|  | //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Pass to verify generated machine code. The following is checked: | 
|  | // | 
|  | // Operand counts: All explicit operands must be present. | 
|  | // | 
|  | // Register classes: All physical and virtual register operands must be | 
|  | // compatible with the register class required by the instruction descriptor. | 
|  | // | 
|  | // Register live intervals: Registers must be defined only once, and must be | 
|  | // defined before use. | 
|  | // | 
|  | // The machine code verifier is enabled from LLVMTargetMachine.cpp with the | 
|  | // command-line option -verify-machineinstrs, or by defining the environment | 
|  | // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive | 
|  | // the verifier errors. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/SetOperations.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/EHPersonalities.h" | 
|  | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
|  | #include "llvm/CodeGen/LiveStackAnalysis.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/FileSystem.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | struct MachineVerifier { | 
|  |  | 
|  | MachineVerifier(Pass *pass, const char *b) : | 
|  | PASS(pass), | 
|  | Banner(b) | 
|  | {} | 
|  |  | 
|  | unsigned verify(MachineFunction &MF); | 
|  |  | 
|  | Pass *const PASS; | 
|  | const char *Banner; | 
|  | const MachineFunction *MF; | 
|  | const TargetMachine *TM; | 
|  | const TargetInstrInfo *TII; | 
|  | const TargetRegisterInfo *TRI; | 
|  | const MachineRegisterInfo *MRI; | 
|  |  | 
|  | unsigned foundErrors; | 
|  |  | 
|  | typedef SmallVector<unsigned, 16> RegVector; | 
|  | typedef SmallVector<const uint32_t*, 4> RegMaskVector; | 
|  | typedef DenseSet<unsigned> RegSet; | 
|  | typedef DenseMap<unsigned, const MachineInstr*> RegMap; | 
|  | typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; | 
|  |  | 
|  | const MachineInstr *FirstTerminator; | 
|  | BlockSet FunctionBlocks; | 
|  |  | 
|  | BitVector regsReserved; | 
|  | RegSet regsLive; | 
|  | RegVector regsDefined, regsDead, regsKilled; | 
|  | RegMaskVector regMasks; | 
|  | RegSet regsLiveInButUnused; | 
|  |  | 
|  | SlotIndex lastIndex; | 
|  |  | 
|  | // Add Reg and any sub-registers to RV | 
|  | void addRegWithSubRegs(RegVector &RV, unsigned Reg) { | 
|  | RV.push_back(Reg); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) | 
|  | RV.push_back(*SubRegs); | 
|  | } | 
|  |  | 
|  | struct BBInfo { | 
|  | // Is this MBB reachable from the MF entry point? | 
|  | bool reachable; | 
|  |  | 
|  | // Vregs that must be live in because they are used without being | 
|  | // defined. Map value is the user. | 
|  | RegMap vregsLiveIn; | 
|  |  | 
|  | // Regs killed in MBB. They may be defined again, and will then be in both | 
|  | // regsKilled and regsLiveOut. | 
|  | RegSet regsKilled; | 
|  |  | 
|  | // Regs defined in MBB and live out. Note that vregs passing through may | 
|  | // be live out without being mentioned here. | 
|  | RegSet regsLiveOut; | 
|  |  | 
|  | // Vregs that pass through MBB untouched. This set is disjoint from | 
|  | // regsKilled and regsLiveOut. | 
|  | RegSet vregsPassed; | 
|  |  | 
|  | // Vregs that must pass through MBB because they are needed by a successor | 
|  | // block. This set is disjoint from regsLiveOut. | 
|  | RegSet vregsRequired; | 
|  |  | 
|  | // Set versions of block's predecessor and successor lists. | 
|  | BlockSet Preds, Succs; | 
|  |  | 
|  | BBInfo() : reachable(false) {} | 
|  |  | 
|  | // Add register to vregsPassed if it belongs there. Return true if | 
|  | // anything changed. | 
|  | bool addPassed(unsigned Reg) { | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | return false; | 
|  | if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) | 
|  | return false; | 
|  | return vregsPassed.insert(Reg).second; | 
|  | } | 
|  |  | 
|  | // Same for a full set. | 
|  | bool addPassed(const RegSet &RS) { | 
|  | bool changed = false; | 
|  | for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) | 
|  | if (addPassed(*I)) | 
|  | changed = true; | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | // Add register to vregsRequired if it belongs there. Return true if | 
|  | // anything changed. | 
|  | bool addRequired(unsigned Reg) { | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | return false; | 
|  | if (regsLiveOut.count(Reg)) | 
|  | return false; | 
|  | return vregsRequired.insert(Reg).second; | 
|  | } | 
|  |  | 
|  | // Same for a full set. | 
|  | bool addRequired(const RegSet &RS) { | 
|  | bool changed = false; | 
|  | for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) | 
|  | if (addRequired(*I)) | 
|  | changed = true; | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | // Same for a full map. | 
|  | bool addRequired(const RegMap &RM) { | 
|  | bool changed = false; | 
|  | for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) | 
|  | if (addRequired(I->first)) | 
|  | changed = true; | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | // Live-out registers are either in regsLiveOut or vregsPassed. | 
|  | bool isLiveOut(unsigned Reg) const { | 
|  | return regsLiveOut.count(Reg) || vregsPassed.count(Reg); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Extra register info per MBB. | 
|  | DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; | 
|  |  | 
|  | bool isReserved(unsigned Reg) { | 
|  | return Reg < regsReserved.size() && regsReserved.test(Reg); | 
|  | } | 
|  |  | 
|  | bool isAllocatable(unsigned Reg) { | 
|  | return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); | 
|  | } | 
|  |  | 
|  | // Analysis information if available | 
|  | LiveVariables *LiveVars; | 
|  | LiveIntervals *LiveInts; | 
|  | LiveStacks *LiveStks; | 
|  | SlotIndexes *Indexes; | 
|  |  | 
|  | void visitMachineFunctionBefore(); | 
|  | void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); | 
|  | void visitMachineBundleBefore(const MachineInstr *MI); | 
|  | void visitMachineInstrBefore(const MachineInstr *MI); | 
|  | void visitMachineOperand(const MachineOperand *MO, unsigned MONum); | 
|  | void visitMachineInstrAfter(const MachineInstr *MI); | 
|  | void visitMachineBundleAfter(const MachineInstr *MI); | 
|  | void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); | 
|  | void visitMachineFunctionAfter(); | 
|  |  | 
|  | template <typename T> void report(const char *msg, ilist_iterator<T> I) { | 
|  | report(msg, &*I); | 
|  | } | 
|  | void report(const char *msg, const MachineFunction *MF); | 
|  | void report(const char *msg, const MachineBasicBlock *MBB); | 
|  | void report(const char *msg, const MachineInstr *MI); | 
|  | void report(const char *msg, const MachineOperand *MO, unsigned MONum); | 
|  |  | 
|  | void report_context(const LiveInterval &LI) const; | 
|  | void report_context(const LiveRange &LR, unsigned Reg, | 
|  | LaneBitmask LaneMask) const; | 
|  | void report_context(const LiveRange::Segment &S) const; | 
|  | void report_context(const VNInfo &VNI) const; | 
|  | void report_context(SlotIndex Pos) const; | 
|  | void report_context_liverange(const LiveRange &LR) const; | 
|  | void report_context_regunit(unsigned RegUnit) const; | 
|  | void report_context_lanemask(LaneBitmask LaneMask) const; | 
|  | void report_context_vreg(unsigned VReg) const; | 
|  | void report_context_vreg_regunit(unsigned VRegOrRegUnit) const; | 
|  |  | 
|  | void verifyInlineAsm(const MachineInstr *MI); | 
|  |  | 
|  | void checkLiveness(const MachineOperand *MO, unsigned MONum); | 
|  | void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, | 
|  | SlotIndex UseIdx, const LiveRange &LR, unsigned Reg, | 
|  | LaneBitmask LaneMask = 0); | 
|  | void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, | 
|  | SlotIndex DefIdx, const LiveRange &LR, unsigned Reg, | 
|  | LaneBitmask LaneMask = 0); | 
|  |  | 
|  | void markReachable(const MachineBasicBlock *MBB); | 
|  | void calcRegsPassed(); | 
|  | void checkPHIOps(const MachineBasicBlock *MBB); | 
|  |  | 
|  | void calcRegsRequired(); | 
|  | void verifyLiveVariables(); | 
|  | void verifyLiveIntervals(); | 
|  | void verifyLiveInterval(const LiveInterval&); | 
|  | void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, | 
|  | unsigned); | 
|  | void verifyLiveRangeSegment(const LiveRange&, | 
|  | const LiveRange::const_iterator I, unsigned, | 
|  | unsigned); | 
|  | void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0); | 
|  |  | 
|  | void verifyStackFrame(); | 
|  |  | 
|  | void verifySlotIndexes() const; | 
|  | void verifyProperties(const MachineFunction &MF); | 
|  | }; | 
|  |  | 
|  | struct MachineVerifierPass : public MachineFunctionPass { | 
|  | static char ID; // Pass ID, replacement for typeid | 
|  | const std::string Banner; | 
|  |  | 
|  | MachineVerifierPass(const std::string &banner = nullptr) | 
|  | : MachineFunctionPass(ID), Banner(banner) { | 
|  | initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesAll(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); | 
|  | if (FoundErrors) | 
|  | report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | char MachineVerifierPass::ID = 0; | 
|  | INITIALIZE_PASS(MachineVerifierPass, "machineverifier", | 
|  | "Verify generated machine code", false, false) | 
|  |  | 
|  | FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { | 
|  | return new MachineVerifierPass(Banner); | 
|  | } | 
|  |  | 
|  | bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) | 
|  | const { | 
|  | MachineFunction &MF = const_cast<MachineFunction&>(*this); | 
|  | unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); | 
|  | if (AbortOnErrors && FoundErrors) | 
|  | report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); | 
|  | return FoundErrors == 0; | 
|  | } | 
|  |  | 
|  | void MachineVerifier::verifySlotIndexes() const { | 
|  | if (Indexes == nullptr) | 
|  | return; | 
|  |  | 
|  | // Ensure the IdxMBB list is sorted by slot indexes. | 
|  | SlotIndex Last; | 
|  | for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), | 
|  | E = Indexes->MBBIndexEnd(); I != E; ++I) { | 
|  | assert(!Last.isValid() || I->first > Last); | 
|  | Last = I->first; | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineVerifier::verifyProperties(const MachineFunction &MF) { | 
|  | // If a pass has introduced virtual registers without clearing the | 
|  | // AllVRegsAllocated property (or set it without allocating the vregs) | 
|  | // then report an error. | 
|  | if (MF.getProperties().hasProperty( | 
|  | MachineFunctionProperties::Property::AllVRegsAllocated) && | 
|  | MRI->getNumVirtRegs()) { | 
|  | report( | 
|  | "Function has AllVRegsAllocated property but there are VReg operands", | 
|  | &MF); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned MachineVerifier::verify(MachineFunction &MF) { | 
|  | foundErrors = 0; | 
|  |  | 
|  | this->MF = &MF; | 
|  | TM = &MF.getTarget(); | 
|  | TII = MF.getSubtarget().getInstrInfo(); | 
|  | TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | MRI = &MF.getRegInfo(); | 
|  |  | 
|  | LiveVars = nullptr; | 
|  | LiveInts = nullptr; | 
|  | LiveStks = nullptr; | 
|  | Indexes = nullptr; | 
|  | if (PASS) { | 
|  | LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); | 
|  | // We don't want to verify LiveVariables if LiveIntervals is available. | 
|  | if (!LiveInts) | 
|  | LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); | 
|  | LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); | 
|  | Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); | 
|  | } | 
|  |  | 
|  | verifySlotIndexes(); | 
|  |  | 
|  | verifyProperties(MF); | 
|  |  | 
|  | visitMachineFunctionBefore(); | 
|  | for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); | 
|  | MFI!=MFE; ++MFI) { | 
|  | visitMachineBasicBlockBefore(&*MFI); | 
|  | // Keep track of the current bundle header. | 
|  | const MachineInstr *CurBundle = nullptr; | 
|  | // Do we expect the next instruction to be part of the same bundle? | 
|  | bool InBundle = false; | 
|  |  | 
|  | for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), | 
|  | MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { | 
|  | if (MBBI->getParent() != &*MFI) { | 
|  | report("Bad instruction parent pointer", MFI); | 
|  | errs() << "Instruction: " << *MBBI; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check for consistent bundle flags. | 
|  | if (InBundle && !MBBI->isBundledWithPred()) | 
|  | report("Missing BundledPred flag, " | 
|  | "BundledSucc was set on predecessor", | 
|  | &*MBBI); | 
|  | if (!InBundle && MBBI->isBundledWithPred()) | 
|  | report("BundledPred flag is set, " | 
|  | "but BundledSucc not set on predecessor", | 
|  | &*MBBI); | 
|  |  | 
|  | // Is this a bundle header? | 
|  | if (!MBBI->isInsideBundle()) { | 
|  | if (CurBundle) | 
|  | visitMachineBundleAfter(CurBundle); | 
|  | CurBundle = &*MBBI; | 
|  | visitMachineBundleBefore(CurBundle); | 
|  | } else if (!CurBundle) | 
|  | report("No bundle header", MBBI); | 
|  | visitMachineInstrBefore(&*MBBI); | 
|  | for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { | 
|  | const MachineInstr &MI = *MBBI; | 
|  | const MachineOperand &Op = MI.getOperand(I); | 
|  | if (Op.getParent() != &MI) { | 
|  | // Make sure to use correct addOperand / RemoveOperand / ChangeTo | 
|  | // functions when replacing operands of a MachineInstr. | 
|  | report("Instruction has operand with wrong parent set", &MI); | 
|  | } | 
|  |  | 
|  | visitMachineOperand(&Op, I); | 
|  | } | 
|  |  | 
|  | visitMachineInstrAfter(&*MBBI); | 
|  |  | 
|  | // Was this the last bundled instruction? | 
|  | InBundle = MBBI->isBundledWithSucc(); | 
|  | } | 
|  | if (CurBundle) | 
|  | visitMachineBundleAfter(CurBundle); | 
|  | if (InBundle) | 
|  | report("BundledSucc flag set on last instruction in block", &MFI->back()); | 
|  | visitMachineBasicBlockAfter(&*MFI); | 
|  | } | 
|  | visitMachineFunctionAfter(); | 
|  |  | 
|  | // Clean up. | 
|  | regsLive.clear(); | 
|  | regsDefined.clear(); | 
|  | regsDead.clear(); | 
|  | regsKilled.clear(); | 
|  | regMasks.clear(); | 
|  | regsLiveInButUnused.clear(); | 
|  | MBBInfoMap.clear(); | 
|  |  | 
|  | return foundErrors; | 
|  | } | 
|  |  | 
|  | void MachineVerifier::report(const char *msg, const MachineFunction *MF) { | 
|  | assert(MF); | 
|  | errs() << '\n'; | 
|  | if (!foundErrors++) { | 
|  | if (Banner) | 
|  | errs() << "# " << Banner << '\n'; | 
|  | if (LiveInts != nullptr) | 
|  | LiveInts->print(errs()); | 
|  | else | 
|  | MF->print(errs(), Indexes); | 
|  | } | 
|  | errs() << "*** Bad machine code: " << msg << " ***\n" | 
|  | << "- function:    " << MF->getName() << "\n"; | 
|  | } | 
|  |  | 
|  | void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { | 
|  | assert(MBB); | 
|  | report(msg, MBB->getParent()); | 
|  | errs() << "- basic block: BB#" << MBB->getNumber() | 
|  | << ' ' << MBB->getName() | 
|  | << " (" << (const void*)MBB << ')'; | 
|  | if (Indexes) | 
|  | errs() << " [" << Indexes->getMBBStartIdx(MBB) | 
|  | << ';' <<  Indexes->getMBBEndIdx(MBB) << ')'; | 
|  | errs() << '\n'; | 
|  | } | 
|  |  | 
|  | void MachineVerifier::report(const char *msg, const MachineInstr *MI) { | 
|  | assert(MI); | 
|  | report(msg, MI->getParent()); | 
|  | errs() << "- instruction: "; | 
|  | if (Indexes && Indexes->hasIndex(*MI)) | 
|  | errs() << Indexes->getInstructionIndex(*MI) << '\t'; | 
|  | MI->print(errs(), /*SkipOpers=*/true); | 
|  | errs() << '\n'; | 
|  | } | 
|  |  | 
|  | void MachineVerifier::report(const char *msg, | 
|  | const MachineOperand *MO, unsigned MONum) { | 
|  | assert(MO); | 
|  | report(msg, MO->getParent()); | 
|  | errs() << "- operand " << MONum << ":   "; | 
|  | MO->print(errs(), TRI); | 
|  | errs() << "\n"; | 
|  | } | 
|  |  | 
|  | void MachineVerifier::report_context(SlotIndex Pos) const { | 
|  | errs() << "- at:          " << Pos << '\n'; | 
|  | } | 
|  |  | 
|  | void MachineVerifier::report_context(const LiveInterval &LI) const { | 
|  | errs() << "- interval:    " << LI << '\n'; | 
|  | } | 
|  |  | 
|  | void MachineVerifier::report_context(const LiveRange &LR, unsigned Reg, | 
|  | LaneBitmask LaneMask) const { | 
|  | report_context_liverange(LR); | 
|  | errs() << "- register:    " << PrintReg(Reg, TRI) << '\n'; | 
|  | if (LaneMask != 0) | 
|  | report_context_lanemask(LaneMask); | 
|  | } | 
|  |  | 
|  | void MachineVerifier::report_context(const LiveRange::Segment &S) const { | 
|  | errs() << "- segment:     " << S << '\n'; | 
|  | } | 
|  |  | 
|  | void MachineVerifier::report_context(const VNInfo &VNI) const { | 
|  | errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n"; | 
|  | } | 
|  |  | 
|  | void MachineVerifier::report_context_liverange(const LiveRange &LR) const { | 
|  | errs() << "- liverange:   " << LR << '\n'; | 
|  | } | 
|  |  | 
|  | void MachineVerifier::report_context_regunit(unsigned RegUnit) const { | 
|  | errs() << "- regunit:     " << PrintRegUnit(RegUnit, TRI) << '\n'; | 
|  | } | 
|  |  | 
|  | void MachineVerifier::report_context_vreg(unsigned VReg) const { | 
|  | errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n'; | 
|  | } | 
|  |  | 
|  | void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { | 
|  | if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { | 
|  | report_context_vreg(VRegOrUnit); | 
|  | } else { | 
|  | errs() << "- regunit:     " << PrintRegUnit(VRegOrUnit, TRI) << '\n'; | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { | 
|  | errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n'; | 
|  | } | 
|  |  | 
|  | void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { | 
|  | BBInfo &MInfo = MBBInfoMap[MBB]; | 
|  | if (!MInfo.reachable) { | 
|  | MInfo.reachable = true; | 
|  | for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), | 
|  | SuE = MBB->succ_end(); SuI != SuE; ++SuI) | 
|  | markReachable(*SuI); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineVerifier::visitMachineFunctionBefore() { | 
|  | lastIndex = SlotIndex(); | 
|  | regsReserved = MRI->getReservedRegs(); | 
|  |  | 
|  | // A sub-register of a reserved register is also reserved | 
|  | for (int Reg = regsReserved.find_first(); Reg>=0; | 
|  | Reg = regsReserved.find_next(Reg)) { | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { | 
|  | // FIXME: This should probably be: | 
|  | // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register"); | 
|  | regsReserved.set(*SubRegs); | 
|  | } | 
|  | } | 
|  |  | 
|  | markReachable(&MF->front()); | 
|  |  | 
|  | // Build a set of the basic blocks in the function. | 
|  | FunctionBlocks.clear(); | 
|  | for (const auto &MBB : *MF) { | 
|  | FunctionBlocks.insert(&MBB); | 
|  | BBInfo &MInfo = MBBInfoMap[&MBB]; | 
|  |  | 
|  | MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); | 
|  | if (MInfo.Preds.size() != MBB.pred_size()) | 
|  | report("MBB has duplicate entries in its predecessor list.", &MBB); | 
|  |  | 
|  | MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); | 
|  | if (MInfo.Succs.size() != MBB.succ_size()) | 
|  | report("MBB has duplicate entries in its successor list.", &MBB); | 
|  | } | 
|  |  | 
|  | // Check that the register use lists are sane. | 
|  | MRI->verifyUseLists(); | 
|  |  | 
|  | verifyStackFrame(); | 
|  | } | 
|  |  | 
|  | // Does iterator point to a and b as the first two elements? | 
|  | static bool matchPair(MachineBasicBlock::const_succ_iterator i, | 
|  | const MachineBasicBlock *a, const MachineBasicBlock *b) { | 
|  | if (*i == a) | 
|  | return *++i == b; | 
|  | if (*i == b) | 
|  | return *++i == a; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void | 
|  | MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { | 
|  | FirstTerminator = nullptr; | 
|  |  | 
|  | if (MRI->isSSA()) { | 
|  | // If this block has allocatable physical registers live-in, check that | 
|  | // it is an entry block or landing pad. | 
|  | for (const auto &LI : MBB->liveins()) { | 
|  | if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && | 
|  | MBB->getIterator() != MBB->getParent()->begin()) { | 
|  | report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Count the number of landing pad successors. | 
|  | SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; | 
|  | for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), | 
|  | E = MBB->succ_end(); I != E; ++I) { | 
|  | if ((*I)->isEHPad()) | 
|  | LandingPadSuccs.insert(*I); | 
|  | if (!FunctionBlocks.count(*I)) | 
|  | report("MBB has successor that isn't part of the function.", MBB); | 
|  | if (!MBBInfoMap[*I].Preds.count(MBB)) { | 
|  | report("Inconsistent CFG", MBB); | 
|  | errs() << "MBB is not in the predecessor list of the successor BB#" | 
|  | << (*I)->getNumber() << ".\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check the predecessor list. | 
|  | for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), | 
|  | E = MBB->pred_end(); I != E; ++I) { | 
|  | if (!FunctionBlocks.count(*I)) | 
|  | report("MBB has predecessor that isn't part of the function.", MBB); | 
|  | if (!MBBInfoMap[*I].Succs.count(MBB)) { | 
|  | report("Inconsistent CFG", MBB); | 
|  | errs() << "MBB is not in the successor list of the predecessor BB#" | 
|  | << (*I)->getNumber() << ".\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); | 
|  | const BasicBlock *BB = MBB->getBasicBlock(); | 
|  | const Function *Fn = MF->getFunction(); | 
|  | if (LandingPadSuccs.size() > 1 && | 
|  | !(AsmInfo && | 
|  | AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && | 
|  | BB && isa<SwitchInst>(BB->getTerminator())) && | 
|  | !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn()))) | 
|  | report("MBB has more than one landing pad successor", MBB); | 
|  |  | 
|  | // Call AnalyzeBranch. If it succeeds, there several more conditions to check. | 
|  | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), | 
|  | TBB, FBB, Cond)) { | 
|  | // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's | 
|  | // check whether its answers match up with reality. | 
|  | if (!TBB && !FBB) { | 
|  | // Block falls through to its successor. | 
|  | MachineFunction::const_iterator MBBI = MBB->getIterator(); | 
|  | ++MBBI; | 
|  | if (MBBI == MF->end()) { | 
|  | // It's possible that the block legitimately ends with a noreturn | 
|  | // call or an unreachable, in which case it won't actually fall | 
|  | // out the bottom of the function. | 
|  | } else if (MBB->succ_size() == LandingPadSuccs.size()) { | 
|  | // It's possible that the block legitimately ends with a noreturn | 
|  | // call or an unreachable, in which case it won't actuall fall | 
|  | // out of the block. | 
|  | } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { | 
|  | report("MBB exits via unconditional fall-through but doesn't have " | 
|  | "exactly one CFG successor!", MBB); | 
|  | } else if (!MBB->isSuccessor(&*MBBI)) { | 
|  | report("MBB exits via unconditional fall-through but its successor " | 
|  | "differs from its CFG successor!", MBB); | 
|  | } | 
|  | if (!MBB->empty() && MBB->back().isBarrier() && | 
|  | !TII->isPredicated(MBB->back())) { | 
|  | report("MBB exits via unconditional fall-through but ends with a " | 
|  | "barrier instruction!", MBB); | 
|  | } | 
|  | if (!Cond.empty()) { | 
|  | report("MBB exits via unconditional fall-through but has a condition!", | 
|  | MBB); | 
|  | } | 
|  | } else if (TBB && !FBB && Cond.empty()) { | 
|  | // Block unconditionally branches somewhere. | 
|  | // If the block has exactly one successor, that happens to be a | 
|  | // landingpad, accept it as valid control flow. | 
|  | if (MBB->succ_size() != 1+LandingPadSuccs.size() && | 
|  | (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || | 
|  | *MBB->succ_begin() != *LandingPadSuccs.begin())) { | 
|  | report("MBB exits via unconditional branch but doesn't have " | 
|  | "exactly one CFG successor!", MBB); | 
|  | } else if (!MBB->isSuccessor(TBB)) { | 
|  | report("MBB exits via unconditional branch but the CFG " | 
|  | "successor doesn't match the actual successor!", MBB); | 
|  | } | 
|  | if (MBB->empty()) { | 
|  | report("MBB exits via unconditional branch but doesn't contain " | 
|  | "any instructions!", MBB); | 
|  | } else if (!MBB->back().isBarrier()) { | 
|  | report("MBB exits via unconditional branch but doesn't end with a " | 
|  | "barrier instruction!", MBB); | 
|  | } else if (!MBB->back().isTerminator()) { | 
|  | report("MBB exits via unconditional branch but the branch isn't a " | 
|  | "terminator instruction!", MBB); | 
|  | } | 
|  | } else if (TBB && !FBB && !Cond.empty()) { | 
|  | // Block conditionally branches somewhere, otherwise falls through. | 
|  | MachineFunction::const_iterator MBBI = MBB->getIterator(); | 
|  | ++MBBI; | 
|  | if (MBBI == MF->end()) { | 
|  | report("MBB conditionally falls through out of function!", MBB); | 
|  | } else if (MBB->succ_size() == 1) { | 
|  | // A conditional branch with only one successor is weird, but allowed. | 
|  | if (&*MBBI != TBB) | 
|  | report("MBB exits via conditional branch/fall-through but only has " | 
|  | "one CFG successor!", MBB); | 
|  | else if (TBB != *MBB->succ_begin()) | 
|  | report("MBB exits via conditional branch/fall-through but the CFG " | 
|  | "successor don't match the actual successor!", MBB); | 
|  | } else if (MBB->succ_size() != 2) { | 
|  | report("MBB exits via conditional branch/fall-through but doesn't have " | 
|  | "exactly two CFG successors!", MBB); | 
|  | } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { | 
|  | report("MBB exits via conditional branch/fall-through but the CFG " | 
|  | "successors don't match the actual successors!", MBB); | 
|  | } | 
|  | if (MBB->empty()) { | 
|  | report("MBB exits via conditional branch/fall-through but doesn't " | 
|  | "contain any instructions!", MBB); | 
|  | } else if (MBB->back().isBarrier()) { | 
|  | report("MBB exits via conditional branch/fall-through but ends with a " | 
|  | "barrier instruction!", MBB); | 
|  | } else if (!MBB->back().isTerminator()) { | 
|  | report("MBB exits via conditional branch/fall-through but the branch " | 
|  | "isn't a terminator instruction!", MBB); | 
|  | } | 
|  | } else if (TBB && FBB) { | 
|  | // Block conditionally branches somewhere, otherwise branches | 
|  | // somewhere else. | 
|  | if (MBB->succ_size() == 1) { | 
|  | // A conditional branch with only one successor is weird, but allowed. | 
|  | if (FBB != TBB) | 
|  | report("MBB exits via conditional branch/branch through but only has " | 
|  | "one CFG successor!", MBB); | 
|  | else if (TBB != *MBB->succ_begin()) | 
|  | report("MBB exits via conditional branch/branch through but the CFG " | 
|  | "successor don't match the actual successor!", MBB); | 
|  | } else if (MBB->succ_size() != 2) { | 
|  | report("MBB exits via conditional branch/branch but doesn't have " | 
|  | "exactly two CFG successors!", MBB); | 
|  | } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { | 
|  | report("MBB exits via conditional branch/branch but the CFG " | 
|  | "successors don't match the actual successors!", MBB); | 
|  | } | 
|  | if (MBB->empty()) { | 
|  | report("MBB exits via conditional branch/branch but doesn't " | 
|  | "contain any instructions!", MBB); | 
|  | } else if (!MBB->back().isBarrier()) { | 
|  | report("MBB exits via conditional branch/branch but doesn't end with a " | 
|  | "barrier instruction!", MBB); | 
|  | } else if (!MBB->back().isTerminator()) { | 
|  | report("MBB exits via conditional branch/branch but the branch " | 
|  | "isn't a terminator instruction!", MBB); | 
|  | } | 
|  | if (Cond.empty()) { | 
|  | report("MBB exits via conditinal branch/branch but there's no " | 
|  | "condition!", MBB); | 
|  | } | 
|  | } else { | 
|  | report("AnalyzeBranch returned invalid data!", MBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | regsLive.clear(); | 
|  | for (const auto &LI : MBB->liveins()) { | 
|  | if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { | 
|  | report("MBB live-in list contains non-physical register", MBB); | 
|  | continue; | 
|  | } | 
|  | for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); | 
|  | SubRegs.isValid(); ++SubRegs) | 
|  | regsLive.insert(*SubRegs); | 
|  | } | 
|  | regsLiveInButUnused = regsLive; | 
|  |  | 
|  | const MachineFrameInfo *MFI = MF->getFrameInfo(); | 
|  | assert(MFI && "Function has no frame info"); | 
|  | BitVector PR = MFI->getPristineRegs(*MF); | 
|  | for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { | 
|  | for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); | 
|  | SubRegs.isValid(); ++SubRegs) | 
|  | regsLive.insert(*SubRegs); | 
|  | } | 
|  |  | 
|  | regsKilled.clear(); | 
|  | regsDefined.clear(); | 
|  |  | 
|  | if (Indexes) | 
|  | lastIndex = Indexes->getMBBStartIdx(MBB); | 
|  | } | 
|  |  | 
|  | // This function gets called for all bundle headers, including normal | 
|  | // stand-alone unbundled instructions. | 
|  | void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { | 
|  | if (Indexes && Indexes->hasIndex(*MI)) { | 
|  | SlotIndex idx = Indexes->getInstructionIndex(*MI); | 
|  | if (!(idx > lastIndex)) { | 
|  | report("Instruction index out of order", MI); | 
|  | errs() << "Last instruction was at " << lastIndex << '\n'; | 
|  | } | 
|  | lastIndex = idx; | 
|  | } | 
|  |  | 
|  | // Ensure non-terminators don't follow terminators. | 
|  | // Ignore predicated terminators formed by if conversion. | 
|  | // FIXME: If conversion shouldn't need to violate this rule. | 
|  | if (MI->isTerminator() && !TII->isPredicated(*MI)) { | 
|  | if (!FirstTerminator) | 
|  | FirstTerminator = MI; | 
|  | } else if (FirstTerminator) { | 
|  | report("Non-terminator instruction after the first terminator", MI); | 
|  | errs() << "First terminator was:\t" << *FirstTerminator; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The operands on an INLINEASM instruction must follow a template. | 
|  | // Verify that the flag operands make sense. | 
|  | void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { | 
|  | // The first two operands on INLINEASM are the asm string and global flags. | 
|  | if (MI->getNumOperands() < 2) { | 
|  | report("Too few operands on inline asm", MI); | 
|  | return; | 
|  | } | 
|  | if (!MI->getOperand(0).isSymbol()) | 
|  | report("Asm string must be an external symbol", MI); | 
|  | if (!MI->getOperand(1).isImm()) | 
|  | report("Asm flags must be an immediate", MI); | 
|  | // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, | 
|  | // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16. | 
|  | if (!isUInt<5>(MI->getOperand(1).getImm())) | 
|  | report("Unknown asm flags", &MI->getOperand(1), 1); | 
|  |  | 
|  | static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); | 
|  |  | 
|  | unsigned OpNo = InlineAsm::MIOp_FirstOperand; | 
|  | unsigned NumOps; | 
|  | for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { | 
|  | const MachineOperand &MO = MI->getOperand(OpNo); | 
|  | // There may be implicit ops after the fixed operands. | 
|  | if (!MO.isImm()) | 
|  | break; | 
|  | NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); | 
|  | } | 
|  |  | 
|  | if (OpNo > MI->getNumOperands()) | 
|  | report("Missing operands in last group", MI); | 
|  |  | 
|  | // An optional MDNode follows the groups. | 
|  | if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) | 
|  | ++OpNo; | 
|  |  | 
|  | // All trailing operands must be implicit registers. | 
|  | for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { | 
|  | const MachineOperand &MO = MI->getOperand(OpNo); | 
|  | if (!MO.isReg() || !MO.isImplicit()) | 
|  | report("Expected implicit register after groups", &MO, OpNo); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | if (MI->getNumOperands() < MCID.getNumOperands()) { | 
|  | report("Too few operands", MI); | 
|  | errs() << MCID.getNumOperands() << " operands expected, but " | 
|  | << MI->getNumOperands() << " given.\n"; | 
|  | } | 
|  |  | 
|  | // Check the tied operands. | 
|  | if (MI->isInlineAsm()) | 
|  | verifyInlineAsm(MI); | 
|  |  | 
|  | // Check the MachineMemOperands for basic consistency. | 
|  | for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), | 
|  | E = MI->memoperands_end(); I != E; ++I) { | 
|  | if ((*I)->isLoad() && !MI->mayLoad()) | 
|  | report("Missing mayLoad flag", MI); | 
|  | if ((*I)->isStore() && !MI->mayStore()) | 
|  | report("Missing mayStore flag", MI); | 
|  | } | 
|  |  | 
|  | // Debug values must not have a slot index. | 
|  | // Other instructions must have one, unless they are inside a bundle. | 
|  | if (LiveInts) { | 
|  | bool mapped = !LiveInts->isNotInMIMap(*MI); | 
|  | if (MI->isDebugValue()) { | 
|  | if (mapped) | 
|  | report("Debug instruction has a slot index", MI); | 
|  | } else if (MI->isInsideBundle()) { | 
|  | if (mapped) | 
|  | report("Instruction inside bundle has a slot index", MI); | 
|  | } else { | 
|  | if (!mapped) | 
|  | report("Missing slot index", MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | StringRef ErrorInfo; | 
|  | if (!TII->verifyInstruction(MI, ErrorInfo)) | 
|  | report(ErrorInfo.data(), MI); | 
|  | } | 
|  |  | 
|  | void | 
|  | MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { | 
|  | const MachineInstr *MI = MO->getParent(); | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | unsigned NumDefs = MCID.getNumDefs(); | 
|  | if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) | 
|  | NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; | 
|  |  | 
|  | // The first MCID.NumDefs operands must be explicit register defines | 
|  | if (MONum < NumDefs) { | 
|  | const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; | 
|  | if (!MO->isReg()) | 
|  | report("Explicit definition must be a register", MO, MONum); | 
|  | else if (!MO->isDef() && !MCOI.isOptionalDef()) | 
|  | report("Explicit definition marked as use", MO, MONum); | 
|  | else if (MO->isImplicit()) | 
|  | report("Explicit definition marked as implicit", MO, MONum); | 
|  | } else if (MONum < MCID.getNumOperands()) { | 
|  | const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; | 
|  | // Don't check if it's the last operand in a variadic instruction. See, | 
|  | // e.g., LDM_RET in the arm back end. | 
|  | if (MO->isReg() && | 
|  | !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { | 
|  | if (MO->isDef() && !MCOI.isOptionalDef()) | 
|  | report("Explicit operand marked as def", MO, MONum); | 
|  | if (MO->isImplicit()) | 
|  | report("Explicit operand marked as implicit", MO, MONum); | 
|  | } | 
|  |  | 
|  | int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); | 
|  | if (TiedTo != -1) { | 
|  | if (!MO->isReg()) | 
|  | report("Tied use must be a register", MO, MONum); | 
|  | else if (!MO->isTied()) | 
|  | report("Operand should be tied", MO, MONum); | 
|  | else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) | 
|  | report("Tied def doesn't match MCInstrDesc", MO, MONum); | 
|  | } else if (MO->isReg() && MO->isTied()) | 
|  | report("Explicit operand should not be tied", MO, MONum); | 
|  | } else { | 
|  | // ARM adds %reg0 operands to indicate predicates. We'll allow that. | 
|  | if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) | 
|  | report("Extra explicit operand on non-variadic instruction", MO, MONum); | 
|  | } | 
|  |  | 
|  | switch (MO->getType()) { | 
|  | case MachineOperand::MO_Register: { | 
|  | const unsigned Reg = MO->getReg(); | 
|  | if (!Reg) | 
|  | return; | 
|  | if (MRI->tracksLiveness() && !MI->isDebugValue()) | 
|  | checkLiveness(MO, MONum); | 
|  |  | 
|  | // Verify the consistency of tied operands. | 
|  | if (MO->isTied()) { | 
|  | unsigned OtherIdx = MI->findTiedOperandIdx(MONum); | 
|  | const MachineOperand &OtherMO = MI->getOperand(OtherIdx); | 
|  | if (!OtherMO.isReg()) | 
|  | report("Must be tied to a register", MO, MONum); | 
|  | if (!OtherMO.isTied()) | 
|  | report("Missing tie flags on tied operand", MO, MONum); | 
|  | if (MI->findTiedOperandIdx(OtherIdx) != MONum) | 
|  | report("Inconsistent tie links", MO, MONum); | 
|  | if (MONum < MCID.getNumDefs()) { | 
|  | if (OtherIdx < MCID.getNumOperands()) { | 
|  | if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) | 
|  | report("Explicit def tied to explicit use without tie constraint", | 
|  | MO, MONum); | 
|  | } else { | 
|  | if (!OtherMO.isImplicit()) | 
|  | report("Explicit def should be tied to implicit use", MO, MONum); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Verify two-address constraints after leaving SSA form. | 
|  | unsigned DefIdx; | 
|  | if (!MRI->isSSA() && MO->isUse() && | 
|  | MI->isRegTiedToDefOperand(MONum, &DefIdx) && | 
|  | Reg != MI->getOperand(DefIdx).getReg()) | 
|  | report("Two-address instruction operands must be identical", MO, MONum); | 
|  |  | 
|  | // Check register classes. | 
|  | if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { | 
|  | unsigned SubIdx = MO->getSubReg(); | 
|  |  | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
|  | if (SubIdx) { | 
|  | report("Illegal subregister index for physical register", MO, MONum); | 
|  | return; | 
|  | } | 
|  | if (const TargetRegisterClass *DRC = | 
|  | TII->getRegClass(MCID, MONum, TRI, *MF)) { | 
|  | if (!DRC->contains(Reg)) { | 
|  | report("Illegal physical register for instruction", MO, MONum); | 
|  | errs() << TRI->getName(Reg) << " is not a " | 
|  | << TRI->getRegClassName(DRC) << " register.\n"; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Virtual register. | 
|  | const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); | 
|  | if (!RC) { | 
|  | // This is a generic virtual register. | 
|  | // It must have a size and it must not have a SubIdx. | 
|  | unsigned Size = MRI->getSize(Reg); | 
|  | if (!Size) { | 
|  | report("Generic virtual register must have a size", MO, MONum); | 
|  | return; | 
|  | } | 
|  | // Make sure the register fits into its register bank if any. | 
|  | const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); | 
|  | if (RegBank && RegBank->getSize() < Size) { | 
|  | report("Register bank is too small for virtual register", MO, | 
|  | MONum); | 
|  | errs() << "Register bank " << RegBank->getName() << " too small(" | 
|  | << RegBank->getSize() << ") to fit " << Size << "-bits\n"; | 
|  | return; | 
|  | } | 
|  | if (SubIdx)  { | 
|  | report("Generic virtual register does not subregister index", MO, MONum); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (SubIdx) { | 
|  | const TargetRegisterClass *SRC = | 
|  | TRI->getSubClassWithSubReg(RC, SubIdx); | 
|  | if (!SRC) { | 
|  | report("Invalid subregister index for virtual register", MO, MONum); | 
|  | errs() << "Register class " << TRI->getRegClassName(RC) | 
|  | << " does not support subreg index " << SubIdx << "\n"; | 
|  | return; | 
|  | } | 
|  | if (RC != SRC) { | 
|  | report("Invalid register class for subregister index", MO, MONum); | 
|  | errs() << "Register class " << TRI->getRegClassName(RC) | 
|  | << " does not fully support subreg index " << SubIdx << "\n"; | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (const TargetRegisterClass *DRC = | 
|  | TII->getRegClass(MCID, MONum, TRI, *MF)) { | 
|  | if (SubIdx) { | 
|  | const TargetRegisterClass *SuperRC = | 
|  | TRI->getLargestLegalSuperClass(RC, *MF); | 
|  | if (!SuperRC) { | 
|  | report("No largest legal super class exists.", MO, MONum); | 
|  | return; | 
|  | } | 
|  | DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); | 
|  | if (!DRC) { | 
|  | report("No matching super-reg register class.", MO, MONum); | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (!RC->hasSuperClassEq(DRC)) { | 
|  | report("Illegal virtual register for instruction", MO, MONum); | 
|  | errs() << "Expected a " << TRI->getRegClassName(DRC) | 
|  | << " register, but got a " << TRI->getRegClassName(RC) | 
|  | << " register\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case MachineOperand::MO_RegisterMask: | 
|  | regMasks.push_back(MO->getRegMask()); | 
|  | break; | 
|  |  | 
|  | case MachineOperand::MO_MachineBasicBlock: | 
|  | if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) | 
|  | report("PHI operand is not in the CFG", MO, MONum); | 
|  | break; | 
|  |  | 
|  | case MachineOperand::MO_FrameIndex: | 
|  | if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && | 
|  | LiveInts && !LiveInts->isNotInMIMap(*MI)) { | 
|  | int FI = MO->getIndex(); | 
|  | LiveInterval &LI = LiveStks->getInterval(FI); | 
|  | SlotIndex Idx = LiveInts->getInstructionIndex(*MI); | 
|  |  | 
|  | bool stores = MI->mayStore(); | 
|  | bool loads = MI->mayLoad(); | 
|  | // For a memory-to-memory move, we need to check if the frame | 
|  | // index is used for storing or loading, by inspecting the | 
|  | // memory operands. | 
|  | if (stores && loads) { | 
|  | for (auto *MMO : MI->memoperands()) { | 
|  | const PseudoSourceValue *PSV = MMO->getPseudoValue(); | 
|  | if (PSV == nullptr) continue; | 
|  | const FixedStackPseudoSourceValue *Value = | 
|  | dyn_cast<FixedStackPseudoSourceValue>(PSV); | 
|  | if (Value == nullptr) continue; | 
|  | if (Value->getFrameIndex() != FI) continue; | 
|  |  | 
|  | if (MMO->isStore()) | 
|  | loads = false; | 
|  | else | 
|  | stores = false; | 
|  | break; | 
|  | } | 
|  | if (loads == stores) | 
|  | report("Missing fixed stack memoperand.", MI); | 
|  | } | 
|  | if (loads && !LI.liveAt(Idx.getRegSlot(true))) { | 
|  | report("Instruction loads from dead spill slot", MO, MONum); | 
|  | errs() << "Live stack: " << LI << '\n'; | 
|  | } | 
|  | if (stores && !LI.liveAt(Idx.getRegSlot())) { | 
|  | report("Instruction stores to dead spill slot", MO, MONum); | 
|  | errs() << "Live stack: " << LI << '\n'; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, | 
|  | unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, | 
|  | LaneBitmask LaneMask) { | 
|  | LiveQueryResult LRQ = LR.Query(UseIdx); | 
|  | // Check if we have a segment at the use, note however that we only need one | 
|  | // live subregister range, the others may be dead. | 
|  | if (!LRQ.valueIn() && LaneMask == 0) { | 
|  | report("No live segment at use", MO, MONum); | 
|  | report_context_liverange(LR); | 
|  | report_context_vreg_regunit(VRegOrUnit); | 
|  | report_context(UseIdx); | 
|  | } | 
|  | if (MO->isKill() && !LRQ.isKill()) { | 
|  | report("Live range continues after kill flag", MO, MONum); | 
|  | report_context_liverange(LR); | 
|  | report_context_vreg_regunit(VRegOrUnit); | 
|  | if (LaneMask != 0) | 
|  | report_context_lanemask(LaneMask); | 
|  | report_context(UseIdx); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, | 
|  | unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, | 
|  | LaneBitmask LaneMask) { | 
|  | if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { | 
|  | assert(VNI && "NULL valno is not allowed"); | 
|  | if (VNI->def != DefIdx) { | 
|  | report("Inconsistent valno->def", MO, MONum); | 
|  | report_context_liverange(LR); | 
|  | report_context_vreg_regunit(VRegOrUnit); | 
|  | if (LaneMask != 0) | 
|  | report_context_lanemask(LaneMask); | 
|  | report_context(*VNI); | 
|  | report_context(DefIdx); | 
|  | } | 
|  | } else { | 
|  | report("No live segment at def", MO, MONum); | 
|  | report_context_liverange(LR); | 
|  | report_context_vreg_regunit(VRegOrUnit); | 
|  | if (LaneMask != 0) | 
|  | report_context_lanemask(LaneMask); | 
|  | report_context(DefIdx); | 
|  | } | 
|  | // Check that, if the dead def flag is present, LiveInts agree. | 
|  | if (MO->isDead()) { | 
|  | LiveQueryResult LRQ = LR.Query(DefIdx); | 
|  | if (!LRQ.isDeadDef()) { | 
|  | // In case of physregs we can have a non-dead definition on another | 
|  | // operand. | 
|  | bool otherDef = false; | 
|  | if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { | 
|  | const MachineInstr &MI = *MO->getParent(); | 
|  | for (const MachineOperand &MO : MI.operands()) { | 
|  | if (!MO.isReg() || !MO.isDef() || MO.isDead()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { | 
|  | if (*Units == VRegOrUnit) { | 
|  | otherDef = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!otherDef) { | 
|  | report("Live range continues after dead def flag", MO, MONum); | 
|  | report_context_liverange(LR); | 
|  | report_context_vreg_regunit(VRegOrUnit); | 
|  | if (LaneMask != 0) | 
|  | report_context_lanemask(LaneMask); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { | 
|  | const MachineInstr *MI = MO->getParent(); | 
|  | const unsigned Reg = MO->getReg(); | 
|  |  | 
|  | // Both use and def operands can read a register. | 
|  | if (MO->readsReg()) { | 
|  | regsLiveInButUnused.erase(Reg); | 
|  |  | 
|  | if (MO->isKill()) | 
|  | addRegWithSubRegs(regsKilled, Reg); | 
|  |  | 
|  | // Check that LiveVars knows this kill. | 
|  | if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && | 
|  | MO->isKill()) { | 
|  | LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); | 
|  | if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end()) | 
|  | report("Kill missing from LiveVariables", MO, MONum); | 
|  | } | 
|  |  | 
|  | // Check LiveInts liveness and kill. | 
|  | if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { | 
|  | SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); | 
|  | // Check the cached regunit intervals. | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { | 
|  | for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { | 
|  | if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) | 
|  | checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | if (LiveInts->hasInterval(Reg)) { | 
|  | // This is a virtual register interval. | 
|  | const LiveInterval &LI = LiveInts->getInterval(Reg); | 
|  | checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); | 
|  |  | 
|  | if (LI.hasSubRanges() && !MO->isDef()) { | 
|  | unsigned SubRegIdx = MO->getSubReg(); | 
|  | LaneBitmask MOMask = SubRegIdx != 0 | 
|  | ? TRI->getSubRegIndexLaneMask(SubRegIdx) | 
|  | : MRI->getMaxLaneMaskForVReg(Reg); | 
|  | LaneBitmask LiveInMask = 0; | 
|  | for (const LiveInterval::SubRange &SR : LI.subranges()) { | 
|  | if ((MOMask & SR.LaneMask) == 0) | 
|  | continue; | 
|  | checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); | 
|  | LiveQueryResult LRQ = SR.Query(UseIdx); | 
|  | if (LRQ.valueIn()) | 
|  | LiveInMask |= SR.LaneMask; | 
|  | } | 
|  | // At least parts of the register has to be live at the use. | 
|  | if ((LiveInMask & MOMask) == 0) { | 
|  | report("No live subrange at use", MO, MONum); | 
|  | report_context(LI); | 
|  | report_context(UseIdx); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | report("Virtual register has no live interval", MO, MONum); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use of a dead register. | 
|  | if (!regsLive.count(Reg)) { | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
|  | // Reserved registers may be used even when 'dead'. | 
|  | bool Bad = !isReserved(Reg); | 
|  | // We are fine if just any subregister has a defined value. | 
|  | if (Bad) { | 
|  | for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); | 
|  | ++SubRegs) { | 
|  | if (regsLive.count(*SubRegs)) { | 
|  | Bad = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | // If there is an additional implicit-use of a super register we stop | 
|  | // here. By definition we are fine if the super register is not | 
|  | // (completely) dead, if the complete super register is dead we will | 
|  | // get a report for its operand. | 
|  | if (Bad) { | 
|  | for (const MachineOperand &MOP : MI->uses()) { | 
|  | if (!MOP.isReg()) | 
|  | continue; | 
|  | if (!MOP.isImplicit()) | 
|  | continue; | 
|  | for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); | 
|  | ++SubRegs) { | 
|  | if (*SubRegs == Reg) { | 
|  | Bad = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Bad) | 
|  | report("Using an undefined physical register", MO, MONum); | 
|  | } else if (MRI->def_empty(Reg)) { | 
|  | report("Reading virtual register without a def", MO, MONum); | 
|  | } else { | 
|  | BBInfo &MInfo = MBBInfoMap[MI->getParent()]; | 
|  | // We don't know which virtual registers are live in, so only complain | 
|  | // if vreg was killed in this MBB. Otherwise keep track of vregs that | 
|  | // must be live in. PHI instructions are handled separately. | 
|  | if (MInfo.regsKilled.count(Reg)) | 
|  | report("Using a killed virtual register", MO, MONum); | 
|  | else if (!MI->isPHI()) | 
|  | MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MO->isDef()) { | 
|  | // Register defined. | 
|  | // TODO: verify that earlyclobber ops are not used. | 
|  | if (MO->isDead()) | 
|  | addRegWithSubRegs(regsDead, Reg); | 
|  | else | 
|  | addRegWithSubRegs(regsDefined, Reg); | 
|  |  | 
|  | // Verify SSA form. | 
|  | if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && | 
|  | std::next(MRI->def_begin(Reg)) != MRI->def_end()) | 
|  | report("Multiple virtual register defs in SSA form", MO, MONum); | 
|  |  | 
|  | // Check LiveInts for a live segment, but only for virtual registers. | 
|  | if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { | 
|  | SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); | 
|  | DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); | 
|  |  | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | if (LiveInts->hasInterval(Reg)) { | 
|  | const LiveInterval &LI = LiveInts->getInterval(Reg); | 
|  | checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); | 
|  |  | 
|  | if (LI.hasSubRanges()) { | 
|  | unsigned SubRegIdx = MO->getSubReg(); | 
|  | LaneBitmask MOMask = SubRegIdx != 0 | 
|  | ? TRI->getSubRegIndexLaneMask(SubRegIdx) | 
|  | : MRI->getMaxLaneMaskForVReg(Reg); | 
|  | for (const LiveInterval::SubRange &SR : LI.subranges()) { | 
|  | if ((SR.LaneMask & MOMask) == 0) | 
|  | continue; | 
|  | checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | report("Virtual register has no Live interval", MO, MONum); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { | 
|  | } | 
|  |  | 
|  | // This function gets called after visiting all instructions in a bundle. The | 
|  | // argument points to the bundle header. | 
|  | // Normal stand-alone instructions are also considered 'bundles', and this | 
|  | // function is called for all of them. | 
|  | void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { | 
|  | BBInfo &MInfo = MBBInfoMap[MI->getParent()]; | 
|  | set_union(MInfo.regsKilled, regsKilled); | 
|  | set_subtract(regsLive, regsKilled); regsKilled.clear(); | 
|  | // Kill any masked registers. | 
|  | while (!regMasks.empty()) { | 
|  | const uint32_t *Mask = regMasks.pop_back_val(); | 
|  | for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) | 
|  | if (TargetRegisterInfo::isPhysicalRegister(*I) && | 
|  | MachineOperand::clobbersPhysReg(Mask, *I)) | 
|  | regsDead.push_back(*I); | 
|  | } | 
|  | set_subtract(regsLive, regsDead);   regsDead.clear(); | 
|  | set_union(regsLive, regsDefined);   regsDefined.clear(); | 
|  | } | 
|  |  | 
|  | void | 
|  | MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { | 
|  | MBBInfoMap[MBB].regsLiveOut = regsLive; | 
|  | regsLive.clear(); | 
|  |  | 
|  | if (Indexes) { | 
|  | SlotIndex stop = Indexes->getMBBEndIdx(MBB); | 
|  | if (!(stop > lastIndex)) { | 
|  | report("Block ends before last instruction index", MBB); | 
|  | errs() << "Block ends at " << stop | 
|  | << " last instruction was at " << lastIndex << '\n'; | 
|  | } | 
|  | lastIndex = stop; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate the largest possible vregsPassed sets. These are the registers that | 
|  | // can pass through an MBB live, but may not be live every time. It is assumed | 
|  | // that all vregsPassed sets are empty before the call. | 
|  | void MachineVerifier::calcRegsPassed() { | 
|  | // First push live-out regs to successors' vregsPassed. Remember the MBBs that | 
|  | // have any vregsPassed. | 
|  | SmallPtrSet<const MachineBasicBlock*, 8> todo; | 
|  | for (const auto &MBB : *MF) { | 
|  | BBInfo &MInfo = MBBInfoMap[&MBB]; | 
|  | if (!MInfo.reachable) | 
|  | continue; | 
|  | for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), | 
|  | SuE = MBB.succ_end(); SuI != SuE; ++SuI) { | 
|  | BBInfo &SInfo = MBBInfoMap[*SuI]; | 
|  | if (SInfo.addPassed(MInfo.regsLiveOut)) | 
|  | todo.insert(*SuI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Iteratively push vregsPassed to successors. This will converge to the same | 
|  | // final state regardless of DenseSet iteration order. | 
|  | while (!todo.empty()) { | 
|  | const MachineBasicBlock *MBB = *todo.begin(); | 
|  | todo.erase(MBB); | 
|  | BBInfo &MInfo = MBBInfoMap[MBB]; | 
|  | for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), | 
|  | SuE = MBB->succ_end(); SuI != SuE; ++SuI) { | 
|  | if (*SuI == MBB) | 
|  | continue; | 
|  | BBInfo &SInfo = MBBInfoMap[*SuI]; | 
|  | if (SInfo.addPassed(MInfo.vregsPassed)) | 
|  | todo.insert(*SuI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate the set of virtual registers that must be passed through each basic | 
|  | // block in order to satisfy the requirements of successor blocks. This is very | 
|  | // similar to calcRegsPassed, only backwards. | 
|  | void MachineVerifier::calcRegsRequired() { | 
|  | // First push live-in regs to predecessors' vregsRequired. | 
|  | SmallPtrSet<const MachineBasicBlock*, 8> todo; | 
|  | for (const auto &MBB : *MF) { | 
|  | BBInfo &MInfo = MBBInfoMap[&MBB]; | 
|  | for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), | 
|  | PrE = MBB.pred_end(); PrI != PrE; ++PrI) { | 
|  | BBInfo &PInfo = MBBInfoMap[*PrI]; | 
|  | if (PInfo.addRequired(MInfo.vregsLiveIn)) | 
|  | todo.insert(*PrI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Iteratively push vregsRequired to predecessors. This will converge to the | 
|  | // same final state regardless of DenseSet iteration order. | 
|  | while (!todo.empty()) { | 
|  | const MachineBasicBlock *MBB = *todo.begin(); | 
|  | todo.erase(MBB); | 
|  | BBInfo &MInfo = MBBInfoMap[MBB]; | 
|  | for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), | 
|  | PrE = MBB->pred_end(); PrI != PrE; ++PrI) { | 
|  | if (*PrI == MBB) | 
|  | continue; | 
|  | BBInfo &SInfo = MBBInfoMap[*PrI]; | 
|  | if (SInfo.addRequired(MInfo.vregsRequired)) | 
|  | todo.insert(*PrI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check PHI instructions at the beginning of MBB. It is assumed that | 
|  | // calcRegsPassed has been run so BBInfo::isLiveOut is valid. | 
|  | void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { | 
|  | SmallPtrSet<const MachineBasicBlock*, 8> seen; | 
|  | for (const auto &BBI : *MBB) { | 
|  | if (!BBI.isPHI()) | 
|  | break; | 
|  | seen.clear(); | 
|  |  | 
|  | for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { | 
|  | unsigned Reg = BBI.getOperand(i).getReg(); | 
|  | const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); | 
|  | if (!Pre->isSuccessor(MBB)) | 
|  | continue; | 
|  | seen.insert(Pre); | 
|  | BBInfo &PrInfo = MBBInfoMap[Pre]; | 
|  | if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) | 
|  | report("PHI operand is not live-out from predecessor", | 
|  | &BBI.getOperand(i), i); | 
|  | } | 
|  |  | 
|  | // Did we see all predecessors? | 
|  | for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), | 
|  | PrE = MBB->pred_end(); PrI != PrE; ++PrI) { | 
|  | if (!seen.count(*PrI)) { | 
|  | report("Missing PHI operand", &BBI); | 
|  | errs() << "BB#" << (*PrI)->getNumber() | 
|  | << " is a predecessor according to the CFG.\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineVerifier::visitMachineFunctionAfter() { | 
|  | calcRegsPassed(); | 
|  |  | 
|  | for (const auto &MBB : *MF) { | 
|  | BBInfo &MInfo = MBBInfoMap[&MBB]; | 
|  |  | 
|  | // Skip unreachable MBBs. | 
|  | if (!MInfo.reachable) | 
|  | continue; | 
|  |  | 
|  | checkPHIOps(&MBB); | 
|  | } | 
|  |  | 
|  | // Now check liveness info if available | 
|  | calcRegsRequired(); | 
|  |  | 
|  | // Check for killed virtual registers that should be live out. | 
|  | for (const auto &MBB : *MF) { | 
|  | BBInfo &MInfo = MBBInfoMap[&MBB]; | 
|  | for (RegSet::iterator | 
|  | I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; | 
|  | ++I) | 
|  | if (MInfo.regsKilled.count(*I)) { | 
|  | report("Virtual register killed in block, but needed live out.", &MBB); | 
|  | errs() << "Virtual register " << PrintReg(*I) | 
|  | << " is used after the block.\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MF->empty()) { | 
|  | BBInfo &MInfo = MBBInfoMap[&MF->front()]; | 
|  | for (RegSet::iterator | 
|  | I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; | 
|  | ++I) { | 
|  | report("Virtual register defs don't dominate all uses.", MF); | 
|  | report_context_vreg(*I); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LiveVars) | 
|  | verifyLiveVariables(); | 
|  | if (LiveInts) | 
|  | verifyLiveIntervals(); | 
|  | } | 
|  |  | 
|  | void MachineVerifier::verifyLiveVariables() { | 
|  | assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); | 
|  | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { | 
|  | unsigned Reg = TargetRegisterInfo::index2VirtReg(i); | 
|  | LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); | 
|  | for (const auto &MBB : *MF) { | 
|  | BBInfo &MInfo = MBBInfoMap[&MBB]; | 
|  |  | 
|  | // Our vregsRequired should be identical to LiveVariables' AliveBlocks | 
|  | if (MInfo.vregsRequired.count(Reg)) { | 
|  | if (!VI.AliveBlocks.test(MBB.getNumber())) { | 
|  | report("LiveVariables: Block missing from AliveBlocks", &MBB); | 
|  | errs() << "Virtual register " << PrintReg(Reg) | 
|  | << " must be live through the block.\n"; | 
|  | } | 
|  | } else { | 
|  | if (VI.AliveBlocks.test(MBB.getNumber())) { | 
|  | report("LiveVariables: Block should not be in AliveBlocks", &MBB); | 
|  | errs() << "Virtual register " << PrintReg(Reg) | 
|  | << " is not needed live through the block.\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineVerifier::verifyLiveIntervals() { | 
|  | assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); | 
|  | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { | 
|  | unsigned Reg = TargetRegisterInfo::index2VirtReg(i); | 
|  |  | 
|  | // Spilling and splitting may leave unused registers around. Skip them. | 
|  | if (MRI->reg_nodbg_empty(Reg)) | 
|  | continue; | 
|  |  | 
|  | if (!LiveInts->hasInterval(Reg)) { | 
|  | report("Missing live interval for virtual register", MF); | 
|  | errs() << PrintReg(Reg, TRI) << " still has defs or uses\n"; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const LiveInterval &LI = LiveInts->getInterval(Reg); | 
|  | assert(Reg == LI.reg && "Invalid reg to interval mapping"); | 
|  | verifyLiveInterval(LI); | 
|  | } | 
|  |  | 
|  | // Verify all the cached regunit intervals. | 
|  | for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) | 
|  | if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) | 
|  | verifyLiveRange(*LR, i); | 
|  | } | 
|  |  | 
|  | void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, | 
|  | const VNInfo *VNI, unsigned Reg, | 
|  | LaneBitmask LaneMask) { | 
|  | if (VNI->isUnused()) | 
|  | return; | 
|  |  | 
|  | const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); | 
|  |  | 
|  | if (!DefVNI) { | 
|  | report("Value not live at VNInfo def and not marked unused", MF); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(*VNI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (DefVNI != VNI) { | 
|  | report("Live segment at def has different VNInfo", MF); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(*VNI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); | 
|  | if (!MBB) { | 
|  | report("Invalid VNInfo definition index", MF); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(*VNI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (VNI->isPHIDef()) { | 
|  | if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { | 
|  | report("PHIDef VNInfo is not defined at MBB start", MBB); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(*VNI); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Non-PHI def. | 
|  | const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); | 
|  | if (!MI) { | 
|  | report("No instruction at VNInfo def index", MBB); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(*VNI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Reg != 0) { | 
|  | bool hasDef = false; | 
|  | bool isEarlyClobber = false; | 
|  | for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { | 
|  | if (!MOI->isReg() || !MOI->isDef()) | 
|  | continue; | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | if (MOI->getReg() != Reg) | 
|  | continue; | 
|  | } else { | 
|  | if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || | 
|  | !TRI->hasRegUnit(MOI->getReg(), Reg)) | 
|  | continue; | 
|  | } | 
|  | if (LaneMask != 0 && | 
|  | (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0) | 
|  | continue; | 
|  | hasDef = true; | 
|  | if (MOI->isEarlyClobber()) | 
|  | isEarlyClobber = true; | 
|  | } | 
|  |  | 
|  | if (!hasDef) { | 
|  | report("Defining instruction does not modify register", MI); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(*VNI); | 
|  | } | 
|  |  | 
|  | // Early clobber defs begin at USE slots, but other defs must begin at | 
|  | // DEF slots. | 
|  | if (isEarlyClobber) { | 
|  | if (!VNI->def.isEarlyClobber()) { | 
|  | report("Early clobber def must be at an early-clobber slot", MBB); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(*VNI); | 
|  | } | 
|  | } else if (!VNI->def.isRegister()) { | 
|  | report("Non-PHI, non-early clobber def must be at a register slot", MBB); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(*VNI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, | 
|  | const LiveRange::const_iterator I, | 
|  | unsigned Reg, LaneBitmask LaneMask) | 
|  | { | 
|  | const LiveRange::Segment &S = *I; | 
|  | const VNInfo *VNI = S.valno; | 
|  | assert(VNI && "Live segment has no valno"); | 
|  |  | 
|  | if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { | 
|  | report("Foreign valno in live segment", MF); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(S); | 
|  | report_context(*VNI); | 
|  | } | 
|  |  | 
|  | if (VNI->isUnused()) { | 
|  | report("Live segment valno is marked unused", MF); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(S); | 
|  | } | 
|  |  | 
|  | const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); | 
|  | if (!MBB) { | 
|  | report("Bad start of live segment, no basic block", MF); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(S); | 
|  | return; | 
|  | } | 
|  | SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); | 
|  | if (S.start != MBBStartIdx && S.start != VNI->def) { | 
|  | report("Live segment must begin at MBB entry or valno def", MBB); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(S); | 
|  | } | 
|  |  | 
|  | const MachineBasicBlock *EndMBB = | 
|  | LiveInts->getMBBFromIndex(S.end.getPrevSlot()); | 
|  | if (!EndMBB) { | 
|  | report("Bad end of live segment, no basic block", MF); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(S); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // No more checks for live-out segments. | 
|  | if (S.end == LiveInts->getMBBEndIdx(EndMBB)) | 
|  | return; | 
|  |  | 
|  | // RegUnit intervals are allowed dead phis. | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && | 
|  | S.start == VNI->def && S.end == VNI->def.getDeadSlot()) | 
|  | return; | 
|  |  | 
|  | // The live segment is ending inside EndMBB | 
|  | const MachineInstr *MI = | 
|  | LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); | 
|  | if (!MI) { | 
|  | report("Live segment doesn't end at a valid instruction", EndMBB); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(S); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The block slot must refer to a basic block boundary. | 
|  | if (S.end.isBlock()) { | 
|  | report("Live segment ends at B slot of an instruction", EndMBB); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(S); | 
|  | } | 
|  |  | 
|  | if (S.end.isDead()) { | 
|  | // Segment ends on the dead slot. | 
|  | // That means there must be a dead def. | 
|  | if (!SlotIndex::isSameInstr(S.start, S.end)) { | 
|  | report("Live segment ending at dead slot spans instructions", EndMBB); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(S); | 
|  | } | 
|  | } | 
|  |  | 
|  | // A live segment can only end at an early-clobber slot if it is being | 
|  | // redefined by an early-clobber def. | 
|  | if (S.end.isEarlyClobber()) { | 
|  | if (I+1 == LR.end() || (I+1)->start != S.end) { | 
|  | report("Live segment ending at early clobber slot must be " | 
|  | "redefined by an EC def in the same instruction", EndMBB); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(S); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The following checks only apply to virtual registers. Physreg liveness | 
|  | // is too weird to check. | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | // A live segment can end with either a redefinition, a kill flag on a | 
|  | // use, or a dead flag on a def. | 
|  | bool hasRead = false; | 
|  | bool hasSubRegDef = false; | 
|  | bool hasDeadDef = false; | 
|  | for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { | 
|  | if (!MOI->isReg() || MOI->getReg() != Reg) | 
|  | continue; | 
|  | if (LaneMask != 0 && | 
|  | (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0) | 
|  | continue; | 
|  | if (MOI->isDef()) { | 
|  | if (MOI->getSubReg() != 0) | 
|  | hasSubRegDef = true; | 
|  | if (MOI->isDead()) | 
|  | hasDeadDef = true; | 
|  | } | 
|  | if (MOI->readsReg()) | 
|  | hasRead = true; | 
|  | } | 
|  | if (S.end.isDead()) { | 
|  | // Make sure that the corresponding machine operand for a "dead" live | 
|  | // range has the dead flag. We cannot perform this check for subregister | 
|  | // liveranges as partially dead values are allowed. | 
|  | if (LaneMask == 0 && !hasDeadDef) { | 
|  | report("Instruction ending live segment on dead slot has no dead flag", | 
|  | MI); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(S); | 
|  | } | 
|  | } else { | 
|  | if (!hasRead) { | 
|  | // When tracking subregister liveness, the main range must start new | 
|  | // values on partial register writes, even if there is no read. | 
|  | if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 || | 
|  | !hasSubRegDef) { | 
|  | report("Instruction ending live segment doesn't read the register", | 
|  | MI); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(S); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now check all the basic blocks in this live segment. | 
|  | MachineFunction::const_iterator MFI = MBB->getIterator(); | 
|  | // Is this live segment the beginning of a non-PHIDef VN? | 
|  | if (S.start == VNI->def && !VNI->isPHIDef()) { | 
|  | // Not live-in to any blocks. | 
|  | if (MBB == EndMBB) | 
|  | return; | 
|  | // Skip this block. | 
|  | ++MFI; | 
|  | } | 
|  | for (;;) { | 
|  | assert(LiveInts->isLiveInToMBB(LR, &*MFI)); | 
|  | // We don't know how to track physregs into a landing pad. | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Reg) && | 
|  | MFI->isEHPad()) { | 
|  | if (&*MFI == EndMBB) | 
|  | break; | 
|  | ++MFI; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Is VNI a PHI-def in the current block? | 
|  | bool IsPHI = VNI->isPHIDef() && | 
|  | VNI->def == LiveInts->getMBBStartIdx(&*MFI); | 
|  |  | 
|  | // Check that VNI is live-out of all predecessors. | 
|  | for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), | 
|  | PE = MFI->pred_end(); PI != PE; ++PI) { | 
|  | SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); | 
|  | const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); | 
|  |  | 
|  | // All predecessors must have a live-out value. | 
|  | if (!PVNI) { | 
|  | report("Register not marked live out of predecessor", *PI); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | report_context(*VNI); | 
|  | errs() << " live into BB#" << MFI->getNumber() | 
|  | << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " | 
|  | << PEnd << '\n'; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Only PHI-defs can take different predecessor values. | 
|  | if (!IsPHI && PVNI != VNI) { | 
|  | report("Different value live out of predecessor", *PI); | 
|  | report_context(LR, Reg, LaneMask); | 
|  | errs() << "Valno #" << PVNI->id << " live out of BB#" | 
|  | << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id | 
|  | << " live into BB#" << MFI->getNumber() << '@' | 
|  | << LiveInts->getMBBStartIdx(&*MFI) << '\n'; | 
|  | } | 
|  | } | 
|  | if (&*MFI == EndMBB) | 
|  | break; | 
|  | ++MFI; | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, | 
|  | LaneBitmask LaneMask) { | 
|  | for (const VNInfo *VNI : LR.valnos) | 
|  | verifyLiveRangeValue(LR, VNI, Reg, LaneMask); | 
|  |  | 
|  | for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) | 
|  | verifyLiveRangeSegment(LR, I, Reg, LaneMask); | 
|  | } | 
|  |  | 
|  | void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { | 
|  | unsigned Reg = LI.reg; | 
|  | assert(TargetRegisterInfo::isVirtualRegister(Reg)); | 
|  | verifyLiveRange(LI, Reg); | 
|  |  | 
|  | LaneBitmask Mask = 0; | 
|  | LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); | 
|  | for (const LiveInterval::SubRange &SR : LI.subranges()) { | 
|  | if ((Mask & SR.LaneMask) != 0) { | 
|  | report("Lane masks of sub ranges overlap in live interval", MF); | 
|  | report_context(LI); | 
|  | } | 
|  | if ((SR.LaneMask & ~MaxMask) != 0) { | 
|  | report("Subrange lanemask is invalid", MF); | 
|  | report_context(LI); | 
|  | } | 
|  | if (SR.empty()) { | 
|  | report("Subrange must not be empty", MF); | 
|  | report_context(SR, LI.reg, SR.LaneMask); | 
|  | } | 
|  | Mask |= SR.LaneMask; | 
|  | verifyLiveRange(SR, LI.reg, SR.LaneMask); | 
|  | if (!LI.covers(SR)) { | 
|  | report("A Subrange is not covered by the main range", MF); | 
|  | report_context(LI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check the LI only has one connected component. | 
|  | ConnectedVNInfoEqClasses ConEQ(*LiveInts); | 
|  | unsigned NumComp = ConEQ.Classify(LI); | 
|  | if (NumComp > 1) { | 
|  | report("Multiple connected components in live interval", MF); | 
|  | report_context(LI); | 
|  | for (unsigned comp = 0; comp != NumComp; ++comp) { | 
|  | errs() << comp << ": valnos"; | 
|  | for (LiveInterval::const_vni_iterator I = LI.vni_begin(), | 
|  | E = LI.vni_end(); I!=E; ++I) | 
|  | if (comp == ConEQ.getEqClass(*I)) | 
|  | errs() << ' ' << (*I)->id; | 
|  | errs() << '\n'; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // FrameSetup and FrameDestroy can have zero adjustment, so using a single | 
|  | // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the | 
|  | // value is zero. | 
|  | // We use a bool plus an integer to capture the stack state. | 
|  | struct StackStateOfBB { | 
|  | StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), | 
|  | ExitIsSetup(false) { } | 
|  | StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : | 
|  | EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), | 
|  | ExitIsSetup(ExitSetup) { } | 
|  | // Can be negative, which means we are setting up a frame. | 
|  | int EntryValue; | 
|  | int ExitValue; | 
|  | bool EntryIsSetup; | 
|  | bool ExitIsSetup; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Make sure on every path through the CFG, a FrameSetup <n> is always followed | 
|  | /// by a FrameDestroy <n>, stack adjustments are identical on all | 
|  | /// CFG edges to a merge point, and frame is destroyed at end of a return block. | 
|  | void MachineVerifier::verifyStackFrame() { | 
|  | unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode(); | 
|  | unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); | 
|  |  | 
|  | SmallVector<StackStateOfBB, 8> SPState; | 
|  | SPState.resize(MF->getNumBlockIDs()); | 
|  | SmallPtrSet<const MachineBasicBlock*, 8> Reachable; | 
|  |  | 
|  | // Visit the MBBs in DFS order. | 
|  | for (df_ext_iterator<const MachineFunction*, | 
|  | SmallPtrSet<const MachineBasicBlock*, 8> > | 
|  | DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); | 
|  | DFI != DFE; ++DFI) { | 
|  | const MachineBasicBlock *MBB = *DFI; | 
|  |  | 
|  | StackStateOfBB BBState; | 
|  | // Check the exit state of the DFS stack predecessor. | 
|  | if (DFI.getPathLength() >= 2) { | 
|  | const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); | 
|  | assert(Reachable.count(StackPred) && | 
|  | "DFS stack predecessor is already visited.\n"); | 
|  | BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; | 
|  | BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; | 
|  | BBState.ExitValue = BBState.EntryValue; | 
|  | BBState.ExitIsSetup = BBState.EntryIsSetup; | 
|  | } | 
|  |  | 
|  | // Update stack state by checking contents of MBB. | 
|  | for (const auto &I : *MBB) { | 
|  | if (I.getOpcode() == FrameSetupOpcode) { | 
|  | // The first operand of a FrameOpcode should be i32. | 
|  | int Size = I.getOperand(0).getImm(); | 
|  | assert(Size >= 0 && | 
|  | "Value should be non-negative in FrameSetup and FrameDestroy.\n"); | 
|  |  | 
|  | if (BBState.ExitIsSetup) | 
|  | report("FrameSetup is after another FrameSetup", &I); | 
|  | BBState.ExitValue -= Size; | 
|  | BBState.ExitIsSetup = true; | 
|  | } | 
|  |  | 
|  | if (I.getOpcode() == FrameDestroyOpcode) { | 
|  | // The first operand of a FrameOpcode should be i32. | 
|  | int Size = I.getOperand(0).getImm(); | 
|  | assert(Size >= 0 && | 
|  | "Value should be non-negative in FrameSetup and FrameDestroy.\n"); | 
|  |  | 
|  | if (!BBState.ExitIsSetup) | 
|  | report("FrameDestroy is not after a FrameSetup", &I); | 
|  | int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : | 
|  | BBState.ExitValue; | 
|  | if (BBState.ExitIsSetup && AbsSPAdj != Size) { | 
|  | report("FrameDestroy <n> is after FrameSetup <m>", &I); | 
|  | errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" | 
|  | << AbsSPAdj << ">.\n"; | 
|  | } | 
|  | BBState.ExitValue += Size; | 
|  | BBState.ExitIsSetup = false; | 
|  | } | 
|  | } | 
|  | SPState[MBB->getNumber()] = BBState; | 
|  |  | 
|  | // Make sure the exit state of any predecessor is consistent with the entry | 
|  | // state. | 
|  | for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), | 
|  | E = MBB->pred_end(); I != E; ++I) { | 
|  | if (Reachable.count(*I) && | 
|  | (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || | 
|  | SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { | 
|  | report("The exit stack state of a predecessor is inconsistent.", MBB); | 
|  | errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" | 
|  | << SPState[(*I)->getNumber()].ExitValue << ", " | 
|  | << SPState[(*I)->getNumber()].ExitIsSetup | 
|  | << "), while BB#" << MBB->getNumber() << " has entry state (" | 
|  | << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure the entry state of any successor is consistent with the exit | 
|  | // state. | 
|  | for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), | 
|  | E = MBB->succ_end(); I != E; ++I) { | 
|  | if (Reachable.count(*I) && | 
|  | (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || | 
|  | SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { | 
|  | report("The entry stack state of a successor is inconsistent.", MBB); | 
|  | errs() << "Successor BB#" << (*I)->getNumber() << " has entry state (" | 
|  | << SPState[(*I)->getNumber()].EntryValue << ", " | 
|  | << SPState[(*I)->getNumber()].EntryIsSetup | 
|  | << "), while BB#" << MBB->getNumber() << " has exit state (" | 
|  | << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure a basic block with return ends with zero stack adjustment. | 
|  | if (!MBB->empty() && MBB->back().isReturn()) { | 
|  | if (BBState.ExitIsSetup) | 
|  | report("A return block ends with a FrameSetup.", MBB); | 
|  | if (BBState.ExitValue) | 
|  | report("A return block ends with a nonzero stack adjustment.", MBB); | 
|  | } | 
|  | } | 
|  | } |