| //===-- ProfilePaths.cpp - interface to insert instrumentation ---*- C++ -*--=// |
| // |
| // This inserts intrumentation for counting |
| // execution of paths though a given function |
| // Its implemented as a "Function" Pass, and called using opt |
| // |
| // This pass is implemented by using algorithms similar to |
| // 1."Efficient Path Profiling": Ball, T. and Larus, J. R., |
| // Proceedings of Micro-29, Dec 1996, Paris, France. |
| // 2."Efficiently Counting Program events with support for on-line |
| // "queries": Ball T., ACM Transactions on Programming Languages |
| // and systems, Sep 1994. |
| // |
| // The algorithms work on a Graph constructed over the nodes |
| // made from Basic Blocks: The transformations then take place on |
| // the constucted graph (implementation in Graph.cpp and GraphAuxillary.cpp) |
| // and finally, appropriate instrumentation is placed over suitable edges. |
| // (code inserted through EdgeCode.cpp). |
| // |
| // The algorithm inserts code such that every acyclic path in the CFG |
| // of a function is identified through a unique number. the code insertion |
| // is optimal in the sense that its inserted over a minimal set of edges. Also, |
| // the algorithm makes sure than initialization, path increment and counter |
| // update can be collapsed into minmimum number of edges. |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Instrumentation/ProfilePaths.h" |
| #include "llvm/Transforms/UnifyMethodExitNodes.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Function.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/ConstantVals.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/Pass.h" |
| #include "Graph.h" |
| |
| using std::vector; |
| |
| class ProfilePaths: public FunctionPass { |
| public: |
| bool runOnFunction(Function *F); |
| |
| // Before this pass, make sure that there is only one |
| // entry and only one exit node for the function in the CFG of the function |
| // |
| void ProfilePaths::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired(UnifyMethodExitNodes::ID); |
| } |
| }; |
| |
| // createProfilePathsPass - Create a new pass to add path profiling |
| // |
| Pass *createProfilePathsPass() { |
| return new ProfilePaths(); |
| } |
| |
| |
| static Node *findBB(std::set<Node *> &st, BasicBlock *BB){ |
| for(std::set<Node *>::iterator si=st.begin(); si!=st.end(); ++si){ |
| if(((*si)->getElement())==BB){ |
| return *si; |
| } |
| } |
| return NULL; |
| } |
| |
| //Per function pass for inserting counters and trigger code |
| bool ProfilePaths::runOnFunction(Function *M){ |
| //Transform the cfg s.t. we have just one exit node |
| BasicBlock *ExitNode = |
| getAnalysis<UnifyMethodExitNodes>().getExitNode(); |
| |
| //iterating over BBs and making graph |
| std::set<Node *> nodes; |
| std::set<Edge> edges; |
| Node *tmp; |
| Node *exitNode, *startNode; |
| |
| //The nodes must be uniquesly identified: |
| //That is, no two nodes must hav same BB* |
| |
| //First enter just nodes: later enter edges |
| for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){ |
| Node *nd=new Node(*BB); |
| nodes.insert(nd); |
| if(*BB==ExitNode) |
| exitNode=nd; |
| if(*BB==M->front()) |
| startNode=nd; |
| } |
| |
| //now do it againto insert edges |
| for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){ |
| Node *nd=findBB(nodes, *BB); |
| assert(nd && "No node for this edge!"); |
| for(BasicBlock::succ_iterator s=succ_begin(*BB), se=succ_end(*BB); |
| s!=se; ++s){ |
| Node *nd2=findBB(nodes,*s); |
| assert(nd2 && "No node for this edge!"); |
| Edge ed(nd,nd2,0); |
| edges.insert(ed); |
| } |
| } |
| |
| Graph g(nodes,edges, startNode, exitNode); |
| |
| #ifdef DEBUG_PATH_PROFILES |
| printGraph(g); |
| #endif |
| |
| BasicBlock *fr=M->front(); |
| |
| //If only one BB, don't instrument |
| if (M->getBasicBlocks().size() == 1) { |
| //The graph is made acyclic: this is done |
| //by removing back edges for now, and adding them later on |
| vector<Edge> be; |
| g.getBackEdges(be); |
| #ifdef DEBUG_PATH_PROFILES |
| cerr<<"Backedges:"<<be.size()<<endl; |
| #endif |
| //Now we need to reflect the effect of back edges |
| //This is done by adding dummy edges |
| //If a->b is a back edge |
| //Then we add 2 back edges for it: |
| //1. from root->b (in vector stDummy) |
| //and 2. from a->exit (in vector exDummy) |
| vector<Edge> stDummy; |
| vector<Edge> exDummy; |
| addDummyEdges(stDummy, exDummy, g, be); |
| |
| //Now, every edge in the graph is assigned a weight |
| //This weight later adds on to assign path |
| //numbers to different paths in the graph |
| // All paths for now are acyclic, |
| //since no back edges in the graph now |
| //numPaths is the number of acyclic paths in the graph |
| int numPaths=valueAssignmentToEdges(g); |
| |
| //create instruction allocation r and count |
| //r is the variable that'll act like an accumulator |
| //all along the path, we just add edge values to r |
| //and at the end, r reflects the path number |
| //count is an array: count[x] would store |
| //the number of executions of path numbered x |
| Instruction *rVar=new |
| AllocaInst(PointerType::get(Type::IntTy), |
| ConstantUInt::get(Type::UIntTy,1),"R"); |
| |
| Instruction *countVar=new |
| AllocaInst(PointerType::get(Type::IntTy), |
| ConstantUInt::get(Type::UIntTy, numPaths), "Count"); |
| |
| //insert initialization code in first (entry) BB |
| //this includes initializing r and count |
| insertInTopBB(M->getEntryNode(),numPaths, rVar, countVar); |
| |
| //now process the graph: get path numbers, |
| //get increments along different paths, |
| //and assign "increments" and "updates" (to r and count) |
| //"optimally". Finally, insert llvm code along various edges |
| processGraph(g, rVar, countVar, be, stDummy, exDummy); |
| } |
| |
| return true; // Always modifies function |
| } |