  | 
|  | case Instruction::Sub: | 
|  | GetExprForBO = &ScalarEvolution::getMinusSCEV; | 
|  | break; | 
|  |  | 
|  | case Instruction::Mul: | 
|  | GetExprForBO = &ScalarEvolution::getMulExpr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth(); | 
|  | Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); | 
|  | const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); | 
|  | const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | if (!BO->hasNoUnsignedWrap()) { | 
|  | const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); | 
|  | const SCEV *OpAfterExtend = (SE->*GetExprForBO)( | 
|  | SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), | 
|  | SCEV::FlagAnyWrap, 0u); | 
|  | if (ExtendAfterOp == OpAfterExtend) { | 
|  | BO->setHasNoUnsignedWrap(); | 
|  | SE->forgetValue(BO); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!BO->hasNoSignedWrap()) { | 
|  | const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); | 
|  | const SCEV *OpAfterExtend = (SE->*GetExprForBO)( | 
|  | SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), | 
|  | SCEV::FlagAnyWrap, 0u); | 
|  | if (ExtendAfterOp == OpAfterExtend) { | 
|  | BO->setHasNoSignedWrap(); | 
|  | SE->forgetValue(BO); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Annotate the Shr in (X << IVOperand) >> C as exact using the | 
|  | /// information from the IV's range. Returns true if anything changed, false | 
|  | /// otherwise. | 
|  | bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, | 
|  | Value *IVOperand) { | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | if (BO->getOpcode() == Instruction::Shl) { | 
|  | bool Changed = false; | 
|  | ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); | 
|  | for (auto *U : BO->users()) { | 
|  | const APInt *C; | 
|  | if (match(U, | 
|  | m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || | 
|  | match(U, | 
|  | m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { | 
|  | BinaryOperator *Shr = cast<BinaryOperator>(U); | 
|  | if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { | 
|  | Shr->setIsExact(true); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Add all uses of Def to the current IV's worklist. | 
|  | static void pushIVUsers( | 
|  | Instruction *Def, Loop *L, | 
|  | SmallPtrSet<Instruction*,16> &Simplified, | 
|  | SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { | 
|  |  | 
|  | for (User *U : Def->users()) { | 
|  | Instruction *UI = cast<Instruction>(U); | 
|  |  | 
|  | // Avoid infinite or exponential worklist processing. | 
|  | // Also ensure unique worklist users. | 
|  | // If Def is a LoopPhi, it may not be in the Simplified set, so check for | 
|  | // self edges first. | 
|  | if (UI == Def) | 
|  | continue; | 
|  |  | 
|  | // Only change the current Loop, do not change the other parts (e.g. other | 
|  | // Loops). | 
|  | if (!L->contains(UI)) | 
|  | continue; | 
|  |  | 
|  | // Do not push the same instruction more than once. | 
|  | if (!Simplified.insert(UI).second) | 
|  | continue; | 
|  |  | 
|  | SimpleIVUsers.push_back(std::make_pair(UI, Def)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if this instruction generates a simple SCEV | 
|  | /// expression in terms of that IV. | 
|  | /// | 
|  | /// This is similar to IVUsers' isInteresting() but processes each instruction | 
|  | /// non-recursively when the operand is already known to be a simpleIVUser. | 
|  | /// | 
|  | static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { | 
|  | if (!SE->isSCEVable(I->getType())) | 
|  | return false; | 
|  |  | 
|  | // Get the symbolic expression for this instruction. | 
|  | const SCEV *S = SE->getSCEV(I); | 
|  |  | 
|  | // Only consider affine recurrences. | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); | 
|  | if (AR && AR->getLoop() == L) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Iteratively perform simplification on a worklist of users | 
|  | /// of the specified induction variable. Each successive simplification may push | 
|  | /// more users which may themselves be candidates for simplification. | 
|  | /// | 
|  | /// This algorithm does not require IVUsers analysis. Instead, it simplifies | 
|  | /// instructions in-place during analysis. Rather than rewriting induction | 
|  | /// variables bottom-up from their users, it transforms a chain of IVUsers | 
|  | /// top-down, updating the IR only when it encounters a clear optimization | 
|  | /// opportunity. | 
|  | /// | 
|  | /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. | 
|  | /// | 
|  | void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { | 
|  | if (!SE->isSCEVable(CurrIV->getType())) | 
|  | return; | 
|  |  | 
|  | // Instructions processed by SimplifyIndvar for CurrIV. | 
|  | SmallPtrSet<Instruction*,16> Simplified; | 
|  |  | 
|  | // Use-def pairs if IV users waiting to be processed for CurrIV. | 
|  | SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; | 
|  |  | 
|  | // Push users of the current LoopPhi. In rare cases, pushIVUsers may be | 
|  | // called multiple times for the same LoopPhi. This is the proper thing to | 
|  | // do for loop header phis that use each other. | 
|  | pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); | 
|  |  | 
|  | while (!SimpleIVUsers.empty()) { | 
|  | std::pair<Instruction*, Instruction*> UseOper = | 
|  | SimpleIVUsers.pop_back_val(); | 
|  | Instruction *UseInst = UseOper.first; | 
|  |  | 
|  | // If a user of the IndVar is trivially dead, we prefer just to mark it dead | 
|  | // rather than try to do some complex analysis or transformation (such as | 
|  | // widening) basing on it. | 
|  | // TODO: Propagate TLI and pass it here to handle more cases. | 
|  | if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { | 
|  | DeadInsts.emplace_back(UseInst); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Bypass back edges to avoid extra work. | 
|  | if (UseInst == CurrIV) continue; | 
|  |  | 
|  | // Try to replace UseInst with a loop invariant before any other | 
|  | // simplifications. | 
|  | if (replaceIVUserWithLoopInvariant(UseInst)) | 
|  | continue; | 
|  |  | 
|  | Instruction *IVOperand = UseOper.second; | 
|  | for (unsigned N = 0; IVOperand; ++N) { | 
|  | assert(N <= Simplified.size() && "runaway iteration"); | 
|  |  | 
|  | Value *NewOper = foldIVUser(UseInst, IVOperand); | 
|  | if (!NewOper) | 
|  | break; // done folding | 
|  | IVOperand = dyn_cast<Instruction>(NewOper); | 
|  | } | 
|  | if (!IVOperand) | 
|  | continue; | 
|  |  | 
|  | if (eliminateIVUser(UseInst, IVOperand)) { | 
|  | pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { | 
|  | if ((isa<OverflowingBinaryOperator>(BO) && | 
|  | strengthenOverflowingOperation(BO, IVOperand)) || | 
|  | (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { | 
|  | // re-queue uses of the now modified binary operator and fall | 
|  | // through to the checks that remain. | 
|  | pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); | 
|  | } | 
|  | } | 
|  |  | 
|  | CastInst *Cast = dyn_cast<CastInst>(UseInst); | 
|  | if (V && Cast) { | 
|  | V->visitCast(Cast); | 
|  | continue; | 
|  | } | 
|  | if (isSimpleIVUser(UseInst, L, SE)) { | 
|  | pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | void IVVisitor::anchor() { } | 
|  |  | 
|  | /// Simplify instructions that use this induction variable | 
|  | /// by using ScalarEvolution to analyze the IV's recurrence. | 
|  | bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, | 
|  | LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead, | 
|  | SCEVExpander &Rewriter, IVVisitor *V) { | 
|  | SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter, | 
|  | Dead); | 
|  | SIV.simplifyUsers(CurrIV, V); | 
|  | return SIV.hasChanged(); | 
|  | } | 
|  |  | 
|  | /// Simplify users of induction variables within this | 
|  | /// loop. This does not actually change or add IVs. | 
|  | bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, | 
|  | LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) { | 
|  | SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); | 
|  | #ifndef NDEBUG | 
|  | Rewriter.setDebugType(DEBUG_TYPE); | 
|  | #endif | 
|  | bool Changed = false; | 
|  | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { | 
|  | Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead, Rewriter); | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | } // namespace llvm |