|  | //===- InstCombineMulDivRem.cpp -------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv, | 
|  | // srem, urem, frem. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombine.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/Support/PatternMatch.h" | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  |  | 
|  | /// simplifyValueKnownNonZero - The specific integer value is used in a context | 
|  | /// where it is known to be non-zero.  If this allows us to simplify the | 
|  | /// computation, do so and return the new operand, otherwise return null. | 
|  | static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) { | 
|  | // If V has multiple uses, then we would have to do more analysis to determine | 
|  | // if this is safe.  For example, the use could be in dynamically unreached | 
|  | // code. | 
|  | if (!V->hasOneUse()) return 0; | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // ((1 << A) >>u B) --> (1 << (A-B)) | 
|  | // Because V cannot be zero, we know that B is less than A. | 
|  | Value *A = 0, *B = 0, *PowerOf2 = 0; | 
|  | if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))), | 
|  | m_Value(B))) && | 
|  | // The "1" can be any value known to be a power of 2. | 
|  | isKnownToBeAPowerOfTwo(PowerOf2)) { | 
|  | A = IC.Builder->CreateSub(A, B); | 
|  | return IC.Builder->CreateShl(PowerOf2, A); | 
|  | } | 
|  |  | 
|  | // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it | 
|  | // inexact.  Similarly for <<. | 
|  | if (BinaryOperator *I = dyn_cast<BinaryOperator>(V)) | 
|  | if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) { | 
|  | // We know that this is an exact/nuw shift and that the input is a | 
|  | // non-zero context as well. | 
|  | if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) { | 
|  | I->setOperand(0, V2); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | if (I->getOpcode() == Instruction::LShr && !I->isExact()) { | 
|  | I->setIsExact(); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { | 
|  | I->setHasNoUnsignedWrap(); | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: Lots more we could do here: | 
|  | //    If V is a phi node, we can call this on each of its operands. | 
|  | //    "select cond, X, 0" can simplify to "X". | 
|  |  | 
|  | return MadeChange ? V : 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// MultiplyOverflows - True if the multiply can not be expressed in an int | 
|  | /// this size. | 
|  | static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) { | 
|  | uint32_t W = C1->getBitWidth(); | 
|  | APInt LHSExt = C1->getValue(), RHSExt = C2->getValue(); | 
|  | if (sign) { | 
|  | LHSExt = LHSExt.sext(W * 2); | 
|  | RHSExt = RHSExt.sext(W * 2); | 
|  | } else { | 
|  | LHSExt = LHSExt.zext(W * 2); | 
|  | RHSExt = RHSExt.zext(W * 2); | 
|  | } | 
|  |  | 
|  | APInt MulExt = LHSExt * RHSExt; | 
|  |  | 
|  | if (!sign) | 
|  | return MulExt.ugt(APInt::getLowBitsSet(W * 2, W)); | 
|  |  | 
|  | APInt Min = APInt::getSignedMinValue(W).sext(W * 2); | 
|  | APInt Max = APInt::getSignedMaxValue(W).sext(W * 2); | 
|  | return MulExt.slt(Min) || MulExt.sgt(Max); | 
|  | } | 
|  |  | 
|  | /// \brief A helper routine of InstCombiner::visitMul(). | 
|  | /// | 
|  | /// If C is a vector of known powers of 2, then this function returns | 
|  | /// a new vector obtained from C replacing each element with its logBase2. | 
|  | /// Return a null pointer otherwise. | 
|  | static Constant *getLogBase2Vector(ConstantDataVector *CV) { | 
|  | const APInt *IVal; | 
|  | SmallVector<Constant *, 4> Elts; | 
|  |  | 
|  | for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { | 
|  | Constant *Elt = CV->getElementAsConstant(I); | 
|  | if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) | 
|  | return 0; | 
|  | Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2())); | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(Elts); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitMul(BinaryOperator &I) { | 
|  | bool Changed = SimplifyAssociativeOrCommutative(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyMulInst(Op0, Op1, TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Value *V = SimplifyUsingDistributiveLaws(I)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | if (match(Op1, m_AllOnes()))  // X * -1 == 0 - X | 
|  | return BinaryOperator::CreateNeg(Op0, I.getName()); | 
|  |  | 
|  | // Also allow combining multiply instructions on vectors. | 
|  | { | 
|  | Value *NewOp; | 
|  | Constant *C1, *C2; | 
|  | const APInt *IVal; | 
|  | if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)), | 
|  | m_Constant(C1))) && | 
|  | match(C1, m_APInt(IVal))) | 
|  | // ((X << C1)*C2) == (X * (C2 << C1)) | 
|  | return BinaryOperator::CreateMul(NewOp, ConstantExpr::getShl(C1, C2)); | 
|  |  | 
|  | if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) { | 
|  | Constant *NewCst = 0; | 
|  | if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2()) | 
|  | // Replace X*(2^C) with X << C, where C is either a scalar or a splat. | 
|  | NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2()); | 
|  | else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1)) | 
|  | // Replace X*(2^C) with X << C, where C is a vector of known | 
|  | // constant powers of 2. | 
|  | NewCst = getLogBase2Vector(CV); | 
|  |  | 
|  | if (NewCst) { | 
|  | BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst); | 
|  | if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap(); | 
|  | if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap(); | 
|  | return Shl; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | // Canonicalize (X+C1)*CI -> X*CI+C1*CI. | 
|  | { Value *X; ConstantInt *C1; | 
|  | if (Op0->hasOneUse() && | 
|  | match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) { | 
|  | Value *Add = Builder->CreateMul(X, CI); | 
|  | return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n | 
|  | // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n | 
|  | // The "* (2**n)" thus becomes a potential shifting opportunity. | 
|  | { | 
|  | const APInt &   Val = CI->getValue(); | 
|  | const APInt &PosVal = Val.abs(); | 
|  | if (Val.isNegative() && PosVal.isPowerOf2()) { | 
|  | Value *X = 0, *Y = 0; | 
|  | if (Op0->hasOneUse()) { | 
|  | ConstantInt *C1; | 
|  | Value *Sub = 0; | 
|  | if (match(Op0, m_Sub(m_Value(Y), m_Value(X)))) | 
|  | Sub = Builder->CreateSub(X, Y, "suba"); | 
|  | else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1)))) | 
|  | Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc"); | 
|  | if (Sub) | 
|  | return | 
|  | BinaryOperator::CreateMul(Sub, | 
|  | ConstantInt::get(Y->getType(), PosVal)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify mul instructions with a constant RHS. | 
|  | if (isa<Constant>(Op1)) { | 
|  | // Try to fold constant mul into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI)) | 
|  | return R; | 
|  |  | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y | 
|  | if (Value *Op1v = dyn_castNegVal(Op1)) | 
|  | return BinaryOperator::CreateMul(Op0v, Op1v); | 
|  |  | 
|  | // (X / Y) *  Y = X - (X % Y) | 
|  | // (X / Y) * -Y = (X % Y) - X | 
|  | { | 
|  | Value *Op1C = Op1; | 
|  | BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0); | 
|  | if (!BO || | 
|  | (BO->getOpcode() != Instruction::UDiv && | 
|  | BO->getOpcode() != Instruction::SDiv)) { | 
|  | Op1C = Op0; | 
|  | BO = dyn_cast<BinaryOperator>(Op1); | 
|  | } | 
|  | Value *Neg = dyn_castNegVal(Op1C); | 
|  | if (BO && BO->hasOneUse() && | 
|  | (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) && | 
|  | (BO->getOpcode() == Instruction::UDiv || | 
|  | BO->getOpcode() == Instruction::SDiv)) { | 
|  | Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1); | 
|  |  | 
|  | // If the division is exact, X % Y is zero, so we end up with X or -X. | 
|  | if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO)) | 
|  | if (SDiv->isExact()) { | 
|  | if (Op1BO == Op1C) | 
|  | return ReplaceInstUsesWith(I, Op0BO); | 
|  | return BinaryOperator::CreateNeg(Op0BO); | 
|  | } | 
|  |  | 
|  | Value *Rem; | 
|  | if (BO->getOpcode() == Instruction::UDiv) | 
|  | Rem = Builder->CreateURem(Op0BO, Op1BO); | 
|  | else | 
|  | Rem = Builder->CreateSRem(Op0BO, Op1BO); | 
|  | Rem->takeName(BO); | 
|  |  | 
|  | if (Op1BO == Op1C) | 
|  | return BinaryOperator::CreateSub(Op0BO, Rem); | 
|  | return BinaryOperator::CreateSub(Rem, Op0BO); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// i1 mul -> i1 and. | 
|  | if (I.getType()->isIntegerTy(1)) | 
|  | return BinaryOperator::CreateAnd(Op0, Op1); | 
|  |  | 
|  | // X*(1 << Y) --> X << Y | 
|  | // (1 << Y)*X --> X << Y | 
|  | { | 
|  | Value *Y; | 
|  | if (match(Op0, m_Shl(m_One(), m_Value(Y)))) | 
|  | return BinaryOperator::CreateShl(Op1, Y); | 
|  | if (match(Op1, m_Shl(m_One(), m_Value(Y)))) | 
|  | return BinaryOperator::CreateShl(Op0, Y); | 
|  | } | 
|  |  | 
|  | // If one of the operands of the multiply is a cast from a boolean value, then | 
|  | // we know the bool is either zero or one, so this is a 'masking' multiply. | 
|  | //   X * Y (where Y is 0 or 1) -> X & (0-Y) | 
|  | if (!I.getType()->isVectorTy()) { | 
|  | // -2 is "-1 << 1" so it is all bits set except the low one. | 
|  | APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true); | 
|  |  | 
|  | Value *BoolCast = 0, *OtherOp = 0; | 
|  | if (MaskedValueIsZero(Op0, Negative2)) | 
|  | BoolCast = Op0, OtherOp = Op1; | 
|  | else if (MaskedValueIsZero(Op1, Negative2)) | 
|  | BoolCast = Op1, OtherOp = Op0; | 
|  |  | 
|  | if (BoolCast) { | 
|  | Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()), | 
|  | BoolCast); | 
|  | return BinaryOperator::CreateAnd(V, OtherOp); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | // | 
|  | // Detect pattern: | 
|  | // | 
|  | // log2(Y*0.5) | 
|  | // | 
|  | // And check for corresponding fast math flags | 
|  | // | 
|  |  | 
|  | static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) { | 
|  |  | 
|  | if (!Op->hasOneUse()) | 
|  | return; | 
|  |  | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op); | 
|  | if (!II) | 
|  | return; | 
|  | if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra()) | 
|  | return; | 
|  | Log2 = II; | 
|  |  | 
|  | Value *OpLog2Of = II->getArgOperand(0); | 
|  | if (!OpLog2Of->hasOneUse()) | 
|  | return; | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(OpLog2Of); | 
|  | if (!I) | 
|  | return; | 
|  | if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) | 
|  | return; | 
|  |  | 
|  | ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0)); | 
|  | if (CFP && CFP->isExactlyValue(0.5)) { | 
|  | Y = I->getOperand(1); | 
|  | return; | 
|  | } | 
|  | CFP = dyn_cast<ConstantFP>(I->getOperand(1)); | 
|  | if (CFP && CFP->isExactlyValue(0.5)) | 
|  | Y = I->getOperand(0); | 
|  | } | 
|  |  | 
|  | /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns | 
|  | /// true iff the given value is FMul or FDiv with one and only one operand | 
|  | /// being a normal constant (i.e. not Zero/NaN/Infinity). | 
|  | static bool isFMulOrFDivWithConstant(Value *V) { | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I || (I->getOpcode() != Instruction::FMul && | 
|  | I->getOpcode() != Instruction::FDiv)) | 
|  | return false; | 
|  |  | 
|  | ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); | 
|  | ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); | 
|  |  | 
|  | if (C0 && C1) | 
|  | return false; | 
|  |  | 
|  | return (C0 && C0->getValueAPF().isFiniteNonZero()) || | 
|  | (C1 && C1->getValueAPF().isFiniteNonZero()); | 
|  | } | 
|  |  | 
|  | static bool isNormalFp(const ConstantFP *C) { | 
|  | const APFloat &Flt = C->getValueAPF(); | 
|  | return Flt.isFiniteNonZero() && !Flt.isDenormal(); | 
|  | } | 
|  |  | 
|  | /// foldFMulConst() is a helper routine of InstCombiner::visitFMul(). | 
|  | /// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand | 
|  | /// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true). | 
|  | /// This function is to simplify "FMulOrDiv * C" and returns the | 
|  | /// resulting expression. Note that this function could return NULL in | 
|  | /// case the constants cannot be folded into a normal floating-point. | 
|  | /// | 
|  | Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C, | 
|  | Instruction *InsertBefore) { | 
|  | assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid"); | 
|  |  | 
|  | Value *Opnd0 = FMulOrDiv->getOperand(0); | 
|  | Value *Opnd1 = FMulOrDiv->getOperand(1); | 
|  |  | 
|  | ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0); | 
|  | ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1); | 
|  |  | 
|  | BinaryOperator *R = 0; | 
|  |  | 
|  | // (X * C0) * C => X * (C0*C) | 
|  | if (FMulOrDiv->getOpcode() == Instruction::FMul) { | 
|  | Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C); | 
|  | if (isNormalFp(cast<ConstantFP>(F))) | 
|  | R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F); | 
|  | } else { | 
|  | if (C0) { | 
|  | // (C0 / X) * C => (C0 * C) / X | 
|  | ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C)); | 
|  | if (isNormalFp(F)) | 
|  | R = BinaryOperator::CreateFDiv(F, Opnd1); | 
|  | } else { | 
|  | // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal | 
|  | ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1)); | 
|  | if (isNormalFp(F)) { | 
|  | R = BinaryOperator::CreateFMul(Opnd0, F); | 
|  | } else { | 
|  | // (X / C1) * C => X / (C1/C) | 
|  | Constant *F = ConstantExpr::getFDiv(C1, C); | 
|  | if (isNormalFp(cast<ConstantFP>(F))) | 
|  | R = BinaryOperator::CreateFDiv(Opnd0, F); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (R) { | 
|  | R->setHasUnsafeAlgebra(true); | 
|  | InsertNewInstWith(R, *InsertBefore); | 
|  | } | 
|  |  | 
|  | return R; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFMul(BinaryOperator &I) { | 
|  | bool Changed = SimplifyAssociativeOrCommutative(I); | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (isa<Constant>(Op0)) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | bool AllowReassociate = I.hasUnsafeAlgebra(); | 
|  |  | 
|  | // Simplify mul instructions with a constant RHS. | 
|  | if (isa<Constant>(Op1)) { | 
|  | // Try to fold constant mul into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI)) | 
|  | return R; | 
|  |  | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  |  | 
|  | ConstantFP *C = dyn_cast<ConstantFP>(Op1); | 
|  | if (C && AllowReassociate && C->getValueAPF().isFiniteNonZero()) { | 
|  | // Let MDC denote an expression in one of these forms: | 
|  | // X * C, C/X, X/C, where C is a constant. | 
|  | // | 
|  | // Try to simplify "MDC * Constant" | 
|  | if (isFMulOrFDivWithConstant(Op0)) { | 
|  | Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I); | 
|  | if (V) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  | } | 
|  |  | 
|  | // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C) | 
|  | Instruction *FAddSub = dyn_cast<Instruction>(Op0); | 
|  | if (FAddSub && | 
|  | (FAddSub->getOpcode() == Instruction::FAdd || | 
|  | FAddSub->getOpcode() == Instruction::FSub)) { | 
|  | Value *Opnd0 = FAddSub->getOperand(0); | 
|  | Value *Opnd1 = FAddSub->getOperand(1); | 
|  | ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0); | 
|  | ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1); | 
|  | bool Swap = false; | 
|  | if (C0) { | 
|  | std::swap(C0, C1); | 
|  | std::swap(Opnd0, Opnd1); | 
|  | Swap = true; | 
|  | } | 
|  |  | 
|  | if (C1 && C1->getValueAPF().isFiniteNonZero() && | 
|  | isFMulOrFDivWithConstant(Opnd0)) { | 
|  | Value *M1 = ConstantExpr::getFMul(C1, C); | 
|  | Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ? | 
|  | foldFMulConst(cast<Instruction>(Opnd0), C, &I) : | 
|  | 0; | 
|  | if (M0 && M1) { | 
|  | if (Swap && FAddSub->getOpcode() == Instruction::FSub) | 
|  | std::swap(M0, M1); | 
|  |  | 
|  | Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ? | 
|  | BinaryOperator::CreateFAdd(M0, M1) : | 
|  | BinaryOperator::CreateFSub(M0, M1); | 
|  | Instruction *RI = cast<Instruction>(R); | 
|  | RI->copyFastMathFlags(&I); | 
|  | return RI; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Under unsafe algebra do: | 
|  | // X * log2(0.5*Y) = X*log2(Y) - X | 
|  | if (I.hasUnsafeAlgebra()) { | 
|  | Value *OpX = NULL; | 
|  | Value *OpY = NULL; | 
|  | IntrinsicInst *Log2; | 
|  | detectLog2OfHalf(Op0, OpY, Log2); | 
|  | if (OpY) { | 
|  | OpX = Op1; | 
|  | } else { | 
|  | detectLog2OfHalf(Op1, OpY, Log2); | 
|  | if (OpY) { | 
|  | OpX = Op0; | 
|  | } | 
|  | } | 
|  | // if pattern detected emit alternate sequence | 
|  | if (OpX && OpY) { | 
|  | Log2->setArgOperand(0, OpY); | 
|  | Value *FMulVal = Builder->CreateFMul(OpX, Log2); | 
|  | Instruction *FMul = cast<Instruction>(FMulVal); | 
|  | FMul->copyFastMathFlags(Log2); | 
|  | Instruction *FSub = BinaryOperator::CreateFSub(FMulVal, OpX); | 
|  | FSub->copyFastMathFlags(Log2); | 
|  | return FSub; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle symmetric situation in a 2-iteration loop | 
|  | Value *Opnd0 = Op0; | 
|  | Value *Opnd1 = Op1; | 
|  | for (int i = 0; i < 2; i++) { | 
|  | bool IgnoreZeroSign = I.hasNoSignedZeros(); | 
|  | if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) { | 
|  | Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign); | 
|  | Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign); | 
|  |  | 
|  | // -X * -Y => X*Y | 
|  | if (N1) | 
|  | return BinaryOperator::CreateFMul(N0, N1); | 
|  |  | 
|  | if (Opnd0->hasOneUse()) { | 
|  | // -X * Y => -(X*Y) (Promote negation as high as possible) | 
|  | Value *T = Builder->CreateFMul(N0, Opnd1); | 
|  | cast<Instruction>(T)->setDebugLoc(I.getDebugLoc()); | 
|  | Instruction *Neg = BinaryOperator::CreateFNeg(T); | 
|  | if (I.getFastMathFlags().any()) { | 
|  | cast<Instruction>(T)->copyFastMathFlags(&I); | 
|  | Neg->copyFastMathFlags(&I); | 
|  | } | 
|  | return Neg; | 
|  | } | 
|  | } | 
|  |  | 
|  | // (X*Y) * X => (X*X) * Y where Y != X | 
|  | //  The purpose is two-fold: | 
|  | //   1) to form a power expression (of X). | 
|  | //   2) potentially shorten the critical path: After transformation, the | 
|  | //  latency of the instruction Y is amortized by the expression of X*X, | 
|  | //  and therefore Y is in a "less critical" position compared to what it | 
|  | //  was before the transformation. | 
|  | // | 
|  | if (AllowReassociate) { | 
|  | Value *Opnd0_0, *Opnd0_1; | 
|  | if (Opnd0->hasOneUse() && | 
|  | match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) { | 
|  | Value *Y = 0; | 
|  | if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1) | 
|  | Y = Opnd0_1; | 
|  | else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1) | 
|  | Y = Opnd0_0; | 
|  |  | 
|  | if (Y) { | 
|  | Instruction *T = cast<Instruction>(Builder->CreateFMul(Opnd1, Opnd1)); | 
|  | T->copyFastMathFlags(&I); | 
|  | T->setDebugLoc(I.getDebugLoc()); | 
|  |  | 
|  | Instruction *R = BinaryOperator::CreateFMul(T, Y); | 
|  | R->copyFastMathFlags(&I); | 
|  | return R; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!isa<Constant>(Op1)) | 
|  | std::swap(Opnd0, Opnd1); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Changed ? &I : 0; | 
|  | } | 
|  |  | 
|  | /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select | 
|  | /// instruction. | 
|  | bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { | 
|  | SelectInst *SI = cast<SelectInst>(I.getOperand(1)); | 
|  |  | 
|  | // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y | 
|  | int NonNullOperand = -1; | 
|  | if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1))) | 
|  | if (ST->isNullValue()) | 
|  | NonNullOperand = 2; | 
|  | // div/rem X, (Cond ? Y : 0) -> div/rem X, Y | 
|  | if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2))) | 
|  | if (ST->isNullValue()) | 
|  | NonNullOperand = 1; | 
|  |  | 
|  | if (NonNullOperand == -1) | 
|  | return false; | 
|  |  | 
|  | Value *SelectCond = SI->getOperand(0); | 
|  |  | 
|  | // Change the div/rem to use 'Y' instead of the select. | 
|  | I.setOperand(1, SI->getOperand(NonNullOperand)); | 
|  |  | 
|  | // Okay, we know we replace the operand of the div/rem with 'Y' with no | 
|  | // problem.  However, the select, or the condition of the select may have | 
|  | // multiple uses.  Based on our knowledge that the operand must be non-zero, | 
|  | // propagate the known value for the select into other uses of it, and | 
|  | // propagate a known value of the condition into its other users. | 
|  |  | 
|  | // If the select and condition only have a single use, don't bother with this, | 
|  | // early exit. | 
|  | if (SI->use_empty() && SelectCond->hasOneUse()) | 
|  | return true; | 
|  |  | 
|  | // Scan the current block backward, looking for other uses of SI. | 
|  | BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin(); | 
|  |  | 
|  | while (BBI != BBFront) { | 
|  | --BBI; | 
|  | // If we found a call to a function, we can't assume it will return, so | 
|  | // information from below it cannot be propagated above it. | 
|  | if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI)) | 
|  | break; | 
|  |  | 
|  | // Replace uses of the select or its condition with the known values. | 
|  | for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end(); | 
|  | I != E; ++I) { | 
|  | if (*I == SI) { | 
|  | *I = SI->getOperand(NonNullOperand); | 
|  | Worklist.Add(BBI); | 
|  | } else if (*I == SelectCond) { | 
|  | *I = Builder->getInt1(NonNullOperand == 1); | 
|  | Worklist.Add(BBI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we past the instruction, quit looking for it. | 
|  | if (&*BBI == SI) | 
|  | SI = 0; | 
|  | if (&*BBI == SelectCond) | 
|  | SelectCond = 0; | 
|  |  | 
|  | // If we ran out of things to eliminate, break out of the loop. | 
|  | if (SelectCond == 0 && SI == 0) | 
|  | break; | 
|  |  | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// This function implements the transforms common to both integer division | 
|  | /// instructions (udiv and sdiv). It is called by the visitors to those integer | 
|  | /// division instructions. | 
|  | /// @brief Common integer divide transforms | 
|  | Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // The RHS is known non-zero. | 
|  | if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) { | 
|  | I.setOperand(1, V); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // Handle cases involving: [su]div X, (select Cond, Y, Z) | 
|  | // This does not apply for fdiv. | 
|  | if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) | 
|  | return &I; | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | // (X / C1) / C2  -> X / (C1*C2) | 
|  | if (Instruction *LHS = dyn_cast<Instruction>(Op0)) | 
|  | if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode()) | 
|  | if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) { | 
|  | if (MultiplyOverflows(RHS, LHSRHS, | 
|  | I.getOpcode()==Instruction::SDiv)) | 
|  | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); | 
|  | return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0), | 
|  | ConstantExpr::getMul(RHS, LHSRHS)); | 
|  | } | 
|  |  | 
|  | if (!RHS->isZero()) { // avoid X udiv 0 | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI)) | 
|  | return R; | 
|  | if (isa<PHINode>(Op0)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we can fold away this div instruction. | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  |  | 
|  | // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y | 
|  | Value *X = 0, *Z = 0; | 
|  | if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1 | 
|  | bool isSigned = I.getOpcode() == Instruction::SDiv; | 
|  | if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || | 
|  | (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1))))) | 
|  | return BinaryOperator::Create(I.getOpcode(), X, Op1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// dyn_castZExtVal - Checks if V is a zext or constant that can | 
|  | /// be truncated to Ty without losing bits. | 
|  | static Value *dyn_castZExtVal(Value *V, Type *Ty) { | 
|  | if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) { | 
|  | if (Z->getSrcTy() == Ty) | 
|  | return Z->getOperand(0); | 
|  | } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) { | 
|  | if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth()) | 
|  | return ConstantExpr::getTrunc(C, Ty); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyUDivInst(Op0, Op1, TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | // Handle the integer div common cases | 
|  | if (Instruction *Common = commonIDivTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | { | 
|  | // X udiv 2^C -> X >> C | 
|  | // Check to see if this is an unsigned division with an exact power of 2, | 
|  | // if so, convert to a right shift. | 
|  | const APInt *C; | 
|  | if (match(Op1, m_Power2(C))) { | 
|  | BinaryOperator *LShr = | 
|  | BinaryOperator::CreateLShr(Op0, | 
|  | ConstantInt::get(Op0->getType(), | 
|  | C->logBase2())); | 
|  | if (I.isExact()) LShr->setIsExact(); | 
|  | return LShr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) { | 
|  | // X udiv C, where C >= signbit | 
|  | if (C->getValue().isNegative()) { | 
|  | Value *IC = Builder->CreateICmpULT(Op0, C); | 
|  | return SelectInst::Create(IC, Constant::getNullValue(I.getType()), | 
|  | ConstantInt::get(I.getType(), 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (x lshr C1) udiv C2 --> x udiv (C2 << C1) | 
|  | if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) { | 
|  | Value *X; | 
|  | ConstantInt *C1; | 
|  | if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) { | 
|  | APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1)); | 
|  | return BinaryOperator::CreateUDiv(X, Builder->getInt(NC)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2) | 
|  | { const APInt *CI; Value *N; | 
|  | if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) || | 
|  | match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) { | 
|  | if (*CI != 1) | 
|  | N = Builder->CreateAdd(N, | 
|  | ConstantInt::get(N->getType(), CI->logBase2())); | 
|  | if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1)) | 
|  | N = Builder->CreateZExt(N, Z->getDestTy()); | 
|  | if (I.isExact()) | 
|  | return BinaryOperator::CreateExactLShr(Op0, N); | 
|  | return BinaryOperator::CreateLShr(Op0, N); | 
|  | } | 
|  | } | 
|  |  | 
|  | // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2) | 
|  | // where C1&C2 are powers of two. | 
|  | { Value *Cond; const APInt *C1, *C2; | 
|  | if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) { | 
|  | // Construct the "on true" case of the select | 
|  | Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t", | 
|  | I.isExact()); | 
|  |  | 
|  | // Construct the "on false" case of the select | 
|  | Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f", | 
|  | I.isExact()); | 
|  |  | 
|  | // construct the select instruction and return it. | 
|  | return SelectInst::Create(Cond, TSI, FSI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (zext A) udiv (zext B) --> zext (A udiv B) | 
|  | if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) | 
|  | if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) | 
|  | return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div", | 
|  | I.isExact()), | 
|  | I.getType()); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifySDivInst(Op0, Op1, TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | // Handle the integer div common cases | 
|  | if (Instruction *Common = commonIDivTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { | 
|  | // sdiv X, -1 == -X | 
|  | if (RHS->isAllOnesValue()) | 
|  | return BinaryOperator::CreateNeg(Op0); | 
|  |  | 
|  | // sdiv X, C  -->  ashr exact X, log2(C) | 
|  | if (I.isExact() && RHS->getValue().isNonNegative() && | 
|  | RHS->getValue().isPowerOf2()) { | 
|  | Value *ShAmt = llvm::ConstantInt::get(RHS->getType(), | 
|  | RHS->getValue().exactLogBase2()); | 
|  | return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName()); | 
|  | } | 
|  |  | 
|  | // -X/C  -->  X/-C  provided the negation doesn't overflow. | 
|  | if (SubOperator *Sub = dyn_cast<SubOperator>(Op0)) | 
|  | if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap()) | 
|  | return BinaryOperator::CreateSDiv(Sub->getOperand(1), | 
|  | ConstantExpr::getNeg(RHS)); | 
|  | } | 
|  |  | 
|  | // If the sign bits of both operands are zero (i.e. we can prove they are | 
|  | // unsigned inputs), turn this into a udiv. | 
|  | if (I.getType()->isIntegerTy()) { | 
|  | APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); | 
|  | if (MaskedValueIsZero(Op0, Mask)) { | 
|  | if (MaskedValueIsZero(Op1, Mask)) { | 
|  | // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set | 
|  | return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); | 
|  | } | 
|  |  | 
|  | if (match(Op1, m_Shl(m_Power2(), m_Value()))) { | 
|  | // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) | 
|  | // Safe because the only negative value (1 << Y) can take on is | 
|  | // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have | 
|  | // the sign bit set. | 
|  | return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special | 
|  | /// FP value and: | 
|  | ///    1) 1/C is exact, or | 
|  | ///    2) reciprocal is allowed. | 
|  | /// If the conversion was successful, the simplified expression "X * 1/C" is | 
|  | /// returned; otherwise, NULL is returned. | 
|  | /// | 
|  | static Instruction *CvtFDivConstToReciprocal(Value *Dividend, | 
|  | ConstantFP *Divisor, | 
|  | bool AllowReciprocal) { | 
|  | const APFloat &FpVal = Divisor->getValueAPF(); | 
|  | APFloat Reciprocal(FpVal.getSemantics()); | 
|  | bool Cvt = FpVal.getExactInverse(&Reciprocal); | 
|  |  | 
|  | if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) { | 
|  | Reciprocal = APFloat(FpVal.getSemantics(), 1.0f); | 
|  | (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven); | 
|  | Cvt = !Reciprocal.isDenormal(); | 
|  | } | 
|  |  | 
|  | if (!Cvt) | 
|  | return 0; | 
|  |  | 
|  | ConstantFP *R; | 
|  | R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal); | 
|  | return BinaryOperator::CreateFMul(Dividend, R); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyFDivInst(Op0, Op1, TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | bool AllowReassociate = I.hasUnsafeAlgebra(); | 
|  | bool AllowReciprocal = I.hasAllowReciprocal(); | 
|  |  | 
|  | if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { | 
|  | if (AllowReassociate) { | 
|  | ConstantFP *C1 = 0; | 
|  | ConstantFP *C2 = Op1C; | 
|  | Value *X; | 
|  | Instruction *Res = 0; | 
|  |  | 
|  | if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) { | 
|  | // (X*C1)/C2 => X * (C1/C2) | 
|  | // | 
|  | Constant *C = ConstantExpr::getFDiv(C1, C2); | 
|  | const APFloat &F = cast<ConstantFP>(C)->getValueAPF(); | 
|  | if (F.isFiniteNonZero() && !F.isDenormal()) | 
|  | Res = BinaryOperator::CreateFMul(X, C); | 
|  | } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) { | 
|  | // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed] | 
|  | // | 
|  | Constant *C = ConstantExpr::getFMul(C1, C2); | 
|  | const APFloat &F = cast<ConstantFP>(C)->getValueAPF(); | 
|  | if (F.isFiniteNonZero() && !F.isDenormal()) { | 
|  | Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C), | 
|  | AllowReciprocal); | 
|  | if (!Res) | 
|  | Res = BinaryOperator::CreateFDiv(X, C); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Res) { | 
|  | Res->setFastMathFlags(I.getFastMathFlags()); | 
|  | return Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | // X / C => X * 1/C | 
|  | if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) | 
|  | return T; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (AllowReassociate && isa<ConstantFP>(Op0)) { | 
|  | ConstantFP *C1 = cast<ConstantFP>(Op0), *C2; | 
|  | Constant *Fold = 0; | 
|  | Value *X; | 
|  | bool CreateDiv = true; | 
|  |  | 
|  | // C1 / (X*C2) => (C1/C2) / X | 
|  | if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2)))) | 
|  | Fold = ConstantExpr::getFDiv(C1, C2); | 
|  | else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) { | 
|  | // C1 / (X/C2) => (C1*C2) / X | 
|  | Fold = ConstantExpr::getFMul(C1, C2); | 
|  | } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) { | 
|  | // C1 / (C2/X) => (C1/C2) * X | 
|  | Fold = ConstantExpr::getFDiv(C1, C2); | 
|  | CreateDiv = false; | 
|  | } | 
|  |  | 
|  | if (Fold) { | 
|  | const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF(); | 
|  | if (FoldC.isFiniteNonZero() && !FoldC.isDenormal()) { | 
|  | Instruction *R = CreateDiv ? | 
|  | BinaryOperator::CreateFDiv(Fold, X) : | 
|  | BinaryOperator::CreateFMul(X, Fold); | 
|  | R->setFastMathFlags(I.getFastMathFlags()); | 
|  | return R; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (AllowReassociate) { | 
|  | Value *X, *Y; | 
|  | Value *NewInst = 0; | 
|  | Instruction *SimpR = 0; | 
|  |  | 
|  | if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) { | 
|  | // (X/Y) / Z => X / (Y*Z) | 
|  | // | 
|  | if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) { | 
|  | NewInst = Builder->CreateFMul(Y, Op1); | 
|  | SimpR = BinaryOperator::CreateFDiv(X, NewInst); | 
|  | } | 
|  | } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) { | 
|  | // Z / (X/Y) => Z*Y / X | 
|  | // | 
|  | if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) { | 
|  | NewInst = Builder->CreateFMul(Op0, Y); | 
|  | SimpR = BinaryOperator::CreateFDiv(NewInst, X); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NewInst) { | 
|  | if (Instruction *T = dyn_cast<Instruction>(NewInst)) | 
|  | T->setDebugLoc(I.getDebugLoc()); | 
|  | SimpR->setFastMathFlags(I.getFastMathFlags()); | 
|  | return SimpR; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// This function implements the transforms common to both integer remainder | 
|  | /// instructions (urem and srem). It is called by the visitors to those integer | 
|  | /// remainder instructions. | 
|  | /// @brief Common integer remainder transforms | 
|  | Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // The RHS is known non-zero. | 
|  | if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) { | 
|  | I.setOperand(1, V); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // Handle cases involving: rem X, (select Cond, Y, Z) | 
|  | if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) | 
|  | return &I; | 
|  |  | 
|  | if (isa<ConstantInt>(Op1)) { | 
|  | if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI)) | 
|  | return R; | 
|  | } else if (isa<PHINode>(Op0I)) { | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | // See if we can fold away this rem instruction. | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitURem(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyURemInst(Op0, Op1, TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *common = commonIRemTransforms(I)) | 
|  | return common; | 
|  |  | 
|  | // (zext A) urem (zext B) --> zext (A urem B) | 
|  | if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) | 
|  | if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) | 
|  | return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1), | 
|  | I.getType()); | 
|  |  | 
|  | // X urem Y -> X and Y-1, where Y is a power of 2, | 
|  | if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) { | 
|  | Constant *N1 = Constant::getAllOnesValue(I.getType()); | 
|  | Value *Add = Builder->CreateAdd(Op1, N1); | 
|  | return BinaryOperator::CreateAnd(Op0, Add); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSRem(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifySRemInst(Op0, Op1, TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | // Handle the integer rem common cases | 
|  | if (Instruction *Common = commonIRemTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | if (Value *RHSNeg = dyn_castNegVal(Op1)) | 
|  | if (!isa<Constant>(RHSNeg) || | 
|  | (isa<ConstantInt>(RHSNeg) && | 
|  | cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) { | 
|  | // X % -Y -> X % Y | 
|  | Worklist.AddValue(I.getOperand(1)); | 
|  | I.setOperand(1, RHSNeg); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // If the sign bits of both operands are zero (i.e. we can prove they are | 
|  | // unsigned inputs), turn this into a urem. | 
|  | if (I.getType()->isIntegerTy()) { | 
|  | APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); | 
|  | if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { | 
|  | // X srem Y -> X urem Y, iff X and Y don't have sign bit set | 
|  | return BinaryOperator::CreateURem(Op0, Op1, I.getName()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If it's a constant vector, flip any negative values positive. | 
|  | if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) { | 
|  | Constant *C = cast<Constant>(Op1); | 
|  | unsigned VWidth = C->getType()->getVectorNumElements(); | 
|  |  | 
|  | bool hasNegative = false; | 
|  | bool hasMissing = false; | 
|  | for (unsigned i = 0; i != VWidth; ++i) { | 
|  | Constant *Elt = C->getAggregateElement(i); | 
|  | if (Elt == 0) { | 
|  | hasMissing = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt)) | 
|  | if (RHS->isNegative()) | 
|  | hasNegative = true; | 
|  | } | 
|  |  | 
|  | if (hasNegative && !hasMissing) { | 
|  | SmallVector<Constant *, 16> Elts(VWidth); | 
|  | for (unsigned i = 0; i != VWidth; ++i) { | 
|  | Elts[i] = C->getAggregateElement(i);  // Handle undef, etc. | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) { | 
|  | if (RHS->isNegative()) | 
|  | Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *NewRHSV = ConstantVector::get(Elts); | 
|  | if (NewRHSV != C) {  // Don't loop on -MININT | 
|  | Worklist.AddValue(I.getOperand(1)); | 
|  | I.setOperand(1, NewRHSV); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFRem(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyFRemInst(Op0, Op1, TD)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | // Handle cases involving: rem X, (select Cond, Y, Z) | 
|  | if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) | 
|  | return &I; | 
|  |  | 
|  | return 0; | 
|  | } |