|  | //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the X86 implementation of TargetFrameLowering class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86FrameLowering.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86InstrInfo.h" | 
|  | #include "X86MachineFunctionInfo.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/Analysis/EHPersonalities.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/WinEHFuncInfo.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <cstdlib> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, | 
|  | unsigned StackAlignOverride) | 
|  | : TargetFrameLowering(StackGrowsDown, StackAlignOverride, | 
|  | STI.is64Bit() ? -8 : -4), | 
|  | STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { | 
|  | // Cache a bunch of frame-related predicates for this subtarget. | 
|  | SlotSize = TRI->getSlotSize(); | 
|  | Is64Bit = STI.is64Bit(); | 
|  | IsLP64 = STI.isTarget64BitLP64(); | 
|  | // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. | 
|  | Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); | 
|  | StackPtr = TRI->getStackRegister(); | 
|  | } | 
|  |  | 
|  | bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { | 
|  | return !MF.getFrameInfo().hasVarSizedObjects() && | 
|  | !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); | 
|  | } | 
|  |  | 
|  | /// canSimplifyCallFramePseudos - If there is a reserved call frame, the | 
|  | /// call frame pseudos can be simplified.  Having a FP, as in the default | 
|  | /// implementation, is not sufficient here since we can't always use it. | 
|  | /// Use a more nuanced condition. | 
|  | bool | 
|  | X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { | 
|  | return hasReservedCallFrame(MF) || | 
|  | (hasFP(MF) && !TRI->needsStackRealignment(MF)) || | 
|  | TRI->hasBasePointer(MF); | 
|  | } | 
|  |  | 
|  | // needsFrameIndexResolution - Do we need to perform FI resolution for | 
|  | // this function. Normally, this is required only when the function | 
|  | // has any stack objects. However, FI resolution actually has another job, | 
|  | // not apparent from the title - it resolves callframesetup/destroy | 
|  | // that were not simplified earlier. | 
|  | // So, this is required for x86 functions that have push sequences even | 
|  | // when there are no stack objects. | 
|  | bool | 
|  | X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { | 
|  | return MF.getFrameInfo().hasStackObjects() || | 
|  | MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); | 
|  | } | 
|  |  | 
|  | /// hasFP - Return true if the specified function should have a dedicated frame | 
|  | /// pointer register.  This is true if the function has variable sized allocas | 
|  | /// or if frame pointer elimination is disabled. | 
|  | bool X86FrameLowering::hasFP(const MachineFunction &MF) const { | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | return (MF.getTarget().Options.DisableFramePointerElim(MF) || | 
|  | TRI->needsStackRealignment(MF) || | 
|  | MFI.hasVarSizedObjects() || | 
|  | MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || | 
|  | MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || | 
|  | MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || | 
|  | MFI.hasStackMap() || MFI.hasPatchPoint() || | 
|  | MFI.hasCopyImplyingStackAdjustment()); | 
|  | } | 
|  |  | 
|  | static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) { | 
|  | if (IsLP64) { | 
|  | if (isInt<8>(Imm)) | 
|  | return X86::SUB64ri8; | 
|  | return X86::SUB64ri32; | 
|  | } else { | 
|  | if (isInt<8>(Imm)) | 
|  | return X86::SUB32ri8; | 
|  | return X86::SUB32ri; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) { | 
|  | if (IsLP64) { | 
|  | if (isInt<8>(Imm)) | 
|  | return X86::ADD64ri8; | 
|  | return X86::ADD64ri32; | 
|  | } else { | 
|  | if (isInt<8>(Imm)) | 
|  | return X86::ADD32ri8; | 
|  | return X86::ADD32ri; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned getSUBrrOpcode(unsigned isLP64) { | 
|  | return isLP64 ? X86::SUB64rr : X86::SUB32rr; | 
|  | } | 
|  |  | 
|  | static unsigned getADDrrOpcode(unsigned isLP64) { | 
|  | return isLP64 ? X86::ADD64rr : X86::ADD32rr; | 
|  | } | 
|  |  | 
|  | static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { | 
|  | if (IsLP64) { | 
|  | if (isInt<8>(Imm)) | 
|  | return X86::AND64ri8; | 
|  | return X86::AND64ri32; | 
|  | } | 
|  | if (isInt<8>(Imm)) | 
|  | return X86::AND32ri8; | 
|  | return X86::AND32ri; | 
|  | } | 
|  |  | 
|  | static unsigned getLEArOpcode(unsigned IsLP64) { | 
|  | return IsLP64 ? X86::LEA64r : X86::LEA32r; | 
|  | } | 
|  |  | 
|  | /// findDeadCallerSavedReg - Return a caller-saved register that isn't live | 
|  | /// when it reaches the "return" instruction. We can then pop a stack object | 
|  | /// to this register without worry about clobbering it. | 
|  | static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator &MBBI, | 
|  | const X86RegisterInfo *TRI, | 
|  | bool Is64Bit) { | 
|  | const MachineFunction *MF = MBB.getParent(); | 
|  | if (MF->callsEHReturn()) | 
|  | return 0; | 
|  |  | 
|  | const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF); | 
|  |  | 
|  | if (MBBI == MBB.end()) | 
|  | return 0; | 
|  |  | 
|  | switch (MBBI->getOpcode()) { | 
|  | default: return 0; | 
|  | case TargetOpcode::PATCHABLE_RET: | 
|  | case X86::RET: | 
|  | case X86::RETL: | 
|  | case X86::RETQ: | 
|  | case X86::RETIL: | 
|  | case X86::RETIQ: | 
|  | case X86::TCRETURNdi: | 
|  | case X86::TCRETURNri: | 
|  | case X86::TCRETURNmi: | 
|  | case X86::TCRETURNdi64: | 
|  | case X86::TCRETURNri64: | 
|  | case X86::TCRETURNmi64: | 
|  | case X86::EH_RETURN: | 
|  | case X86::EH_RETURN64: { | 
|  | SmallSet<uint16_t, 8> Uses; | 
|  | for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MBBI->getOperand(i); | 
|  | if (!MO.isReg() || MO.isDef()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (!Reg) | 
|  | continue; | 
|  | for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) | 
|  | Uses.insert(*AI); | 
|  | } | 
|  |  | 
|  | for (auto CS : AvailableRegs) | 
|  | if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP && | 
|  | CS != X86::ESP) | 
|  | return CS; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool isEAXLiveIn(MachineBasicBlock &MBB) { | 
|  | for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { | 
|  | unsigned Reg = RegMask.PhysReg; | 
|  |  | 
|  | if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || | 
|  | Reg == X86::AH || Reg == X86::AL) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check if the flags need to be preserved before the terminators. | 
|  | /// This would be the case, if the eflags is live-in of the region | 
|  | /// composed by the terminators or live-out of that region, without | 
|  | /// being defined by a terminator. | 
|  | static bool | 
|  | flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { | 
|  | for (const MachineInstr &MI : MBB.terminators()) { | 
|  | bool BreakNext = false; | 
|  | for (const MachineOperand &MO : MI.operands()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg != X86::EFLAGS) | 
|  | continue; | 
|  |  | 
|  | // This terminator needs an eflags that is not defined | 
|  | // by a previous another terminator: | 
|  | // EFLAGS is live-in of the region composed by the terminators. | 
|  | if (!MO.isDef()) | 
|  | return true; | 
|  | // This terminator defines the eflags, i.e., we don't need to preserve it. | 
|  | // However, we still need to check this specific terminator does not | 
|  | // read a live-in value. | 
|  | BreakNext = true; | 
|  | } | 
|  | // We found a definition of the eflags, no need to preserve them. | 
|  | if (BreakNext) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // None of the terminators use or define the eflags. | 
|  | // Check if they are live-out, that would imply we need to preserve them. | 
|  | for (const MachineBasicBlock *Succ : MBB.successors()) | 
|  | if (Succ->isLiveIn(X86::EFLAGS)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// emitSPUpdate - Emit a series of instructions to increment / decrement the | 
|  | /// stack pointer by a constant value. | 
|  | void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator &MBBI, | 
|  | const DebugLoc &DL, | 
|  | int64_t NumBytes, bool InEpilogue) const { | 
|  | bool isSub = NumBytes < 0; | 
|  | uint64_t Offset = isSub ? -NumBytes : NumBytes; | 
|  | MachineInstr::MIFlag Flag = | 
|  | isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; | 
|  |  | 
|  | uint64_t Chunk = (1LL << 31) - 1; | 
|  |  | 
|  | if (Offset > Chunk) { | 
|  | // Rather than emit a long series of instructions for large offsets, | 
|  | // load the offset into a register and do one sub/add | 
|  | unsigned Reg = 0; | 
|  | unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); | 
|  |  | 
|  | if (isSub && !isEAXLiveIn(MBB)) | 
|  | Reg = Rax; | 
|  | else | 
|  | Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); | 
|  |  | 
|  | unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; | 
|  | unsigned AddSubRROpc = | 
|  | isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); | 
|  | if (Reg) { | 
|  | BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) | 
|  | .addImm(Offset) | 
|  | .setMIFlag(Flag); | 
|  | MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) | 
|  | .addReg(StackPtr) | 
|  | .addReg(Reg); | 
|  | MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. | 
|  | return; | 
|  | } else if (Offset > 8 * Chunk) { | 
|  | // If we would need more than 8 add or sub instructions (a >16GB stack | 
|  | // frame), it's worth spilling RAX to materialize this immediate. | 
|  | //   pushq %rax | 
|  | //   movabsq +-$Offset+-SlotSize, %rax | 
|  | //   addq %rsp, %rax | 
|  | //   xchg %rax, (%rsp) | 
|  | //   movq (%rsp), %rsp | 
|  | assert(Is64Bit && "can't have 32-bit 16GB stack frame"); | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) | 
|  | .addReg(Rax, RegState::Kill) | 
|  | .setMIFlag(Flag); | 
|  | // Subtract is not commutative, so negate the offset and always use add. | 
|  | // Subtract 8 less and add 8 more to account for the PUSH we just did. | 
|  | if (isSub) | 
|  | Offset = -(Offset - SlotSize); | 
|  | else | 
|  | Offset = Offset + SlotSize; | 
|  | BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) | 
|  | .addImm(Offset) | 
|  | .setMIFlag(Flag); | 
|  | MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) | 
|  | .addReg(Rax) | 
|  | .addReg(StackPtr); | 
|  | MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. | 
|  | // Exchange the new SP in RAX with the top of the stack. | 
|  | addRegOffset( | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), | 
|  | StackPtr, false, 0); | 
|  | // Load new SP from the top of the stack into RSP. | 
|  | addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), | 
|  | StackPtr, false, 0); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (Offset) { | 
|  | uint64_t ThisVal = std::min(Offset, Chunk); | 
|  | if (ThisVal == SlotSize) { | 
|  | // Use push / pop for slot sized adjustments as a size optimization. We | 
|  | // need to find a dead register when using pop. | 
|  | unsigned Reg = isSub | 
|  | ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) | 
|  | : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); | 
|  | if (Reg) { | 
|  | unsigned Opc = isSub | 
|  | ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) | 
|  | : (Is64Bit ? X86::POP64r  : X86::POP32r); | 
|  | BuildMI(MBB, MBBI, DL, TII.get(Opc)) | 
|  | .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) | 
|  | .setMIFlag(Flag); | 
|  | Offset -= ThisVal; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) | 
|  | .setMIFlag(Flag); | 
|  |  | 
|  | Offset -= ThisVal; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, | 
|  | const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { | 
|  | assert(Offset != 0 && "zero offset stack adjustment requested"); | 
|  |  | 
|  | // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue | 
|  | // is tricky. | 
|  | bool UseLEA; | 
|  | if (!InEpilogue) { | 
|  | // Check if inserting the prologue at the beginning | 
|  | // of MBB would require to use LEA operations. | 
|  | // We need to use LEA operations if EFLAGS is live in, because | 
|  | // it means an instruction will read it before it gets defined. | 
|  | UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); | 
|  | } else { | 
|  | // If we can use LEA for SP but we shouldn't, check that none | 
|  | // of the terminators uses the eflags. Otherwise we will insert | 
|  | // a ADD that will redefine the eflags and break the condition. | 
|  | // Alternatively, we could move the ADD, but this may not be possible | 
|  | // and is an optimization anyway. | 
|  | UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); | 
|  | if (UseLEA && !STI.useLeaForSP()) | 
|  | UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); | 
|  | // If that assert breaks, that means we do not do the right thing | 
|  | // in canUseAsEpilogue. | 
|  | assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && | 
|  | "We shouldn't have allowed this insertion point"); | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder MI; | 
|  | if (UseLEA) { | 
|  | MI = addRegOffset(BuildMI(MBB, MBBI, DL, | 
|  | TII.get(getLEArOpcode(Uses64BitFramePtr)), | 
|  | StackPtr), | 
|  | StackPtr, false, Offset); | 
|  | } else { | 
|  | bool IsSub = Offset < 0; | 
|  | uint64_t AbsOffset = IsSub ? -Offset : Offset; | 
|  | unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) | 
|  | : getADDriOpcode(Uses64BitFramePtr, AbsOffset); | 
|  | MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) | 
|  | .addReg(StackPtr) | 
|  | .addImm(AbsOffset); | 
|  | MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. | 
|  | } | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator &MBBI, | 
|  | bool doMergeWithPrevious) const { | 
|  | if ((doMergeWithPrevious && MBBI == MBB.begin()) || | 
|  | (!doMergeWithPrevious && MBBI == MBB.end())) | 
|  | return 0; | 
|  |  | 
|  | MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; | 
|  |  | 
|  | PI = skipDebugInstructionsBackward(PI, MBB.begin()); | 
|  | // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI | 
|  | // instruction, and that there are no DBG_VALUE or other instructions between | 
|  | // ADD/SUB/LEA and its corresponding CFI instruction. | 
|  | /* TODO: Add support for the case where there are multiple CFI instructions | 
|  | below the ADD/SUB/LEA, e.g.: | 
|  | ... | 
|  | add | 
|  | cfi_def_cfa_offset | 
|  | cfi_offset | 
|  | ... | 
|  | */ | 
|  | if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) | 
|  | PI = std::prev(PI); | 
|  |  | 
|  | unsigned Opc = PI->getOpcode(); | 
|  | int Offset = 0; | 
|  |  | 
|  | if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || | 
|  | Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && | 
|  | PI->getOperand(0).getReg() == StackPtr){ | 
|  | assert(PI->getOperand(1).getReg() == StackPtr); | 
|  | Offset = PI->getOperand(2).getImm(); | 
|  | } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && | 
|  | PI->getOperand(0).getReg() == StackPtr && | 
|  | PI->getOperand(1).getReg() == StackPtr && | 
|  | PI->getOperand(2).getImm() == 1 && | 
|  | PI->getOperand(3).getReg() == X86::NoRegister && | 
|  | PI->getOperand(5).getReg() == X86::NoRegister) { | 
|  | // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. | 
|  | Offset = PI->getOperand(4).getImm(); | 
|  | } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || | 
|  | Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && | 
|  | PI->getOperand(0).getReg() == StackPtr) { | 
|  | assert(PI->getOperand(1).getReg() == StackPtr); | 
|  | Offset = -PI->getOperand(2).getImm(); | 
|  | } else | 
|  | return 0; | 
|  |  | 
|  | PI = MBB.erase(PI); | 
|  | if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI); | 
|  | if (!doMergeWithPrevious) | 
|  | MBBI = skipDebugInstructionsForward(PI, MBB.end()); | 
|  |  | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MBBI, | 
|  | const DebugLoc &DL, | 
|  | const MCCFIInstruction &CFIInst) const { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | unsigned CFIIndex = MF.addFrameInst(CFIInst); | 
|  | BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) | 
|  | .addCFIIndex(CFIIndex); | 
|  | } | 
|  |  | 
|  | void X86FrameLowering::emitCalleeSavedFrameMoves( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, | 
|  | const DebugLoc &DL) const { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MachineModuleInfo &MMI = MF.getMMI(); | 
|  | const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); | 
|  |  | 
|  | // Add callee saved registers to move list. | 
|  | const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); | 
|  | if (CSI.empty()) return; | 
|  |  | 
|  | // Calculate offsets. | 
|  | for (std::vector<CalleeSavedInfo>::const_iterator | 
|  | I = CSI.begin(), E = CSI.end(); I != E; ++I) { | 
|  | int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); | 
|  | unsigned Reg = I->getReg(); | 
|  |  | 
|  | unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); | 
|  | BuildCFI(MBB, MBBI, DL, | 
|  | MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86FrameLowering::emitStackProbe(MachineFunction &MF, | 
|  | MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MBBI, | 
|  | const DebugLoc &DL, bool InProlog) const { | 
|  | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); | 
|  | if (STI.isTargetWindowsCoreCLR()) { | 
|  | if (InProlog) { | 
|  | emitStackProbeInlineStub(MF, MBB, MBBI, DL, true); | 
|  | } else { | 
|  | emitStackProbeInline(MF, MBB, MBBI, DL, false); | 
|  | } | 
|  | } else { | 
|  | emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86FrameLowering::inlineStackProbe(MachineFunction &MF, | 
|  | MachineBasicBlock &PrologMBB) const { | 
|  | const StringRef ChkStkStubSymbol = "__chkstk_stub"; | 
|  | MachineInstr *ChkStkStub = nullptr; | 
|  |  | 
|  | for (MachineInstr &MI : PrologMBB) { | 
|  | if (MI.isCall() && MI.getOperand(0).isSymbol() && | 
|  | ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) { | 
|  | ChkStkStub = &MI; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ChkStkStub != nullptr) { | 
|  | assert(!ChkStkStub->isBundled() && | 
|  | "Not expecting bundled instructions here"); | 
|  | MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator()); | 
|  | assert(std::prev(MBBI) == ChkStkStub && | 
|  | "MBBI expected after __chkstk_stub."); | 
|  | DebugLoc DL = PrologMBB.findDebugLoc(MBBI); | 
|  | emitStackProbeInline(MF, PrologMBB, MBBI, DL, true); | 
|  | ChkStkStub->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, | 
|  | MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MBBI, | 
|  | const DebugLoc &DL, | 
|  | bool InProlog) const { | 
|  | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); | 
|  | assert(STI.is64Bit() && "different expansion needed for 32 bit"); | 
|  | assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); | 
|  | const TargetInstrInfo &TII = *STI.getInstrInfo(); | 
|  | const BasicBlock *LLVM_BB = MBB.getBasicBlock(); | 
|  |  | 
|  | // RAX contains the number of bytes of desired stack adjustment. | 
|  | // The handling here assumes this value has already been updated so as to | 
|  | // maintain stack alignment. | 
|  | // | 
|  | // We need to exit with RSP modified by this amount and execute suitable | 
|  | // page touches to notify the OS that we're growing the stack responsibly. | 
|  | // All stack probing must be done without modifying RSP. | 
|  | // | 
|  | // MBB: | 
|  | //    SizeReg = RAX; | 
|  | //    ZeroReg = 0 | 
|  | //    CopyReg = RSP | 
|  | //    Flags, TestReg = CopyReg - SizeReg | 
|  | //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg | 
|  | //    LimitReg = gs magic thread env access | 
|  | //    if FinalReg >= LimitReg goto ContinueMBB | 
|  | // RoundBB: | 
|  | //    RoundReg = page address of FinalReg | 
|  | // LoopMBB: | 
|  | //    LoopReg = PHI(LimitReg,ProbeReg) | 
|  | //    ProbeReg = LoopReg - PageSize | 
|  | //    [ProbeReg] = 0 | 
|  | //    if (ProbeReg > RoundReg) goto LoopMBB | 
|  | // ContinueMBB: | 
|  | //    RSP = RSP - RAX | 
|  | //    [rest of original MBB] | 
|  |  | 
|  | // Set up the new basic blocks | 
|  | MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); | 
|  |  | 
|  | MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); | 
|  | MF.insert(MBBIter, RoundMBB); | 
|  | MF.insert(MBBIter, LoopMBB); | 
|  | MF.insert(MBBIter, ContinueMBB); | 
|  |  | 
|  | // Split MBB and move the tail portion down to ContinueMBB. | 
|  | MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); | 
|  | ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); | 
|  | ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); | 
|  |  | 
|  | // Some useful constants | 
|  | const int64_t ThreadEnvironmentStackLimit = 0x10; | 
|  | const int64_t PageSize = 0x1000; | 
|  | const int64_t PageMask = ~(PageSize - 1); | 
|  |  | 
|  | // Registers we need. For the normal case we use virtual | 
|  | // registers. For the prolog expansion we use RAX, RCX and RDX. | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | const TargetRegisterClass *RegClass = &X86::GR64RegClass; | 
|  | const unsigned SizeReg = InProlog ? (unsigned)X86::RAX | 
|  | : MRI.createVirtualRegister(RegClass), | 
|  | ZeroReg = InProlog ? (unsigned)X86::RCX | 
|  | : MRI.createVirtualRegister(RegClass), | 
|  | CopyReg = InProlog ? (unsigned)X86::RDX | 
|  | : MRI.createVirtualRegister(RegClass), | 
|  | TestReg = InProlog ? (unsigned)X86::RDX | 
|  | : MRI.createVirtualRegister(RegClass), | 
|  | FinalReg = InProlog ? (unsigned)X86::RDX | 
|  | : MRI.createVirtualRegister(RegClass), | 
|  | RoundedReg = InProlog ? (unsigned)X86::RDX | 
|  | : MRI.createVirtualRegister(RegClass), | 
|  | LimitReg = InProlog ? (unsigned)X86::RCX | 
|  | : MRI.createVirtualRegister(RegClass), | 
|  | JoinReg = InProlog ? (unsigned)X86::RCX | 
|  | : MRI.createVirtualRegister(RegClass), | 
|  | ProbeReg = InProlog ? (unsigned)X86::RCX | 
|  | : MRI.createVirtualRegister(RegClass); | 
|  |  | 
|  | // SP-relative offsets where we can save RCX and RDX. | 
|  | int64_t RCXShadowSlot = 0; | 
|  | int64_t RDXShadowSlot = 0; | 
|  |  | 
|  | // If inlining in the prolog, save RCX and RDX. | 
|  | if (InProlog) { | 
|  | // Compute the offsets. We need to account for things already | 
|  | // pushed onto the stack at this point: return address, frame | 
|  | // pointer (if used), and callee saves. | 
|  | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); | 
|  | const bool HasFP = hasFP(MF); | 
|  |  | 
|  | // Check if we need to spill RCX and/or RDX. | 
|  | // Here we assume that no earlier prologue instruction changes RCX and/or | 
|  | // RDX, so checking the block live-ins is enough. | 
|  | const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); | 
|  | const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); | 
|  | int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); | 
|  | // Assign the initial slot to both registers, then change RDX's slot if both | 
|  | // need to be spilled. | 
|  | if (IsRCXLiveIn) | 
|  | RCXShadowSlot = InitSlot; | 
|  | if (IsRDXLiveIn) | 
|  | RDXShadowSlot = InitSlot; | 
|  | if (IsRDXLiveIn && IsRCXLiveIn) | 
|  | RDXShadowSlot += 8; | 
|  | // Emit the saves if needed. | 
|  | if (IsRCXLiveIn) | 
|  | addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, | 
|  | RCXShadowSlot) | 
|  | .addReg(X86::RCX); | 
|  | if (IsRDXLiveIn) | 
|  | addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, | 
|  | RDXShadowSlot) | 
|  | .addReg(X86::RDX); | 
|  | } else { | 
|  | // Not in the prolog. Copy RAX to a virtual reg. | 
|  | BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); | 
|  | } | 
|  |  | 
|  | // Add code to MBB to check for overflow and set the new target stack pointer | 
|  | // to zero if so. | 
|  | BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) | 
|  | .addReg(ZeroReg, RegState::Undef) | 
|  | .addReg(ZeroReg, RegState::Undef); | 
|  | BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); | 
|  | BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) | 
|  | .addReg(CopyReg) | 
|  | .addReg(SizeReg); | 
|  | BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) | 
|  | .addReg(TestReg) | 
|  | .addReg(ZeroReg) | 
|  | .addImm(X86::COND_B); | 
|  |  | 
|  | // FinalReg now holds final stack pointer value, or zero if | 
|  | // allocation would overflow. Compare against the current stack | 
|  | // limit from the thread environment block. Note this limit is the | 
|  | // lowest touched page on the stack, not the point at which the OS | 
|  | // will cause an overflow exception, so this is just an optimization | 
|  | // to avoid unnecessarily touching pages that are below the current | 
|  | // SP but already committed to the stack by the OS. | 
|  | BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) | 
|  | .addReg(0) | 
|  | .addImm(1) | 
|  | .addReg(0) | 
|  | .addImm(ThreadEnvironmentStackLimit) | 
|  | .addReg(X86::GS); | 
|  | BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); | 
|  | // Jump if the desired stack pointer is at or above the stack limit. | 
|  | BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); | 
|  |  | 
|  | // Add code to roundMBB to round the final stack pointer to a page boundary. | 
|  | RoundMBB->addLiveIn(FinalReg); | 
|  | BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) | 
|  | .addReg(FinalReg) | 
|  | .addImm(PageMask); | 
|  | BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); | 
|  |  | 
|  | // LimitReg now holds the current stack limit, RoundedReg page-rounded | 
|  | // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page | 
|  | // and probe until we reach RoundedReg. | 
|  | if (!InProlog) { | 
|  | BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) | 
|  | .addReg(LimitReg) | 
|  | .addMBB(RoundMBB) | 
|  | .addReg(ProbeReg) | 
|  | .addMBB(LoopMBB); | 
|  | } | 
|  |  | 
|  | LoopMBB->addLiveIn(JoinReg); | 
|  | addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, | 
|  | false, -PageSize); | 
|  |  | 
|  | // Probe by storing a byte onto the stack. | 
|  | BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) | 
|  | .addReg(ProbeReg) | 
|  | .addImm(1) | 
|  | .addReg(0) | 
|  | .addImm(0) | 
|  | .addReg(0) | 
|  | .addImm(0); | 
|  |  | 
|  | LoopMBB->addLiveIn(RoundedReg); | 
|  | BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) | 
|  | .addReg(RoundedReg) | 
|  | .addReg(ProbeReg); | 
|  | BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); | 
|  |  | 
|  | MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); | 
|  |  | 
|  | // If in prolog, restore RDX and RCX. | 
|  | if (InProlog) { | 
|  | if (RCXShadowSlot) // It means we spilled RCX in the prologue. | 
|  | addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, | 
|  | TII.get(X86::MOV64rm), X86::RCX), | 
|  | X86::RSP, false, RCXShadowSlot); | 
|  | if (RDXShadowSlot) // It means we spilled RDX in the prologue. | 
|  | addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, | 
|  | TII.get(X86::MOV64rm), X86::RDX), | 
|  | X86::RSP, false, RDXShadowSlot); | 
|  | } | 
|  |  | 
|  | // Now that the probing is done, add code to continueMBB to update | 
|  | // the stack pointer for real. | 
|  | ContinueMBB->addLiveIn(SizeReg); | 
|  | BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) | 
|  | .addReg(X86::RSP) | 
|  | .addReg(SizeReg); | 
|  |  | 
|  | // Add the control flow edges we need. | 
|  | MBB.addSuccessor(ContinueMBB); | 
|  | MBB.addSuccessor(RoundMBB); | 
|  | RoundMBB->addSuccessor(LoopMBB); | 
|  | LoopMBB->addSuccessor(ContinueMBB); | 
|  | LoopMBB->addSuccessor(LoopMBB); | 
|  |  | 
|  | // Mark all the instructions added to the prolog as frame setup. | 
|  | if (InProlog) { | 
|  | for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { | 
|  | BeforeMBBI->setFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  | for (MachineInstr &MI : *RoundMBB) { | 
|  | MI.setFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  | for (MachineInstr &MI : *LoopMBB) { | 
|  | MI.setFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  | for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); | 
|  | CMBBI != ContinueMBBI; ++CMBBI) { | 
|  | CMBBI->setFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, | 
|  | MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MBBI, | 
|  | const DebugLoc &DL, | 
|  | bool InProlog) const { | 
|  | bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; | 
|  |  | 
|  | // FIXME: Add retpoline support and remove this. | 
|  | if (Is64Bit && IsLargeCodeModel && STI.useRetpolineIndirectCalls()) | 
|  | report_fatal_error("Emitting stack probe calls on 64-bit with the large " | 
|  | "code model and retpoline not yet implemented."); | 
|  |  | 
|  | unsigned CallOp; | 
|  | if (Is64Bit) | 
|  | CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; | 
|  | else | 
|  | CallOp = X86::CALLpcrel32; | 
|  |  | 
|  | StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); | 
|  |  | 
|  | MachineInstrBuilder CI; | 
|  | MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); | 
|  |  | 
|  | // All current stack probes take AX and SP as input, clobber flags, and | 
|  | // preserve all registers. x86_64 probes leave RSP unmodified. | 
|  | if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { | 
|  | // For the large code model, we have to call through a register. Use R11, | 
|  | // as it is scratch in all supported calling conventions. | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) | 
|  | .addExternalSymbol(MF.createExternalSymbolName(Symbol)); | 
|  | CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); | 
|  | } else { | 
|  | CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) | 
|  | .addExternalSymbol(MF.createExternalSymbolName(Symbol)); | 
|  | } | 
|  |  | 
|  | unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; | 
|  | unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; | 
|  | CI.addReg(AX, RegState::Implicit) | 
|  | .addReg(SP, RegState::Implicit) | 
|  | .addReg(AX, RegState::Define | RegState::Implicit) | 
|  | .addReg(SP, RegState::Define | RegState::Implicit) | 
|  | .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); | 
|  |  | 
|  | if (STI.isTargetWin64() || !STI.isOSWindows()) { | 
|  | // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. | 
|  | // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp | 
|  | // themselves. They also does not clobber %rax so we can reuse it when | 
|  | // adjusting %rsp. | 
|  | // All other platforms do not specify a particular ABI for the stack probe | 
|  | // function, so we arbitrarily define it to not adjust %esp/%rsp itself. | 
|  | BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) | 
|  | .addReg(SP) | 
|  | .addReg(AX); | 
|  | } | 
|  |  | 
|  | if (InProlog) { | 
|  | // Apply the frame setup flag to all inserted instrs. | 
|  | for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) | 
|  | ExpansionMBBI->setFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86FrameLowering::emitStackProbeInlineStub( | 
|  | MachineFunction &MF, MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { | 
|  |  | 
|  | assert(InProlog && "ChkStkStub called outside prolog!"); | 
|  |  | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) | 
|  | .addExternalSymbol("__chkstk_stub"); | 
|  | } | 
|  |  | 
|  | static unsigned calculateSetFPREG(uint64_t SPAdjust) { | 
|  | // Win64 ABI has a less restrictive limitation of 240; 128 works equally well | 
|  | // and might require smaller successive adjustments. | 
|  | const uint64_t Win64MaxSEHOffset = 128; | 
|  | uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); | 
|  | // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. | 
|  | return SEHFrameOffset & -16; | 
|  | } | 
|  |  | 
|  | // If we're forcing a stack realignment we can't rely on just the frame | 
|  | // info, we need to know the ABI stack alignment as well in case we | 
|  | // have a call out.  Otherwise just make sure we have some alignment - we'll | 
|  | // go with the minimum SlotSize. | 
|  | uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment. | 
|  | unsigned StackAlign = getStackAlignment(); | 
|  | if (MF.getFunction().hasFnAttribute("stackrealign")) { | 
|  | if (MFI.hasCalls()) | 
|  | MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; | 
|  | else if (MaxAlign < SlotSize) | 
|  | MaxAlign = SlotSize; | 
|  | } | 
|  | return MaxAlign; | 
|  | } | 
|  |  | 
|  | void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MBBI, | 
|  | const DebugLoc &DL, unsigned Reg, | 
|  | uint64_t MaxAlign) const { | 
|  | uint64_t Val = -MaxAlign; | 
|  | unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); | 
|  | MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) | 
|  | .addReg(Reg) | 
|  | .addImm(Val) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  |  | 
|  | // The EFLAGS implicit def is dead. | 
|  | MI->getOperand(3).setIsDead(); | 
|  | } | 
|  |  | 
|  | bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { | 
|  | // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be | 
|  | // clobbered by any interrupt handler. | 
|  | assert(&STI == &MF.getSubtarget<X86Subtarget>() && | 
|  | "MF used frame lowering for wrong subtarget"); | 
|  | const Function &Fn = MF.getFunction(); | 
|  | const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); | 
|  | return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// emitPrologue - Push callee-saved registers onto the stack, which | 
|  | /// automatically adjust the stack pointer. Adjust the stack pointer to allocate | 
|  | /// space for local variables. Also emit labels used by the exception handler to | 
|  | /// generate the exception handling frames. | 
|  |  | 
|  | /* | 
|  | Here's a gist of what gets emitted: | 
|  |  | 
|  | ; Establish frame pointer, if needed | 
|  | [if needs FP] | 
|  | push  %rbp | 
|  | .cfi_def_cfa_offset 16 | 
|  | .cfi_offset %rbp, -16 | 
|  | .seh_pushreg %rpb | 
|  | mov  %rsp, %rbp | 
|  | .cfi_def_cfa_register %rbp | 
|  |  | 
|  | ; Spill general-purpose registers | 
|  | [for all callee-saved GPRs] | 
|  | pushq %<reg> | 
|  | [if not needs FP] | 
|  | .cfi_def_cfa_offset (offset from RETADDR) | 
|  | .seh_pushreg %<reg> | 
|  |  | 
|  | ; If the required stack alignment > default stack alignment | 
|  | ; rsp needs to be re-aligned.  This creates a "re-alignment gap" | 
|  | ; of unknown size in the stack frame. | 
|  | [if stack needs re-alignment] | 
|  | and  $MASK, %rsp | 
|  |  | 
|  | ; Allocate space for locals | 
|  | [if target is Windows and allocated space > 4096 bytes] | 
|  | ; Windows needs special care for allocations larger | 
|  | ; than one page. | 
|  | mov $NNN, %rax | 
|  | call ___chkstk_ms/___chkstk | 
|  | sub  %rax, %rsp | 
|  | [else] | 
|  | sub  $NNN, %rsp | 
|  |  | 
|  | [if needs FP] | 
|  | .seh_stackalloc (size of XMM spill slots) | 
|  | .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots | 
|  | [else] | 
|  | .seh_stackalloc NNN | 
|  |  | 
|  | ; Spill XMMs | 
|  | ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, | 
|  | ; they may get spilled on any platform, if the current function | 
|  | ; calls @llvm.eh.unwind.init | 
|  | [if needs FP] | 
|  | [for all callee-saved XMM registers] | 
|  | movaps  %<xmm reg>, -MMM(%rbp) | 
|  | [for all callee-saved XMM registers] | 
|  | .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) | 
|  | ; i.e. the offset relative to (%rbp - SEHFrameOffset) | 
|  | [else] | 
|  | [for all callee-saved XMM registers] | 
|  | movaps  %<xmm reg>, KKK(%rsp) | 
|  | [for all callee-saved XMM registers] | 
|  | .seh_savexmm %<xmm reg>, KKK | 
|  |  | 
|  | .seh_endprologue | 
|  |  | 
|  | [if needs base pointer] | 
|  | mov  %rsp, %rbx | 
|  | [if needs to restore base pointer] | 
|  | mov %rsp, -MMM(%rbp) | 
|  |  | 
|  | ; Emit CFI info | 
|  | [if needs FP] | 
|  | [for all callee-saved registers] | 
|  | .cfi_offset %<reg>, (offset from %rbp) | 
|  | [else] | 
|  | .cfi_def_cfa_offset (offset from RETADDR) | 
|  | [for all callee-saved registers] | 
|  | .cfi_offset %<reg>, (offset from %rsp) | 
|  |  | 
|  | Notes: | 
|  | - .seh directives are emitted only for Windows 64 ABI | 
|  | - .cv_fpo directives are emitted on win32 when emitting CodeView | 
|  | - .cfi directives are emitted for all other ABIs | 
|  | - for 32-bit code, substitute %e?? registers for %r?? | 
|  | */ | 
|  |  | 
|  | void X86FrameLowering::emitPrologue(MachineFunction &MF, | 
|  | MachineBasicBlock &MBB) const { | 
|  | assert(&STI == &MF.getSubtarget<X86Subtarget>() && | 
|  | "MF used frame lowering for wrong subtarget"); | 
|  | MachineBasicBlock::iterator MBBI = MBB.begin(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | const Function &Fn = MF.getFunction(); | 
|  | MachineModuleInfo &MMI = MF.getMMI(); | 
|  | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. | 
|  | uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate. | 
|  | bool IsFunclet = MBB.isEHFuncletEntry(); | 
|  | EHPersonality Personality = EHPersonality::Unknown; | 
|  | if (Fn.hasPersonalityFn()) | 
|  | Personality = classifyEHPersonality(Fn.getPersonalityFn()); | 
|  | bool FnHasClrFunclet = | 
|  | MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; | 
|  | bool IsClrFunclet = IsFunclet && FnHasClrFunclet; | 
|  | bool HasFP = hasFP(MF); | 
|  | bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); | 
|  | bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); | 
|  | // FIXME: Emit FPO data for EH funclets. | 
|  | bool NeedsWinFPO = | 
|  | !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); | 
|  | bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; | 
|  | bool NeedsDwarfCFI = | 
|  | !IsWin64Prologue && (MMI.hasDebugInfo() || Fn.needsUnwindTableEntry()); | 
|  | unsigned FramePtr = TRI->getFrameRegister(MF); | 
|  | const unsigned MachineFramePtr = | 
|  | STI.isTarget64BitILP32() | 
|  | ? getX86SubSuperRegister(FramePtr, 64) : FramePtr; | 
|  | unsigned BasePtr = TRI->getBaseRegister(); | 
|  | bool HasWinCFI = false; | 
|  |  | 
|  | // Debug location must be unknown since the first debug location is used | 
|  | // to determine the end of the prologue. | 
|  | DebugLoc DL; | 
|  |  | 
|  | // Add RETADDR move area to callee saved frame size. | 
|  | int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); | 
|  | if (TailCallReturnAddrDelta && IsWin64Prologue) | 
|  | report_fatal_error("Can't handle guaranteed tail call under win64 yet"); | 
|  |  | 
|  | if (TailCallReturnAddrDelta < 0) | 
|  | X86FI->setCalleeSavedFrameSize( | 
|  | X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); | 
|  |  | 
|  | bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty(); | 
|  |  | 
|  | // The default stack probe size is 4096 if the function has no stackprobesize | 
|  | // attribute. | 
|  | unsigned StackProbeSize = 4096; | 
|  | if (Fn.hasFnAttribute("stack-probe-size")) | 
|  | Fn.getFnAttribute("stack-probe-size") | 
|  | .getValueAsString() | 
|  | .getAsInteger(0, StackProbeSize); | 
|  |  | 
|  | // Re-align the stack on 64-bit if the x86-interrupt calling convention is | 
|  | // used and an error code was pushed, since the x86-64 ABI requires a 16-byte | 
|  | // stack alignment. | 
|  | if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && | 
|  | Fn.arg_size() == 2) { | 
|  | StackSize += 8; | 
|  | MFI.setStackSize(StackSize); | 
|  | emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); | 
|  | } | 
|  |  | 
|  | // If this is x86-64 and the Red Zone is not disabled, if we are a leaf | 
|  | // function, and use up to 128 bytes of stack space, don't have a frame | 
|  | // pointer, calls, or dynamic alloca then we do not need to adjust the | 
|  | // stack pointer (we fit in the Red Zone). We also check that we don't | 
|  | // push and pop from the stack. | 
|  | if (has128ByteRedZone(MF) && | 
|  | !TRI->needsStackRealignment(MF) && | 
|  | !MFI.hasVarSizedObjects() &&             // No dynamic alloca. | 
|  | !MFI.adjustsStack() &&                   // No calls. | 
|  | !UseStackProbe &&                        // No stack probes. | 
|  | !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. | 
|  | !MF.shouldSplitStack()) {                // Regular stack | 
|  | uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); | 
|  | if (HasFP) MinSize += SlotSize; | 
|  | X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); | 
|  | StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); | 
|  | MFI.setStackSize(StackSize); | 
|  | } | 
|  |  | 
|  | // Insert stack pointer adjustment for later moving of return addr.  Only | 
|  | // applies to tail call optimized functions where the callee argument stack | 
|  | // size is bigger than the callers. | 
|  | if (TailCallReturnAddrDelta < 0) { | 
|  | BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, | 
|  | /*InEpilogue=*/false) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  |  | 
|  | // Mapping for machine moves: | 
|  | // | 
|  | //   DST: VirtualFP AND | 
|  | //        SRC: VirtualFP              => DW_CFA_def_cfa_offset | 
|  | //        ELSE                        => DW_CFA_def_cfa | 
|  | // | 
|  | //   SRC: VirtualFP AND | 
|  | //        DST: Register               => DW_CFA_def_cfa_register | 
|  | // | 
|  | //   ELSE | 
|  | //        OFFSET < 0                  => DW_CFA_offset_extended_sf | 
|  | //        REG < 64                    => DW_CFA_offset + Reg | 
|  | //        ELSE                        => DW_CFA_offset_extended | 
|  |  | 
|  | uint64_t NumBytes = 0; | 
|  | int stackGrowth = -SlotSize; | 
|  |  | 
|  | // Find the funclet establisher parameter | 
|  | unsigned Establisher = X86::NoRegister; | 
|  | if (IsClrFunclet) | 
|  | Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; | 
|  | else if (IsFunclet) | 
|  | Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; | 
|  |  | 
|  | if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { | 
|  | // Immediately spill establisher into the home slot. | 
|  | // The runtime cares about this. | 
|  | // MOV64mr %rdx, 16(%rsp) | 
|  | unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; | 
|  | addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) | 
|  | .addReg(Establisher) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | MBB.addLiveIn(Establisher); | 
|  | } | 
|  |  | 
|  | if (HasFP) { | 
|  | assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); | 
|  |  | 
|  | // Calculate required stack adjustment. | 
|  | uint64_t FrameSize = StackSize - SlotSize; | 
|  | // If required, include space for extra hidden slot for stashing base pointer. | 
|  | if (X86FI->getRestoreBasePointer()) | 
|  | FrameSize += SlotSize; | 
|  |  | 
|  | NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); | 
|  |  | 
|  | // Callee-saved registers are pushed on stack before the stack is realigned. | 
|  | if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) | 
|  | NumBytes = alignTo(NumBytes, MaxAlign); | 
|  |  | 
|  | // Save EBP/RBP into the appropriate stack slot. | 
|  | BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) | 
|  | .addReg(MachineFramePtr, RegState::Kill) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  |  | 
|  | if (NeedsDwarfCFI) { | 
|  | // Mark the place where EBP/RBP was saved. | 
|  | // Define the current CFA rule to use the provided offset. | 
|  | assert(StackSize); | 
|  | BuildCFI(MBB, MBBI, DL, | 
|  | MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth)); | 
|  |  | 
|  | // Change the rule for the FramePtr to be an "offset" rule. | 
|  | unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); | 
|  | BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( | 
|  | nullptr, DwarfFramePtr, 2 * stackGrowth)); | 
|  | } | 
|  |  | 
|  | if (NeedsWinCFI) { | 
|  | HasWinCFI = true; | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) | 
|  | .addImm(FramePtr) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  |  | 
|  | if (!IsWin64Prologue && !IsFunclet) { | 
|  | // Update EBP with the new base value. | 
|  | BuildMI(MBB, MBBI, DL, | 
|  | TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), | 
|  | FramePtr) | 
|  | .addReg(StackPtr) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  |  | 
|  | if (NeedsDwarfCFI) { | 
|  | // Mark effective beginning of when frame pointer becomes valid. | 
|  | // Define the current CFA to use the EBP/RBP register. | 
|  | unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); | 
|  | BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( | 
|  | nullptr, DwarfFramePtr)); | 
|  | } | 
|  |  | 
|  | if (NeedsWinFPO) { | 
|  | // .cv_fpo_setframe $FramePtr | 
|  | HasWinCFI = true; | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) | 
|  | .addImm(FramePtr) | 
|  | .addImm(0) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | assert(!IsFunclet && "funclets without FPs not yet implemented"); | 
|  | NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); | 
|  | } | 
|  |  | 
|  | // Update the offset adjustment, which is mainly used by codeview to translate | 
|  | // from ESP to VFRAME relative local variable offsets. | 
|  | if (!IsFunclet) { | 
|  | if (HasFP && TRI->needsStackRealignment(MF)) | 
|  | MFI.setOffsetAdjustment(-NumBytes); | 
|  | else | 
|  | MFI.setOffsetAdjustment(-StackSize); | 
|  | } | 
|  |  | 
|  | // For EH funclets, only allocate enough space for outgoing calls. Save the | 
|  | // NumBytes value that we would've used for the parent frame. | 
|  | unsigned ParentFrameNumBytes = NumBytes; | 
|  | if (IsFunclet) | 
|  | NumBytes = getWinEHFuncletFrameSize(MF); | 
|  |  | 
|  | // Skip the callee-saved push instructions. | 
|  | bool PushedRegs = false; | 
|  | int StackOffset = 2 * stackGrowth; | 
|  |  | 
|  | while (MBBI != MBB.end() && | 
|  | MBBI->getFlag(MachineInstr::FrameSetup) && | 
|  | (MBBI->getOpcode() == X86::PUSH32r || | 
|  | MBBI->getOpcode() == X86::PUSH64r)) { | 
|  | PushedRegs = true; | 
|  | unsigned Reg = MBBI->getOperand(0).getReg(); | 
|  | ++MBBI; | 
|  |  | 
|  | if (!HasFP && NeedsDwarfCFI) { | 
|  | // Mark callee-saved push instruction. | 
|  | // Define the current CFA rule to use the provided offset. | 
|  | assert(StackSize); | 
|  | BuildCFI(MBB, MBBI, DL, | 
|  | MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset)); | 
|  | StackOffset += stackGrowth; | 
|  | } | 
|  |  | 
|  | if (NeedsWinCFI) { | 
|  | HasWinCFI = true; | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) | 
|  | .addImm(Reg) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Realign stack after we pushed callee-saved registers (so that we'll be | 
|  | // able to calculate their offsets from the frame pointer). | 
|  | // Don't do this for Win64, it needs to realign the stack after the prologue. | 
|  | if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { | 
|  | assert(HasFP && "There should be a frame pointer if stack is realigned."); | 
|  | BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); | 
|  |  | 
|  | if (NeedsWinCFI) { | 
|  | HasWinCFI = true; | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) | 
|  | .addImm(MaxAlign) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is an SUB32ri of ESP immediately before this instruction, merge | 
|  | // the two. This can be the case when tail call elimination is enabled and | 
|  | // the callee has more arguments then the caller. | 
|  | NumBytes -= mergeSPUpdates(MBB, MBBI, true); | 
|  |  | 
|  | // Adjust stack pointer: ESP -= numbytes. | 
|  |  | 
|  | // Windows and cygwin/mingw require a prologue helper routine when allocating | 
|  | // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw | 
|  | // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the | 
|  | // stack and adjust the stack pointer in one go.  The 64-bit version of | 
|  | // __chkstk is only responsible for probing the stack.  The 64-bit prologue is | 
|  | // responsible for adjusting the stack pointer.  Touching the stack at 4K | 
|  | // increments is necessary to ensure that the guard pages used by the OS | 
|  | // virtual memory manager are allocated in correct sequence. | 
|  | uint64_t AlignedNumBytes = NumBytes; | 
|  | if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) | 
|  | AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); | 
|  | if (AlignedNumBytes >= StackProbeSize && UseStackProbe) { | 
|  | assert(!X86FI->getUsesRedZone() && | 
|  | "The Red Zone is not accounted for in stack probes"); | 
|  |  | 
|  | // Check whether EAX is livein for this block. | 
|  | bool isEAXAlive = isEAXLiveIn(MBB); | 
|  |  | 
|  | if (isEAXAlive) { | 
|  | if (Is64Bit) { | 
|  | // Save RAX | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) | 
|  | .addReg(X86::RAX, RegState::Kill) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } else { | 
|  | // Save EAX | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) | 
|  | .addReg(X86::EAX, RegState::Kill) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Is64Bit) { | 
|  | // Handle the 64-bit Windows ABI case where we need to call __chkstk. | 
|  | // Function prologue is responsible for adjusting the stack pointer. | 
|  | int Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; | 
|  | if (isUInt<32>(Alloc)) { | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) | 
|  | .addImm(Alloc) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } else if (isInt<32>(Alloc)) { | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) | 
|  | .addImm(Alloc) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } else { | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) | 
|  | .addImm(Alloc) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  | } else { | 
|  | // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. | 
|  | // We'll also use 4 already allocated bytes for EAX. | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) | 
|  | .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  |  | 
|  | // Call __chkstk, __chkstk_ms, or __alloca. | 
|  | emitStackProbe(MF, MBB, MBBI, DL, true); | 
|  |  | 
|  | if (isEAXAlive) { | 
|  | // Restore RAX/EAX | 
|  | MachineInstr *MI; | 
|  | if (Is64Bit) | 
|  | MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), | 
|  | StackPtr, false, NumBytes - 8); | 
|  | else | 
|  | MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), | 
|  | StackPtr, false, NumBytes - 4); | 
|  | MI->setFlag(MachineInstr::FrameSetup); | 
|  | MBB.insert(MBBI, MI); | 
|  | } | 
|  | } else if (NumBytes) { | 
|  | emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); | 
|  | } | 
|  |  | 
|  | if (NeedsWinCFI && NumBytes) { | 
|  | HasWinCFI = true; | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) | 
|  | .addImm(NumBytes) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  |  | 
|  | int SEHFrameOffset = 0; | 
|  | unsigned SPOrEstablisher; | 
|  | if (IsFunclet) { | 
|  | if (IsClrFunclet) { | 
|  | // The establisher parameter passed to a CLR funclet is actually a pointer | 
|  | // to the (mostly empty) frame of its nearest enclosing funclet; we have | 
|  | // to find the root function establisher frame by loading the PSPSym from | 
|  | // the intermediate frame. | 
|  | unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); | 
|  | MachinePointerInfo NoInfo; | 
|  | MBB.addLiveIn(Establisher); | 
|  | addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), | 
|  | Establisher, false, PSPSlotOffset) | 
|  | .addMemOperand(MF.getMachineMemOperand( | 
|  | NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize)); | 
|  | ; | 
|  | // Save the root establisher back into the current funclet's (mostly | 
|  | // empty) frame, in case a sub-funclet or the GC needs it. | 
|  | addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, | 
|  | false, PSPSlotOffset) | 
|  | .addReg(Establisher) | 
|  | .addMemOperand( | 
|  | MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore | | 
|  | MachineMemOperand::MOVolatile, | 
|  | SlotSize, SlotSize)); | 
|  | } | 
|  | SPOrEstablisher = Establisher; | 
|  | } else { | 
|  | SPOrEstablisher = StackPtr; | 
|  | } | 
|  |  | 
|  | if (IsWin64Prologue && HasFP) { | 
|  | // Set RBP to a small fixed offset from RSP. In the funclet case, we base | 
|  | // this calculation on the incoming establisher, which holds the value of | 
|  | // RSP from the parent frame at the end of the prologue. | 
|  | SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); | 
|  | if (SEHFrameOffset) | 
|  | addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), | 
|  | SPOrEstablisher, false, SEHFrameOffset); | 
|  | else | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) | 
|  | .addReg(SPOrEstablisher); | 
|  |  | 
|  | // If this is not a funclet, emit the CFI describing our frame pointer. | 
|  | if (NeedsWinCFI && !IsFunclet) { | 
|  | assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); | 
|  | HasWinCFI = true; | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) | 
|  | .addImm(FramePtr) | 
|  | .addImm(SEHFrameOffset) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | if (isAsynchronousEHPersonality(Personality)) | 
|  | MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; | 
|  | } | 
|  | } else if (IsFunclet && STI.is32Bit()) { | 
|  | // Reset EBP / ESI to something good for funclets. | 
|  | MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); | 
|  | // If we're a catch funclet, we can be returned to via catchret. Save ESP | 
|  | // into the registration node so that the runtime will restore it for us. | 
|  | if (!MBB.isCleanupFuncletEntry()) { | 
|  | assert(Personality == EHPersonality::MSVC_CXX); | 
|  | unsigned FrameReg; | 
|  | int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; | 
|  | int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg); | 
|  | // ESP is the first field, so no extra displacement is needed. | 
|  | addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, | 
|  | false, EHRegOffset) | 
|  | .addReg(X86::ESP); | 
|  | } | 
|  | } | 
|  |  | 
|  | while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { | 
|  | const MachineInstr &FrameInstr = *MBBI; | 
|  | ++MBBI; | 
|  |  | 
|  | if (NeedsWinCFI) { | 
|  | int FI; | 
|  | if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { | 
|  | if (X86::FR64RegClass.contains(Reg)) { | 
|  | unsigned IgnoredFrameReg; | 
|  | int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg); | 
|  | Offset += SEHFrameOffset; | 
|  |  | 
|  | HasWinCFI = true; | 
|  | assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) | 
|  | .addImm(Reg) | 
|  | .addImm(Offset) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NeedsWinCFI && HasWinCFI) | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  |  | 
|  | if (FnHasClrFunclet && !IsFunclet) { | 
|  | // Save the so-called Initial-SP (i.e. the value of the stack pointer | 
|  | // immediately after the prolog)  into the PSPSlot so that funclets | 
|  | // and the GC can recover it. | 
|  | unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); | 
|  | auto PSPInfo = MachinePointerInfo::getFixedStack( | 
|  | MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); | 
|  | addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, | 
|  | PSPSlotOffset) | 
|  | .addReg(StackPtr) | 
|  | .addMemOperand(MF.getMachineMemOperand( | 
|  | PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, | 
|  | SlotSize, SlotSize)); | 
|  | } | 
|  |  | 
|  | // Realign stack after we spilled callee-saved registers (so that we'll be | 
|  | // able to calculate their offsets from the frame pointer). | 
|  | // Win64 requires aligning the stack after the prologue. | 
|  | if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { | 
|  | assert(HasFP && "There should be a frame pointer if stack is realigned."); | 
|  | BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); | 
|  | } | 
|  |  | 
|  | // We already dealt with stack realignment and funclets above. | 
|  | if (IsFunclet && STI.is32Bit()) | 
|  | return; | 
|  |  | 
|  | // If we need a base pointer, set it up here. It's whatever the value | 
|  | // of the stack pointer is at this point. Any variable size objects | 
|  | // will be allocated after this, so we can still use the base pointer | 
|  | // to reference locals. | 
|  | if (TRI->hasBasePointer(MF)) { | 
|  | // Update the base pointer with the current stack pointer. | 
|  | unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; | 
|  | BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) | 
|  | .addReg(SPOrEstablisher) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | if (X86FI->getRestoreBasePointer()) { | 
|  | // Stash value of base pointer.  Saving RSP instead of EBP shortens | 
|  | // dependence chain. Used by SjLj EH. | 
|  | unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; | 
|  | addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), | 
|  | FramePtr, true, X86FI->getRestoreBasePointerOffset()) | 
|  | .addReg(SPOrEstablisher) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  |  | 
|  | if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { | 
|  | // Stash the value of the frame pointer relative to the base pointer for | 
|  | // Win32 EH. This supports Win32 EH, which does the inverse of the above: | 
|  | // it recovers the frame pointer from the base pointer rather than the | 
|  | // other way around. | 
|  | unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; | 
|  | unsigned UsedReg; | 
|  | int Offset = | 
|  | getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); | 
|  | assert(UsedReg == BasePtr); | 
|  | addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) | 
|  | .addReg(FramePtr) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { | 
|  | // Mark end of stack pointer adjustment. | 
|  | if (!HasFP && NumBytes) { | 
|  | // Define the current CFA rule to use the provided offset. | 
|  | assert(StackSize); | 
|  | BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( | 
|  | nullptr, -StackSize + stackGrowth)); | 
|  | } | 
|  |  | 
|  | // Emit DWARF info specifying the offsets of the callee-saved registers. | 
|  | emitCalleeSavedFrameMoves(MBB, MBBI, DL); | 
|  | } | 
|  |  | 
|  | // X86 Interrupt handling function cannot assume anything about the direction | 
|  | // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction | 
|  | // in each prologue of interrupt handler function. | 
|  | // | 
|  | // FIXME: Create "cld" instruction only in these cases: | 
|  | // 1. The interrupt handling function uses any of the "rep" instructions. | 
|  | // 2. Interrupt handling function calls another function. | 
|  | // | 
|  | if (Fn.getCallingConv() == CallingConv::X86_INTR) | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  |  | 
|  | // At this point we know if the function has WinCFI or not. | 
|  | MF.setHasWinCFI(HasWinCFI); | 
|  | } | 
|  |  | 
|  | bool X86FrameLowering::canUseLEAForSPInEpilogue( | 
|  | const MachineFunction &MF) const { | 
|  | // We can't use LEA instructions for adjusting the stack pointer if we don't | 
|  | // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used | 
|  | // to deallocate the stack. | 
|  | // This means that we can use LEA for SP in two situations: | 
|  | // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. | 
|  | // 2. We *have* a frame pointer which means we are permitted to use LEA. | 
|  | return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); | 
|  | } | 
|  |  | 
|  | static bool isFuncletReturnInstr(MachineInstr &MI) { | 
|  | switch (MI.getOpcode()) { | 
|  | case X86::CATCHRET: | 
|  | case X86::CLEANUPRET: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("impossible"); | 
|  | } | 
|  |  | 
|  | // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the | 
|  | // stack. It holds a pointer to the bottom of the root function frame.  The | 
|  | // establisher frame pointer passed to a nested funclet may point to the | 
|  | // (mostly empty) frame of its parent funclet, but it will need to find | 
|  | // the frame of the root function to access locals.  To facilitate this, | 
|  | // every funclet copies the pointer to the bottom of the root function | 
|  | // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the | 
|  | // same offset for the PSPSym in the root function frame that's used in the | 
|  | // funclets' frames allows each funclet to dynamically accept any ancestor | 
|  | // frame as its establisher argument (the runtime doesn't guarantee the | 
|  | // immediate parent for some reason lost to history), and also allows the GC, | 
|  | // which uses the PSPSym for some bookkeeping, to find it in any funclet's | 
|  | // frame with only a single offset reported for the entire method. | 
|  | unsigned | 
|  | X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { | 
|  | const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); | 
|  | unsigned SPReg; | 
|  | int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, | 
|  | /*IgnoreSPUpdates*/ true); | 
|  | assert(Offset >= 0 && SPReg == TRI->getStackRegister()); | 
|  | return static_cast<unsigned>(Offset); | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { | 
|  | // This is the size of the pushed CSRs. | 
|  | unsigned CSSize = | 
|  | MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); | 
|  | // This is the amount of stack a funclet needs to allocate. | 
|  | unsigned UsedSize; | 
|  | EHPersonality Personality = | 
|  | classifyEHPersonality(MF.getFunction().getPersonalityFn()); | 
|  | if (Personality == EHPersonality::CoreCLR) { | 
|  | // CLR funclets need to hold enough space to include the PSPSym, at the | 
|  | // same offset from the stack pointer (immediately after the prolog) as it | 
|  | // resides at in the main function. | 
|  | UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; | 
|  | } else { | 
|  | // Other funclets just need enough stack for outgoing call arguments. | 
|  | UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); | 
|  | } | 
|  | // RBP is not included in the callee saved register block. After pushing RBP, | 
|  | // everything is 16 byte aligned. Everything we allocate before an outgoing | 
|  | // call must also be 16 byte aligned. | 
|  | unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment()); | 
|  | // Subtract out the size of the callee saved registers. This is how much stack | 
|  | // each funclet will allocate. | 
|  | return FrameSizeMinusRBP - CSSize; | 
|  | } | 
|  |  | 
|  | static bool isTailCallOpcode(unsigned Opc) { | 
|  | return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || | 
|  | Opc == X86::TCRETURNmi || | 
|  | Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || | 
|  | Opc == X86::TCRETURNmi64; | 
|  | } | 
|  |  | 
|  | void X86FrameLowering::emitEpilogue(MachineFunction &MF, | 
|  | MachineBasicBlock &MBB) const { | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); | 
|  | MachineBasicBlock::iterator MBBI = Terminator; | 
|  | DebugLoc DL; | 
|  | if (MBBI != MBB.end()) | 
|  | DL = MBBI->getDebugLoc(); | 
|  | // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. | 
|  | const bool Is64BitILP32 = STI.isTarget64BitILP32(); | 
|  | unsigned FramePtr = TRI->getFrameRegister(MF); | 
|  | unsigned MachineFramePtr = | 
|  | Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr; | 
|  |  | 
|  | bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); | 
|  | bool NeedsWin64CFI = | 
|  | IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); | 
|  | bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); | 
|  |  | 
|  | // Get the number of bytes to allocate from the FrameInfo. | 
|  | uint64_t StackSize = MFI.getStackSize(); | 
|  | uint64_t MaxAlign = calculateMaxStackAlign(MF); | 
|  | unsigned CSSize = X86FI->getCalleeSavedFrameSize(); | 
|  | bool HasFP = hasFP(MF); | 
|  | uint64_t NumBytes = 0; | 
|  |  | 
|  | bool NeedsDwarfCFI = | 
|  | (!MF.getTarget().getTargetTriple().isOSDarwin() && | 
|  | !MF.getTarget().getTargetTriple().isOSWindows()) && | 
|  | (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry()); | 
|  |  | 
|  | if (IsFunclet) { | 
|  | assert(HasFP && "EH funclets without FP not yet implemented"); | 
|  | NumBytes = getWinEHFuncletFrameSize(MF); | 
|  | } else if (HasFP) { | 
|  | // Calculate required stack adjustment. | 
|  | uint64_t FrameSize = StackSize - SlotSize; | 
|  | NumBytes = FrameSize - CSSize; | 
|  |  | 
|  | // Callee-saved registers were pushed on stack before the stack was | 
|  | // realigned. | 
|  | if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) | 
|  | NumBytes = alignTo(FrameSize, MaxAlign); | 
|  | } else { | 
|  | NumBytes = StackSize - CSSize; | 
|  | } | 
|  | uint64_t SEHStackAllocAmt = NumBytes; | 
|  |  | 
|  | if (HasFP) { | 
|  | // Pop EBP. | 
|  | BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), | 
|  | MachineFramePtr) | 
|  | .setMIFlag(MachineInstr::FrameDestroy); | 
|  | if (NeedsDwarfCFI) { | 
|  | unsigned DwarfStackPtr = | 
|  | TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); | 
|  | BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa( | 
|  | nullptr, DwarfStackPtr, -SlotSize)); | 
|  | --MBBI; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator FirstCSPop = MBBI; | 
|  | // Skip the callee-saved pop instructions. | 
|  | while (MBBI != MBB.begin()) { | 
|  | MachineBasicBlock::iterator PI = std::prev(MBBI); | 
|  | unsigned Opc = PI->getOpcode(); | 
|  |  | 
|  | if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { | 
|  | if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && | 
|  | (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy))) | 
|  | break; | 
|  | FirstCSPop = PI; | 
|  | } | 
|  |  | 
|  | --MBBI; | 
|  | } | 
|  | MBBI = FirstCSPop; | 
|  |  | 
|  | if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) | 
|  | emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); | 
|  |  | 
|  | if (MBBI != MBB.end()) | 
|  | DL = MBBI->getDebugLoc(); | 
|  |  | 
|  | // If there is an ADD32ri or SUB32ri of ESP immediately before this | 
|  | // instruction, merge the two instructions. | 
|  | if (NumBytes || MFI.hasVarSizedObjects()) | 
|  | NumBytes += mergeSPUpdates(MBB, MBBI, true); | 
|  |  | 
|  | // If dynamic alloca is used, then reset esp to point to the last callee-saved | 
|  | // slot before popping them off! Same applies for the case, when stack was | 
|  | // realigned. Don't do this if this was a funclet epilogue, since the funclets | 
|  | // will not do realignment or dynamic stack allocation. | 
|  | if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) && | 
|  | !IsFunclet) { | 
|  | if (TRI->needsStackRealignment(MF)) | 
|  | MBBI = FirstCSPop; | 
|  | unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); | 
|  | uint64_t LEAAmount = | 
|  | IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; | 
|  |  | 
|  | // There are only two legal forms of epilogue: | 
|  | // - add SEHAllocationSize, %rsp | 
|  | // - lea SEHAllocationSize(%FramePtr), %rsp | 
|  | // | 
|  | // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. | 
|  | // However, we may use this sequence if we have a frame pointer because the | 
|  | // effects of the prologue can safely be undone. | 
|  | if (LEAAmount != 0) { | 
|  | unsigned Opc = getLEArOpcode(Uses64BitFramePtr); | 
|  | addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), | 
|  | FramePtr, false, LEAAmount); | 
|  | --MBBI; | 
|  | } else { | 
|  | unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); | 
|  | BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) | 
|  | .addReg(FramePtr); | 
|  | --MBBI; | 
|  | } | 
|  | } else if (NumBytes) { | 
|  | // Adjust stack pointer back: ESP += numbytes. | 
|  | emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); | 
|  | if (!hasFP(MF) && NeedsDwarfCFI) { | 
|  | // Define the current CFA rule to use the provided offset. | 
|  | BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( | 
|  | nullptr, -CSSize - SlotSize)); | 
|  | } | 
|  | --MBBI; | 
|  | } | 
|  |  | 
|  | // Windows unwinder will not invoke function's exception handler if IP is | 
|  | // either in prologue or in epilogue.  This behavior causes a problem when a | 
|  | // call immediately precedes an epilogue, because the return address points | 
|  | // into the epilogue.  To cope with that, we insert an epilogue marker here, | 
|  | // then replace it with a 'nop' if it ends up immediately after a CALL in the | 
|  | // final emitted code. | 
|  | if (NeedsWin64CFI && MF.hasWinCFI()) | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); | 
|  |  | 
|  | if (!hasFP(MF) && NeedsDwarfCFI) { | 
|  | MBBI = FirstCSPop; | 
|  | int64_t Offset = -CSSize - SlotSize; | 
|  | // Mark callee-saved pop instruction. | 
|  | // Define the current CFA rule to use the provided offset. | 
|  | while (MBBI != MBB.end()) { | 
|  | MachineBasicBlock::iterator PI = MBBI; | 
|  | unsigned Opc = PI->getOpcode(); | 
|  | ++MBBI; | 
|  | if (Opc == X86::POP32r || Opc == X86::POP64r) { | 
|  | Offset += SlotSize; | 
|  | BuildCFI(MBB, MBBI, DL, | 
|  | MCCFIInstruction::createDefCfaOffset(nullptr, Offset)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { | 
|  | // Add the return addr area delta back since we are not tail calling. | 
|  | int Offset = -1 * X86FI->getTCReturnAddrDelta(); | 
|  | assert(Offset >= 0 && "TCDelta should never be positive"); | 
|  | if (Offset) { | 
|  | // Check for possible merge with preceding ADD instruction. | 
|  | Offset += mergeSPUpdates(MBB, Terminator, true); | 
|  | emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, | 
|  | unsigned &FrameReg) const { | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  |  | 
|  | bool IsFixed = MFI.isFixedObjectIndex(FI); | 
|  | // We can't calculate offset from frame pointer if the stack is realigned, | 
|  | // so enforce usage of stack/base pointer.  The base pointer is used when we | 
|  | // have dynamic allocas in addition to dynamic realignment. | 
|  | if (TRI->hasBasePointer(MF)) | 
|  | FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); | 
|  | else if (TRI->needsStackRealignment(MF)) | 
|  | FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); | 
|  | else | 
|  | FrameReg = TRI->getFrameRegister(MF); | 
|  |  | 
|  | // Offset will hold the offset from the stack pointer at function entry to the | 
|  | // object. | 
|  | // We need to factor in additional offsets applied during the prologue to the | 
|  | // frame, base, and stack pointer depending on which is used. | 
|  | int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); | 
|  | const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | unsigned CSSize = X86FI->getCalleeSavedFrameSize(); | 
|  | uint64_t StackSize = MFI.getStackSize(); | 
|  | bool HasFP = hasFP(MF); | 
|  | bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); | 
|  | int64_t FPDelta = 0; | 
|  |  | 
|  | // In an x86 interrupt, remove the offset we added to account for the return | 
|  | // address from any stack object allocated in the caller's frame. Interrupts | 
|  | // do not have a standard return address. Fixed objects in the current frame, | 
|  | // such as SSE register spills, should not get this treatment. | 
|  | if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && | 
|  | Offset >= 0) { | 
|  | Offset += getOffsetOfLocalArea(); | 
|  | } | 
|  |  | 
|  | if (IsWin64Prologue) { | 
|  | assert(!MFI.hasCalls() || (StackSize % 16) == 8); | 
|  |  | 
|  | // Calculate required stack adjustment. | 
|  | uint64_t FrameSize = StackSize - SlotSize; | 
|  | // If required, include space for extra hidden slot for stashing base pointer. | 
|  | if (X86FI->getRestoreBasePointer()) | 
|  | FrameSize += SlotSize; | 
|  | uint64_t NumBytes = FrameSize - CSSize; | 
|  |  | 
|  | uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); | 
|  | if (FI && FI == X86FI->getFAIndex()) | 
|  | return -SEHFrameOffset; | 
|  |  | 
|  | // FPDelta is the offset from the "traditional" FP location of the old base | 
|  | // pointer followed by return address and the location required by the | 
|  | // restricted Win64 prologue. | 
|  | // Add FPDelta to all offsets below that go through the frame pointer. | 
|  | FPDelta = FrameSize - SEHFrameOffset; | 
|  | assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && | 
|  | "FPDelta isn't aligned per the Win64 ABI!"); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (TRI->hasBasePointer(MF)) { | 
|  | assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); | 
|  | if (FI < 0) { | 
|  | // Skip the saved EBP. | 
|  | return Offset + SlotSize + FPDelta; | 
|  | } else { | 
|  | assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); | 
|  | return Offset + StackSize; | 
|  | } | 
|  | } else if (TRI->needsStackRealignment(MF)) { | 
|  | if (FI < 0) { | 
|  | // Skip the saved EBP. | 
|  | return Offset + SlotSize + FPDelta; | 
|  | } else { | 
|  | assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); | 
|  | return Offset + StackSize; | 
|  | } | 
|  | // FIXME: Support tail calls | 
|  | } else { | 
|  | if (!HasFP) | 
|  | return Offset + StackSize; | 
|  |  | 
|  | // Skip the saved EBP. | 
|  | Offset += SlotSize; | 
|  |  | 
|  | // Skip the RETADDR move area | 
|  | int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); | 
|  | if (TailCallReturnAddrDelta < 0) | 
|  | Offset -= TailCallReturnAddrDelta; | 
|  | } | 
|  |  | 
|  | return Offset + FPDelta; | 
|  | } | 
|  |  | 
|  | int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, | 
|  | int FI, unsigned &FrameReg, | 
|  | int Adjustment) const { | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | FrameReg = TRI->getStackRegister(); | 
|  | return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment; | 
|  | } | 
|  |  | 
|  | int | 
|  | X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, | 
|  | int FI, unsigned &FrameReg, | 
|  | bool IgnoreSPUpdates) const { | 
|  |  | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | // Does not include any dynamic realign. | 
|  | const uint64_t StackSize = MFI.getStackSize(); | 
|  | // LLVM arranges the stack as follows: | 
|  | //   ... | 
|  | //   ARG2 | 
|  | //   ARG1 | 
|  | //   RETADDR | 
|  | //   PUSH RBP   <-- RBP points here | 
|  | //   PUSH CSRs | 
|  | //   ~~~~~~~    <-- possible stack realignment (non-win64) | 
|  | //   ... | 
|  | //   STACK OBJECTS | 
|  | //   ...        <-- RSP after prologue points here | 
|  | //   ~~~~~~~    <-- possible stack realignment (win64) | 
|  | // | 
|  | // if (hasVarSizedObjects()): | 
|  | //   ...        <-- "base pointer" (ESI/RBX) points here | 
|  | //   DYNAMIC ALLOCAS | 
|  | //   ...        <-- RSP points here | 
|  | // | 
|  | // Case 1: In the simple case of no stack realignment and no dynamic | 
|  | // allocas, both "fixed" stack objects (arguments and CSRs) are addressable | 
|  | // with fixed offsets from RSP. | 
|  | // | 
|  | // Case 2: In the case of stack realignment with no dynamic allocas, fixed | 
|  | // stack objects are addressed with RBP and regular stack objects with RSP. | 
|  | // | 
|  | // Case 3: In the case of dynamic allocas and stack realignment, RSP is used | 
|  | // to address stack arguments for outgoing calls and nothing else. The "base | 
|  | // pointer" points to local variables, and RBP points to fixed objects. | 
|  | // | 
|  | // In cases 2 and 3, we can only answer for non-fixed stack objects, and the | 
|  | // answer we give is relative to the SP after the prologue, and not the | 
|  | // SP in the middle of the function. | 
|  |  | 
|  | if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) && | 
|  | !STI.isTargetWin64()) | 
|  | return getFrameIndexReference(MF, FI, FrameReg); | 
|  |  | 
|  | // If !hasReservedCallFrame the function might have SP adjustement in the | 
|  | // body.  So, even though the offset is statically known, it depends on where | 
|  | // we are in the function. | 
|  | const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); | 
|  | if (!IgnoreSPUpdates && !TFI->hasReservedCallFrame(MF)) | 
|  | return getFrameIndexReference(MF, FI, FrameReg); | 
|  |  | 
|  | // We don't handle tail calls, and shouldn't be seeing them either. | 
|  | assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && | 
|  | "we don't handle this case!"); | 
|  |  | 
|  | // This is how the math works out: | 
|  | // | 
|  | //  %rsp grows (i.e. gets lower) left to right. Each box below is | 
|  | //  one word (eight bytes).  Obj0 is the stack slot we're trying to | 
|  | //  get to. | 
|  | // | 
|  | //    ---------------------------------- | 
|  | //    | BP | Obj0 | Obj1 | ... | ObjN | | 
|  | //    ---------------------------------- | 
|  | //    ^    ^      ^                   ^ | 
|  | //    A    B      C                   E | 
|  | // | 
|  | // A is the incoming stack pointer. | 
|  | // (B - A) is the local area offset (-8 for x86-64) [1] | 
|  | // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] | 
|  | // | 
|  | // |(E - B)| is the StackSize (absolute value, positive).  For a | 
|  | // stack that grown down, this works out to be (B - E). [3] | 
|  | // | 
|  | // E is also the value of %rsp after stack has been set up, and we | 
|  | // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now | 
|  | // (C - E) == (C - A) - (B - A) + (B - E) | 
|  | //            { Using [1], [2] and [3] above } | 
|  | //         == getObjectOffset - LocalAreaOffset + StackSize | 
|  |  | 
|  | return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); | 
|  | } | 
|  |  | 
|  | bool X86FrameLowering::assignCalleeSavedSpillSlots( | 
|  | MachineFunction &MF, const TargetRegisterInfo *TRI, | 
|  | std::vector<CalleeSavedInfo> &CSI) const { | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  |  | 
|  | unsigned CalleeSavedFrameSize = 0; | 
|  | int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); | 
|  |  | 
|  | int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); | 
|  |  | 
|  | if (TailCallReturnAddrDelta < 0) { | 
|  | // create RETURNADDR area | 
|  | //   arg | 
|  | //   arg | 
|  | //   RETADDR | 
|  | //   { ... | 
|  | //     RETADDR area | 
|  | //     ... | 
|  | //   } | 
|  | //   [EBP] | 
|  | MFI.CreateFixedObject(-TailCallReturnAddrDelta, | 
|  | TailCallReturnAddrDelta - SlotSize, true); | 
|  | } | 
|  |  | 
|  | // Spill the BasePtr if it's used. | 
|  | if (this->TRI->hasBasePointer(MF)) { | 
|  | // Allocate a spill slot for EBP if we have a base pointer and EH funclets. | 
|  | if (MF.hasEHFunclets()) { | 
|  | int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize); | 
|  | X86FI->setHasSEHFramePtrSave(true); | 
|  | X86FI->setSEHFramePtrSaveIndex(FI); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hasFP(MF)) { | 
|  | // emitPrologue always spills frame register the first thing. | 
|  | SpillSlotOffset -= SlotSize; | 
|  | MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); | 
|  |  | 
|  | // Since emitPrologue and emitEpilogue will handle spilling and restoring of | 
|  | // the frame register, we can delete it from CSI list and not have to worry | 
|  | // about avoiding it later. | 
|  | unsigned FPReg = TRI->getFrameRegister(MF); | 
|  | for (unsigned i = 0; i < CSI.size(); ++i) { | 
|  | if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { | 
|  | CSI.erase(CSI.begin() + i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assign slots for GPRs. It increases frame size. | 
|  | for (unsigned i = CSI.size(); i != 0; --i) { | 
|  | unsigned Reg = CSI[i - 1].getReg(); | 
|  |  | 
|  | if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) | 
|  | continue; | 
|  |  | 
|  | SpillSlotOffset -= SlotSize; | 
|  | CalleeSavedFrameSize += SlotSize; | 
|  |  | 
|  | int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); | 
|  | CSI[i - 1].setFrameIdx(SlotIndex); | 
|  | } | 
|  |  | 
|  | X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); | 
|  | MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); | 
|  |  | 
|  | // Assign slots for XMMs. | 
|  | for (unsigned i = CSI.size(); i != 0; --i) { | 
|  | unsigned Reg = CSI[i - 1].getReg(); | 
|  | if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) | 
|  | continue; | 
|  |  | 
|  | // If this is k-register make sure we lookup via the largest legal type. | 
|  | MVT VT = MVT::Other; | 
|  | if (X86::VK16RegClass.contains(Reg)) | 
|  | VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; | 
|  |  | 
|  | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); | 
|  | unsigned Size = TRI->getSpillSize(*RC); | 
|  | unsigned Align = TRI->getSpillAlignment(*RC); | 
|  | // ensure alignment | 
|  | SpillSlotOffset -= std::abs(SpillSlotOffset) % Align; | 
|  | // spill into slot | 
|  | SpillSlotOffset -= Size; | 
|  | int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); | 
|  | CSI[i - 1].setFrameIdx(SlotIndex); | 
|  | MFI.ensureMaxAlignment(Align); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FrameLowering::spillCalleeSavedRegisters( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, | 
|  | const std::vector<CalleeSavedInfo> &CSI, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | DebugLoc DL = MBB.findDebugLoc(MI); | 
|  |  | 
|  | // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI | 
|  | // for us, and there are no XMM CSRs on Win32. | 
|  | if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) | 
|  | return true; | 
|  |  | 
|  | // Push GPRs. It increases frame size. | 
|  | const MachineFunction &MF = *MBB.getParent(); | 
|  | unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; | 
|  | for (unsigned i = CSI.size(); i != 0; --i) { | 
|  | unsigned Reg = CSI[i - 1].getReg(); | 
|  |  | 
|  | if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) | 
|  | continue; | 
|  |  | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | bool isLiveIn = MRI.isLiveIn(Reg); | 
|  | if (!isLiveIn) | 
|  | MBB.addLiveIn(Reg); | 
|  |  | 
|  | // Decide whether we can add a kill flag to the use. | 
|  | bool CanKill = !isLiveIn; | 
|  | // Check if any subregister is live-in | 
|  | if (CanKill) { | 
|  | for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { | 
|  | if (MRI.isLiveIn(*AReg)) { | 
|  | CanKill = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do not set a kill flag on values that are also marked as live-in. This | 
|  | // happens with the @llvm-returnaddress intrinsic and with arguments | 
|  | // passed in callee saved registers. | 
|  | // Omitting the kill flags is conservatively correct even if the live-in | 
|  | // is not used after all. | 
|  | BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  |  | 
|  | // Make XMM regs spilled. X86 does not have ability of push/pop XMM. | 
|  | // It can be done by spilling XMMs to stack frame. | 
|  | for (unsigned i = CSI.size(); i != 0; --i) { | 
|  | unsigned Reg = CSI[i-1].getReg(); | 
|  | if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) | 
|  | continue; | 
|  |  | 
|  | // If this is k-register make sure we lookup via the largest legal type. | 
|  | MVT VT = MVT::Other; | 
|  | if (X86::VK16RegClass.contains(Reg)) | 
|  | VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; | 
|  |  | 
|  | // Add the callee-saved register as live-in. It's killed at the spill. | 
|  | MBB.addLiveIn(Reg); | 
|  | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); | 
|  |  | 
|  | TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, | 
|  | TRI); | 
|  | --MI; | 
|  | MI->setFlag(MachineInstr::FrameSetup); | 
|  | ++MI; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MBBI, | 
|  | MachineInstr *CatchRet) const { | 
|  | // SEH shouldn't use catchret. | 
|  | assert(!isAsynchronousEHPersonality(classifyEHPersonality( | 
|  | MBB.getParent()->getFunction().getPersonalityFn())) && | 
|  | "SEH should not use CATCHRET"); | 
|  | DebugLoc DL = CatchRet->getDebugLoc(); | 
|  | MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); | 
|  |  | 
|  | // Fill EAX/RAX with the address of the target block. | 
|  | if (STI.is64Bit()) { | 
|  | // LEA64r CatchRetTarget(%rip), %rax | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) | 
|  | .addReg(X86::RIP) | 
|  | .addImm(0) | 
|  | .addReg(0) | 
|  | .addMBB(CatchRetTarget) | 
|  | .addReg(0); | 
|  | } else { | 
|  | // MOV32ri $CatchRetTarget, %eax | 
|  | BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) | 
|  | .addMBB(CatchRetTarget); | 
|  | } | 
|  |  | 
|  | // Record that we've taken the address of CatchRetTarget and no longer just | 
|  | // reference it in a terminator. | 
|  | CatchRetTarget->setHasAddressTaken(); | 
|  | } | 
|  |  | 
|  | bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | std::vector<CalleeSavedInfo> &CSI, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | if (CSI.empty()) | 
|  | return false; | 
|  |  | 
|  | if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { | 
|  | // Don't restore CSRs in 32-bit EH funclets. Matches | 
|  | // spillCalleeSavedRegisters. | 
|  | if (STI.is32Bit()) | 
|  | return true; | 
|  | // Don't restore CSRs before an SEH catchret. SEH except blocks do not form | 
|  | // funclets. emitEpilogue transforms these to normal jumps. | 
|  | if (MI->getOpcode() == X86::CATCHRET) { | 
|  | const Function &F = MBB.getParent()->getFunction(); | 
|  | bool IsSEH = isAsynchronousEHPersonality( | 
|  | classifyEHPersonality(F.getPersonalityFn())); | 
|  | if (IsSEH) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | DebugLoc DL = MBB.findDebugLoc(MI); | 
|  |  | 
|  | // Reload XMMs from stack frame. | 
|  | for (unsigned i = 0, e = CSI.size(); i != e; ++i) { | 
|  | unsigned Reg = CSI[i].getReg(); | 
|  | if (X86::GR64RegClass.contains(Reg) || | 
|  | X86::GR32RegClass.contains(Reg)) | 
|  | continue; | 
|  |  | 
|  | // If this is k-register make sure we lookup via the largest legal type. | 
|  | MVT VT = MVT::Other; | 
|  | if (X86::VK16RegClass.contains(Reg)) | 
|  | VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; | 
|  |  | 
|  | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); | 
|  | TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); | 
|  | } | 
|  |  | 
|  | // POP GPRs. | 
|  | unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; | 
|  | for (unsigned i = 0, e = CSI.size(); i != e; ++i) { | 
|  | unsigned Reg = CSI[i].getReg(); | 
|  | if (!X86::GR64RegClass.contains(Reg) && | 
|  | !X86::GR32RegClass.contains(Reg)) | 
|  | continue; | 
|  |  | 
|  | BuildMI(MBB, MI, DL, TII.get(Opc), Reg) | 
|  | .setMIFlag(MachineInstr::FrameDestroy); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, | 
|  | BitVector &SavedRegs, | 
|  | RegScavenger *RS) const { | 
|  | TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); | 
|  |  | 
|  | // Spill the BasePtr if it's used. | 
|  | if (TRI->hasBasePointer(MF)){ | 
|  | unsigned BasePtr = TRI->getBaseRegister(); | 
|  | if (STI.isTarget64BitILP32()) | 
|  | BasePtr = getX86SubSuperRegister(BasePtr, 64); | 
|  | SavedRegs.set(BasePtr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool | 
|  | HasNestArgument(const MachineFunction *MF) { | 
|  | const Function &F = MF->getFunction(); | 
|  | for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); | 
|  | I != E; I++) { | 
|  | if (I->hasNestAttr()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// GetScratchRegister - Get a temp register for performing work in the | 
|  | /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform | 
|  | /// and the properties of the function either one or two registers will be | 
|  | /// needed. Set primary to true for the first register, false for the second. | 
|  | static unsigned | 
|  | GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { | 
|  | CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); | 
|  |  | 
|  | // Erlang stuff. | 
|  | if (CallingConvention == CallingConv::HiPE) { | 
|  | if (Is64Bit) | 
|  | return Primary ? X86::R14 : X86::R13; | 
|  | else | 
|  | return Primary ? X86::EBX : X86::EDI; | 
|  | } | 
|  |  | 
|  | if (Is64Bit) { | 
|  | if (IsLP64) | 
|  | return Primary ? X86::R11 : X86::R12; | 
|  | else | 
|  | return Primary ? X86::R11D : X86::R12D; | 
|  | } | 
|  |  | 
|  | bool IsNested = HasNestArgument(&MF); | 
|  |  | 
|  | if (CallingConvention == CallingConv::X86_FastCall || | 
|  | CallingConvention == CallingConv::Fast) { | 
|  | if (IsNested) | 
|  | report_fatal_error("Segmented stacks does not support fastcall with " | 
|  | "nested function."); | 
|  | return Primary ? X86::EAX : X86::ECX; | 
|  | } | 
|  | if (IsNested) | 
|  | return Primary ? X86::EDX : X86::EAX; | 
|  | return Primary ? X86::ECX : X86::EAX; | 
|  | } | 
|  |  | 
|  | // The stack limit in the TCB is set to this many bytes above the actual stack | 
|  | // limit. | 
|  | static const uint64_t kSplitStackAvailable = 256; | 
|  |  | 
|  | void X86FrameLowering::adjustForSegmentedStacks( | 
|  | MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | uint64_t StackSize; | 
|  | unsigned TlsReg, TlsOffset; | 
|  | DebugLoc DL; | 
|  |  | 
|  | // To support shrink-wrapping we would need to insert the new blocks | 
|  | // at the right place and update the branches to PrologueMBB. | 
|  | assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); | 
|  |  | 
|  | unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); | 
|  | assert(!MF.getRegInfo().isLiveIn(ScratchReg) && | 
|  | "Scratch register is live-in"); | 
|  |  | 
|  | if (MF.getFunction().isVarArg()) | 
|  | report_fatal_error("Segmented stacks do not support vararg functions."); | 
|  | if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && | 
|  | !STI.isTargetWin64() && !STI.isTargetFreeBSD() && | 
|  | !STI.isTargetDragonFly()) | 
|  | report_fatal_error("Segmented stacks not supported on this platform."); | 
|  |  | 
|  | // Eventually StackSize will be calculated by a link-time pass; which will | 
|  | // also decide whether checking code needs to be injected into this particular | 
|  | // prologue. | 
|  | StackSize = MFI.getStackSize(); | 
|  |  | 
|  | // Do not generate a prologue for leaf functions with a stack of size zero. | 
|  | // For non-leaf functions we have to allow for the possibility that the | 
|  | // callis to a non-split function, as in PR37807. This function could also | 
|  | // take the address of a non-split function. When the linker tries to adjust | 
|  | // its non-existent prologue, it would fail with an error. Mark the object | 
|  | // file so that such failures are not errors. See this Go language bug-report | 
|  | // https://go-review.googlesource.com/c/go/+/148819/ | 
|  | if (StackSize == 0 && !MFI.hasTailCall()) { | 
|  | MF.getMMI().setHasNosplitStack(true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); | 
|  | MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); | 
|  | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | bool IsNested = false; | 
|  |  | 
|  | // We need to know if the function has a nest argument only in 64 bit mode. | 
|  | if (Is64Bit) | 
|  | IsNested = HasNestArgument(&MF); | 
|  |  | 
|  | // The MOV R10, RAX needs to be in a different block, since the RET we emit in | 
|  | // allocMBB needs to be last (terminating) instruction. | 
|  |  | 
|  | for (const auto &LI : PrologueMBB.liveins()) { | 
|  | allocMBB->addLiveIn(LI); | 
|  | checkMBB->addLiveIn(LI); | 
|  | } | 
|  |  | 
|  | if (IsNested) | 
|  | allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); | 
|  |  | 
|  | MF.push_front(allocMBB); | 
|  | MF.push_front(checkMBB); | 
|  |  | 
|  | // When the frame size is less than 256 we just compare the stack | 
|  | // boundary directly to the value of the stack pointer, per gcc. | 
|  | bool CompareStackPointer = StackSize < kSplitStackAvailable; | 
|  |  | 
|  | // Read the limit off the current stacklet off the stack_guard location. | 
|  | if (Is64Bit) { | 
|  | if (STI.isTargetLinux()) { | 
|  | TlsReg = X86::FS; | 
|  | TlsOffset = IsLP64 ? 0x70 : 0x40; | 
|  | } else if (STI.isTargetDarwin()) { | 
|  | TlsReg = X86::GS; | 
|  | TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. | 
|  | } else if (STI.isTargetWin64()) { | 
|  | TlsReg = X86::GS; | 
|  | TlsOffset = 0x28; // pvArbitrary, reserved for application use | 
|  | } else if (STI.isTargetFreeBSD()) { | 
|  | TlsReg = X86::FS; | 
|  | TlsOffset = 0x18; | 
|  | } else if (STI.isTargetDragonFly()) { | 
|  | TlsReg = X86::FS; | 
|  | TlsOffset = 0x20; // use tls_tcb.tcb_segstack | 
|  | } else { | 
|  | report_fatal_error("Segmented stacks not supported on this platform."); | 
|  | } | 
|  |  | 
|  | if (CompareStackPointer) | 
|  | ScratchReg = IsLP64 ? X86::RSP : X86::ESP; | 
|  | else | 
|  | BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) | 
|  | .addImm(1).addReg(0).addImm(-StackSize).addReg(0); | 
|  |  | 
|  | BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) | 
|  | .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); | 
|  | } else { | 
|  | if (STI.isTargetLinux()) { | 
|  | TlsReg = X86::GS; | 
|  | TlsOffset = 0x30; | 
|  | } else if (STI.isTargetDarwin()) { | 
|  | TlsReg = X86::GS; | 
|  | TlsOffset = 0x48 + 90*4; | 
|  | } else if (STI.isTargetWin32()) { | 
|  | TlsReg = X86::FS; | 
|  | TlsOffset = 0x14; // pvArbitrary, reserved for application use | 
|  | } else if (STI.isTargetDragonFly()) { | 
|  | TlsReg = X86::FS; | 
|  | TlsOffset = 0x10; // use tls_tcb.tcb_segstack | 
|  | } else if (STI.isTargetFreeBSD()) { | 
|  | report_fatal_error("Segmented stacks not supported on FreeBSD i386."); | 
|  | } else { | 
|  | report_fatal_error("Segmented stacks not supported on this platform."); | 
|  | } | 
|  |  | 
|  | if (CompareStackPointer) | 
|  | ScratchReg = X86::ESP; | 
|  | else | 
|  | BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) | 
|  | .addImm(1).addReg(0).addImm(-StackSize).addReg(0); | 
|  |  | 
|  | if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || | 
|  | STI.isTargetDragonFly()) { | 
|  | BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) | 
|  | .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); | 
|  | } else if (STI.isTargetDarwin()) { | 
|  |  | 
|  | // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. | 
|  | unsigned ScratchReg2; | 
|  | bool SaveScratch2; | 
|  | if (CompareStackPointer) { | 
|  | // The primary scratch register is available for holding the TLS offset. | 
|  | ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); | 
|  | SaveScratch2 = false; | 
|  | } else { | 
|  | // Need to use a second register to hold the TLS offset | 
|  | ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); | 
|  |  | 
|  | // Unfortunately, with fastcc the second scratch register may hold an | 
|  | // argument. | 
|  | SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); | 
|  | } | 
|  |  | 
|  | // If Scratch2 is live-in then it needs to be saved. | 
|  | assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && | 
|  | "Scratch register is live-in and not saved"); | 
|  |  | 
|  | if (SaveScratch2) | 
|  | BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) | 
|  | .addReg(ScratchReg2, RegState::Kill); | 
|  |  | 
|  | BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) | 
|  | .addImm(TlsOffset); | 
|  | BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) | 
|  | .addReg(ScratchReg) | 
|  | .addReg(ScratchReg2).addImm(1).addReg(0) | 
|  | .addImm(0) | 
|  | .addReg(TlsReg); | 
|  |  | 
|  | if (SaveScratch2) | 
|  | BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This jump is taken if SP >= (Stacklet Limit + Stack Space required). | 
|  | // It jumps to normal execution of the function body. | 
|  | BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); | 
|  |  | 
|  | // On 32 bit we first push the arguments size and then the frame size. On 64 | 
|  | // bit, we pass the stack frame size in r10 and the argument size in r11. | 
|  | if (Is64Bit) { | 
|  | // Functions with nested arguments use R10, so it needs to be saved across | 
|  | // the call to _morestack | 
|  |  | 
|  | const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; | 
|  | const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; | 
|  | const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; | 
|  | const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; | 
|  | const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; | 
|  |  | 
|  | if (IsNested) | 
|  | BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); | 
|  |  | 
|  | BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) | 
|  | .addImm(StackSize); | 
|  | BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) | 
|  | .addImm(X86FI->getArgumentStackSize()); | 
|  | } else { | 
|  | BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) | 
|  | .addImm(X86FI->getArgumentStackSize()); | 
|  | BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) | 
|  | .addImm(StackSize); | 
|  | } | 
|  |  | 
|  | // __morestack is in libgcc | 
|  | if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { | 
|  | // Under the large code model, we cannot assume that __morestack lives | 
|  | // within 2^31 bytes of the call site, so we cannot use pc-relative | 
|  | // addressing. We cannot perform the call via a temporary register, | 
|  | // as the rax register may be used to store the static chain, and all | 
|  | // other suitable registers may be either callee-save or used for | 
|  | // parameter passing. We cannot use the stack at this point either | 
|  | // because __morestack manipulates the stack directly. | 
|  | // | 
|  | // To avoid these issues, perform an indirect call via a read-only memory | 
|  | // location containing the address. | 
|  | // | 
|  | // This solution is not perfect, as it assumes that the .rodata section | 
|  | // is laid out within 2^31 bytes of each function body, but this seems | 
|  | // to be sufficient for JIT. | 
|  | // FIXME: Add retpoline support and remove the error here.. | 
|  | if (STI.useRetpolineIndirectCalls()) | 
|  | report_fatal_error("Emitting morestack calls on 64-bit with the large " | 
|  | "code model and retpoline not yet implemented."); | 
|  | BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) | 
|  | .addReg(X86::RIP) | 
|  | .addImm(0) | 
|  | .addReg(0) | 
|  | .addExternalSymbol("__morestack_addr") | 
|  | .addReg(0); | 
|  | MF.getMMI().setUsesMorestackAddr(true); | 
|  | } else { | 
|  | if (Is64Bit) | 
|  | BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) | 
|  | .addExternalSymbol("__morestack"); | 
|  | else | 
|  | BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) | 
|  | .addExternalSymbol("__morestack"); | 
|  | } | 
|  |  | 
|  | if (IsNested) | 
|  | BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); | 
|  | else | 
|  | BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); | 
|  |  | 
|  | allocMBB->addSuccessor(&PrologueMBB); | 
|  |  | 
|  | checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); | 
|  | checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); | 
|  |  | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | MF.verify(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// Lookup an ERTS parameter in the !hipe.literals named metadata node. | 
|  | /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets | 
|  | /// to fields it needs, through a named metadata node "hipe.literals" containing | 
|  | /// name-value pairs. | 
|  | static unsigned getHiPELiteral( | 
|  | NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { | 
|  | for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { | 
|  | MDNode *Node = HiPELiteralsMD->getOperand(i); | 
|  | if (Node->getNumOperands() != 2) continue; | 
|  | MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); | 
|  | ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); | 
|  | if (!NodeName || !NodeVal) continue; | 
|  | ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); | 
|  | if (ValConst && NodeName->getString() == LiteralName) { | 
|  | return ValConst->getZExtValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | report_fatal_error("HiPE literal " + LiteralName | 
|  | + " required but not provided"); | 
|  | } | 
|  |  | 
|  | /// Erlang programs may need a special prologue to handle the stack size they | 
|  | /// might need at runtime. That is because Erlang/OTP does not implement a C | 
|  | /// stack but uses a custom implementation of hybrid stack/heap architecture. | 
|  | /// (for more information see Eric Stenman's Ph.D. thesis: | 
|  | /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) | 
|  | /// | 
|  | /// CheckStack: | 
|  | ///       temp0 = sp - MaxStack | 
|  | ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart | 
|  | /// OldStart: | 
|  | ///       ... | 
|  | /// IncStack: | 
|  | ///       call inc_stack   # doubles the stack space | 
|  | ///       temp0 = sp - MaxStack | 
|  | ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart | 
|  | void X86FrameLowering::adjustForHiPEPrologue( | 
|  | MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | DebugLoc DL; | 
|  |  | 
|  | // To support shrink-wrapping we would need to insert the new blocks | 
|  | // at the right place and update the branches to PrologueMBB. | 
|  | assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); | 
|  |  | 
|  | // HiPE-specific values | 
|  | NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() | 
|  | ->getNamedMetadata("hipe.literals"); | 
|  | if (!HiPELiteralsMD) | 
|  | report_fatal_error( | 
|  | "Can't generate HiPE prologue without runtime parameters"); | 
|  | const unsigned HipeLeafWords | 
|  | = getHiPELiteral(HiPELiteralsMD, | 
|  | Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); | 
|  | const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; | 
|  | const unsigned Guaranteed = HipeLeafWords * SlotSize; | 
|  | unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? | 
|  | MF.getFunction().arg_size() - CCRegisteredArgs : 0; | 
|  | unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; | 
|  |  | 
|  | assert(STI.isTargetLinux() && | 
|  | "HiPE prologue is only supported on Linux operating systems."); | 
|  |  | 
|  | // Compute the largest caller's frame that is needed to fit the callees' | 
|  | // frames. This 'MaxStack' is computed from: | 
|  | // | 
|  | // a) the fixed frame size, which is the space needed for all spilled temps, | 
|  | // b) outgoing on-stack parameter areas, and | 
|  | // c) the minimum stack space this function needs to make available for the | 
|  | //    functions it calls (a tunable ABI property). | 
|  | if (MFI.hasCalls()) { | 
|  | unsigned MoreStackForCalls = 0; | 
|  |  | 
|  | for (auto &MBB : MF) { | 
|  | for (auto &MI : MBB) { | 
|  | if (!MI.isCall()) | 
|  | continue; | 
|  |  | 
|  | // Get callee operand. | 
|  | const MachineOperand &MO = MI.getOperand(0); | 
|  |  | 
|  | // Only take account of global function calls (no closures etc.). | 
|  | if (!MO.isGlobal()) | 
|  | continue; | 
|  |  | 
|  | const Function *F = dyn_cast<Function>(MO.getGlobal()); | 
|  | if (!F) | 
|  | continue; | 
|  |  | 
|  | // Do not update 'MaxStack' for primitive and built-in functions | 
|  | // (encoded with names either starting with "erlang."/"bif_" or not | 
|  | // having a ".", such as a simple <Module>.<Function>.<Arity>, or an | 
|  | // "_", such as the BIF "suspend_0") as they are executed on another | 
|  | // stack. | 
|  | if (F->getName().find("erlang.") != StringRef::npos || | 
|  | F->getName().find("bif_") != StringRef::npos || | 
|  | F->getName().find_first_of("._") == StringRef::npos) | 
|  | continue; | 
|  |  | 
|  | unsigned CalleeStkArity = | 
|  | F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; | 
|  | if (HipeLeafWords - 1 > CalleeStkArity) | 
|  | MoreStackForCalls = std::max(MoreStackForCalls, | 
|  | (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); | 
|  | } | 
|  | } | 
|  | MaxStack += MoreStackForCalls; | 
|  | } | 
|  |  | 
|  | // If the stack frame needed is larger than the guaranteed then runtime checks | 
|  | // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. | 
|  | if (MaxStack > Guaranteed) { | 
|  | MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); | 
|  | MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); | 
|  |  | 
|  | for (const auto &LI : PrologueMBB.liveins()) { | 
|  | stackCheckMBB->addLiveIn(LI); | 
|  | incStackMBB->addLiveIn(LI); | 
|  | } | 
|  |  | 
|  | MF.push_front(incStackMBB); | 
|  | MF.push_front(stackCheckMBB); | 
|  |  | 
|  | unsigned ScratchReg, SPReg, PReg, SPLimitOffset; | 
|  | unsigned LEAop, CMPop, CALLop; | 
|  | SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); | 
|  | if (Is64Bit) { | 
|  | SPReg = X86::RSP; | 
|  | PReg  = X86::RBP; | 
|  | LEAop = X86::LEA64r; | 
|  | CMPop = X86::CMP64rm; | 
|  | CALLop = X86::CALL64pcrel32; | 
|  | } else { | 
|  | SPReg = X86::ESP; | 
|  | PReg  = X86::EBP; | 
|  | LEAop = X86::LEA32r; | 
|  | CMPop = X86::CMP32rm; | 
|  | CALLop = X86::CALLpcrel32; | 
|  | } | 
|  |  | 
|  | ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); | 
|  | assert(!MF.getRegInfo().isLiveIn(ScratchReg) && | 
|  | "HiPE prologue scratch register is live-in"); | 
|  |  | 
|  | // Create new MBB for StackCheck: | 
|  | addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), | 
|  | SPReg, false, -MaxStack); | 
|  | // SPLimitOffset is in a fixed heap location (pointed by BP). | 
|  | addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) | 
|  | .addReg(ScratchReg), PReg, false, SPLimitOffset); | 
|  | BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); | 
|  |  | 
|  | // Create new MBB for IncStack: | 
|  | BuildMI(incStackMBB, DL, TII.get(CALLop)). | 
|  | addExternalSymbol("inc_stack_0"); | 
|  | addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), | 
|  | SPReg, false, -MaxStack); | 
|  | addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) | 
|  | .addReg(ScratchReg), PReg, false, SPLimitOffset); | 
|  | BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); | 
|  |  | 
|  | stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); | 
|  | stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); | 
|  | incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); | 
|  | incStackMBB->addSuccessor(incStackMBB, {1, 100}); | 
|  | } | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | MF.verify(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MBBI, | 
|  | const DebugLoc &DL, | 
|  | int Offset) const { | 
|  |  | 
|  | if (Offset <= 0) | 
|  | return false; | 
|  |  | 
|  | if (Offset % SlotSize) | 
|  | return false; | 
|  |  | 
|  | int NumPops = Offset / SlotSize; | 
|  | // This is only worth it if we have at most 2 pops. | 
|  | if (NumPops != 1 && NumPops != 2) | 
|  | return false; | 
|  |  | 
|  | // Handle only the trivial case where the adjustment directly follows | 
|  | // a call. This is the most common one, anyway. | 
|  | if (MBBI == MBB.begin()) | 
|  | return false; | 
|  | MachineBasicBlock::iterator Prev = std::prev(MBBI); | 
|  | if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) | 
|  | return false; | 
|  |  | 
|  | unsigned Regs[2]; | 
|  | unsigned FoundRegs = 0; | 
|  |  | 
|  | auto &MRI = MBB.getParent()->getRegInfo(); | 
|  | auto RegMask = Prev->getOperand(1); | 
|  |  | 
|  | auto &RegClass = | 
|  | Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; | 
|  | // Try to find up to NumPops free registers. | 
|  | for (auto Candidate : RegClass) { | 
|  |  | 
|  | // Poor man's liveness: | 
|  | // Since we're immediately after a call, any register that is clobbered | 
|  | // by the call and not defined by it can be considered dead. | 
|  | if (!RegMask.clobbersPhysReg(Candidate)) | 
|  | continue; | 
|  |  | 
|  | // Don't clobber reserved registers | 
|  | if (MRI.isReserved(Candidate)) | 
|  | continue; | 
|  |  | 
|  | bool IsDef = false; | 
|  | for (const MachineOperand &MO : Prev->implicit_operands()) { | 
|  | if (MO.isReg() && MO.isDef() && | 
|  | TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { | 
|  | IsDef = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IsDef) | 
|  | continue; | 
|  |  | 
|  | Regs[FoundRegs++] = Candidate; | 
|  | if (FoundRegs == (unsigned)NumPops) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (FoundRegs == 0) | 
|  | return false; | 
|  |  | 
|  | // If we found only one free register, but need two, reuse the same one twice. | 
|  | while (FoundRegs < (unsigned)NumPops) | 
|  | Regs[FoundRegs++] = Regs[0]; | 
|  |  | 
|  | for (int i = 0; i < NumPops; ++i) | 
|  | BuildMI(MBB, MBBI, DL, | 
|  | TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator X86FrameLowering:: | 
|  | eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I) const { | 
|  | bool reserveCallFrame = hasReservedCallFrame(MF); | 
|  | unsigned Opcode = I->getOpcode(); | 
|  | bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); | 
|  | DebugLoc DL = I->getDebugLoc(); | 
|  | uint64_t Amount = !reserveCallFrame ? TII.getFrameSize(*I) : 0; | 
|  | uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; | 
|  | I = MBB.erase(I); | 
|  | auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); | 
|  |  | 
|  | if (!reserveCallFrame) { | 
|  | // If the stack pointer can be changed after prologue, turn the | 
|  | // adjcallstackup instruction into a 'sub ESP, <amt>' and the | 
|  | // adjcallstackdown instruction into 'add ESP, <amt>' | 
|  |  | 
|  | // We need to keep the stack aligned properly.  To do this, we round the | 
|  | // amount of space needed for the outgoing arguments up to the next | 
|  | // alignment boundary. | 
|  | unsigned StackAlign = getStackAlignment(); | 
|  | Amount = alignTo(Amount, StackAlign); | 
|  |  | 
|  | MachineModuleInfo &MMI = MF.getMMI(); | 
|  | const Function &F = MF.getFunction(); | 
|  | bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); | 
|  | bool DwarfCFI = !WindowsCFI && | 
|  | (MMI.hasDebugInfo() || F.needsUnwindTableEntry()); | 
|  |  | 
|  | // If we have any exception handlers in this function, and we adjust | 
|  | // the SP before calls, we may need to indicate this to the unwinder | 
|  | // using GNU_ARGS_SIZE. Note that this may be necessary even when | 
|  | // Amount == 0, because the preceding function may have set a non-0 | 
|  | // GNU_ARGS_SIZE. | 
|  | // TODO: We don't need to reset this between subsequent functions, | 
|  | // if it didn't change. | 
|  | bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); | 
|  |  | 
|  | if (HasDwarfEHHandlers && !isDestroy && | 
|  | MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) | 
|  | BuildCFI(MBB, InsertPos, DL, | 
|  | MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); | 
|  |  | 
|  | if (Amount == 0) | 
|  | return I; | 
|  |  | 
|  | // Factor out the amount that gets handled inside the sequence | 
|  | // (Pushes of argument for frame setup, callee pops for frame destroy) | 
|  | Amount -= InternalAmt; | 
|  |  | 
|  | // TODO: This is needed only if we require precise CFA. | 
|  | // If this is a callee-pop calling convention, emit a CFA adjust for | 
|  | // the amount the callee popped. | 
|  | if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) | 
|  | BuildCFI(MBB, InsertPos, DL, | 
|  | MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); | 
|  |  | 
|  | // Add Amount to SP to destroy a frame, or subtract to setup. | 
|  | int64_t StackAdjustment = isDestroy ? Amount : -Amount; | 
|  |  | 
|  | if (StackAdjustment) { | 
|  | // Merge with any previous or following adjustment instruction. Note: the | 
|  | // instructions merged with here do not have CFI, so their stack | 
|  | // adjustments do not feed into CfaAdjustment. | 
|  | StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); | 
|  | StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); | 
|  |  | 
|  | if (StackAdjustment) { | 
|  | if (!(F.hasMinSize() && | 
|  | adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) | 
|  | BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, | 
|  | /*InEpilogue=*/false); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DwarfCFI && !hasFP(MF)) { | 
|  | // If we don't have FP, but need to generate unwind information, | 
|  | // we need to set the correct CFA offset after the stack adjustment. | 
|  | // How much we adjust the CFA offset depends on whether we're emitting | 
|  | // CFI only for EH purposes or for debugging. EH only requires the CFA | 
|  | // offset to be correct at each call site, while for debugging we want | 
|  | // it to be more precise. | 
|  |  | 
|  | int64_t CfaAdjustment = -StackAdjustment; | 
|  | // TODO: When not using precise CFA, we also need to adjust for the | 
|  | // InternalAmt here. | 
|  | if (CfaAdjustment) { | 
|  | BuildCFI(MBB, InsertPos, DL, | 
|  | MCCFIInstruction::createAdjustCfaOffset(nullptr, | 
|  | CfaAdjustment)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return I; | 
|  | } | 
|  |  | 
|  | if (isDestroy && InternalAmt) { | 
|  | // If we are performing frame pointer elimination and if the callee pops | 
|  | // something off the stack pointer, add it back.  We do this until we have | 
|  | // more advanced stack pointer tracking ability. | 
|  | // We are not tracking the stack pointer adjustment by the callee, so make | 
|  | // sure we restore the stack pointer immediately after the call, there may | 
|  | // be spill code inserted between the CALL and ADJCALLSTACKUP instructions. | 
|  | MachineBasicBlock::iterator CI = I; | 
|  | MachineBasicBlock::iterator B = MBB.begin(); | 
|  | while (CI != B && !std::prev(CI)->isCall()) | 
|  | --CI; | 
|  | BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); | 
|  | } | 
|  |  | 
|  | return I; | 
|  | } | 
|  |  | 
|  | bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { | 
|  | assert(MBB.getParent() && "Block is not attached to a function!"); | 
|  | const MachineFunction &MF = *MBB.getParent(); | 
|  | return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS); | 
|  | } | 
|  |  | 
|  | bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { | 
|  | assert(MBB.getParent() && "Block is not attached to a function!"); | 
|  |  | 
|  | // Win64 has strict requirements in terms of epilogue and we are | 
|  | // not taking a chance at messing with them. | 
|  | // I.e., unless this block is already an exit block, we can't use | 
|  | // it as an epilogue. | 
|  | if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) | 
|  | return false; | 
|  |  | 
|  | if (canUseLEAForSPInEpilogue(*MBB.getParent())) | 
|  | return true; | 
|  |  | 
|  | // If we cannot use LEA to adjust SP, we may need to use ADD, which | 
|  | // clobbers the EFLAGS. Check that we do not need to preserve it, | 
|  | // otherwise, conservatively assume this is not | 
|  | // safe to insert the epilogue here. | 
|  | return !flagsNeedToBePreservedBeforeTheTerminators(MBB); | 
|  | } | 
|  |  | 
|  | bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { | 
|  | // If we may need to emit frameless compact unwind information, give | 
|  | // up as this is currently broken: PR25614. | 
|  | return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) && | 
|  | // The lowering of segmented stack and HiPE only support entry blocks | 
|  | // as prologue blocks: PR26107. | 
|  | // This limitation may be lifted if we fix: | 
|  | // - adjustForSegmentedStacks | 
|  | // - adjustForHiPEPrologue | 
|  | MF.getFunction().getCallingConv() != CallingConv::HiPE && | 
|  | !MF.shouldSplitStack(); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, | 
|  | const DebugLoc &DL, bool RestoreSP) const { | 
|  | assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); | 
|  | assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); | 
|  | assert(STI.is32Bit() && !Uses64BitFramePtr && | 
|  | "restoring EBP/ESI on non-32-bit target"); | 
|  |  | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | unsigned FramePtr = TRI->getFrameRegister(MF); | 
|  | unsigned BasePtr = TRI->getBaseRegister(); | 
|  | WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); | 
|  | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  |  | 
|  | // FIXME: Don't set FrameSetup flag in catchret case. | 
|  |  | 
|  | int FI = FuncInfo.EHRegNodeFrameIndex; | 
|  | int EHRegSize = MFI.getObjectSize(FI); | 
|  |  | 
|  | if (RestoreSP) { | 
|  | // MOV32rm -EHRegSize(%ebp), %esp | 
|  | addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), | 
|  | X86::EBP, true, -EHRegSize) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } | 
|  |  | 
|  | unsigned UsedReg; | 
|  | int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg); | 
|  | int EndOffset = -EHRegOffset - EHRegSize; | 
|  | FuncInfo.EHRegNodeEndOffset = EndOffset; | 
|  |  | 
|  | if (UsedReg == FramePtr) { | 
|  | // ADD $offset, %ebp | 
|  | unsigned ADDri = getADDriOpcode(false, EndOffset); | 
|  | BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) | 
|  | .addReg(FramePtr) | 
|  | .addImm(EndOffset) | 
|  | .setMIFlag(MachineInstr::FrameSetup) | 
|  | ->getOperand(3) | 
|  | .setIsDead(); | 
|  | assert(EndOffset >= 0 && | 
|  | "end of registration object above normal EBP position!"); | 
|  | } else if (UsedReg == BasePtr) { | 
|  | // LEA offset(%ebp), %esi | 
|  | addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), | 
|  | FramePtr, false, EndOffset) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | // MOV32rm SavedEBPOffset(%esi), %ebp | 
|  | assert(X86FI->getHasSEHFramePtrSave()); | 
|  | int Offset = | 
|  | getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); | 
|  | assert(UsedReg == BasePtr); | 
|  | addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), | 
|  | UsedReg, true, Offset) | 
|  | .setMIFlag(MachineInstr::FrameSetup); | 
|  | } else { | 
|  | llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); | 
|  | } | 
|  | return MBBI; | 
|  | } | 
|  |  | 
|  | int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { | 
|  | return TRI->getSlotSize(); | 
|  | } | 
|  |  | 
|  | unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) | 
|  | const { | 
|  | return TRI->getDwarfRegNum(StackPtr, true); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Struct used by orderFrameObjects to help sort the stack objects. | 
|  | struct X86FrameSortingObject { | 
|  | bool IsValid = false;         // true if we care about this Object. | 
|  | unsigned ObjectIndex = 0;     // Index of Object into MFI list. | 
|  | unsigned ObjectSize = 0;      // Size of Object in bytes. | 
|  | unsigned ObjectAlignment = 1; // Alignment of Object in bytes. | 
|  | unsigned ObjectNumUses = 0;   // Object static number of uses. | 
|  | }; | 
|  |  | 
|  | // The comparison function we use for std::sort to order our local | 
|  | // stack symbols. The current algorithm is to use an estimated | 
|  | // "density". This takes into consideration the size and number of | 
|  | // uses each object has in order to roughly minimize code size. | 
|  | // So, for example, an object of size 16B that is referenced 5 times | 
|  | // will get higher priority than 4 4B objects referenced 1 time each. | 
|  | // It's not perfect and we may be able to squeeze a few more bytes out of | 
|  | // it (for example : 0(esp) requires fewer bytes, symbols allocated at the | 
|  | // fringe end can have special consideration, given their size is less | 
|  | // important, etc.), but the algorithmic complexity grows too much to be | 
|  | // worth the extra gains we get. This gets us pretty close. | 
|  | // The final order leaves us with objects with highest priority going | 
|  | // at the end of our list. | 
|  | struct X86FrameSortingComparator { | 
|  | inline bool operator()(const X86FrameSortingObject &A, | 
|  | const X86FrameSortingObject &B) { | 
|  | uint64_t DensityAScaled, DensityBScaled; | 
|  |  | 
|  | // For consistency in our comparison, all invalid objects are placed | 
|  | // at the end. This also allows us to stop walking when we hit the | 
|  | // first invalid item after it's all sorted. | 
|  | if (!A.IsValid) | 
|  | return false; | 
|  | if (!B.IsValid) | 
|  | return true; | 
|  |  | 
|  | // The density is calculated by doing : | 
|  | //     (double)DensityA = A.ObjectNumUses / A.ObjectSize | 
|  | //     (double)DensityB = B.ObjectNumUses / B.ObjectSize | 
|  | // Since this approach may cause inconsistencies in | 
|  | // the floating point <, >, == comparisons, depending on the floating | 
|  | // point model with which the compiler was built, we're going | 
|  | // to scale both sides by multiplying with | 
|  | // A.ObjectSize * B.ObjectSize. This ends up factoring away | 
|  | // the division and, with it, the need for any floating point | 
|  | // arithmetic. | 
|  | DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * | 
|  | static_cast<uint64_t>(B.ObjectSize); | 
|  | DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * | 
|  | static_cast<uint64_t>(A.ObjectSize); | 
|  |  | 
|  | // If the two densities are equal, prioritize highest alignment | 
|  | // objects. This allows for similar alignment objects | 
|  | // to be packed together (given the same density). | 
|  | // There's room for improvement here, also, since we can pack | 
|  | // similar alignment (different density) objects next to each | 
|  | // other to save padding. This will also require further | 
|  | // complexity/iterations, and the overall gain isn't worth it, | 
|  | // in general. Something to keep in mind, though. | 
|  | if (DensityAScaled == DensityBScaled) | 
|  | return A.ObjectAlignment < B.ObjectAlignment; | 
|  |  | 
|  | return DensityAScaled < DensityBScaled; | 
|  | } | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | // Order the symbols in the local stack. | 
|  | // We want to place the local stack objects in some sort of sensible order. | 
|  | // The heuristic we use is to try and pack them according to static number | 
|  | // of uses and size of object in order to minimize code size. | 
|  | void X86FrameLowering::orderFrameObjects( | 
|  | const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  |  | 
|  | // Don't waste time if there's nothing to do. | 
|  | if (ObjectsToAllocate.empty()) | 
|  | return; | 
|  |  | 
|  | // Create an array of all MFI objects. We won't need all of these | 
|  | // objects, but we're going to create a full array of them to make | 
|  | // it easier to index into when we're counting "uses" down below. | 
|  | // We want to be able to easily/cheaply access an object by simply | 
|  | // indexing into it, instead of having to search for it every time. | 
|  | std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); | 
|  |  | 
|  | // Walk the objects we care about and mark them as such in our working | 
|  | // struct. | 
|  | for (auto &Obj : ObjectsToAllocate) { | 
|  | SortingObjects[Obj].IsValid = true; | 
|  | SortingObjects[Obj].ObjectIndex = Obj; | 
|  | SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj); | 
|  | // Set the size. | 
|  | int ObjectSize = MFI.getObjectSize(Obj); | 
|  | if (ObjectSize == 0) | 
|  | // Variable size. Just use 4. | 
|  | SortingObjects[Obj].ObjectSize = 4; | 
|  | else | 
|  | SortingObjects[Obj].ObjectSize = ObjectSize; | 
|  | } | 
|  |  | 
|  | // Count the number of uses for each object. | 
|  | for (auto &MBB : MF) { | 
|  | for (auto &MI : MBB) { | 
|  | if (MI.isDebugInstr()) | 
|  | continue; | 
|  | for (const MachineOperand &MO : MI.operands()) { | 
|  | // Check to see if it's a local stack symbol. | 
|  | if (!MO.isFI()) | 
|  | continue; | 
|  | int Index = MO.getIndex(); | 
|  | // Check to see if it falls within our range, and is tagged | 
|  | // to require ordering. | 
|  | if (Index >= 0 && Index < MFI.getObjectIndexEnd() && | 
|  | SortingObjects[Index].IsValid) | 
|  | SortingObjects[Index].ObjectNumUses++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Sort the objects using X86FrameSortingAlgorithm (see its comment for | 
|  | // info). | 
|  | llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); | 
|  |  | 
|  | // Now modify the original list to represent the final order that | 
|  | // we want. The order will depend on whether we're going to access them | 
|  | // from the stack pointer or the frame pointer. For SP, the list should | 
|  | // end up with the END containing objects that we want with smaller offsets. | 
|  | // For FP, it should be flipped. | 
|  | int i = 0; | 
|  | for (auto &Obj : SortingObjects) { | 
|  | // All invalid items are sorted at the end, so it's safe to stop. | 
|  | if (!Obj.IsValid) | 
|  | break; | 
|  | ObjectsToAllocate[i++] = Obj.ObjectIndex; | 
|  | } | 
|  |  | 
|  | // Flip it if we're accessing off of the FP. | 
|  | if (!TRI->needsStackRealignment(MF) && hasFP(MF)) | 
|  | std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); | 
|  | } | 
|  |  | 
|  |  | 
|  | unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { | 
|  | // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. | 
|  | unsigned Offset = 16; | 
|  | // RBP is immediately pushed. | 
|  | Offset += SlotSize; | 
|  | // All callee-saved registers are then pushed. | 
|  | Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); | 
|  | // Every funclet allocates enough stack space for the largest outgoing call. | 
|  | Offset += getWinEHFuncletFrameSize(MF); | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | void X86FrameLowering::processFunctionBeforeFrameFinalized( | 
|  | MachineFunction &MF, RegScavenger *RS) const { | 
|  | // Mark the function as not having WinCFI. We will set it back to true in | 
|  | // emitPrologue if it gets called and emits CFI. | 
|  | MF.setHasWinCFI(false); | 
|  |  | 
|  | // If this function isn't doing Win64-style C++ EH, we don't need to do | 
|  | // anything. | 
|  | const Function &F = MF.getFunction(); | 
|  | if (!STI.is64Bit() || !MF.hasEHFunclets() || | 
|  | classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX) | 
|  | return; | 
|  |  | 
|  | // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset | 
|  | // relative to RSP after the prologue.  Find the offset of the last fixed | 
|  | // object, so that we can allocate a slot immediately following it. If there | 
|  | // were no fixed objects, use offset -SlotSize, which is immediately after the | 
|  | // return address. Fixed objects have negative frame indices. | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); | 
|  | int64_t MinFixedObjOffset = -SlotSize; | 
|  | for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) | 
|  | MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); | 
|  |  | 
|  | for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { | 
|  | for (WinEHHandlerType &H : TBME.HandlerArray) { | 
|  | int FrameIndex = H.CatchObj.FrameIndex; | 
|  | if (FrameIndex != INT_MAX) { | 
|  | // Ensure alignment. | 
|  | unsigned Align = MFI.getObjectAlignment(FrameIndex); | 
|  | MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; | 
|  | MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); | 
|  | MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Ensure alignment. | 
|  | MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; | 
|  | int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; | 
|  | int UnwindHelpFI = | 
|  | MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false); | 
|  | EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; | 
|  |  | 
|  | // Store -2 into UnwindHelp on function entry. We have to scan forwards past | 
|  | // other frame setup instructions. | 
|  | MachineBasicBlock &MBB = MF.front(); | 
|  | auto MBBI = MBB.begin(); | 
|  | while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) | 
|  | ++MBBI; | 
|  |  | 
|  | DebugLoc DL = MBB.findDebugLoc(MBBI); | 
|  | addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), | 
|  | UnwindHelpFI) | 
|  | .addImm(-2); | 
|  | } |