| //===--------------------- Dispatch.cpp -------------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// |
| /// This file implements methods declared by class RegisterFile, DispatchUnit |
| /// and RetireControlUnit. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "Dispatch.h" |
| #include "Backend.h" |
| #include "HWEventListener.h" |
| #include "Scheduler.h" |
| #include "llvm/Support/Debug.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "llvm-mca" |
| |
| namespace mca { |
| |
| void RegisterFile::addRegisterMapping(WriteState &WS) { |
| unsigned RegID = WS.getRegisterID(); |
| assert(RegID && "Adding an invalid register definition?"); |
| |
| RegisterMappings[RegID] = &WS; |
| for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) |
| RegisterMappings[*I] = &WS; |
| if (MaxUsedMappings == NumUsedMappings) |
| MaxUsedMappings++; |
| NumUsedMappings++; |
| TotalMappingsCreated++; |
| // If this is a partial update, then we are done. |
| if (!WS.fullyUpdatesSuperRegs()) |
| return; |
| |
| for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) |
| RegisterMappings[*I] = &WS; |
| } |
| |
| void RegisterFile::invalidateRegisterMapping(const WriteState &WS) { |
| unsigned RegID = WS.getRegisterID(); |
| bool ShouldInvalidateSuperRegs = WS.fullyUpdatesSuperRegs(); |
| |
| assert(RegID != 0 && "Invalidating an already invalid register?"); |
| assert(WS.getCyclesLeft() != -512 && |
| "Invalidating a write of unknown cycles!"); |
| assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!"); |
| if (!RegisterMappings[RegID]) |
| return; |
| |
| assert(NumUsedMappings); |
| NumUsedMappings--; |
| |
| if (RegisterMappings[RegID] == &WS) |
| RegisterMappings[RegID] = nullptr; |
| |
| for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) |
| if (RegisterMappings[*I] == &WS) |
| RegisterMappings[*I] = nullptr; |
| |
| if (!ShouldInvalidateSuperRegs) |
| return; |
| |
| for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) |
| if (RegisterMappings[*I] == &WS) |
| RegisterMappings[*I] = nullptr; |
| } |
| |
| // Update the number of used mappings in the event of instruction retired. |
| // This mehod delegates to the register file the task of invalidating |
| // register mappings that were created for instruction IS. |
| void DispatchUnit::invalidateRegisterMappings(const Instruction &IS) { |
| for (const std::unique_ptr<WriteState> &WS : IS.getDefs()) { |
| DEBUG(dbgs() << "[RAT] Invalidating mapping for: "); |
| DEBUG(WS->dump()); |
| RAT->invalidateRegisterMapping(*WS.get()); |
| } |
| } |
| |
| void RegisterFile::collectWrites(SmallVectorImpl<WriteState *> &Writes, |
| unsigned RegID) const { |
| assert(RegID && RegID < RegisterMappings.size()); |
| WriteState *WS = RegisterMappings[RegID]; |
| if (WS) { |
| DEBUG(dbgs() << "Found a dependent use of RegID=" << RegID << '\n'); |
| Writes.push_back(WS); |
| } |
| |
| // Handle potential partial register updates. |
| for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) { |
| WS = RegisterMappings[*I]; |
| if (WS && std::find(Writes.begin(), Writes.end(), WS) == Writes.end()) { |
| DEBUG(dbgs() << "Found a dependent use of subReg " << *I << " (part of " |
| << RegID << ")\n"); |
| Writes.push_back(WS); |
| } |
| } |
| } |
| |
| bool RegisterFile::isAvailable(unsigned NumRegWrites) { |
| if (!TotalMappings) |
| return true; |
| if (NumRegWrites > TotalMappings) { |
| // The user specified a too small number of registers. |
| // Artificially set the number of temporaries to NumRegWrites. |
| errs() << "warning: not enough temporaries in the register file. " |
| << "The register file size has been automatically increased to " |
| << NumRegWrites << '\n'; |
| TotalMappings = NumRegWrites; |
| } |
| |
| return NumRegWrites + NumUsedMappings <= TotalMappings; |
| } |
| |
| #ifndef NDEBUG |
| void RegisterFile::dump() const { |
| for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I) |
| if (RegisterMappings[I]) { |
| dbgs() << MRI.getName(I) << ", " << I << ", "; |
| RegisterMappings[I]->dump(); |
| } |
| |
| dbgs() << "TotalMappingsCreated: " << TotalMappingsCreated |
| << ", MaxUsedMappings: " << MaxUsedMappings |
| << ", NumUsedMappings: " << NumUsedMappings << '\n'; |
| } |
| #endif |
| |
| // Reserves a number of slots, and returns a new token. |
| unsigned RetireControlUnit::reserveSlot(unsigned Index, unsigned NumMicroOps) { |
| assert(isAvailable(NumMicroOps)); |
| unsigned NormalizedQuantity = |
| std::min(NumMicroOps, static_cast<unsigned>(Queue.size())); |
| // Zero latency instructions may have zero mOps. Artificially bump this |
| // value to 1. Although zero latency instructions don't consume scheduler |
| // resources, they still consume one slot in the retire queue. |
| NormalizedQuantity = std::max(NormalizedQuantity, 1U); |
| unsigned TokenID = NextAvailableSlotIdx; |
| Queue[NextAvailableSlotIdx] = {Index, NormalizedQuantity, false}; |
| NextAvailableSlotIdx += NormalizedQuantity; |
| NextAvailableSlotIdx %= Queue.size(); |
| AvailableSlots -= NormalizedQuantity; |
| return TokenID; |
| } |
| |
| void DispatchUnit::notifyInstructionDispatched(unsigned Index) { |
| DEBUG(dbgs() << "[E] Instruction Dispatched: " << Index << '\n'); |
| Owner->notifyInstructionEvent( |
| HWInstructionEvent(HWInstructionEvent::Dispatched, Index)); |
| } |
| |
| void DispatchUnit::notifyInstructionRetired(unsigned Index) { |
| DEBUG(dbgs() << "[E] Instruction Retired: " << Index << '\n'); |
| Owner->notifyInstructionEvent( |
| HWInstructionEvent(HWInstructionEvent::Retired, Index)); |
| |
| const Instruction &IS = Owner->getInstruction(Index); |
| invalidateRegisterMappings(IS); |
| Owner->eraseInstruction(Index); |
| } |
| |
| void RetireControlUnit::cycleEvent() { |
| if (isEmpty()) |
| return; |
| |
| unsigned NumRetired = 0; |
| while (!isEmpty()) { |
| if (MaxRetirePerCycle != 0 && NumRetired == MaxRetirePerCycle) |
| break; |
| RUToken &Current = Queue[CurrentInstructionSlotIdx]; |
| assert(Current.NumSlots && "Reserved zero slots?"); |
| if (!Current.Executed) |
| break; |
| Owner->notifyInstructionRetired(Current.Index); |
| CurrentInstructionSlotIdx += Current.NumSlots; |
| CurrentInstructionSlotIdx %= Queue.size(); |
| AvailableSlots += Current.NumSlots; |
| NumRetired++; |
| } |
| } |
| |
| void RetireControlUnit::onInstructionExecuted(unsigned TokenID) { |
| assert(Queue.size() > TokenID); |
| assert(Queue[TokenID].Executed == false && Queue[TokenID].Index != ~0U); |
| Queue[TokenID].Executed = true; |
| } |
| |
| #ifndef NDEBUG |
| void RetireControlUnit::dump() const { |
| dbgs() << "Retire Unit: { Total Slots=" << Queue.size() |
| << ", Available Slots=" << AvailableSlots << " }\n"; |
| } |
| #endif |
| |
| bool DispatchUnit::checkRAT(const InstrDesc &Desc) { |
| unsigned NumWrites = Desc.Writes.size(); |
| if (RAT->isAvailable(NumWrites)) |
| return true; |
| DispatchStalls[DS_RAT_REG_UNAVAILABLE]++; |
| return false; |
| } |
| |
| bool DispatchUnit::checkRCU(const InstrDesc &Desc) { |
| unsigned NumMicroOps = Desc.NumMicroOps; |
| if (RCU->isAvailable(NumMicroOps)) |
| return true; |
| DispatchStalls[DS_RCU_TOKEN_UNAVAILABLE]++; |
| return false; |
| } |
| |
| bool DispatchUnit::checkScheduler(const InstrDesc &Desc) { |
| // If this is a zero-latency instruction, then it bypasses |
| // the scheduler. |
| switch (SC->canBeDispatched(Desc)) { |
| case Scheduler::HWS_AVAILABLE: |
| return true; |
| case Scheduler::HWS_QUEUE_UNAVAILABLE: |
| DispatchStalls[DS_SQ_TOKEN_UNAVAILABLE]++; |
| break; |
| case Scheduler::HWS_LD_QUEUE_UNAVAILABLE: |
| DispatchStalls[DS_LDQ_TOKEN_UNAVAILABLE]++; |
| break; |
| case Scheduler::HWS_ST_QUEUE_UNAVAILABLE: |
| DispatchStalls[DS_STQ_TOKEN_UNAVAILABLE]++; |
| break; |
| case Scheduler::HWS_DISPATCH_GROUP_RESTRICTION: |
| DispatchStalls[DS_DISPATCH_GROUP_RESTRICTION]++; |
| } |
| |
| return false; |
| } |
| |
| unsigned DispatchUnit::dispatch(unsigned IID, Instruction *NewInst) { |
| assert(!CarryOver && "Cannot dispatch another instruction!"); |
| unsigned NumMicroOps = NewInst->getDesc().NumMicroOps; |
| if (NumMicroOps > DispatchWidth) { |
| assert(AvailableEntries == DispatchWidth); |
| AvailableEntries = 0; |
| CarryOver = NumMicroOps - DispatchWidth; |
| } else { |
| assert(AvailableEntries >= NumMicroOps); |
| AvailableEntries -= NumMicroOps; |
| } |
| |
| // Reserve slots in the RCU. |
| unsigned RCUTokenID = RCU->reserveSlot(IID, NumMicroOps); |
| NewInst->setRCUTokenID(RCUTokenID); |
| notifyInstructionDispatched(IID); |
| |
| SC->scheduleInstruction(IID, NewInst); |
| return RCUTokenID; |
| } |
| |
| #ifndef NDEBUG |
| void DispatchUnit::dump() const { |
| RAT->dump(); |
| RCU->dump(); |
| |
| unsigned DSRAT = DispatchStalls[DS_RAT_REG_UNAVAILABLE]; |
| unsigned DSRCU = DispatchStalls[DS_RCU_TOKEN_UNAVAILABLE]; |
| unsigned DSSCHEDQ = DispatchStalls[DS_SQ_TOKEN_UNAVAILABLE]; |
| unsigned DSLQ = DispatchStalls[DS_LDQ_TOKEN_UNAVAILABLE]; |
| unsigned DSSQ = DispatchStalls[DS_STQ_TOKEN_UNAVAILABLE]; |
| |
| dbgs() << "STALLS --- RAT: " << DSRAT << ", RCU: " << DSRCU |
| << ", SCHED_QUEUE: " << DSSCHEDQ << ", LOAD_QUEUE: " << DSLQ |
| << ", STORE_QUEUE: " << DSSQ << '\n'; |
| } |
| #endif |
| |
| } // namespace mca |