|  | //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass deletes dead arguments from internal functions.  Dead argument | 
|  | // elimination removes arguments which are directly dead, as well as arguments | 
|  | // only passed into function calls as dead arguments of other functions.  This | 
|  | // pass also deletes dead return values in a similar way. | 
|  | // | 
|  | // This pass is often useful as a cleanup pass to run after aggressive | 
|  | // interprocedural passes, which add possibly-dead arguments or return values. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/IPO/DeadArgumentElimination.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/IPO.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "deadargelim" | 
|  |  | 
|  | STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); | 
|  | STATISTIC(NumRetValsEliminated  , "Number of unused return values removed"); | 
|  | STATISTIC(NumArgumentsReplacedWithUndef, | 
|  | "Number of unread args replaced with undef"); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// DAE - The dead argument elimination pass. | 
|  | class DAE : public ModulePass { | 
|  | protected: | 
|  | // DAH uses this to specify a different ID. | 
|  | explicit DAE(char &ID) : ModulePass(ID) {} | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  |  | 
|  | DAE() : ModulePass(ID) { | 
|  | initializeDAEPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnModule(Module &M) override { | 
|  | if (skipModule(M)) | 
|  | return false; | 
|  | DeadArgumentEliminationPass DAEP(ShouldHackArguments()); | 
|  | ModuleAnalysisManager DummyMAM; | 
|  | PreservedAnalyses PA = DAEP.run(M, DummyMAM); | 
|  | return !PA.areAllPreserved(); | 
|  | } | 
|  |  | 
|  | virtual bool ShouldHackArguments() const { return false; } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char DAE::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false) | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but | 
|  | /// deletes arguments to functions which are external.  This is only for use | 
|  | /// by bugpoint. | 
|  | struct DAH : public DAE { | 
|  | static char ID; | 
|  |  | 
|  | DAH() : DAE(ID) {} | 
|  |  | 
|  | bool ShouldHackArguments() const override { return true; } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char DAH::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS(DAH, "deadarghaX0r", | 
|  | "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", | 
|  | false, false) | 
|  |  | 
|  | /// createDeadArgEliminationPass - This pass removes arguments from functions | 
|  | /// which are not used by the body of the function. | 
|  | ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } | 
|  |  | 
|  | ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } | 
|  |  | 
|  | /// DeleteDeadVarargs - If this is an function that takes a ... list, and if | 
|  | /// llvm.vastart is never called, the varargs list is dead for the function. | 
|  | bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) { | 
|  | assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!"); | 
|  | if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false; | 
|  |  | 
|  | // Ensure that the function is only directly called. | 
|  | if (Fn.hasAddressTaken()) | 
|  | return false; | 
|  |  | 
|  | // Don't touch naked functions. The assembly might be using an argument, or | 
|  | // otherwise rely on the frame layout in a way that this analysis will not | 
|  | // see. | 
|  | if (Fn.hasFnAttribute(Attribute::Naked)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Okay, we know we can transform this function if safe.  Scan its body | 
|  | // looking for calls marked musttail or calls to llvm.vastart. | 
|  | for (BasicBlock &BB : Fn) { | 
|  | for (Instruction &I : BB) { | 
|  | CallInst *CI = dyn_cast<CallInst>(&I); | 
|  | if (!CI) | 
|  | continue; | 
|  | if (CI->isMustTailCall()) | 
|  | return false; | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { | 
|  | if (II->getIntrinsicID() == Intrinsic::vastart) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we get here, there are no calls to llvm.vastart in the function body, | 
|  | // remove the "..." and adjust all the calls. | 
|  |  | 
|  | // Start by computing a new prototype for the function, which is the same as | 
|  | // the old function, but doesn't have isVarArg set. | 
|  | FunctionType *FTy = Fn.getFunctionType(); | 
|  |  | 
|  | std::vector<Type *> Params(FTy->param_begin(), FTy->param_end()); | 
|  | FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), | 
|  | Params, false); | 
|  | unsigned NumArgs = Params.size(); | 
|  |  | 
|  | // Create the new function body and insert it into the module... | 
|  | Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace()); | 
|  | NF->copyAttributesFrom(&Fn); | 
|  | NF->setComdat(Fn.getComdat()); | 
|  | Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF); | 
|  | NF->takeName(&Fn); | 
|  |  | 
|  | // Loop over all of the callers of the function, transforming the call sites | 
|  | // to pass in a smaller number of arguments into the new function. | 
|  | // | 
|  | std::vector<Value *> Args; | 
|  | for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) { | 
|  | CallSite CS(*I++); | 
|  | if (!CS) | 
|  | continue; | 
|  | Instruction *Call = CS.getInstruction(); | 
|  |  | 
|  | // Pass all the same arguments. | 
|  | Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs); | 
|  |  | 
|  | // Drop any attributes that were on the vararg arguments. | 
|  | AttributeList PAL = CS.getAttributes(); | 
|  | if (!PAL.isEmpty()) { | 
|  | SmallVector<AttributeSet, 8> ArgAttrs; | 
|  | for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) | 
|  | ArgAttrs.push_back(PAL.getParamAttributes(ArgNo)); | 
|  | PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttributes(), | 
|  | PAL.getRetAttributes(), ArgAttrs); | 
|  | } | 
|  |  | 
|  | SmallVector<OperandBundleDef, 1> OpBundles; | 
|  | CS.getOperandBundlesAsDefs(OpBundles); | 
|  |  | 
|  | CallSite NewCS; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { | 
|  | NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), | 
|  | Args, OpBundles, "", Call); | 
|  | } else { | 
|  | NewCS = CallInst::Create(NF, Args, OpBundles, "", Call); | 
|  | cast<CallInst>(NewCS.getInstruction()) | 
|  | ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); | 
|  | } | 
|  | NewCS.setCallingConv(CS.getCallingConv()); | 
|  | NewCS.setAttributes(PAL); | 
|  | NewCS->setDebugLoc(Call->getDebugLoc()); | 
|  | uint64_t W; | 
|  | if (Call->extractProfTotalWeight(W)) | 
|  | NewCS->setProfWeight(W); | 
|  |  | 
|  | Args.clear(); | 
|  |  | 
|  | if (!Call->use_empty()) | 
|  | Call->replaceAllUsesWith(NewCS.getInstruction()); | 
|  |  | 
|  | NewCS->takeName(Call); | 
|  |  | 
|  | // Finally, remove the old call from the program, reducing the use-count of | 
|  | // F. | 
|  | Call->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Since we have now created the new function, splice the body of the old | 
|  | // function right into the new function, leaving the old rotting hulk of the | 
|  | // function empty. | 
|  | NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList()); | 
|  |  | 
|  | // Loop over the argument list, transferring uses of the old arguments over to | 
|  | // the new arguments, also transferring over the names as well.  While we're at | 
|  | // it, remove the dead arguments from the DeadArguments list. | 
|  | for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(), | 
|  | I2 = NF->arg_begin(); I != E; ++I, ++I2) { | 
|  | // Move the name and users over to the new version. | 
|  | I->replaceAllUsesWith(&*I2); | 
|  | I2->takeName(&*I); | 
|  | } | 
|  |  | 
|  | // Clone metadatas from the old function, including debug info descriptor. | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; | 
|  | Fn.getAllMetadata(MDs); | 
|  | for (auto MD : MDs) | 
|  | NF->addMetadata(MD.first, *MD.second); | 
|  |  | 
|  | // Fix up any BlockAddresses that refer to the function. | 
|  | Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType())); | 
|  | // Delete the bitcast that we just created, so that NF does not | 
|  | // appear to be address-taken. | 
|  | NF->removeDeadConstantUsers(); | 
|  | // Finally, nuke the old function. | 
|  | Fn.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// RemoveDeadArgumentsFromCallers - Checks if the given function has any | 
|  | /// arguments that are unused, and changes the caller parameters to be undefined | 
|  | /// instead. | 
|  | bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) { | 
|  | // We cannot change the arguments if this TU does not define the function or | 
|  | // if the linker may choose a function body from another TU, even if the | 
|  | // nominal linkage indicates that other copies of the function have the same | 
|  | // semantics. In the below example, the dead load from %p may not have been | 
|  | // eliminated from the linker-chosen copy of f, so replacing %p with undef | 
|  | // in callers may introduce undefined behavior. | 
|  | // | 
|  | // define linkonce_odr void @f(i32* %p) { | 
|  | //   %v = load i32 %p | 
|  | //   ret void | 
|  | // } | 
|  | if (!Fn.hasExactDefinition()) | 
|  | return false; | 
|  |  | 
|  | // Functions with local linkage should already have been handled, except the | 
|  | // fragile (variadic) ones which we can improve here. | 
|  | if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg()) | 
|  | return false; | 
|  |  | 
|  | // Don't touch naked functions. The assembly might be using an argument, or | 
|  | // otherwise rely on the frame layout in a way that this analysis will not | 
|  | // see. | 
|  | if (Fn.hasFnAttribute(Attribute::Naked)) | 
|  | return false; | 
|  |  | 
|  | if (Fn.use_empty()) | 
|  | return false; | 
|  |  | 
|  | SmallVector<unsigned, 8> UnusedArgs; | 
|  | bool Changed = false; | 
|  |  | 
|  | for (Argument &Arg : Fn.args()) { | 
|  | if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() && !Arg.hasByValOrInAllocaAttr()) { | 
|  | if (Arg.isUsedByMetadata()) { | 
|  | Arg.replaceAllUsesWith(UndefValue::get(Arg.getType())); | 
|  | Changed = true; | 
|  | } | 
|  | UnusedArgs.push_back(Arg.getArgNo()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (UnusedArgs.empty()) | 
|  | return false; | 
|  |  | 
|  | for (Use &U : Fn.uses()) { | 
|  | CallSite CS(U.getUser()); | 
|  | if (!CS || !CS.isCallee(&U)) | 
|  | continue; | 
|  |  | 
|  | // Now go through all unused args and replace them with "undef". | 
|  | for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) { | 
|  | unsigned ArgNo = UnusedArgs[I]; | 
|  |  | 
|  | Value *Arg = CS.getArgument(ArgNo); | 
|  | CS.setArgument(ArgNo, UndefValue::get(Arg->getType())); | 
|  | ++NumArgumentsReplacedWithUndef; | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Convenience function that returns the number of return values. It returns 0 | 
|  | /// for void functions and 1 for functions not returning a struct. It returns | 
|  | /// the number of struct elements for functions returning a struct. | 
|  | static unsigned NumRetVals(const Function *F) { | 
|  | Type *RetTy = F->getReturnType(); | 
|  | if (RetTy->isVoidTy()) | 
|  | return 0; | 
|  | else if (StructType *STy = dyn_cast<StructType>(RetTy)) | 
|  | return STy->getNumElements(); | 
|  | else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) | 
|  | return ATy->getNumElements(); | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /// Returns the sub-type a function will return at a given Idx. Should | 
|  | /// correspond to the result type of an ExtractValue instruction executed with | 
|  | /// just that one Idx (i.e. only top-level structure is considered). | 
|  | static Type *getRetComponentType(const Function *F, unsigned Idx) { | 
|  | Type *RetTy = F->getReturnType(); | 
|  | assert(!RetTy->isVoidTy() && "void type has no subtype"); | 
|  |  | 
|  | if (StructType *STy = dyn_cast<StructType>(RetTy)) | 
|  | return STy->getElementType(Idx); | 
|  | else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) | 
|  | return ATy->getElementType(); | 
|  | else | 
|  | return RetTy; | 
|  | } | 
|  |  | 
|  | /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not | 
|  | /// live, it adds Use to the MaybeLiveUses argument. Returns the determined | 
|  | /// liveness of Use. | 
|  | DeadArgumentEliminationPass::Liveness | 
|  | DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use, | 
|  | UseVector &MaybeLiveUses) { | 
|  | // We're live if our use or its Function is already marked as live. | 
|  | if (LiveFunctions.count(Use.F) || LiveValues.count(Use)) | 
|  | return Live; | 
|  |  | 
|  | // We're maybe live otherwise, but remember that we must become live if | 
|  | // Use becomes live. | 
|  | MaybeLiveUses.push_back(Use); | 
|  | return MaybeLive; | 
|  | } | 
|  |  | 
|  | /// SurveyUse - This looks at a single use of an argument or return value | 
|  | /// and determines if it should be alive or not. Adds this use to MaybeLiveUses | 
|  | /// if it causes the used value to become MaybeLive. | 
|  | /// | 
|  | /// RetValNum is the return value number to use when this use is used in a | 
|  | /// return instruction. This is used in the recursion, you should always leave | 
|  | /// it at 0. | 
|  | DeadArgumentEliminationPass::Liveness | 
|  | DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses, | 
|  | unsigned RetValNum) { | 
|  | const User *V = U->getUser(); | 
|  | if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) { | 
|  | // The value is returned from a function. It's only live when the | 
|  | // function's return value is live. We use RetValNum here, for the case | 
|  | // that U is really a use of an insertvalue instruction that uses the | 
|  | // original Use. | 
|  | const Function *F = RI->getParent()->getParent(); | 
|  | if (RetValNum != -1U) { | 
|  | RetOrArg Use = CreateRet(F, RetValNum); | 
|  | // We might be live, depending on the liveness of Use. | 
|  | return MarkIfNotLive(Use, MaybeLiveUses); | 
|  | } else { | 
|  | DeadArgumentEliminationPass::Liveness Result = MaybeLive; | 
|  | for (unsigned i = 0; i < NumRetVals(F); ++i) { | 
|  | RetOrArg Use = CreateRet(F, i); | 
|  | // We might be live, depending on the liveness of Use. If any | 
|  | // sub-value is live, then the entire value is considered live. This | 
|  | // is a conservative choice, and better tracking is possible. | 
|  | DeadArgumentEliminationPass::Liveness SubResult = | 
|  | MarkIfNotLive(Use, MaybeLiveUses); | 
|  | if (Result != Live) | 
|  | Result = SubResult; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  | } | 
|  | if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) { | 
|  | if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() | 
|  | && IV->hasIndices()) | 
|  | // The use we are examining is inserted into an aggregate. Our liveness | 
|  | // depends on all uses of that aggregate, but if it is used as a return | 
|  | // value, only index at which we were inserted counts. | 
|  | RetValNum = *IV->idx_begin(); | 
|  |  | 
|  | // Note that if we are used as the aggregate operand to the insertvalue, | 
|  | // we don't change RetValNum, but do survey all our uses. | 
|  |  | 
|  | Liveness Result = MaybeLive; | 
|  | for (const Use &UU : IV->uses()) { | 
|  | Result = SurveyUse(&UU, MaybeLiveUses, RetValNum); | 
|  | if (Result == Live) | 
|  | break; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | if (auto CS = ImmutableCallSite(V)) { | 
|  | const Function *F = CS.getCalledFunction(); | 
|  | if (F) { | 
|  | // Used in a direct call. | 
|  |  | 
|  | // The function argument is live if it is used as a bundle operand. | 
|  | if (CS.isBundleOperand(U)) | 
|  | return Live; | 
|  |  | 
|  | // Find the argument number. We know for sure that this use is an | 
|  | // argument, since if it was the function argument this would be an | 
|  | // indirect call and the we know can't be looking at a value of the | 
|  | // label type (for the invoke instruction). | 
|  | unsigned ArgNo = CS.getArgumentNo(U); | 
|  |  | 
|  | if (ArgNo >= F->getFunctionType()->getNumParams()) | 
|  | // The value is passed in through a vararg! Must be live. | 
|  | return Live; | 
|  |  | 
|  | assert(CS.getArgument(ArgNo) | 
|  | == CS->getOperand(U->getOperandNo()) | 
|  | && "Argument is not where we expected it"); | 
|  |  | 
|  | // Value passed to a normal call. It's only live when the corresponding | 
|  | // argument to the called function turns out live. | 
|  | RetOrArg Use = CreateArg(F, ArgNo); | 
|  | return MarkIfNotLive(Use, MaybeLiveUses); | 
|  | } | 
|  | } | 
|  | // Used in any other way? Value must be live. | 
|  | return Live; | 
|  | } | 
|  |  | 
|  | /// SurveyUses - This looks at all the uses of the given value | 
|  | /// Returns the Liveness deduced from the uses of this value. | 
|  | /// | 
|  | /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If | 
|  | /// the result is Live, MaybeLiveUses might be modified but its content should | 
|  | /// be ignored (since it might not be complete). | 
|  | DeadArgumentEliminationPass::Liveness | 
|  | DeadArgumentEliminationPass::SurveyUses(const Value *V, | 
|  | UseVector &MaybeLiveUses) { | 
|  | // Assume it's dead (which will only hold if there are no uses at all..). | 
|  | Liveness Result = MaybeLive; | 
|  | // Check each use. | 
|  | for (const Use &U : V->uses()) { | 
|  | Result = SurveyUse(&U, MaybeLiveUses); | 
|  | if (Result == Live) | 
|  | break; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // SurveyFunction - This performs the initial survey of the specified function, | 
|  | // checking out whether or not it uses any of its incoming arguments or whether | 
|  | // any callers use the return value.  This fills in the LiveValues set and Uses | 
|  | // map. | 
|  | // | 
|  | // We consider arguments of non-internal functions to be intrinsically alive as | 
|  | // well as arguments to functions which have their "address taken". | 
|  | void DeadArgumentEliminationPass::SurveyFunction(const Function &F) { | 
|  | // Functions with inalloca parameters are expecting args in a particular | 
|  | // register and memory layout. | 
|  | if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) { | 
|  | MarkLive(F); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Don't touch naked functions. The assembly might be using an argument, or | 
|  | // otherwise rely on the frame layout in a way that this analysis will not | 
|  | // see. | 
|  | if (F.hasFnAttribute(Attribute::Naked)) { | 
|  | MarkLive(F); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned RetCount = NumRetVals(&F); | 
|  |  | 
|  | // Assume all return values are dead | 
|  | using RetVals = SmallVector<Liveness, 5>; | 
|  |  | 
|  | RetVals RetValLiveness(RetCount, MaybeLive); | 
|  |  | 
|  | using RetUses = SmallVector<UseVector, 5>; | 
|  |  | 
|  | // These vectors map each return value to the uses that make it MaybeLive, so | 
|  | // we can add those to the Uses map if the return value really turns out to be | 
|  | // MaybeLive. Initialized to a list of RetCount empty lists. | 
|  | RetUses MaybeLiveRetUses(RetCount); | 
|  |  | 
|  | bool HasMustTailCalls = false; | 
|  |  | 
|  | for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { | 
|  | if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { | 
|  | if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType() | 
|  | != F.getFunctionType()->getReturnType()) { | 
|  | // We don't support old style multiple return values. | 
|  | MarkLive(F); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have any returns of `musttail` results - the signature can't | 
|  | // change | 
|  | if (BB->getTerminatingMustTailCall() != nullptr) | 
|  | HasMustTailCalls = true; | 
|  | } | 
|  |  | 
|  | if (HasMustTailCalls) { | 
|  | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() | 
|  | << " has musttail calls\n"); | 
|  | } | 
|  |  | 
|  | if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) { | 
|  | MarkLive(F); | 
|  | return; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: " | 
|  | << F.getName() << "\n"); | 
|  | // Keep track of the number of live retvals, so we can skip checks once all | 
|  | // of them turn out to be live. | 
|  | unsigned NumLiveRetVals = 0; | 
|  |  | 
|  | bool HasMustTailCallers = false; | 
|  |  | 
|  | // Loop all uses of the function. | 
|  | for (const Use &U : F.uses()) { | 
|  | // If the function is PASSED IN as an argument, its address has been | 
|  | // taken. | 
|  | ImmutableCallSite CS(U.getUser()); | 
|  | if (!CS || !CS.isCallee(&U)) { | 
|  | MarkLive(F); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The number of arguments for `musttail` call must match the number of | 
|  | // arguments of the caller | 
|  | if (CS.isMustTailCall()) | 
|  | HasMustTailCallers = true; | 
|  |  | 
|  | // If this use is anything other than a call site, the function is alive. | 
|  | const Instruction *TheCall = CS.getInstruction(); | 
|  | if (!TheCall) {   // Not a direct call site? | 
|  | MarkLive(F); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If we end up here, we are looking at a direct call to our function. | 
|  |  | 
|  | // Now, check how our return value(s) is/are used in this caller. Don't | 
|  | // bother checking return values if all of them are live already. | 
|  | if (NumLiveRetVals == RetCount) | 
|  | continue; | 
|  |  | 
|  | // Check all uses of the return value. | 
|  | for (const Use &U : TheCall->uses()) { | 
|  | if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) { | 
|  | // This use uses a part of our return value, survey the uses of | 
|  | // that part and store the results for this index only. | 
|  | unsigned Idx = *Ext->idx_begin(); | 
|  | if (RetValLiveness[Idx] != Live) { | 
|  | RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]); | 
|  | if (RetValLiveness[Idx] == Live) | 
|  | NumLiveRetVals++; | 
|  | } | 
|  | } else { | 
|  | // Used by something else than extractvalue. Survey, but assume that the | 
|  | // result applies to all sub-values. | 
|  | UseVector MaybeLiveAggregateUses; | 
|  | if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) { | 
|  | NumLiveRetVals = RetCount; | 
|  | RetValLiveness.assign(RetCount, Live); | 
|  | break; | 
|  | } else { | 
|  | for (unsigned i = 0; i != RetCount; ++i) { | 
|  | if (RetValLiveness[i] != Live) | 
|  | MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(), | 
|  | MaybeLiveAggregateUses.end()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HasMustTailCallers) { | 
|  | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() | 
|  | << " has musttail callers\n"); | 
|  | } | 
|  |  | 
|  | // Now we've inspected all callers, record the liveness of our return values. | 
|  | for (unsigned i = 0; i != RetCount; ++i) | 
|  | MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: " | 
|  | << F.getName() << "\n"); | 
|  |  | 
|  | // Now, check all of our arguments. | 
|  | unsigned i = 0; | 
|  | UseVector MaybeLiveArgUses; | 
|  | for (Function::const_arg_iterator AI = F.arg_begin(), | 
|  | E = F.arg_end(); AI != E; ++AI, ++i) { | 
|  | Liveness Result; | 
|  | if (F.getFunctionType()->isVarArg() || HasMustTailCallers || | 
|  | HasMustTailCalls) { | 
|  | // Variadic functions will already have a va_arg function expanded inside | 
|  | // them, making them potentially very sensitive to ABI changes resulting | 
|  | // from removing arguments entirely, so don't. For example AArch64 handles | 
|  | // register and stack HFAs very differently, and this is reflected in the | 
|  | // IR which has already been generated. | 
|  | // | 
|  | // `musttail` calls to this function restrict argument removal attempts. | 
|  | // The signature of the caller must match the signature of the function. | 
|  | // | 
|  | // `musttail` calls in this function prevents us from changing its | 
|  | // signature | 
|  | Result = Live; | 
|  | } else { | 
|  | // See what the effect of this use is (recording any uses that cause | 
|  | // MaybeLive in MaybeLiveArgUses). | 
|  | Result = SurveyUses(&*AI, MaybeLiveArgUses); | 
|  | } | 
|  |  | 
|  | // Mark the result. | 
|  | MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses); | 
|  | // Clear the vector again for the next iteration. | 
|  | MaybeLiveArgUses.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// MarkValue - This function marks the liveness of RA depending on L. If L is | 
|  | /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses, | 
|  | /// such that RA will be marked live if any use in MaybeLiveUses gets marked | 
|  | /// live later on. | 
|  | void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L, | 
|  | const UseVector &MaybeLiveUses) { | 
|  | switch (L) { | 
|  | case Live: | 
|  | MarkLive(RA); | 
|  | break; | 
|  | case MaybeLive: | 
|  | // Note any uses of this value, so this return value can be | 
|  | // marked live whenever one of the uses becomes live. | 
|  | for (const auto &MaybeLiveUse : MaybeLiveUses) | 
|  | Uses.insert(std::make_pair(MaybeLiveUse, RA)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// MarkLive - Mark the given Function as alive, meaning that it cannot be | 
|  | /// changed in any way. Additionally, | 
|  | /// mark any values that are used as this function's parameters or by its return | 
|  | /// values (according to Uses) live as well. | 
|  | void DeadArgumentEliminationPass::MarkLive(const Function &F) { | 
|  | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: " | 
|  | << F.getName() << "\n"); | 
|  | // Mark the function as live. | 
|  | LiveFunctions.insert(&F); | 
|  | // Mark all arguments as live. | 
|  | for (unsigned i = 0, e = F.arg_size(); i != e; ++i) | 
|  | PropagateLiveness(CreateArg(&F, i)); | 
|  | // Mark all return values as live. | 
|  | for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i) | 
|  | PropagateLiveness(CreateRet(&F, i)); | 
|  | } | 
|  |  | 
|  | /// MarkLive - Mark the given return value or argument as live. Additionally, | 
|  | /// mark any values that are used by this value (according to Uses) live as | 
|  | /// well. | 
|  | void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) { | 
|  | if (LiveFunctions.count(RA.F)) | 
|  | return; // Function was already marked Live. | 
|  |  | 
|  | if (!LiveValues.insert(RA).second) | 
|  | return; // We were already marked Live. | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking " | 
|  | << RA.getDescription() << " live\n"); | 
|  | PropagateLiveness(RA); | 
|  | } | 
|  |  | 
|  | /// PropagateLiveness - Given that RA is a live value, propagate it's liveness | 
|  | /// to any other values it uses (according to Uses). | 
|  | void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) { | 
|  | // We don't use upper_bound (or equal_range) here, because our recursive call | 
|  | // to ourselves is likely to cause the upper_bound (which is the first value | 
|  | // not belonging to RA) to become erased and the iterator invalidated. | 
|  | UseMap::iterator Begin = Uses.lower_bound(RA); | 
|  | UseMap::iterator E = Uses.end(); | 
|  | UseMap::iterator I; | 
|  | for (I = Begin; I != E && I->first == RA; ++I) | 
|  | MarkLive(I->second); | 
|  |  | 
|  | // Erase RA from the Uses map (from the lower bound to wherever we ended up | 
|  | // after the loop). | 
|  | Uses.erase(Begin, I); | 
|  | } | 
|  |  | 
|  | // RemoveDeadStuffFromFunction - Remove any arguments and return values from F | 
|  | // that are not in LiveValues. Transform the function and all of the callees of | 
|  | // the function to not have these arguments and return values. | 
|  | // | 
|  | bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) { | 
|  | // Don't modify fully live functions | 
|  | if (LiveFunctions.count(F)) | 
|  | return false; | 
|  |  | 
|  | // Start by computing a new prototype for the function, which is the same as | 
|  | // the old function, but has fewer arguments and a different return type. | 
|  | FunctionType *FTy = F->getFunctionType(); | 
|  | std::vector<Type*> Params; | 
|  |  | 
|  | // Keep track of if we have a live 'returned' argument | 
|  | bool HasLiveReturnedArg = false; | 
|  |  | 
|  | // Set up to build a new list of parameter attributes. | 
|  | SmallVector<AttributeSet, 8> ArgAttrVec; | 
|  | const AttributeList &PAL = F->getAttributes(); | 
|  |  | 
|  | // Remember which arguments are still alive. | 
|  | SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false); | 
|  | // Construct the new parameter list from non-dead arguments. Also construct | 
|  | // a new set of parameter attributes to correspond. Skip the first parameter | 
|  | // attribute, since that belongs to the return value. | 
|  | unsigned i = 0; | 
|  | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); | 
|  | I != E; ++I, ++i) { | 
|  | RetOrArg Arg = CreateArg(F, i); | 
|  | if (LiveValues.erase(Arg)) { | 
|  | Params.push_back(I->getType()); | 
|  | ArgAlive[i] = true; | 
|  | ArgAttrVec.push_back(PAL.getParamAttributes(i)); | 
|  | HasLiveReturnedArg |= PAL.hasParamAttribute(i, Attribute::Returned); | 
|  | } else { | 
|  | ++NumArgumentsEliminated; | 
|  | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument " | 
|  | << i << " (" << I->getName() << ") from " | 
|  | << F->getName() << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find out the new return value. | 
|  | Type *RetTy = FTy->getReturnType(); | 
|  | Type *NRetTy = nullptr; | 
|  | unsigned RetCount = NumRetVals(F); | 
|  |  | 
|  | // -1 means unused, other numbers are the new index | 
|  | SmallVector<int, 5> NewRetIdxs(RetCount, -1); | 
|  | std::vector<Type*> RetTypes; | 
|  |  | 
|  | // If there is a function with a live 'returned' argument but a dead return | 
|  | // value, then there are two possible actions: | 
|  | // 1) Eliminate the return value and take off the 'returned' attribute on the | 
|  | //    argument. | 
|  | // 2) Retain the 'returned' attribute and treat the return value (but not the | 
|  | //    entire function) as live so that it is not eliminated. | 
|  | // | 
|  | // It's not clear in the general case which option is more profitable because, | 
|  | // even in the absence of explicit uses of the return value, code generation | 
|  | // is free to use the 'returned' attribute to do things like eliding | 
|  | // save/restores of registers across calls. Whether or not this happens is | 
|  | // target and ABI-specific as well as depending on the amount of register | 
|  | // pressure, so there's no good way for an IR-level pass to figure this out. | 
|  | // | 
|  | // Fortunately, the only places where 'returned' is currently generated by | 
|  | // the FE are places where 'returned' is basically free and almost always a | 
|  | // performance win, so the second option can just be used always for now. | 
|  | // | 
|  | // This should be revisited if 'returned' is ever applied more liberally. | 
|  | if (RetTy->isVoidTy() || HasLiveReturnedArg) { | 
|  | NRetTy = RetTy; | 
|  | } else { | 
|  | // Look at each of the original return values individually. | 
|  | for (unsigned i = 0; i != RetCount; ++i) { | 
|  | RetOrArg Ret = CreateRet(F, i); | 
|  | if (LiveValues.erase(Ret)) { | 
|  | RetTypes.push_back(getRetComponentType(F, i)); | 
|  | NewRetIdxs[i] = RetTypes.size() - 1; | 
|  | } else { | 
|  | ++NumRetValsEliminated; | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "DeadArgumentEliminationPass - Removing return value " | 
|  | << i << " from " << F->getName() << "\n"); | 
|  | } | 
|  | } | 
|  | if (RetTypes.size() > 1) { | 
|  | // More than one return type? Reduce it down to size. | 
|  | if (StructType *STy = dyn_cast<StructType>(RetTy)) { | 
|  | // Make the new struct packed if we used to return a packed struct | 
|  | // already. | 
|  | NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked()); | 
|  | } else { | 
|  | assert(isa<ArrayType>(RetTy) && "unexpected multi-value return"); | 
|  | NRetTy = ArrayType::get(RetTypes[0], RetTypes.size()); | 
|  | } | 
|  | } else if (RetTypes.size() == 1) | 
|  | // One return type? Just a simple value then, but only if we didn't use to | 
|  | // return a struct with that simple value before. | 
|  | NRetTy = RetTypes.front(); | 
|  | else if (RetTypes.empty()) | 
|  | // No return types? Make it void, but only if we didn't use to return {}. | 
|  | NRetTy = Type::getVoidTy(F->getContext()); | 
|  | } | 
|  |  | 
|  | assert(NRetTy && "No new return type found?"); | 
|  |  | 
|  | // The existing function return attributes. | 
|  | AttrBuilder RAttrs(PAL.getRetAttributes()); | 
|  |  | 
|  | // Remove any incompatible attributes, but only if we removed all return | 
|  | // values. Otherwise, ensure that we don't have any conflicting attributes | 
|  | // here. Currently, this should not be possible, but special handling might be | 
|  | // required when new return value attributes are added. | 
|  | if (NRetTy->isVoidTy()) | 
|  | RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); | 
|  | else | 
|  | assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) && | 
|  | "Return attributes no longer compatible?"); | 
|  |  | 
|  | AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); | 
|  |  | 
|  | // Strip allocsize attributes. They might refer to the deleted arguments. | 
|  | AttributeSet FnAttrs = PAL.getFnAttributes().removeAttribute( | 
|  | F->getContext(), Attribute::AllocSize); | 
|  |  | 
|  | // Reconstruct the AttributesList based on the vector we constructed. | 
|  | assert(ArgAttrVec.size() == Params.size()); | 
|  | AttributeList NewPAL = | 
|  | AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); | 
|  |  | 
|  | // Create the new function type based on the recomputed parameters. | 
|  | FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); | 
|  |  | 
|  | // No change? | 
|  | if (NFTy == FTy) | 
|  | return false; | 
|  |  | 
|  | // Create the new function body and insert it into the module... | 
|  | Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace()); | 
|  | NF->copyAttributesFrom(F); | 
|  | NF->setComdat(F->getComdat()); | 
|  | NF->setAttributes(NewPAL); | 
|  | // Insert the new function before the old function, so we won't be processing | 
|  | // it again. | 
|  | F->getParent()->getFunctionList().insert(F->getIterator(), NF); | 
|  | NF->takeName(F); | 
|  |  | 
|  | // Loop over all of the callers of the function, transforming the call sites | 
|  | // to pass in a smaller number of arguments into the new function. | 
|  | std::vector<Value*> Args; | 
|  | while (!F->use_empty()) { | 
|  | CallSite CS(F->user_back()); | 
|  | Instruction *Call = CS.getInstruction(); | 
|  |  | 
|  | ArgAttrVec.clear(); | 
|  | const AttributeList &CallPAL = CS.getAttributes(); | 
|  |  | 
|  | // Adjust the call return attributes in case the function was changed to | 
|  | // return void. | 
|  | AttrBuilder RAttrs(CallPAL.getRetAttributes()); | 
|  | RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); | 
|  | AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); | 
|  |  | 
|  | // Declare these outside of the loops, so we can reuse them for the second | 
|  | // loop, which loops the varargs. | 
|  | CallSite::arg_iterator I = CS.arg_begin(); | 
|  | unsigned i = 0; | 
|  | // Loop over those operands, corresponding to the normal arguments to the | 
|  | // original function, and add those that are still alive. | 
|  | for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i) | 
|  | if (ArgAlive[i]) { | 
|  | Args.push_back(*I); | 
|  | // Get original parameter attributes, but skip return attributes. | 
|  | AttributeSet Attrs = CallPAL.getParamAttributes(i); | 
|  | if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) { | 
|  | // If the return type has changed, then get rid of 'returned' on the | 
|  | // call site. The alternative is to make all 'returned' attributes on | 
|  | // call sites keep the return value alive just like 'returned' | 
|  | // attributes on function declaration but it's less clearly a win and | 
|  | // this is not an expected case anyway | 
|  | ArgAttrVec.push_back(AttributeSet::get( | 
|  | F->getContext(), | 
|  | AttrBuilder(Attrs).removeAttribute(Attribute::Returned))); | 
|  | } else { | 
|  | // Otherwise, use the original attributes. | 
|  | ArgAttrVec.push_back(Attrs); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Push any varargs arguments on the list. Don't forget their attributes. | 
|  | for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) { | 
|  | Args.push_back(*I); | 
|  | ArgAttrVec.push_back(CallPAL.getParamAttributes(i)); | 
|  | } | 
|  |  | 
|  | // Reconstruct the AttributesList based on the vector we constructed. | 
|  | assert(ArgAttrVec.size() == Args.size()); | 
|  |  | 
|  | // Again, be sure to remove any allocsize attributes, since their indices | 
|  | // may now be incorrect. | 
|  | AttributeSet FnAttrs = CallPAL.getFnAttributes().removeAttribute( | 
|  | F->getContext(), Attribute::AllocSize); | 
|  |  | 
|  | AttributeList NewCallPAL = AttributeList::get( | 
|  | F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); | 
|  |  | 
|  | SmallVector<OperandBundleDef, 1> OpBundles; | 
|  | CS.getOperandBundlesAsDefs(OpBundles); | 
|  |  | 
|  | CallSite NewCS; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { | 
|  | NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), | 
|  | Args, OpBundles, "", Call->getParent()); | 
|  | } else { | 
|  | NewCS = CallInst::Create(NFTy, NF, Args, OpBundles, "", Call); | 
|  | cast<CallInst>(NewCS.getInstruction()) | 
|  | ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); | 
|  | } | 
|  | NewCS.setCallingConv(CS.getCallingConv()); | 
|  | NewCS.setAttributes(NewCallPAL); | 
|  | NewCS->setDebugLoc(Call->getDebugLoc()); | 
|  | uint64_t W; | 
|  | if (Call->extractProfTotalWeight(W)) | 
|  | NewCS->setProfWeight(W); | 
|  | Args.clear(); | 
|  | ArgAttrVec.clear(); | 
|  |  | 
|  | Instruction *New = NewCS.getInstruction(); | 
|  | if (!Call->use_empty() || Call->isUsedByMetadata()) { | 
|  | if (New->getType() == Call->getType()) { | 
|  | // Return type not changed? Just replace users then. | 
|  | Call->replaceAllUsesWith(New); | 
|  | New->takeName(Call); | 
|  | } else if (New->getType()->isVoidTy()) { | 
|  | // If the return value is dead, replace any uses of it with undef | 
|  | // (any non-debug value uses will get removed later on). | 
|  | if (!Call->getType()->isX86_MMXTy()) | 
|  | Call->replaceAllUsesWith(UndefValue::get(Call->getType())); | 
|  | } else { | 
|  | assert((RetTy->isStructTy() || RetTy->isArrayTy()) && | 
|  | "Return type changed, but not into a void. The old return type" | 
|  | " must have been a struct or an array!"); | 
|  | Instruction *InsertPt = Call; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { | 
|  | BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest()); | 
|  | InsertPt = &*NewEdge->getFirstInsertionPt(); | 
|  | } | 
|  |  | 
|  | // We used to return a struct or array. Instead of doing smart stuff | 
|  | // with all the uses, we will just rebuild it using extract/insertvalue | 
|  | // chaining and let instcombine clean that up. | 
|  | // | 
|  | // Start out building up our return value from undef | 
|  | Value *RetVal = UndefValue::get(RetTy); | 
|  | for (unsigned i = 0; i != RetCount; ++i) | 
|  | if (NewRetIdxs[i] != -1) { | 
|  | Value *V; | 
|  | if (RetTypes.size() > 1) | 
|  | // We are still returning a struct, so extract the value from our | 
|  | // return value | 
|  | V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret", | 
|  | InsertPt); | 
|  | else | 
|  | // We are now returning a single element, so just insert that | 
|  | V = New; | 
|  | // Insert the value at the old position | 
|  | RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt); | 
|  | } | 
|  | // Now, replace all uses of the old call instruction with the return | 
|  | // struct we built | 
|  | Call->replaceAllUsesWith(RetVal); | 
|  | New->takeName(Call); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, remove the old call from the program, reducing the use-count of | 
|  | // F. | 
|  | Call->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Since we have now created the new function, splice the body of the old | 
|  | // function right into the new function, leaving the old rotting hulk of the | 
|  | // function empty. | 
|  | NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); | 
|  |  | 
|  | // Loop over the argument list, transferring uses of the old arguments over to | 
|  | // the new arguments, also transferring over the names as well. | 
|  | i = 0; | 
|  | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), | 
|  | I2 = NF->arg_begin(); I != E; ++I, ++i) | 
|  | if (ArgAlive[i]) { | 
|  | // If this is a live argument, move the name and users over to the new | 
|  | // version. | 
|  | I->replaceAllUsesWith(&*I2); | 
|  | I2->takeName(&*I); | 
|  | ++I2; | 
|  | } else { | 
|  | // If this argument is dead, replace any uses of it with undef | 
|  | // (any non-debug value uses will get removed later on). | 
|  | if (!I->getType()->isX86_MMXTy()) | 
|  | I->replaceAllUsesWith(UndefValue::get(I->getType())); | 
|  | } | 
|  |  | 
|  | // If we change the return value of the function we must rewrite any return | 
|  | // instructions.  Check this now. | 
|  | if (F->getReturnType() != NF->getReturnType()) | 
|  | for (BasicBlock &BB : *NF) | 
|  | if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) { | 
|  | Value *RetVal; | 
|  |  | 
|  | if (NFTy->getReturnType()->isVoidTy()) { | 
|  | RetVal = nullptr; | 
|  | } else { | 
|  | assert(RetTy->isStructTy() || RetTy->isArrayTy()); | 
|  | // The original return value was a struct or array, insert | 
|  | // extractvalue/insertvalue chains to extract only the values we need | 
|  | // to return and insert them into our new result. | 
|  | // This does generate messy code, but we'll let it to instcombine to | 
|  | // clean that up. | 
|  | Value *OldRet = RI->getOperand(0); | 
|  | // Start out building up our return value from undef | 
|  | RetVal = UndefValue::get(NRetTy); | 
|  | for (unsigned i = 0; i != RetCount; ++i) | 
|  | if (NewRetIdxs[i] != -1) { | 
|  | ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i, | 
|  | "oldret", RI); | 
|  | if (RetTypes.size() > 1) { | 
|  | // We're still returning a struct, so reinsert the value into | 
|  | // our new return value at the new index | 
|  |  | 
|  | RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i], | 
|  | "newret", RI); | 
|  | } else { | 
|  | // We are now only returning a simple value, so just return the | 
|  | // extracted value. | 
|  | RetVal = EV; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Replace the return instruction with one returning the new return | 
|  | // value (possibly 0 if we became void). | 
|  | ReturnInst::Create(F->getContext(), RetVal, RI); | 
|  | BB.getInstList().erase(RI); | 
|  | } | 
|  |  | 
|  | // Clone metadatas from the old function, including debug info descriptor. | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; | 
|  | F->getAllMetadata(MDs); | 
|  | for (auto MD : MDs) | 
|  | NF->addMetadata(MD.first, *MD.second); | 
|  |  | 
|  | // Now that the old function is dead, delete it. | 
|  | F->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses DeadArgumentEliminationPass::run(Module &M, | 
|  | ModuleAnalysisManager &) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // First pass: Do a simple check to see if any functions can have their "..." | 
|  | // removed.  We can do this if they never call va_start.  This loop cannot be | 
|  | // fused with the next loop, because deleting a function invalidates | 
|  | // information computed while surveying other functions. | 
|  | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n"); | 
|  | for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { | 
|  | Function &F = *I++; | 
|  | if (F.getFunctionType()->isVarArg()) | 
|  | Changed |= DeleteDeadVarargs(F); | 
|  | } | 
|  |  | 
|  | // Second phase:loop through the module, determining which arguments are live. | 
|  | // We assume all arguments are dead unless proven otherwise (allowing us to | 
|  | // determine that dead arguments passed into recursive functions are dead). | 
|  | // | 
|  | LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n"); | 
|  | for (auto &F : M) | 
|  | SurveyFunction(F); | 
|  |  | 
|  | // Now, remove all dead arguments and return values from each function in | 
|  | // turn. | 
|  | for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { | 
|  | // Increment now, because the function will probably get removed (ie. | 
|  | // replaced by a new one). | 
|  | Function *F = &*I++; | 
|  | Changed |= RemoveDeadStuffFromFunction(F); | 
|  | } | 
|  |  | 
|  | // Finally, look for any unused parameters in functions with non-local | 
|  | // linkage and replace the passed in parameters with undef. | 
|  | for (auto &F : M) | 
|  | Changed |= RemoveDeadArgumentsFromCallers(F); | 
|  |  | 
|  | if (!Changed) | 
|  | return PreservedAnalyses::all(); | 
|  | return PreservedAnalyses::none(); | 
|  | } |