|  | //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run | 
|  | // both before and after the DAG is legalized. | 
|  | // | 
|  | // This pass is not a substitute for the LLVM IR instcombine pass. This pass is | 
|  | // primarily intended to handle simplification opportunities that are implicit | 
|  | // in the LLVM IR and exposed by the various codegen lowering phases. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/IntervalMap.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallBitVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/CodeGen/DAGCombine.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/RuntimeLibcalls.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/SelectionDAGTargetInfo.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CodeGen.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <functional> | 
|  | #include <iterator> | 
|  | #include <string> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "dagcombine" | 
|  |  | 
|  | STATISTIC(NodesCombined   , "Number of dag nodes combined"); | 
|  | STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); | 
|  | STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); | 
|  | STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed"); | 
|  | STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int"); | 
|  | STATISTIC(SlicedLoads, "Number of load sliced"); | 
|  | STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, | 
|  | cl::desc("Enable DAG combiner's use of IR alias analysis")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), | 
|  | cl::desc("Enable DAG combiner's use of TBAA")); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static cl::opt<std::string> | 
|  | CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, | 
|  | cl::desc("Only use DAG-combiner alias analysis in this" | 
|  | " function")); | 
|  | #endif | 
|  |  | 
|  | /// Hidden option to stress test load slicing, i.e., when this option | 
|  | /// is enabled, load slicing bypasses most of its profitability guards. | 
|  | static cl::opt<bool> | 
|  | StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, | 
|  | cl::desc("Bypass the profitability model of load slicing"), | 
|  | cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), | 
|  | cl::desc("DAG combiner may split indexing from loads")); | 
|  |  | 
|  | static cl::opt<unsigned> TokenFactorInlineLimit( | 
|  | "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), | 
|  | cl::desc("Limit the number of operands to inline for Token Factors")); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class DAGCombiner { | 
|  | SelectionDAG &DAG; | 
|  | const TargetLowering &TLI; | 
|  | CombineLevel Level; | 
|  | CodeGenOpt::Level OptLevel; | 
|  | bool LegalOperations = false; | 
|  | bool LegalTypes = false; | 
|  | bool ForCodeSize; | 
|  |  | 
|  | /// Worklist of all of the nodes that need to be simplified. | 
|  | /// | 
|  | /// This must behave as a stack -- new nodes to process are pushed onto the | 
|  | /// back and when processing we pop off of the back. | 
|  | /// | 
|  | /// The worklist will not contain duplicates but may contain null entries | 
|  | /// due to nodes being deleted from the underlying DAG. | 
|  | SmallVector<SDNode *, 64> Worklist; | 
|  |  | 
|  | /// Mapping from an SDNode to its position on the worklist. | 
|  | /// | 
|  | /// This is used to find and remove nodes from the worklist (by nulling | 
|  | /// them) when they are deleted from the underlying DAG. It relies on | 
|  | /// stable indices of nodes within the worklist. | 
|  | DenseMap<SDNode *, unsigned> WorklistMap; | 
|  | /// This records all nodes attempted to add to the worklist since we | 
|  | /// considered a new worklist entry. As we keep do not add duplicate nodes | 
|  | /// in the worklist, this is different from the tail of the worklist. | 
|  | SmallSetVector<SDNode *, 32> PruningList; | 
|  |  | 
|  | /// Set of nodes which have been combined (at least once). | 
|  | /// | 
|  | /// This is used to allow us to reliably add any operands of a DAG node | 
|  | /// which have not yet been combined to the worklist. | 
|  | SmallPtrSet<SDNode *, 32> CombinedNodes; | 
|  |  | 
|  | // AA - Used for DAG load/store alias analysis. | 
|  | AliasAnalysis *AA; | 
|  |  | 
|  | /// When an instruction is simplified, add all users of the instruction to | 
|  | /// the work lists because they might get more simplified now. | 
|  | void AddUsersToWorklist(SDNode *N) { | 
|  | for (SDNode *Node : N->uses()) | 
|  | AddToWorklist(Node); | 
|  | } | 
|  |  | 
|  | // Prune potentially dangling nodes. This is called after | 
|  | // any visit to a node, but should also be called during a visit after any | 
|  | // failed combine which may have created a DAG node. | 
|  | void clearAddedDanglingWorklistEntries() { | 
|  | // Check any nodes added to the worklist to see if they are prunable. | 
|  | while (!PruningList.empty()) { | 
|  | auto *N = PruningList.pop_back_val(); | 
|  | if (N->use_empty()) | 
|  | recursivelyDeleteUnusedNodes(N); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDNode *getNextWorklistEntry() { | 
|  | // Before we do any work, remove nodes that are not in use. | 
|  | clearAddedDanglingWorklistEntries(); | 
|  | SDNode *N = nullptr; | 
|  | // The Worklist holds the SDNodes in order, but it may contain null | 
|  | // entries. | 
|  | while (!N && !Worklist.empty()) { | 
|  | N = Worklist.pop_back_val(); | 
|  | } | 
|  |  | 
|  | if (N) { | 
|  | bool GoodWorklistEntry = WorklistMap.erase(N); | 
|  | (void)GoodWorklistEntry; | 
|  | assert(GoodWorklistEntry && | 
|  | "Found a worklist entry without a corresponding map entry!"); | 
|  | } | 
|  | return N; | 
|  | } | 
|  |  | 
|  | /// Call the node-specific routine that folds each particular type of node. | 
|  | SDValue visit(SDNode *N); | 
|  |  | 
|  | public: | 
|  | DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) | 
|  | : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), | 
|  | OptLevel(OL), AA(AA) { | 
|  | ForCodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); | 
|  |  | 
|  | MaximumLegalStoreInBits = 0; | 
|  | for (MVT VT : MVT::all_valuetypes()) | 
|  | if (EVT(VT).isSimple() && VT != MVT::Other && | 
|  | TLI.isTypeLegal(EVT(VT)) && | 
|  | VT.getSizeInBits() >= MaximumLegalStoreInBits) | 
|  | MaximumLegalStoreInBits = VT.getSizeInBits(); | 
|  | } | 
|  |  | 
|  | void ConsiderForPruning(SDNode *N) { | 
|  | // Mark this for potential pruning. | 
|  | PruningList.insert(N); | 
|  | } | 
|  |  | 
|  | /// Add to the worklist making sure its instance is at the back (next to be | 
|  | /// processed.) | 
|  | void AddToWorklist(SDNode *N) { | 
|  | assert(N->getOpcode() != ISD::DELETED_NODE && | 
|  | "Deleted Node added to Worklist"); | 
|  |  | 
|  | // Skip handle nodes as they can't usefully be combined and confuse the | 
|  | // zero-use deletion strategy. | 
|  | if (N->getOpcode() == ISD::HANDLENODE) | 
|  | return; | 
|  |  | 
|  | ConsiderForPruning(N); | 
|  |  | 
|  | if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) | 
|  | Worklist.push_back(N); | 
|  | } | 
|  |  | 
|  | /// Remove all instances of N from the worklist. | 
|  | void removeFromWorklist(SDNode *N) { | 
|  | CombinedNodes.erase(N); | 
|  | PruningList.remove(N); | 
|  |  | 
|  | auto It = WorklistMap.find(N); | 
|  | if (It == WorklistMap.end()) | 
|  | return; // Not in the worklist. | 
|  |  | 
|  | // Null out the entry rather than erasing it to avoid a linear operation. | 
|  | Worklist[It->second] = nullptr; | 
|  | WorklistMap.erase(It); | 
|  | } | 
|  |  | 
|  | void deleteAndRecombine(SDNode *N); | 
|  | bool recursivelyDeleteUnusedNodes(SDNode *N); | 
|  |  | 
|  | /// Replaces all uses of the results of one DAG node with new values. | 
|  | SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, | 
|  | bool AddTo = true); | 
|  |  | 
|  | /// Replaces all uses of the results of one DAG node with new values. | 
|  | SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { | 
|  | return CombineTo(N, &Res, 1, AddTo); | 
|  | } | 
|  |  | 
|  | /// Replaces all uses of the results of one DAG node with new values. | 
|  | SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, | 
|  | bool AddTo = true) { | 
|  | SDValue To[] = { Res0, Res1 }; | 
|  | return CombineTo(N, To, 2, AddTo); | 
|  | } | 
|  |  | 
|  | void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); | 
|  |  | 
|  | private: | 
|  | unsigned MaximumLegalStoreInBits; | 
|  |  | 
|  | /// Check the specified integer node value to see if it can be simplified or | 
|  | /// if things it uses can be simplified by bit propagation. | 
|  | /// If so, return true. | 
|  | bool SimplifyDemandedBits(SDValue Op) { | 
|  | unsigned BitWidth = Op.getScalarValueSizeInBits(); | 
|  | APInt DemandedBits = APInt::getAllOnesValue(BitWidth); | 
|  | return SimplifyDemandedBits(Op, DemandedBits); | 
|  | } | 
|  |  | 
|  | bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned NumElts = VT.isVector() ? VT.getVectorNumElements() : 1; | 
|  | APInt DemandedElts = APInt::getAllOnesValue(NumElts); | 
|  | return SimplifyDemandedBits(Op, DemandedBits, DemandedElts); | 
|  | } | 
|  |  | 
|  | /// Check the specified vector node value to see if it can be simplified or | 
|  | /// if things it uses can be simplified as it only uses some of the | 
|  | /// elements. If so, return true. | 
|  | bool SimplifyDemandedVectorElts(SDValue Op) { | 
|  | unsigned NumElts = Op.getValueType().getVectorNumElements(); | 
|  | APInt DemandedElts = APInt::getAllOnesValue(NumElts); | 
|  | return SimplifyDemandedVectorElts(Op, DemandedElts); | 
|  | } | 
|  |  | 
|  | bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, | 
|  | const APInt &DemandedElts); | 
|  | bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, | 
|  | bool AssumeSingleUse = false); | 
|  |  | 
|  | bool CombineToPreIndexedLoadStore(SDNode *N); | 
|  | bool CombineToPostIndexedLoadStore(SDNode *N); | 
|  | SDValue SplitIndexingFromLoad(LoadSDNode *LD); | 
|  | bool SliceUpLoad(SDNode *N); | 
|  |  | 
|  | // Scalars have size 0 to distinguish from singleton vectors. | 
|  | SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); | 
|  | bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); | 
|  | bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); | 
|  |  | 
|  | /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed | 
|  | ///   load. | 
|  | /// | 
|  | /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. | 
|  | /// \param InVecVT type of the input vector to EVE with bitcasts resolved. | 
|  | /// \param EltNo index of the vector element to load. | 
|  | /// \param OriginalLoad load that EVE came from to be replaced. | 
|  | /// \returns EVE on success SDValue() on failure. | 
|  | SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, | 
|  | SDValue EltNo, | 
|  | LoadSDNode *OriginalLoad); | 
|  | void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); | 
|  | SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); | 
|  | SDValue SExtPromoteOperand(SDValue Op, EVT PVT); | 
|  | SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); | 
|  | SDValue PromoteIntBinOp(SDValue Op); | 
|  | SDValue PromoteIntShiftOp(SDValue Op); | 
|  | SDValue PromoteExtend(SDValue Op); | 
|  | bool PromoteLoad(SDValue Op); | 
|  |  | 
|  | /// Call the node-specific routine that knows how to fold each | 
|  | /// particular type of node. If that doesn't do anything, try the | 
|  | /// target-specific DAG combines. | 
|  | SDValue combine(SDNode *N); | 
|  |  | 
|  | // Visitation implementation - Implement dag node combining for different | 
|  | // node types.  The semantics are as follows: | 
|  | // Return Value: | 
|  | //   SDValue.getNode() == 0 - No change was made | 
|  | //   SDValue.getNode() == N - N was replaced, is dead and has been handled. | 
|  | //   otherwise              - N should be replaced by the returned Operand. | 
|  | // | 
|  | SDValue visitTokenFactor(SDNode *N); | 
|  | SDValue visitMERGE_VALUES(SDNode *N); | 
|  | SDValue visitADD(SDNode *N); | 
|  | SDValue visitADDLike(SDNode *N); | 
|  | SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); | 
|  | SDValue visitSUB(SDNode *N); | 
|  | SDValue visitADDSAT(SDNode *N); | 
|  | SDValue visitSUBSAT(SDNode *N); | 
|  | SDValue visitADDC(SDNode *N); | 
|  | SDValue visitADDO(SDNode *N); | 
|  | SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); | 
|  | SDValue visitSUBC(SDNode *N); | 
|  | SDValue visitSUBO(SDNode *N); | 
|  | SDValue visitADDE(SDNode *N); | 
|  | SDValue visitADDCARRY(SDNode *N); | 
|  | SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); | 
|  | SDValue visitSUBE(SDNode *N); | 
|  | SDValue visitSUBCARRY(SDNode *N); | 
|  | SDValue visitMUL(SDNode *N); | 
|  | SDValue useDivRem(SDNode *N); | 
|  | SDValue visitSDIV(SDNode *N); | 
|  | SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); | 
|  | SDValue visitUDIV(SDNode *N); | 
|  | SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); | 
|  | SDValue visitREM(SDNode *N); | 
|  | SDValue visitMULHU(SDNode *N); | 
|  | SDValue visitMULHS(SDNode *N); | 
|  | SDValue visitSMUL_LOHI(SDNode *N); | 
|  | SDValue visitUMUL_LOHI(SDNode *N); | 
|  | SDValue visitMULO(SDNode *N); | 
|  | SDValue visitIMINMAX(SDNode *N); | 
|  | SDValue visitAND(SDNode *N); | 
|  | SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); | 
|  | SDValue visitOR(SDNode *N); | 
|  | SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); | 
|  | SDValue visitXOR(SDNode *N); | 
|  | SDValue SimplifyVBinOp(SDNode *N); | 
|  | SDValue visitSHL(SDNode *N); | 
|  | SDValue visitSRA(SDNode *N); | 
|  | SDValue visitSRL(SDNode *N); | 
|  | SDValue visitFunnelShift(SDNode *N); | 
|  | SDValue visitRotate(SDNode *N); | 
|  | SDValue visitABS(SDNode *N); | 
|  | SDValue visitBSWAP(SDNode *N); | 
|  | SDValue visitBITREVERSE(SDNode *N); | 
|  | SDValue visitCTLZ(SDNode *N); | 
|  | SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); | 
|  | SDValue visitCTTZ(SDNode *N); | 
|  | SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); | 
|  | SDValue visitCTPOP(SDNode *N); | 
|  | SDValue visitSELECT(SDNode *N); | 
|  | SDValue visitVSELECT(SDNode *N); | 
|  | SDValue visitSELECT_CC(SDNode *N); | 
|  | SDValue visitSETCC(SDNode *N); | 
|  | SDValue visitSETCCCARRY(SDNode *N); | 
|  | SDValue visitSIGN_EXTEND(SDNode *N); | 
|  | SDValue visitZERO_EXTEND(SDNode *N); | 
|  | SDValue visitANY_EXTEND(SDNode *N); | 
|  | SDValue visitAssertExt(SDNode *N); | 
|  | SDValue visitSIGN_EXTEND_INREG(SDNode *N); | 
|  | SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); | 
|  | SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); | 
|  | SDValue visitTRUNCATE(SDNode *N); | 
|  | SDValue visitBITCAST(SDNode *N); | 
|  | SDValue visitBUILD_PAIR(SDNode *N); | 
|  | SDValue visitFADD(SDNode *N); | 
|  | SDValue visitFSUB(SDNode *N); | 
|  | SDValue visitFMUL(SDNode *N); | 
|  | SDValue visitFMA(SDNode *N); | 
|  | SDValue visitFDIV(SDNode *N); | 
|  | SDValue visitFREM(SDNode *N); | 
|  | SDValue visitFSQRT(SDNode *N); | 
|  | SDValue visitFCOPYSIGN(SDNode *N); | 
|  | SDValue visitFPOW(SDNode *N); | 
|  | SDValue visitSINT_TO_FP(SDNode *N); | 
|  | SDValue visitUINT_TO_FP(SDNode *N); | 
|  | SDValue visitFP_TO_SINT(SDNode *N); | 
|  | SDValue visitFP_TO_UINT(SDNode *N); | 
|  | SDValue visitFP_ROUND(SDNode *N); | 
|  | SDValue visitFP_ROUND_INREG(SDNode *N); | 
|  | SDValue visitFP_EXTEND(SDNode *N); | 
|  | SDValue visitFNEG(SDNode *N); | 
|  | SDValue visitFABS(SDNode *N); | 
|  | SDValue visitFCEIL(SDNode *N); | 
|  | SDValue visitFTRUNC(SDNode *N); | 
|  | SDValue visitFFLOOR(SDNode *N); | 
|  | SDValue visitFMINNUM(SDNode *N); | 
|  | SDValue visitFMAXNUM(SDNode *N); | 
|  | SDValue visitFMINIMUM(SDNode *N); | 
|  | SDValue visitFMAXIMUM(SDNode *N); | 
|  | SDValue visitBRCOND(SDNode *N); | 
|  | SDValue visitBR_CC(SDNode *N); | 
|  | SDValue visitLOAD(SDNode *N); | 
|  |  | 
|  | SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); | 
|  | SDValue replaceStoreOfFPConstant(StoreSDNode *ST); | 
|  |  | 
|  | SDValue visitSTORE(SDNode *N); | 
|  | SDValue visitLIFETIME_END(SDNode *N); | 
|  | SDValue visitINSERT_VECTOR_ELT(SDNode *N); | 
|  | SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); | 
|  | SDValue visitBUILD_VECTOR(SDNode *N); | 
|  | SDValue visitCONCAT_VECTORS(SDNode *N); | 
|  | SDValue visitEXTRACT_SUBVECTOR(SDNode *N); | 
|  | SDValue visitVECTOR_SHUFFLE(SDNode *N); | 
|  | SDValue visitSCALAR_TO_VECTOR(SDNode *N); | 
|  | SDValue visitINSERT_SUBVECTOR(SDNode *N); | 
|  | SDValue visitMLOAD(SDNode *N); | 
|  | SDValue visitMSTORE(SDNode *N); | 
|  | SDValue visitMGATHER(SDNode *N); | 
|  | SDValue visitMSCATTER(SDNode *N); | 
|  | SDValue visitFP_TO_FP16(SDNode *N); | 
|  | SDValue visitFP16_TO_FP(SDNode *N); | 
|  | SDValue visitVECREDUCE(SDNode *N); | 
|  |  | 
|  | SDValue visitFADDForFMACombine(SDNode *N); | 
|  | SDValue visitFSUBForFMACombine(SDNode *N); | 
|  | SDValue visitFMULForFMADistributiveCombine(SDNode *N); | 
|  |  | 
|  | SDValue XformToShuffleWithZero(SDNode *N); | 
|  | bool reassociationCanBreakAddressingModePattern(unsigned Opc, | 
|  | const SDLoc &DL, SDValue N0, | 
|  | SDValue N1); | 
|  | SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, | 
|  | SDValue N1); | 
|  | SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, | 
|  | SDValue N1, SDNodeFlags Flags); | 
|  |  | 
|  | SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); | 
|  |  | 
|  | SDValue foldSelectOfConstants(SDNode *N); | 
|  | SDValue foldVSelectOfConstants(SDNode *N); | 
|  | SDValue foldBinOpIntoSelect(SDNode *BO); | 
|  | bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); | 
|  | SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); | 
|  | SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); | 
|  | SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, | 
|  | SDValue N2, SDValue N3, ISD::CondCode CC, | 
|  | bool NotExtCompare = false); | 
|  | SDValue convertSelectOfFPConstantsToLoadOffset( | 
|  | const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, | 
|  | ISD::CondCode CC); | 
|  | SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, | 
|  | SDValue N2, SDValue N3, ISD::CondCode CC); | 
|  | SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, | 
|  | const SDLoc &DL); | 
|  | SDValue unfoldMaskedMerge(SDNode *N); | 
|  | SDValue unfoldExtremeBitClearingToShifts(SDNode *N); | 
|  | SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, | 
|  | const SDLoc &DL, bool foldBooleans); | 
|  | SDValue rebuildSetCC(SDValue N); | 
|  |  | 
|  | bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, | 
|  | SDValue &CC) const; | 
|  | bool isOneUseSetCC(SDValue N) const; | 
|  |  | 
|  | SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, | 
|  | unsigned HiOp); | 
|  | SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); | 
|  | SDValue CombineExtLoad(SDNode *N); | 
|  | SDValue CombineZExtLogicopShiftLoad(SDNode *N); | 
|  | SDValue combineRepeatedFPDivisors(SDNode *N); | 
|  | SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); | 
|  | SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); | 
|  | SDValue BuildSDIV(SDNode *N); | 
|  | SDValue BuildSDIVPow2(SDNode *N); | 
|  | SDValue BuildUDIV(SDNode *N); | 
|  | SDValue BuildLogBase2(SDValue V, const SDLoc &DL); | 
|  | SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags); | 
|  | SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); | 
|  | SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); | 
|  | SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); | 
|  | SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, | 
|  | SDNodeFlags Flags, bool Reciprocal); | 
|  | SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, | 
|  | SDNodeFlags Flags, bool Reciprocal); | 
|  | SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, | 
|  | bool DemandHighBits = true); | 
|  | SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); | 
|  | SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, | 
|  | SDValue InnerPos, SDValue InnerNeg, | 
|  | unsigned PosOpcode, unsigned NegOpcode, | 
|  | const SDLoc &DL); | 
|  | SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); | 
|  | SDValue MatchLoadCombine(SDNode *N); | 
|  | SDValue MatchStoreCombine(StoreSDNode *N); | 
|  | SDValue ReduceLoadWidth(SDNode *N); | 
|  | SDValue ReduceLoadOpStoreWidth(SDNode *N); | 
|  | SDValue splitMergedValStore(StoreSDNode *ST); | 
|  | SDValue TransformFPLoadStorePair(SDNode *N); | 
|  | SDValue convertBuildVecZextToZext(SDNode *N); | 
|  | SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); | 
|  | SDValue reduceBuildVecToShuffle(SDNode *N); | 
|  | SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, | 
|  | ArrayRef<int> VectorMask, SDValue VecIn1, | 
|  | SDValue VecIn2, unsigned LeftIdx, | 
|  | bool DidSplitVec); | 
|  | SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); | 
|  |  | 
|  | /// Walk up chain skipping non-aliasing memory nodes, | 
|  | /// looking for aliasing nodes and adding them to the Aliases vector. | 
|  | void GatherAllAliases(SDNode *N, SDValue OriginalChain, | 
|  | SmallVectorImpl<SDValue> &Aliases); | 
|  |  | 
|  | /// Return true if there is any possibility that the two addresses overlap. | 
|  | bool isAlias(SDNode *Op0, SDNode *Op1) const; | 
|  |  | 
|  | /// Walk up chain skipping non-aliasing memory nodes, looking for a better | 
|  | /// chain (aliasing node.) | 
|  | SDValue FindBetterChain(SDNode *N, SDValue Chain); | 
|  |  | 
|  | /// Try to replace a store and any possibly adjacent stores on | 
|  | /// consecutive chains with better chains. Return true only if St is | 
|  | /// replaced. | 
|  | /// | 
|  | /// Notice that other chains may still be replaced even if the function | 
|  | /// returns false. | 
|  | bool findBetterNeighborChains(StoreSDNode *St); | 
|  |  | 
|  | // Helper for findBetterNeighborChains. Walk up store chain add additional | 
|  | // chained stores that do not overlap and can be parallelized. | 
|  | bool parallelizeChainedStores(StoreSDNode *St); | 
|  |  | 
|  | /// Holds a pointer to an LSBaseSDNode as well as information on where it | 
|  | /// is located in a sequence of memory operations connected by a chain. | 
|  | struct MemOpLink { | 
|  | // Ptr to the mem node. | 
|  | LSBaseSDNode *MemNode; | 
|  |  | 
|  | // Offset from the base ptr. | 
|  | int64_t OffsetFromBase; | 
|  |  | 
|  | MemOpLink(LSBaseSDNode *N, int64_t Offset) | 
|  | : MemNode(N), OffsetFromBase(Offset) {} | 
|  | }; | 
|  |  | 
|  | /// This is a helper function for visitMUL to check the profitability | 
|  | /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). | 
|  | /// MulNode is the original multiply, AddNode is (add x, c1), | 
|  | /// and ConstNode is c2. | 
|  | bool isMulAddWithConstProfitable(SDNode *MulNode, | 
|  | SDValue &AddNode, | 
|  | SDValue &ConstNode); | 
|  |  | 
|  | /// This is a helper function for visitAND and visitZERO_EXTEND.  Returns | 
|  | /// true if the (and (load x) c) pattern matches an extload.  ExtVT returns | 
|  | /// the type of the loaded value to be extended. | 
|  | bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, | 
|  | EVT LoadResultTy, EVT &ExtVT); | 
|  |  | 
|  | /// Helper function to calculate whether the given Load/Store can have its | 
|  | /// width reduced to ExtVT. | 
|  | bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, | 
|  | EVT &MemVT, unsigned ShAmt = 0); | 
|  |  | 
|  | /// Used by BackwardsPropagateMask to find suitable loads. | 
|  | bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, | 
|  | SmallPtrSetImpl<SDNode*> &NodesWithConsts, | 
|  | ConstantSDNode *Mask, SDNode *&NodeToMask); | 
|  | /// Attempt to propagate a given AND node back to load leaves so that they | 
|  | /// can be combined into narrow loads. | 
|  | bool BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG); | 
|  |  | 
|  | /// Helper function for MergeConsecutiveStores which merges the | 
|  | /// component store chains. | 
|  | SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, | 
|  | unsigned NumStores); | 
|  |  | 
|  | /// This is a helper function for MergeConsecutiveStores. When the | 
|  | /// source elements of the consecutive stores are all constants or | 
|  | /// all extracted vector elements, try to merge them into one | 
|  | /// larger store introducing bitcasts if necessary.  \return True | 
|  | /// if a merged store was created. | 
|  | bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, | 
|  | EVT MemVT, unsigned NumStores, | 
|  | bool IsConstantSrc, bool UseVector, | 
|  | bool UseTrunc); | 
|  |  | 
|  | /// This is a helper function for MergeConsecutiveStores. Stores | 
|  | /// that potentially may be merged with St are placed in | 
|  | /// StoreNodes. RootNode is a chain predecessor to all store | 
|  | /// candidates. | 
|  | void getStoreMergeCandidates(StoreSDNode *St, | 
|  | SmallVectorImpl<MemOpLink> &StoreNodes, | 
|  | SDNode *&Root); | 
|  |  | 
|  | /// Helper function for MergeConsecutiveStores. Checks if | 
|  | /// candidate stores have indirect dependency through their | 
|  | /// operands. RootNode is the predecessor to all stores calculated | 
|  | /// by getStoreMergeCandidates and is used to prune the dependency check. | 
|  | /// \return True if safe to merge. | 
|  | bool checkMergeStoreCandidatesForDependencies( | 
|  | SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, | 
|  | SDNode *RootNode); | 
|  |  | 
|  | /// Merge consecutive store operations into a wide store. | 
|  | /// This optimization uses wide integers or vectors when possible. | 
|  | /// \return number of stores that were merged into a merged store (the | 
|  | /// affected nodes are stored as a prefix in \p StoreNodes). | 
|  | bool MergeConsecutiveStores(StoreSDNode *St); | 
|  |  | 
|  | /// Try to transform a truncation where C is a constant: | 
|  | ///     (trunc (and X, C)) -> (and (trunc X), (trunc C)) | 
|  | /// | 
|  | /// \p N needs to be a truncation and its first operand an AND. Other | 
|  | /// requirements are checked by the function (e.g. that trunc is | 
|  | /// single-use) and if missed an empty SDValue is returned. | 
|  | SDValue distributeTruncateThroughAnd(SDNode *N); | 
|  |  | 
|  | /// Helper function to determine whether the target supports operation | 
|  | /// given by \p Opcode for type \p VT, that is, whether the operation | 
|  | /// is legal or custom before legalizing operations, and whether is | 
|  | /// legal (but not custom) after legalization. | 
|  | bool hasOperation(unsigned Opcode, EVT VT) { | 
|  | if (LegalOperations) | 
|  | return TLI.isOperationLegal(Opcode, VT); | 
|  | return TLI.isOperationLegalOrCustom(Opcode, VT); | 
|  | } | 
|  |  | 
|  | public: | 
|  | /// Runs the dag combiner on all nodes in the work list | 
|  | void Run(CombineLevel AtLevel); | 
|  |  | 
|  | SelectionDAG &getDAG() const { return DAG; } | 
|  |  | 
|  | /// Returns a type large enough to hold any valid shift amount - before type | 
|  | /// legalization these can be huge. | 
|  | EVT getShiftAmountTy(EVT LHSTy) { | 
|  | assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); | 
|  | return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); | 
|  | } | 
|  |  | 
|  | /// This method returns true if we are running before type legalization or | 
|  | /// if the specified VT is legal. | 
|  | bool isTypeLegal(const EVT &VT) { | 
|  | if (!LegalTypes) return true; | 
|  | return TLI.isTypeLegal(VT); | 
|  | } | 
|  |  | 
|  | /// Convenience wrapper around TargetLowering::getSetCCResultType | 
|  | EVT getSetCCResultType(EVT VT) const { | 
|  | return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | 
|  | } | 
|  |  | 
|  | void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, | 
|  | SDValue OrigLoad, SDValue ExtLoad, | 
|  | ISD::NodeType ExtType); | 
|  | }; | 
|  |  | 
|  | /// This class is a DAGUpdateListener that removes any deleted | 
|  | /// nodes from the worklist. | 
|  | class WorklistRemover : public SelectionDAG::DAGUpdateListener { | 
|  | DAGCombiner &DC; | 
|  |  | 
|  | public: | 
|  | explicit WorklistRemover(DAGCombiner &dc) | 
|  | : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} | 
|  |  | 
|  | void NodeDeleted(SDNode *N, SDNode *E) override { | 
|  | DC.removeFromWorklist(N); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class WorklistInserter : public SelectionDAG::DAGUpdateListener { | 
|  | DAGCombiner &DC; | 
|  |  | 
|  | public: | 
|  | explicit WorklistInserter(DAGCombiner &dc) | 
|  | : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} | 
|  |  | 
|  | // FIXME: Ideally we could add N to the worklist, but this causes exponential | 
|  | //        compile time costs in large DAGs, e.g. Halide. | 
|  | void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  TargetLowering::DAGCombinerInfo implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { | 
|  | ((DAGCombiner*)DC)->AddToWorklist(N); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::DAGCombinerInfo:: | 
|  | CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { | 
|  | return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::DAGCombinerInfo:: | 
|  | CombineTo(SDNode *N, SDValue Res, bool AddTo) { | 
|  | return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::DAGCombinerInfo:: | 
|  | CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { | 
|  | return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); | 
|  | } | 
|  |  | 
|  | void TargetLowering::DAGCombinerInfo:: | 
|  | CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { | 
|  | return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void DAGCombiner::deleteAndRecombine(SDNode *N) { | 
|  | removeFromWorklist(N); | 
|  |  | 
|  | // If the operands of this node are only used by the node, they will now be | 
|  | // dead. Make sure to re-visit them and recursively delete dead nodes. | 
|  | for (const SDValue &Op : N->ops()) | 
|  | // For an operand generating multiple values, one of the values may | 
|  | // become dead allowing further simplification (e.g. split index | 
|  | // arithmetic from an indexed load). | 
|  | if (Op->hasOneUse() || Op->getNumValues() > 1) | 
|  | AddToWorklist(Op.getNode()); | 
|  |  | 
|  | DAG.DeleteNode(N); | 
|  | } | 
|  |  | 
|  | /// Return 1 if we can compute the negated form of the specified expression for | 
|  | /// the same cost as the expression itself, or 2 if we can compute the negated | 
|  | /// form more cheaply than the expression itself. | 
|  | static char isNegatibleForFree(SDValue Op, bool LegalOperations, | 
|  | const TargetLowering &TLI, | 
|  | const TargetOptions *Options, | 
|  | bool ForCodeSize, | 
|  | unsigned Depth = 0) { | 
|  | // fneg is removable even if it has multiple uses. | 
|  | if (Op.getOpcode() == ISD::FNEG) | 
|  | return 2; | 
|  |  | 
|  | // Don't allow anything with multiple uses unless we know it is free. | 
|  | EVT VT = Op.getValueType(); | 
|  | const SDNodeFlags Flags = Op->getFlags(); | 
|  | if (!Op.hasOneUse() && | 
|  | !(Op.getOpcode() == ISD::FP_EXTEND && | 
|  | TLI.isFPExtFree(VT, Op.getOperand(0).getValueType()))) | 
|  | return 0; | 
|  |  | 
|  | // Don't recurse exponentially. | 
|  | if (Depth > 6) | 
|  | return 0; | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: return false; | 
|  | case ISD::ConstantFP: { | 
|  | if (!LegalOperations) | 
|  | return 1; | 
|  |  | 
|  | // Don't invert constant FP values after legalization unless the target says | 
|  | // the negated constant is legal. | 
|  | return TLI.isOperationLegal(ISD::ConstantFP, VT) || | 
|  | TLI.isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, | 
|  | ForCodeSize); | 
|  | } | 
|  | case ISD::BUILD_VECTOR: { | 
|  | // Only permit BUILD_VECTOR of constants. | 
|  | if (llvm::any_of(Op->op_values(), [&](SDValue N) { | 
|  | return !N.isUndef() && !isa<ConstantFPSDNode>(N); | 
|  | })) | 
|  | return 0; | 
|  | if (!LegalOperations) | 
|  | return 1; | 
|  | if (TLI.isOperationLegal(ISD::ConstantFP, VT) && | 
|  | TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) | 
|  | return 1; | 
|  | return llvm::all_of(Op->op_values(), [&](SDValue N) { | 
|  | return N.isUndef() || | 
|  | TLI.isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, | 
|  | ForCodeSize); | 
|  | }); | 
|  | } | 
|  | case ISD::FADD: | 
|  | if (!Options->UnsafeFPMath && !Flags.hasNoSignedZeros()) | 
|  | return 0; | 
|  |  | 
|  | // After operation legalization, it might not be legal to create new FSUBs. | 
|  | if (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) | 
|  | return 0; | 
|  |  | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) | 
|  | if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, | 
|  | Options, ForCodeSize, Depth + 1)) | 
|  | return V; | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) | 
|  | return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, | 
|  | ForCodeSize, Depth + 1); | 
|  | case ISD::FSUB: | 
|  | // We can't turn -(A-B) into B-A when we honor signed zeros. | 
|  | if (!Options->NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) | 
|  | return 0; | 
|  |  | 
|  | // fold (fneg (fsub A, B)) -> (fsub B, A) | 
|  | return 1; | 
|  |  | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) | 
|  | if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, | 
|  | Options, ForCodeSize, Depth + 1)) | 
|  | return V; | 
|  |  | 
|  | return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, | 
|  | ForCodeSize, Depth + 1); | 
|  |  | 
|  | case ISD::FP_EXTEND: | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::FSIN: | 
|  | return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, | 
|  | ForCodeSize, Depth + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If isNegatibleForFree returns true, return the newly negated expression. | 
|  | static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, | 
|  | bool LegalOperations, bool ForCodeSize, | 
|  | unsigned Depth = 0) { | 
|  | // fneg is removable even if it has multiple uses. | 
|  | if (Op.getOpcode() == ISD::FNEG) | 
|  | return Op.getOperand(0); | 
|  |  | 
|  | assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | const SDNodeFlags Flags = Op->getFlags(); | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Unknown code"); | 
|  | case ISD::ConstantFP: { | 
|  | APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); | 
|  | V.changeSign(); | 
|  | return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); | 
|  | } | 
|  | case ISD::BUILD_VECTOR: { | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | for (SDValue C : Op->op_values()) { | 
|  | if (C.isUndef()) { | 
|  | Ops.push_back(C); | 
|  | continue; | 
|  | } | 
|  | APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); | 
|  | V.changeSign(); | 
|  | Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); | 
|  | } | 
|  | return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); | 
|  | } | 
|  | case ISD::FADD: | 
|  | assert(Options.UnsafeFPMath || Flags.hasNoSignedZeros()); | 
|  |  | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) | 
|  | if (isNegatibleForFree(Op.getOperand(0), LegalOperations, | 
|  | DAG.getTargetLoweringInfo(), &Options, ForCodeSize, | 
|  | Depth + 1)) | 
|  | return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, ForCodeSize, | 
|  | Depth + 1), | 
|  | Op.getOperand(1), Flags); | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) | 
|  | return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(1), DAG, | 
|  | LegalOperations, ForCodeSize, | 
|  | Depth + 1), | 
|  | Op.getOperand(0), Flags); | 
|  | case ISD::FSUB: | 
|  | // fold (fneg (fsub 0, B)) -> B | 
|  | if (ConstantFPSDNode *N0CFP = | 
|  | isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) | 
|  | if (N0CFP->isZero()) | 
|  | return Op.getOperand(1); | 
|  |  | 
|  | // fold (fneg (fsub A, B)) -> (fsub B, A) | 
|  | return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(0), Flags); | 
|  |  | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) | 
|  | if (isNegatibleForFree(Op.getOperand(0), LegalOperations, | 
|  | DAG.getTargetLoweringInfo(), &Options, ForCodeSize, | 
|  | Depth + 1)) | 
|  | return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, ForCodeSize, | 
|  | Depth + 1), | 
|  | Op.getOperand(1), Flags); | 
|  |  | 
|  | // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) | 
|  | return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(0), | 
|  | GetNegatedExpression(Op.getOperand(1), DAG, | 
|  | LegalOperations, ForCodeSize, | 
|  | Depth + 1), Flags); | 
|  |  | 
|  | case ISD::FP_EXTEND: | 
|  | case ISD::FSIN: | 
|  | return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, ForCodeSize, | 
|  | Depth + 1)); | 
|  | case ISD::FP_ROUND: | 
|  | return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), | 
|  | GetNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, ForCodeSize, | 
|  | Depth + 1), | 
|  | Op.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // APInts must be the same size for most operations, this helper | 
|  | // function zero extends the shorter of the pair so that they match. | 
|  | // We provide an Offset so that we can create bitwidths that won't overflow. | 
|  | static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { | 
|  | unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); | 
|  | LHS = LHS.zextOrSelf(Bits); | 
|  | RHS = RHS.zextOrSelf(Bits); | 
|  | } | 
|  |  | 
|  | // Return true if this node is a setcc, or is a select_cc | 
|  | // that selects between the target values used for true and false, making it | 
|  | // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to | 
|  | // the appropriate nodes based on the type of node we are checking. This | 
|  | // simplifies life a bit for the callers. | 
|  | bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, | 
|  | SDValue &CC) const { | 
|  | if (N.getOpcode() == ISD::SETCC) { | 
|  | LHS = N.getOperand(0); | 
|  | RHS = N.getOperand(1); | 
|  | CC  = N.getOperand(2); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (N.getOpcode() != ISD::SELECT_CC || | 
|  | !TLI.isConstTrueVal(N.getOperand(2).getNode()) || | 
|  | !TLI.isConstFalseVal(N.getOperand(3).getNode())) | 
|  | return false; | 
|  |  | 
|  | if (TLI.getBooleanContents(N.getValueType()) == | 
|  | TargetLowering::UndefinedBooleanContent) | 
|  | return false; | 
|  |  | 
|  | LHS = N.getOperand(0); | 
|  | RHS = N.getOperand(1); | 
|  | CC  = N.getOperand(4); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if this is a SetCC-equivalent operation with only one use. | 
|  | /// If this is true, it allows the users to invert the operation for free when | 
|  | /// it is profitable to do so. | 
|  | bool DAGCombiner::isOneUseSetCC(SDValue N) const { | 
|  | SDValue N0, N1, N2; | 
|  | if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns the SDNode if it is a constant float BuildVector | 
|  | // or constant float. | 
|  | static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { | 
|  | if (isa<ConstantFPSDNode>(N)) | 
|  | return N.getNode(); | 
|  | if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) | 
|  | return N.getNode(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Determines if it is a constant integer or a build vector of constant | 
|  | // integers (and undefs). | 
|  | // Do not permit build vector implicit truncation. | 
|  | static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { | 
|  | if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) | 
|  | return !(Const->isOpaque() && NoOpaques); | 
|  | if (N.getOpcode() != ISD::BUILD_VECTOR) | 
|  | return false; | 
|  | unsigned BitWidth = N.getScalarValueSizeInBits(); | 
|  | for (const SDValue &Op : N->op_values()) { | 
|  | if (Op.isUndef()) | 
|  | continue; | 
|  | ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); | 
|  | if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || | 
|  | (Const->isOpaque() && NoOpaques)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with | 
|  | // undef's. | 
|  | static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { | 
|  | if (V.getOpcode() != ISD::BUILD_VECTOR) | 
|  | return false; | 
|  | return isConstantOrConstantVector(V, NoOpaques) || | 
|  | ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, | 
|  | const SDLoc &DL, | 
|  | SDValue N0, | 
|  | SDValue N1) { | 
|  | // Currently this only tries to ensure we don't undo the GEP splits done by | 
|  | // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, | 
|  | // we check if the following transformation would be problematic: | 
|  | // (load/store (add, (add, x, offset1), offset2)) -> | 
|  | // (load/store (add, x, offset1+offset2)). | 
|  |  | 
|  | if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD) | 
|  | return false; | 
|  |  | 
|  | if (N0.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | auto *C2 = dyn_cast<ConstantSDNode>(N1); | 
|  | if (!C1 || !C2) | 
|  | return false; | 
|  |  | 
|  | const APInt &C1APIntVal = C1->getAPIntValue(); | 
|  | const APInt &C2APIntVal = C2->getAPIntValue(); | 
|  | if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64) | 
|  | return false; | 
|  |  | 
|  | const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; | 
|  | if (CombinedValueIntVal.getBitWidth() > 64) | 
|  | return false; | 
|  | const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); | 
|  |  | 
|  | for (SDNode *Node : N0->uses()) { | 
|  | auto LoadStore = dyn_cast<MemSDNode>(Node); | 
|  | if (LoadStore) { | 
|  | // Is x[offset2] already not a legal addressing mode? If so then | 
|  | // reassociating the constants breaks nothing (we test offset2 because | 
|  | // that's the one we hope to fold into the load or store). | 
|  | TargetLoweringBase::AddrMode AM; | 
|  | AM.HasBaseReg = true; | 
|  | AM.BaseOffs = C2APIntVal.getSExtValue(); | 
|  | EVT VT = LoadStore->getMemoryVT(); | 
|  | unsigned AS = LoadStore->getAddressSpace(); | 
|  | Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); | 
|  | if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) | 
|  | continue; | 
|  |  | 
|  | // Would x[offset1+offset2] still be a legal addressing mode? | 
|  | AM.BaseOffs = CombinedValue; | 
|  | if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression | 
|  | // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. | 
|  | SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, | 
|  | SDValue N0, SDValue N1) { | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | if (N0.getOpcode() != Opc) | 
|  | return SDValue(); | 
|  |  | 
|  | // Don't reassociate reductions. | 
|  | if (N0->getFlags().hasVectorReduction()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { | 
|  | if (SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N1)) { | 
|  | // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) | 
|  | if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, C1, C2)) | 
|  | return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); | 
|  | return SDValue(); | 
|  | } | 
|  | if (N0.hasOneUse()) { | 
|  | // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) | 
|  | //              iff (op x, c1) has one use | 
|  | SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); | 
|  | if (!OpNode.getNode()) | 
|  | return SDValue(); | 
|  | AddToWorklist(OpNode.getNode()); | 
|  | return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Try to reassociate commutative binops. | 
|  | SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, | 
|  | SDValue N1, SDNodeFlags Flags) { | 
|  | assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); | 
|  | // Don't reassociate reductions. | 
|  | if (Flags.hasVectorReduction()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Floating-point reassociation is not allowed without loose FP math. | 
|  | if (N0.getValueType().isFloatingPoint() || | 
|  | N1.getValueType().isFloatingPoint()) | 
|  | if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) | 
|  | return Combined; | 
|  | if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) | 
|  | return Combined; | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, | 
|  | bool AddTo) { | 
|  | assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); | 
|  | ++NodesCombined; | 
|  | LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; | 
|  | To[0].getNode()->dump(&DAG); | 
|  | dbgs() << " and " << NumTo - 1 << " other values\n"); | 
|  | for (unsigned i = 0, e = NumTo; i != e; ++i) | 
|  | assert((!To[i].getNode() || | 
|  | N->getValueType(i) == To[i].getValueType()) && | 
|  | "Cannot combine value to value of different type!"); | 
|  |  | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesWith(N, To); | 
|  | if (AddTo) { | 
|  | // Push the new nodes and any users onto the worklist | 
|  | for (unsigned i = 0, e = NumTo; i != e; ++i) { | 
|  | if (To[i].getNode()) { | 
|  | AddToWorklist(To[i].getNode()); | 
|  | AddUsersToWorklist(To[i].getNode()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, if the node is now dead, remove it from the graph.  The node | 
|  | // may not be dead if the replacement process recursively simplified to | 
|  | // something else needing this node. | 
|  | if (N->use_empty()) | 
|  | deleteAndRecombine(N); | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | void DAGCombiner:: | 
|  | CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { | 
|  | // Replace all uses.  If any nodes become isomorphic to other nodes and | 
|  | // are deleted, make sure to remove them from our worklist. | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); | 
|  |  | 
|  | // Push the new node and any (possibly new) users onto the worklist. | 
|  | AddToWorklist(TLO.New.getNode()); | 
|  | AddUsersToWorklist(TLO.New.getNode()); | 
|  |  | 
|  | // Finally, if the node is now dead, remove it from the graph.  The node | 
|  | // may not be dead if the replacement process recursively simplified to | 
|  | // something else needing this node. | 
|  | if (TLO.Old.getNode()->use_empty()) | 
|  | deleteAndRecombine(TLO.Old.getNode()); | 
|  | } | 
|  |  | 
|  | /// Check the specified integer node value to see if it can be simplified or if | 
|  | /// things it uses can be simplified by bit propagation. If so, return true. | 
|  | bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, | 
|  | const APInt &DemandedElts) { | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); | 
|  | KnownBits Known; | 
|  | if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO)) | 
|  | return false; | 
|  |  | 
|  | // Revisit the node. | 
|  | AddToWorklist(Op.getNode()); | 
|  |  | 
|  | // Replace the old value with the new one. | 
|  | ++NodesCombined; | 
|  | LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); | 
|  | dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | CommitTargetLoweringOpt(TLO); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check the specified vector node value to see if it can be simplified or | 
|  | /// if things it uses can be simplified as it only uses some of the elements. | 
|  | /// If so, return true. | 
|  | bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, | 
|  | const APInt &DemandedElts, | 
|  | bool AssumeSingleUse) { | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); | 
|  | APInt KnownUndef, KnownZero; | 
|  | if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, | 
|  | TLO, 0, AssumeSingleUse)) | 
|  | return false; | 
|  |  | 
|  | // Revisit the node. | 
|  | AddToWorklist(Op.getNode()); | 
|  |  | 
|  | // Replace the old value with the new one. | 
|  | ++NodesCombined; | 
|  | LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); | 
|  | dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | CommitTargetLoweringOpt(TLO); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { | 
|  | SDLoc DL(Load); | 
|  | EVT VT = Load->getValueType(0); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; | 
|  | Trunc.getNode()->dump(&DAG); dbgs() << '\n'); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); | 
|  | deleteAndRecombine(Load); | 
|  | AddToWorklist(Trunc.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { | 
|  | Replace = false; | 
|  | SDLoc DL(Op); | 
|  | if (ISD::isUNINDEXEDLoad(Op.getNode())) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Op); | 
|  | EVT MemVT = LD->getMemoryVT(); | 
|  | ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD | 
|  | : LD->getExtensionType(); | 
|  | Replace = true; | 
|  | return DAG.getExtLoad(ExtType, DL, PVT, | 
|  | LD->getChain(), LD->getBasePtr(), | 
|  | MemVT, LD->getMemOperand()); | 
|  | } | 
|  |  | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case ISD::AssertSext: | 
|  | if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) | 
|  | return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); | 
|  | break; | 
|  | case ISD::AssertZext: | 
|  | if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) | 
|  | return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); | 
|  | break; | 
|  | case ISD::Constant: { | 
|  | unsigned ExtOpc = | 
|  | Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | return DAG.getNode(ExtOpc, DL, PVT, Op); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) | 
|  | return SDValue(); | 
|  | return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { | 
|  | if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) | 
|  | return SDValue(); | 
|  | EVT OldVT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  | bool Replace = false; | 
|  | SDValue NewOp = PromoteOperand(Op, PVT, Replace); | 
|  | if (!NewOp.getNode()) | 
|  | return SDValue(); | 
|  | AddToWorklist(NewOp.getNode()); | 
|  |  | 
|  | if (Replace) | 
|  | ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, | 
|  | DAG.getValueType(OldVT)); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { | 
|  | EVT OldVT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  | bool Replace = false; | 
|  | SDValue NewOp = PromoteOperand(Op, PVT, Replace); | 
|  | if (!NewOp.getNode()) | 
|  | return SDValue(); | 
|  | AddToWorklist(NewOp.getNode()); | 
|  |  | 
|  | if (Replace) | 
|  | ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); | 
|  | return DAG.getZeroExtendInReg(NewOp, DL, OldVT); | 
|  | } | 
|  |  | 
|  | /// Promote the specified integer binary operation if the target indicates it is | 
|  | /// beneficial. e.g. On x86, it's usually better to promote i16 operations to | 
|  | /// i32 since i16 instructions are longer. | 
|  | SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.isVector() || !VT.isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If operation type is 'undesirable', e.g. i16 on x86, consider | 
|  | // promoting it. | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | if (TLI.isTypeDesirableForOp(Opc, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT PVT = VT; | 
|  | // Consult target whether it is a good idea to promote this operation and | 
|  | // what's the right type to promote it to. | 
|  | if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
|  | assert(PVT != VT && "Don't know what type to promote to!"); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); | 
|  |  | 
|  | bool Replace0 = false; | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue NN0 = PromoteOperand(N0, PVT, Replace0); | 
|  |  | 
|  | bool Replace1 = false; | 
|  | SDValue N1 = Op.getOperand(1); | 
|  | SDValue NN1 = PromoteOperand(N1, PVT, Replace1); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | SDValue RV = | 
|  | DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); | 
|  |  | 
|  | // We are always replacing N0/N1's use in N and only need | 
|  | // additional replacements if there are additional uses. | 
|  | Replace0 &= !N0->hasOneUse(); | 
|  | Replace1 &= (N0 != N1) && !N1->hasOneUse(); | 
|  |  | 
|  | // Combine Op here so it is preserved past replacements. | 
|  | CombineTo(Op.getNode(), RV); | 
|  |  | 
|  | // If operands have a use ordering, make sure we deal with | 
|  | // predecessor first. | 
|  | if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { | 
|  | std::swap(N0, N1); | 
|  | std::swap(NN0, NN1); | 
|  | } | 
|  |  | 
|  | if (Replace0) { | 
|  | AddToWorklist(NN0.getNode()); | 
|  | ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); | 
|  | } | 
|  | if (Replace1) { | 
|  | AddToWorklist(NN1.getNode()); | 
|  | ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Promote the specified integer shift operation if the target indicates it is | 
|  | /// beneficial. e.g. On x86, it's usually better to promote i16 operations to | 
|  | /// i32 since i16 instructions are longer. | 
|  | SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.isVector() || !VT.isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If operation type is 'undesirable', e.g. i16 on x86, consider | 
|  | // promoting it. | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | if (TLI.isTypeDesirableForOp(Opc, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT PVT = VT; | 
|  | // Consult target whether it is a good idea to promote this operation and | 
|  | // what's the right type to promote it to. | 
|  | if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
|  | assert(PVT != VT && "Don't know what type to promote to!"); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); | 
|  |  | 
|  | bool Replace = false; | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue N1 = Op.getOperand(1); | 
|  | if (Opc == ISD::SRA) | 
|  | N0 = SExtPromoteOperand(N0, PVT); | 
|  | else if (Opc == ISD::SRL) | 
|  | N0 = ZExtPromoteOperand(N0, PVT); | 
|  | else | 
|  | N0 = PromoteOperand(N0, PVT, Replace); | 
|  |  | 
|  | if (!N0.getNode()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | SDValue RV = | 
|  | DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); | 
|  |  | 
|  | AddToWorklist(N0.getNode()); | 
|  | if (Replace) | 
|  | ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); | 
|  |  | 
|  | // Deal with Op being deleted. | 
|  | if (Op && Op.getOpcode() != ISD::DELETED_NODE) | 
|  | return RV; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::PromoteExtend(SDValue Op) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.isVector() || !VT.isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If operation type is 'undesirable', e.g. i16 on x86, consider | 
|  | // promoting it. | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | if (TLI.isTypeDesirableForOp(Opc, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT PVT = VT; | 
|  | // Consult target whether it is a good idea to promote this operation and | 
|  | // what's the right type to promote it to. | 
|  | if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
|  | assert(PVT != VT && "Don't know what type to promote to!"); | 
|  | // fold (aext (aext x)) -> (aext x) | 
|  | // fold (aext (zext x)) -> (zext x) | 
|  | // fold (aext (sext x)) -> (sext x) | 
|  | LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); | 
|  | return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::PromoteLoad(SDValue Op) { | 
|  | if (!LegalOperations) | 
|  | return false; | 
|  |  | 
|  | if (!ISD::isUNINDEXEDLoad(Op.getNode())) | 
|  | return false; | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.isVector() || !VT.isInteger()) | 
|  | return false; | 
|  |  | 
|  | // If operation type is 'undesirable', e.g. i16 on x86, consider | 
|  | // promoting it. | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | if (TLI.isTypeDesirableForOp(Opc, VT)) | 
|  | return false; | 
|  |  | 
|  | EVT PVT = VT; | 
|  | // Consult target whether it is a good idea to promote this operation and | 
|  | // what's the right type to promote it to. | 
|  | if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
|  | assert(PVT != VT && "Don't know what type to promote to!"); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | SDNode *N = Op.getNode(); | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N); | 
|  | EVT MemVT = LD->getMemoryVT(); | 
|  | ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD | 
|  | : LD->getExtensionType(); | 
|  | SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, | 
|  | LD->getChain(), LD->getBasePtr(), | 
|  | MemVT, LD->getMemOperand()); | 
|  | SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; | 
|  | Result.getNode()->dump(&DAG); dbgs() << '\n'); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); | 
|  | deleteAndRecombine(N); | 
|  | AddToWorklist(Result.getNode()); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Recursively delete a node which has no uses and any operands for | 
|  | /// which it is the only use. | 
|  | /// | 
|  | /// Note that this both deletes the nodes and removes them from the worklist. | 
|  | /// It also adds any nodes who have had a user deleted to the worklist as they | 
|  | /// may now have only one use and subject to other combines. | 
|  | bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { | 
|  | if (!N->use_empty()) | 
|  | return false; | 
|  |  | 
|  | SmallSetVector<SDNode *, 16> Nodes; | 
|  | Nodes.insert(N); | 
|  | do { | 
|  | N = Nodes.pop_back_val(); | 
|  | if (!N) | 
|  | continue; | 
|  |  | 
|  | if (N->use_empty()) { | 
|  | for (const SDValue &ChildN : N->op_values()) | 
|  | Nodes.insert(ChildN.getNode()); | 
|  |  | 
|  | removeFromWorklist(N); | 
|  | DAG.DeleteNode(N); | 
|  | } else { | 
|  | AddToWorklist(N); | 
|  | } | 
|  | } while (!Nodes.empty()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Main DAG Combiner implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void DAGCombiner::Run(CombineLevel AtLevel) { | 
|  | // set the instance variables, so that the various visit routines may use it. | 
|  | Level = AtLevel; | 
|  | LegalOperations = Level >= AfterLegalizeVectorOps; | 
|  | LegalTypes = Level >= AfterLegalizeTypes; | 
|  |  | 
|  | WorklistInserter AddNodes(*this); | 
|  |  | 
|  | // Add all the dag nodes to the worklist. | 
|  | for (SDNode &Node : DAG.allnodes()) | 
|  | AddToWorklist(&Node); | 
|  |  | 
|  | // Create a dummy node (which is not added to allnodes), that adds a reference | 
|  | // to the root node, preventing it from being deleted, and tracking any | 
|  | // changes of the root. | 
|  | HandleSDNode Dummy(DAG.getRoot()); | 
|  |  | 
|  | // While we have a valid worklist entry node, try to combine it. | 
|  | while (SDNode *N = getNextWorklistEntry()) { | 
|  | // If N has no uses, it is dead.  Make sure to revisit all N's operands once | 
|  | // N is deleted from the DAG, since they too may now be dead or may have a | 
|  | // reduced number of uses, allowing other xforms. | 
|  | if (recursivelyDeleteUnusedNodes(N)) | 
|  | continue; | 
|  |  | 
|  | WorklistRemover DeadNodes(*this); | 
|  |  | 
|  | // If this combine is running after legalizing the DAG, re-legalize any | 
|  | // nodes pulled off the worklist. | 
|  | if (Level == AfterLegalizeDAG) { | 
|  | SmallSetVector<SDNode *, 16> UpdatedNodes; | 
|  | bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); | 
|  |  | 
|  | for (SDNode *LN : UpdatedNodes) { | 
|  | AddToWorklist(LN); | 
|  | AddUsersToWorklist(LN); | 
|  | } | 
|  | if (!NIsValid) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); | 
|  |  | 
|  | // Add any operands of the new node which have not yet been combined to the | 
|  | // worklist as well. Because the worklist uniques things already, this | 
|  | // won't repeatedly process the same operand. | 
|  | CombinedNodes.insert(N); | 
|  | for (const SDValue &ChildN : N->op_values()) | 
|  | if (!CombinedNodes.count(ChildN.getNode())) | 
|  | AddToWorklist(ChildN.getNode()); | 
|  |  | 
|  | SDValue RV = combine(N); | 
|  |  | 
|  | if (!RV.getNode()) | 
|  | continue; | 
|  |  | 
|  | ++NodesCombined; | 
|  |  | 
|  | // If we get back the same node we passed in, rather than a new node or | 
|  | // zero, we know that the node must have defined multiple values and | 
|  | // CombineTo was used.  Since CombineTo takes care of the worklist | 
|  | // mechanics for us, we have no work to do in this case. | 
|  | if (RV.getNode() == N) | 
|  | continue; | 
|  |  | 
|  | assert(N->getOpcode() != ISD::DELETED_NODE && | 
|  | RV.getOpcode() != ISD::DELETED_NODE && | 
|  | "Node was deleted but visit returned new node!"); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); | 
|  |  | 
|  | if (N->getNumValues() == RV.getNode()->getNumValues()) | 
|  | DAG.ReplaceAllUsesWith(N, RV.getNode()); | 
|  | else { | 
|  | assert(N->getValueType(0) == RV.getValueType() && | 
|  | N->getNumValues() == 1 && "Type mismatch"); | 
|  | DAG.ReplaceAllUsesWith(N, &RV); | 
|  | } | 
|  |  | 
|  | // Push the new node and any users onto the worklist | 
|  | AddToWorklist(RV.getNode()); | 
|  | AddUsersToWorklist(RV.getNode()); | 
|  |  | 
|  | // Finally, if the node is now dead, remove it from the graph.  The node | 
|  | // may not be dead if the replacement process recursively simplified to | 
|  | // something else needing this node. This will also take care of adding any | 
|  | // operands which have lost a user to the worklist. | 
|  | recursivelyDeleteUnusedNodes(N); | 
|  | } | 
|  |  | 
|  | // If the root changed (e.g. it was a dead load, update the root). | 
|  | DAG.setRoot(Dummy.getValue()); | 
|  | DAG.RemoveDeadNodes(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visit(SDNode *N) { | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::TokenFactor:        return visitTokenFactor(N); | 
|  | case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N); | 
|  | case ISD::ADD:                return visitADD(N); | 
|  | case ISD::SUB:                return visitSUB(N); | 
|  | case ISD::SADDSAT: | 
|  | case ISD::UADDSAT:            return visitADDSAT(N); | 
|  | case ISD::SSUBSAT: | 
|  | case ISD::USUBSAT:            return visitSUBSAT(N); | 
|  | case ISD::ADDC:               return visitADDC(N); | 
|  | case ISD::SADDO: | 
|  | case ISD::UADDO:              return visitADDO(N); | 
|  | case ISD::SUBC:               return visitSUBC(N); | 
|  | case ISD::SSUBO: | 
|  | case ISD::USUBO:              return visitSUBO(N); | 
|  | case ISD::ADDE:               return visitADDE(N); | 
|  | case ISD::ADDCARRY:           return visitADDCARRY(N); | 
|  | case ISD::SUBE:               return visitSUBE(N); | 
|  | case ISD::SUBCARRY:           return visitSUBCARRY(N); | 
|  | case ISD::MUL:                return visitMUL(N); | 
|  | case ISD::SDIV:               return visitSDIV(N); | 
|  | case ISD::UDIV:               return visitUDIV(N); | 
|  | case ISD::SREM: | 
|  | case ISD::UREM:               return visitREM(N); | 
|  | case ISD::MULHU:              return visitMULHU(N); | 
|  | case ISD::MULHS:              return visitMULHS(N); | 
|  | case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N); | 
|  | case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N); | 
|  | case ISD::SMULO: | 
|  | case ISD::UMULO:              return visitMULO(N); | 
|  | case ISD::SMIN: | 
|  | case ISD::SMAX: | 
|  | case ISD::UMIN: | 
|  | case ISD::UMAX:               return visitIMINMAX(N); | 
|  | case ISD::AND:                return visitAND(N); | 
|  | case ISD::OR:                 return visitOR(N); | 
|  | case ISD::XOR:                return visitXOR(N); | 
|  | case ISD::SHL:                return visitSHL(N); | 
|  | case ISD::SRA:                return visitSRA(N); | 
|  | case ISD::SRL:                return visitSRL(N); | 
|  | case ISD::ROTR: | 
|  | case ISD::ROTL:               return visitRotate(N); | 
|  | case ISD::FSHL: | 
|  | case ISD::FSHR:               return visitFunnelShift(N); | 
|  | case ISD::ABS:                return visitABS(N); | 
|  | case ISD::BSWAP:              return visitBSWAP(N); | 
|  | case ISD::BITREVERSE:         return visitBITREVERSE(N); | 
|  | case ISD::CTLZ:               return visitCTLZ(N); | 
|  | case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N); | 
|  | case ISD::CTTZ:               return visitCTTZ(N); | 
|  | case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N); | 
|  | case ISD::CTPOP:              return visitCTPOP(N); | 
|  | case ISD::SELECT:             return visitSELECT(N); | 
|  | case ISD::VSELECT:            return visitVSELECT(N); | 
|  | case ISD::SELECT_CC:          return visitSELECT_CC(N); | 
|  | case ISD::SETCC:              return visitSETCC(N); | 
|  | case ISD::SETCCCARRY:         return visitSETCCCARRY(N); | 
|  | case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N); | 
|  | case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N); | 
|  | case ISD::ANY_EXTEND:         return visitANY_EXTEND(N); | 
|  | case ISD::AssertSext: | 
|  | case ISD::AssertZext:         return visitAssertExt(N); | 
|  | case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N); | 
|  | case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); | 
|  | case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); | 
|  | case ISD::TRUNCATE:           return visitTRUNCATE(N); | 
|  | case ISD::BITCAST:            return visitBITCAST(N); | 
|  | case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N); | 
|  | case ISD::FADD:               return visitFADD(N); | 
|  | case ISD::FSUB:               return visitFSUB(N); | 
|  | case ISD::FMUL:               return visitFMUL(N); | 
|  | case ISD::FMA:                return visitFMA(N); | 
|  | case ISD::FDIV:               return visitFDIV(N); | 
|  | case ISD::FREM:               return visitFREM(N); | 
|  | case ISD::FSQRT:              return visitFSQRT(N); | 
|  | case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N); | 
|  | case ISD::FPOW:               return visitFPOW(N); | 
|  | case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N); | 
|  | case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N); | 
|  | case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N); | 
|  | case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N); | 
|  | case ISD::FP_ROUND:           return visitFP_ROUND(N); | 
|  | case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N); | 
|  | case ISD::FP_EXTEND:          return visitFP_EXTEND(N); | 
|  | case ISD::FNEG:               return visitFNEG(N); | 
|  | case ISD::FABS:               return visitFABS(N); | 
|  | case ISD::FFLOOR:             return visitFFLOOR(N); | 
|  | case ISD::FMINNUM:            return visitFMINNUM(N); | 
|  | case ISD::FMAXNUM:            return visitFMAXNUM(N); | 
|  | case ISD::FMINIMUM:           return visitFMINIMUM(N); | 
|  | case ISD::FMAXIMUM:           return visitFMAXIMUM(N); | 
|  | case ISD::FCEIL:              return visitFCEIL(N); | 
|  | case ISD::FTRUNC:             return visitFTRUNC(N); | 
|  | case ISD::BRCOND:             return visitBRCOND(N); | 
|  | case ISD::BR_CC:              return visitBR_CC(N); | 
|  | case ISD::LOAD:               return visitLOAD(N); | 
|  | case ISD::STORE:              return visitSTORE(N); | 
|  | case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N); | 
|  | case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); | 
|  | case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N); | 
|  | case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N); | 
|  | case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N); | 
|  | case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N); | 
|  | case ISD::SCALAR_TO_VECTOR:   return visitSCALAR_TO_VECTOR(N); | 
|  | case ISD::INSERT_SUBVECTOR:   return visitINSERT_SUBVECTOR(N); | 
|  | case ISD::MGATHER:            return visitMGATHER(N); | 
|  | case ISD::MLOAD:              return visitMLOAD(N); | 
|  | case ISD::MSCATTER:           return visitMSCATTER(N); | 
|  | case ISD::MSTORE:             return visitMSTORE(N); | 
|  | case ISD::LIFETIME_END:       return visitLIFETIME_END(N); | 
|  | case ISD::FP_TO_FP16:         return visitFP_TO_FP16(N); | 
|  | case ISD::FP16_TO_FP:         return visitFP16_TO_FP(N); | 
|  | case ISD::VECREDUCE_FADD: | 
|  | case ISD::VECREDUCE_FMUL: | 
|  | case ISD::VECREDUCE_ADD: | 
|  | case ISD::VECREDUCE_MUL: | 
|  | case ISD::VECREDUCE_AND: | 
|  | case ISD::VECREDUCE_OR: | 
|  | case ISD::VECREDUCE_XOR: | 
|  | case ISD::VECREDUCE_SMAX: | 
|  | case ISD::VECREDUCE_SMIN: | 
|  | case ISD::VECREDUCE_UMAX: | 
|  | case ISD::VECREDUCE_UMIN: | 
|  | case ISD::VECREDUCE_FMAX: | 
|  | case ISD::VECREDUCE_FMIN:     return visitVECREDUCE(N); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::combine(SDNode *N) { | 
|  | SDValue RV = visit(N); | 
|  |  | 
|  | // If nothing happened, try a target-specific DAG combine. | 
|  | if (!RV.getNode()) { | 
|  | assert(N->getOpcode() != ISD::DELETED_NODE && | 
|  | "Node was deleted but visit returned NULL!"); | 
|  |  | 
|  | if (N->getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { | 
|  |  | 
|  | // Expose the DAG combiner to the target combiner impls. | 
|  | TargetLowering::DAGCombinerInfo | 
|  | DagCombineInfo(DAG, Level, false, this); | 
|  |  | 
|  | RV = TLI.PerformDAGCombine(N, DagCombineInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If nothing happened still, try promoting the operation. | 
|  | if (!RV.getNode()) { | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | RV = PromoteIntBinOp(SDValue(N, 0)); | 
|  | break; | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | RV = PromoteIntShiftOp(SDValue(N, 0)); | 
|  | break; | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | RV = PromoteExtend(SDValue(N, 0)); | 
|  | break; | 
|  | case ISD::LOAD: | 
|  | if (PromoteLoad(SDValue(N, 0))) | 
|  | RV = SDValue(N, 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If N is a commutative binary node, try to eliminate it if the commuted | 
|  | // version is already present in the DAG. | 
|  | if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && | 
|  | N->getNumValues() == 1) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | // Constant operands are canonicalized to RHS. | 
|  | if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { | 
|  | SDValue Ops[] = {N1, N0}; | 
|  | SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, | 
|  | N->getFlags()); | 
|  | if (CSENode) | 
|  | return SDValue(CSENode, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return RV; | 
|  | } | 
|  |  | 
|  | /// Given a node, return its input chain if it has one, otherwise return a null | 
|  | /// sd operand. | 
|  | static SDValue getInputChainForNode(SDNode *N) { | 
|  | if (unsigned NumOps = N->getNumOperands()) { | 
|  | if (N->getOperand(0).getValueType() == MVT::Other) | 
|  | return N->getOperand(0); | 
|  | if (N->getOperand(NumOps-1).getValueType() == MVT::Other) | 
|  | return N->getOperand(NumOps-1); | 
|  | for (unsigned i = 1; i < NumOps-1; ++i) | 
|  | if (N->getOperand(i).getValueType() == MVT::Other) | 
|  | return N->getOperand(i); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitTokenFactor(SDNode *N) { | 
|  | // If N has two operands, where one has an input chain equal to the other, | 
|  | // the 'other' chain is redundant. | 
|  | if (N->getNumOperands() == 2) { | 
|  | if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) | 
|  | return N->getOperand(0); | 
|  | if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) | 
|  | return N->getOperand(1); | 
|  | } | 
|  |  | 
|  | // Don't simplify token factors if optnone. | 
|  | if (OptLevel == CodeGenOpt::None) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the sole user is a token factor, we should make sure we have a | 
|  | // chance to merge them together. This prevents TF chains from inhibiting | 
|  | // optimizations. | 
|  | if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) | 
|  | AddToWorklist(*(N->use_begin())); | 
|  |  | 
|  | SmallVector<SDNode *, 8> TFs;     // List of token factors to visit. | 
|  | SmallVector<SDValue, 8> Ops;      // Ops for replacing token factor. | 
|  | SmallPtrSet<SDNode*, 16> SeenOps; | 
|  | bool Changed = false;             // If we should replace this token factor. | 
|  |  | 
|  | // Start out with this token factor. | 
|  | TFs.push_back(N); | 
|  |  | 
|  | // Iterate through token factors.  The TFs grows when new token factors are | 
|  | // encountered. | 
|  | for (unsigned i = 0; i < TFs.size(); ++i) { | 
|  | // Limit number of nodes to inline, to avoid quadratic compile times. | 
|  | // We have to add the outstanding Token Factors to Ops, otherwise we might | 
|  | // drop Ops from the resulting Token Factors. | 
|  | if (Ops.size() > TokenFactorInlineLimit) { | 
|  | for (unsigned j = i; j < TFs.size(); j++) | 
|  | Ops.emplace_back(TFs[j], 0); | 
|  | // Drop unprocessed Token Factors from TFs, so we do not add them to the | 
|  | // combiner worklist later. | 
|  | TFs.resize(i); | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDNode *TF = TFs[i]; | 
|  | // Check each of the operands. | 
|  | for (const SDValue &Op : TF->op_values()) { | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::EntryToken: | 
|  | // Entry tokens don't need to be added to the list. They are | 
|  | // redundant. | 
|  | Changed = true; | 
|  | break; | 
|  |  | 
|  | case ISD::TokenFactor: | 
|  | if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { | 
|  | // Queue up for processing. | 
|  | TFs.push_back(Op.getNode()); | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  |  | 
|  | default: | 
|  | // Only add if it isn't already in the list. | 
|  | if (SeenOps.insert(Op.getNode()).second) | 
|  | Ops.push_back(Op); | 
|  | else | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Re-visit inlined Token Factors, to clean them up in case they have been | 
|  | // removed. Skip the first Token Factor, as this is the current node. | 
|  | for (unsigned i = 1, e = TFs.size(); i < e; i++) | 
|  | AddToWorklist(TFs[i]); | 
|  |  | 
|  | // Remove Nodes that are chained to another node in the list. Do so | 
|  | // by walking up chains breath-first stopping when we've seen | 
|  | // another operand. In general we must climb to the EntryNode, but we can exit | 
|  | // early if we find all remaining work is associated with just one operand as | 
|  | // no further pruning is possible. | 
|  |  | 
|  | // List of nodes to search through and original Ops from which they originate. | 
|  | SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; | 
|  | SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. | 
|  | SmallPtrSet<SDNode *, 16> SeenChains; | 
|  | bool DidPruneOps = false; | 
|  |  | 
|  | unsigned NumLeftToConsider = 0; | 
|  | for (const SDValue &Op : Ops) { | 
|  | Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); | 
|  | OpWorkCount.push_back(1); | 
|  | } | 
|  |  | 
|  | auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { | 
|  | // If this is an Op, we can remove the op from the list. Remark any | 
|  | // search associated with it as from the current OpNumber. | 
|  | if (SeenOps.count(Op) != 0) { | 
|  | Changed = true; | 
|  | DidPruneOps = true; | 
|  | unsigned OrigOpNumber = 0; | 
|  | while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) | 
|  | OrigOpNumber++; | 
|  | assert((OrigOpNumber != Ops.size()) && | 
|  | "expected to find TokenFactor Operand"); | 
|  | // Re-mark worklist from OrigOpNumber to OpNumber | 
|  | for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { | 
|  | if (Worklist[i].second == OrigOpNumber) { | 
|  | Worklist[i].second = OpNumber; | 
|  | } | 
|  | } | 
|  | OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; | 
|  | OpWorkCount[OrigOpNumber] = 0; | 
|  | NumLeftToConsider--; | 
|  | } | 
|  | // Add if it's a new chain | 
|  | if (SeenChains.insert(Op).second) { | 
|  | OpWorkCount[OpNumber]++; | 
|  | Worklist.push_back(std::make_pair(Op, OpNumber)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { | 
|  | // We need at least be consider at least 2 Ops to prune. | 
|  | if (NumLeftToConsider <= 1) | 
|  | break; | 
|  | auto CurNode = Worklist[i].first; | 
|  | auto CurOpNumber = Worklist[i].second; | 
|  | assert((OpWorkCount[CurOpNumber] > 0) && | 
|  | "Node should not appear in worklist"); | 
|  | switch (CurNode->getOpcode()) { | 
|  | case ISD::EntryToken: | 
|  | // Hitting EntryToken is the only way for the search to terminate without | 
|  | // hitting | 
|  | // another operand's search. Prevent us from marking this operand | 
|  | // considered. | 
|  | NumLeftToConsider++; | 
|  | break; | 
|  | case ISD::TokenFactor: | 
|  | for (const SDValue &Op : CurNode->op_values()) | 
|  | AddToWorklist(i, Op.getNode(), CurOpNumber); | 
|  | break; | 
|  | case ISD::LIFETIME_START: | 
|  | case ISD::LIFETIME_END: | 
|  | case ISD::CopyFromReg: | 
|  | case ISD::CopyToReg: | 
|  | AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); | 
|  | break; | 
|  | default: | 
|  | if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) | 
|  | AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); | 
|  | break; | 
|  | } | 
|  | OpWorkCount[CurOpNumber]--; | 
|  | if (OpWorkCount[CurOpNumber] == 0) | 
|  | NumLeftToConsider--; | 
|  | } | 
|  |  | 
|  | // If we've changed things around then replace token factor. | 
|  | if (Changed) { | 
|  | SDValue Result; | 
|  | if (Ops.empty()) { | 
|  | // The entry token is the only possible outcome. | 
|  | Result = DAG.getEntryNode(); | 
|  | } else { | 
|  | if (DidPruneOps) { | 
|  | SmallVector<SDValue, 8> PrunedOps; | 
|  | // | 
|  | for (const SDValue &Op : Ops) { | 
|  | if (SeenChains.count(Op.getNode()) == 0) | 
|  | PrunedOps.push_back(Op); | 
|  | } | 
|  | Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); | 
|  | } else { | 
|  | Result = DAG.getTokenFactor(SDLoc(N), Ops); | 
|  | } | 
|  | } | 
|  | return Result; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// MERGE_VALUES can always be eliminated. | 
|  | SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { | 
|  | WorklistRemover DeadNodes(*this); | 
|  | // Replacing results may cause a different MERGE_VALUES to suddenly | 
|  | // be CSE'd with N, and carry its uses with it. Iterate until no | 
|  | // uses remain, to ensure that the node can be safely deleted. | 
|  | // First add the users of this node to the work list so that they | 
|  | // can be tried again once they have new operands. | 
|  | AddUsersToWorklist(N); | 
|  | do { | 
|  | // Do as a single replacement to avoid rewalking use lists. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | Ops.push_back(N->getOperand(i)); | 
|  | DAG.ReplaceAllUsesWith(N, Ops.data()); | 
|  | } while (!N->use_empty()); | 
|  | deleteAndRecombine(N); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a | 
|  | /// ConstantSDNode pointer else nullptr. | 
|  | static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { | 
|  | ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); | 
|  | return Const != nullptr && !Const->isOpaque() ? Const : nullptr; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { | 
|  | assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && | 
|  | "Unexpected binary operator"); | 
|  |  | 
|  | // Don't do this unless the old select is going away. We want to eliminate the | 
|  | // binary operator, not replace a binop with a select. | 
|  | // TODO: Handle ISD::SELECT_CC. | 
|  | unsigned SelOpNo = 0; | 
|  | SDValue Sel = BO->getOperand(0); | 
|  | if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { | 
|  | SelOpNo = 1; | 
|  | Sel = BO->getOperand(1); | 
|  | } | 
|  |  | 
|  | if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue CT = Sel.getOperand(1); | 
|  | if (!isConstantOrConstantVector(CT, true) && | 
|  | !isConstantFPBuildVectorOrConstantFP(CT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue CF = Sel.getOperand(2); | 
|  | if (!isConstantOrConstantVector(CF, true) && | 
|  | !isConstantFPBuildVectorOrConstantFP(CF)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Bail out if any constants are opaque because we can't constant fold those. | 
|  | // The exception is "and" and "or" with either 0 or -1 in which case we can | 
|  | // propagate non constant operands into select. I.e.: | 
|  | // and (select Cond, 0, -1), X --> select Cond, 0, X | 
|  | // or X, (select Cond, -1, 0) --> select Cond, -1, X | 
|  | auto BinOpcode = BO->getOpcode(); | 
|  | bool CanFoldNonConst = | 
|  | (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && | 
|  | (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && | 
|  | (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); | 
|  |  | 
|  | SDValue CBO = BO->getOperand(SelOpNo ^ 1); | 
|  | if (!CanFoldNonConst && | 
|  | !isConstantOrConstantVector(CBO, true) && | 
|  | !isConstantFPBuildVectorOrConstantFP(CBO)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Sel.getValueType(); | 
|  |  | 
|  | // In case of shift value and shift amount may have different VT. For instance | 
|  | // on x86 shift amount is i8 regardles of LHS type. Bail out if we have | 
|  | // swapped operands and value types do not match. NB: x86 is fine if operands | 
|  | // are not swapped with shift amount VT being not bigger than shifted value. | 
|  | // TODO: that is possible to check for a shift operation, correct VTs and | 
|  | // still perform optimization on x86 if needed. | 
|  | if (SelOpNo && VT != CBO.getValueType()) | 
|  | return SDValue(); | 
|  |  | 
|  | // We have a select-of-constants followed by a binary operator with a | 
|  | // constant. Eliminate the binop by pulling the constant math into the select. | 
|  | // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO | 
|  | SDLoc DL(Sel); | 
|  | SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) | 
|  | : DAG.getNode(BinOpcode, DL, VT, CT, CBO); | 
|  | if (!CanFoldNonConst && !NewCT.isUndef() && | 
|  | !isConstantOrConstantVector(NewCT, true) && | 
|  | !isConstantFPBuildVectorOrConstantFP(NewCT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) | 
|  | : DAG.getNode(BinOpcode, DL, VT, CF, CBO); | 
|  | if (!CanFoldNonConst && !NewCF.isUndef() && | 
|  | !isConstantOrConstantVector(NewCF, true) && | 
|  | !isConstantFPBuildVectorOrConstantFP(NewCF)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); | 
|  | SelectOp->setFlags(BO->getFlags()); | 
|  | return SelectOp; | 
|  | } | 
|  |  | 
|  | static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { | 
|  | assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && | 
|  | "Expecting add or sub"); | 
|  |  | 
|  | // Match a constant operand and a zext operand for the math instruction: | 
|  | // add Z, C | 
|  | // sub C, Z | 
|  | bool IsAdd = N->getOpcode() == ISD::ADD; | 
|  | SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); | 
|  | SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); | 
|  | auto *CN = dyn_cast<ConstantSDNode>(C); | 
|  | if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) | 
|  | return SDValue(); | 
|  |  | 
|  | // Match the zext operand as a setcc of a boolean. | 
|  | if (Z.getOperand(0).getOpcode() != ISD::SETCC || | 
|  | Z.getOperand(0).getValueType() != MVT::i1) | 
|  | return SDValue(); | 
|  |  | 
|  | // Match the compare as: setcc (X & 1), 0, eq. | 
|  | SDValue SetCC = Z.getOperand(0); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); | 
|  | if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || | 
|  | SetCC.getOperand(0).getOpcode() != ISD::AND || | 
|  | !isOneConstant(SetCC.getOperand(0).getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | // We are adding/subtracting a constant and an inverted low bit. Turn that | 
|  | // into a subtract/add of the low bit with incremented/decremented constant: | 
|  | // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) | 
|  | // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) | 
|  | EVT VT = C.getValueType(); | 
|  | SDLoc DL(N); | 
|  | SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); | 
|  | SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : | 
|  | DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); | 
|  | return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); | 
|  | } | 
|  |  | 
|  | /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into | 
|  | /// a shift and add with a different constant. | 
|  | static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { | 
|  | assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && | 
|  | "Expecting add or sub"); | 
|  |  | 
|  | // We need a constant operand for the add/sub, and the other operand is a | 
|  | // logical shift right: add (srl), C or sub C, (srl). | 
|  | // TODO - support non-uniform vector amounts. | 
|  | bool IsAdd = N->getOpcode() == ISD::ADD; | 
|  | SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); | 
|  | SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); | 
|  | ConstantSDNode *C = isConstOrConstSplat(ConstantOp); | 
|  | if (!C || ShiftOp.getOpcode() != ISD::SRL) | 
|  | return SDValue(); | 
|  |  | 
|  | // The shift must be of a 'not' value. | 
|  | SDValue Not = ShiftOp.getOperand(0); | 
|  | if (!Not.hasOneUse() || !isBitwiseNot(Not)) | 
|  | return SDValue(); | 
|  |  | 
|  | // The shift must be moving the sign bit to the least-significant-bit. | 
|  | EVT VT = ShiftOp.getValueType(); | 
|  | SDValue ShAmt = ShiftOp.getOperand(1); | 
|  | ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); | 
|  | if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Eliminate the 'not' by adjusting the shift and add/sub constant: | 
|  | // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) | 
|  | // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) | 
|  | SDLoc DL(N); | 
|  | auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; | 
|  | SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); | 
|  | APInt NewC = IsAdd ? C->getAPIntValue() + 1 : C->getAPIntValue() - 1; | 
|  | return DAG.getNode(ISD::ADD, DL, VT, NewShift, DAG.getConstant(NewC, DL, VT)); | 
|  | } | 
|  |  | 
|  | /// Try to fold a node that behaves like an ADD (note that N isn't necessarily | 
|  | /// an ISD::ADD here, it could for example be an ISD::OR if we know that there | 
|  | /// are no common bits set in the operands). | 
|  | SDValue DAGCombiner::visitADDLike(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (add x, 0) -> x, vector edition | 
|  | if (ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | return N0; | 
|  | if (ISD::isBuildVectorAllZeros(N0.getNode())) | 
|  | return N1; | 
|  | } | 
|  |  | 
|  | // fold (add x, undef) -> undef | 
|  | if (N0.isUndef()) | 
|  | return N0; | 
|  |  | 
|  | if (N1.isUndef()) | 
|  | return N1; | 
|  |  | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { | 
|  | // canonicalize constant to RHS | 
|  | if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N1, N0); | 
|  | // fold (add c1, c2) -> c1+c2 | 
|  | return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(), | 
|  | N1.getNode()); | 
|  | } | 
|  |  | 
|  | // fold (add x, 0) -> x | 
|  | if (isNullConstant(N1)) | 
|  | return N0; | 
|  |  | 
|  | if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { | 
|  | // fold ((A-c1)+c2) -> (A+(c2-c1)) | 
|  | if (N0.getOpcode() == ISD::SUB && | 
|  | isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { | 
|  | SDValue Sub = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N1.getNode(), | 
|  | N0.getOperand(1).getNode()); | 
|  | assert(Sub && "Constant folding failed"); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); | 
|  | } | 
|  |  | 
|  | // fold ((c1-A)+c2) -> (c1+c2)-A | 
|  | if (N0.getOpcode() == ISD::SUB && | 
|  | isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { | 
|  | SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N1.getNode(), | 
|  | N0.getOperand(0).getNode()); | 
|  | assert(Add && "Constant folding failed"); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | // add (sext i1 X), 1 -> zext (not i1 X) | 
|  | // We don't transform this pattern: | 
|  | //   add (zext i1 X), -1 -> sext (not i1 X) | 
|  | // because most (?) targets generate better code for the zext form. | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && | 
|  | isOneOrOneSplat(N1)) { | 
|  | SDValue X = N0.getOperand(0); | 
|  | if ((!LegalOperations || | 
|  | (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && | 
|  | TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && | 
|  | X.getScalarValueSizeInBits() == 1) { | 
|  | SDValue Not = DAG.getNOT(DL, X, X.getValueType()); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Undo the add -> or combine to merge constant offsets from a frame index. | 
|  | if (N0.getOpcode() == ISD::OR && | 
|  | isa<FrameIndexSDNode>(N0.getOperand(0)) && | 
|  | isa<ConstantSDNode>(N0.getOperand(1)) && | 
|  | DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { | 
|  | SDValue Add0 = DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(1)); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | // reassociate add | 
|  | if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) { | 
|  | if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) | 
|  | return RADD; | 
|  | } | 
|  | // fold ((0-A) + B) -> B-A | 
|  | if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); | 
|  |  | 
|  | // fold (A + (0-B)) -> A-B | 
|  | if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); | 
|  |  | 
|  | // fold (A+(B-A)) -> B | 
|  | if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) | 
|  | return N1.getOperand(0); | 
|  |  | 
|  | // fold ((B-A)+A) -> B | 
|  | if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) | 
|  | return N0.getOperand(0); | 
|  |  | 
|  | // fold ((A-B)+(C-A)) -> (C-B) | 
|  | if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && | 
|  | N0.getOperand(0) == N1.getOperand(1)) | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), | 
|  | N0.getOperand(1)); | 
|  |  | 
|  | // fold ((A-B)+(B-C)) -> (A-C) | 
|  | if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && | 
|  | N0.getOperand(1) == N1.getOperand(0)) | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), | 
|  | N1.getOperand(1)); | 
|  |  | 
|  | // fold (A+(B-(A+C))) to (B-C) | 
|  | if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && | 
|  | N0 == N1.getOperand(1).getOperand(0)) | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), | 
|  | N1.getOperand(1).getOperand(1)); | 
|  |  | 
|  | // fold (A+(B-(C+A))) to (B-C) | 
|  | if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && | 
|  | N0 == N1.getOperand(1).getOperand(1)) | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), | 
|  | N1.getOperand(1).getOperand(0)); | 
|  |  | 
|  | // fold (A+((B-A)+or-C)) to (B+or-C) | 
|  | if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && | 
|  | N1.getOperand(0).getOpcode() == ISD::SUB && | 
|  | N0 == N1.getOperand(0).getOperand(1)) | 
|  | return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), | 
|  | N1.getOperand(1)); | 
|  |  | 
|  | // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant | 
|  | if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | SDValue N01 = N0.getOperand(1); | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | SDValue N11 = N1.getOperand(1); | 
|  |  | 
|  | if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) | 
|  | return DAG.getNode(ISD::SUB, DL, VT, | 
|  | DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), | 
|  | DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); | 
|  | } | 
|  |  | 
|  | // fold (add (umax X, C), -C) --> (usubsat X, C) | 
|  | if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { | 
|  | auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { | 
|  | return (!Max && !Op) || | 
|  | (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); | 
|  | }; | 
|  | if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, | 
|  | /*AllowUndefs*/ true)) | 
|  | return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), | 
|  | N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | if (SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | if (isOneOrOneSplat(N1)) { | 
|  | // fold (add (xor a, -1), 1) -> (sub 0, a) | 
|  | if (isBitwiseNot(N0)) | 
|  | return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), | 
|  | N0.getOperand(0)); | 
|  |  | 
|  | // fold (add (add (xor a, -1), b), 1) -> (sub b, a) | 
|  | if (N0.getOpcode() == ISD::ADD || | 
|  | N0.getOpcode() == ISD::UADDO || | 
|  | N0.getOpcode() == ISD::SADDO) { | 
|  | SDValue A, Xor; | 
|  |  | 
|  | if (isBitwiseNot(N0.getOperand(0))) { | 
|  | A = N0.getOperand(1); | 
|  | Xor = N0.getOperand(0); | 
|  | } else if (isBitwiseNot(N0.getOperand(1))) { | 
|  | A = N0.getOperand(0); | 
|  | Xor = N0.getOperand(1); | 
|  | } | 
|  |  | 
|  | if (Xor) | 
|  | return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); | 
|  | } | 
|  |  | 
|  | // Look for: | 
|  | //   add (add x, y), 1 | 
|  | // And if the target does not like this form then turn into: | 
|  | //   sub y, (xor x, -1) | 
|  | if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && | 
|  | N0.getOpcode() == ISD::ADD) { | 
|  | SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), | 
|  | DAG.getAllOnesConstant(DL, VT)); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (x - y) + -1  ->  add (xor y, -1), x | 
|  | if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && | 
|  | isAllOnesOrAllOnesSplat(N1)) { | 
|  | SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); | 
|  | } | 
|  |  | 
|  | if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) | 
|  | return Combined; | 
|  |  | 
|  | if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) | 
|  | return Combined; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADD(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if (SDValue Combined = visitADDLike(N)) | 
|  | return Combined; | 
|  |  | 
|  | if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) | 
|  | return V; | 
|  |  | 
|  | if (SDValue V = foldAddSubOfSignBit(N, DAG)) | 
|  | return V; | 
|  |  | 
|  | // fold (a+b) -> (a|b) iff a and b share no bits. | 
|  | if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && | 
|  | DAG.haveNoCommonBitsSet(N0, N1)) | 
|  | return DAG.getNode(ISD::OR, DL, VT, N0, N1); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADDSAT(SDNode *N) { | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | // TODO SimplifyVBinOp | 
|  |  | 
|  | // fold (add_sat x, 0) -> x, vector edition | 
|  | if (ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | return N0; | 
|  | if (ISD::isBuildVectorAllZeros(N0.getNode())) | 
|  | return N1; | 
|  | } | 
|  |  | 
|  | // fold (add_sat x, undef) -> -1 | 
|  | if (N0.isUndef() || N1.isUndef()) | 
|  | return DAG.getAllOnesConstant(DL, VT); | 
|  |  | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { | 
|  | // canonicalize constant to RHS | 
|  | if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
|  | return DAG.getNode(Opcode, DL, VT, N1, N0); | 
|  | // fold (add_sat c1, c2) -> c3 | 
|  | return DAG.FoldConstantArithmetic(Opcode, DL, VT, N0.getNode(), | 
|  | N1.getNode()); | 
|  | } | 
|  |  | 
|  | // fold (add_sat x, 0) -> x | 
|  | if (isNullConstant(N1)) | 
|  | return N0; | 
|  |  | 
|  | // If it cannot overflow, transform into an add. | 
|  | if (Opcode == ISD::UADDSAT) | 
|  | if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0, N1); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { | 
|  | bool Masked = false; | 
|  |  | 
|  | // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. | 
|  | while (true) { | 
|  | if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { | 
|  | V = V.getOperand(0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { | 
|  | Masked = true; | 
|  | V = V.getOperand(0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is not a carry, return. | 
|  | if (V.getResNo() != 1) | 
|  | return SDValue(); | 
|  |  | 
|  | if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && | 
|  | V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = V.getNode()->getValueType(0); | 
|  | if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the result is masked, then no matter what kind of bool it is we can | 
|  | // return. If it isn't, then we need to make sure the bool type is either 0 or | 
|  | // 1 and not other values. | 
|  | if (Masked || | 
|  | TLI.getBooleanContents(V.getValueType()) == | 
|  | TargetLoweringBase::ZeroOrOneBooleanContent) | 
|  | return V; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Given the operands of an add/sub operation, see if the 2nd operand is a | 
|  | /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert | 
|  | /// the opcode and bypass the mask operation. | 
|  | static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, | 
|  | SelectionDAG &DAG, const SDLoc &DL) { | 
|  | if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N0.getValueType(); | 
|  | if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | // add N0, (and (AssertSext X, i1), 1) --> sub N0, X | 
|  | // sub N0, (and (AssertSext X, i1), 1) --> add N0, X | 
|  | return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0)); | 
|  | } | 
|  |  | 
|  | /// Helper for doing combines based on N0 and N1 being added to each other. | 
|  | SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, | 
|  | SDNode *LocReference) { | 
|  | EVT VT = N0.getValueType(); | 
|  | SDLoc DL(LocReference); | 
|  |  | 
|  | // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) | 
|  | if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && | 
|  | isNullOrNullSplat(N1.getOperand(0).getOperand(0))) | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N0, | 
|  | DAG.getNode(ISD::SHL, DL, VT, | 
|  | N1.getOperand(0).getOperand(1), | 
|  | N1.getOperand(1))); | 
|  |  | 
|  | if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) | 
|  | return V; | 
|  |  | 
|  | // Look for: | 
|  | //   add (add x, 1), y | 
|  | // And if the target does not like this form then turn into: | 
|  | //   sub y, (xor x, -1) | 
|  | if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && | 
|  | N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) { | 
|  | SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), | 
|  | DAG.getAllOnesConstant(DL, VT)); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N1, Not); | 
|  | } | 
|  |  | 
|  | // Hoist one-use subtraction by non-opaque constant: | 
|  | //   (x - C) + y  ->  (x + y) - C | 
|  | // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. | 
|  | if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && | 
|  | isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); | 
|  | } | 
|  | // Hoist one-use subtraction from non-opaque constant: | 
|  | //   (C - x) + y  ->  (y - x) + C | 
|  | if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && | 
|  | isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); | 
|  | } | 
|  |  | 
|  | // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' | 
|  | // rather than 'add 0/-1' (the zext should get folded). | 
|  | // add (sext i1 Y), X --> sub X, (zext i1 Y) | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND && | 
|  | N0.getOperand(0).getScalarValueSizeInBits() == 1 && | 
|  | TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { | 
|  | SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); | 
|  | } | 
|  |  | 
|  | // add X, (sextinreg Y i1) -> sub X, (and Y 1) | 
|  | if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { | 
|  | VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); | 
|  | if (TN->getVT() == MVT::i1) { | 
|  | SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), | 
|  | DAG.getConstant(1, DL, VT)); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) | 
|  | if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && | 
|  | N1.getResNo() == 0) | 
|  | return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), | 
|  | N0, N1.getOperand(0), N1.getOperand(2)); | 
|  |  | 
|  | // (add X, Carry) -> (addcarry X, 0, Carry) | 
|  | if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) | 
|  | if (SDValue Carry = getAsCarry(TLI, N1)) | 
|  | return DAG.getNode(ISD::ADDCARRY, DL, | 
|  | DAG.getVTList(VT, Carry.getValueType()), N0, | 
|  | DAG.getConstant(0, DL, VT), Carry); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADDC(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the flag result is dead, turn this into an ADD. | 
|  | if (!N->hasAnyUseOfValue(1)) | 
|  | return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), | 
|  | DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
|  |  | 
|  | // canonicalize constant to RHS. | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); | 
|  |  | 
|  | // fold (addc x, 0) -> x + no carry out | 
|  | if (isNullConstant(N1)) | 
|  | return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, | 
|  | DL, MVT::Glue)); | 
|  |  | 
|  | // If it cannot overflow, transform into an add. | 
|  | if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) | 
|  | return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), | 
|  | DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue flipBoolean(SDValue V, const SDLoc &DL, | 
|  | SelectionDAG &DAG, const TargetLowering &TLI) { | 
|  | EVT VT = V.getValueType(); | 
|  |  | 
|  | SDValue Cst; | 
|  | switch (TLI.getBooleanContents(VT)) { | 
|  | case TargetLowering::ZeroOrOneBooleanContent: | 
|  | case TargetLowering::UndefinedBooleanContent: | 
|  | Cst = DAG.getConstant(1, DL, VT); | 
|  | break; | 
|  | case TargetLowering::ZeroOrNegativeOneBooleanContent: | 
|  | Cst = DAG.getAllOnesConstant(DL, VT); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::XOR, DL, VT, V, Cst); | 
|  | } | 
|  |  | 
|  | static SDValue extractBooleanFlip(SDValue V, const TargetLowering &TLI) { | 
|  | if (V.getOpcode() != ISD::XOR) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); | 
|  | if (!Const) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = V.getValueType(); | 
|  |  | 
|  | bool IsFlip = false; | 
|  | switch(TLI.getBooleanContents(VT)) { | 
|  | case TargetLowering::ZeroOrOneBooleanContent: | 
|  | IsFlip = Const->isOne(); | 
|  | break; | 
|  | case TargetLowering::ZeroOrNegativeOneBooleanContent: | 
|  | IsFlip = Const->isAllOnesValue(); | 
|  | break; | 
|  | case TargetLowering::UndefinedBooleanContent: | 
|  | IsFlip = (Const->getAPIntValue() & 0x01) == 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (IsFlip) | 
|  | return V.getOperand(0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADDO(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | bool IsSigned = (ISD::SADDO == N->getOpcode()); | 
|  |  | 
|  | EVT CarryVT = N->getValueType(1); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the flag result is dead, turn this into an ADD. | 
|  | if (!N->hasAnyUseOfValue(1)) | 
|  | return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), | 
|  | DAG.getUNDEF(CarryVT)); | 
|  |  | 
|  | // canonicalize constant to RHS. | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
|  | return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); | 
|  |  | 
|  | // fold (addo x, 0) -> x + no carry out | 
|  | if (isNullOrNullSplat(N1)) | 
|  | return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); | 
|  |  | 
|  | if (!IsSigned) { | 
|  | // If it cannot overflow, transform into an add. | 
|  | if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) | 
|  | return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), | 
|  | DAG.getConstant(0, DL, CarryVT)); | 
|  |  | 
|  | // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. | 
|  | if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { | 
|  | SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), | 
|  | DAG.getConstant(0, DL, VT), N0.getOperand(0)); | 
|  | return CombineTo(N, Sub, | 
|  | flipBoolean(Sub.getValue(1), DL, DAG, TLI)); | 
|  | } | 
|  |  | 
|  | if (SDValue Combined = visitUADDOLike(N0, N1, N)) | 
|  | return Combined; | 
|  |  | 
|  | if (SDValue Combined = visitUADDOLike(N1, N0, N)) | 
|  | return Combined; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { | 
|  | EVT VT = N0.getValueType(); | 
|  | if (VT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) | 
|  | // If Y + 1 cannot overflow. | 
|  | if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { | 
|  | SDValue Y = N1.getOperand(0); | 
|  | SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); | 
|  | if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) | 
|  | return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, | 
|  | N1.getOperand(2)); | 
|  | } | 
|  |  | 
|  | // (uaddo X, Carry) -> (addcarry X, 0, Carry) | 
|  | if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) | 
|  | if (SDValue Carry = getAsCarry(TLI, N1)) | 
|  | return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, | 
|  | DAG.getConstant(0, SDLoc(N), VT), Carry); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADDE(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue CarryIn = N->getOperand(2); | 
|  |  | 
|  | // canonicalize constant to RHS | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), | 
|  | N1, N0, CarryIn); | 
|  |  | 
|  | // fold (adde x, y, false) -> (addc x, y) | 
|  | if (CarryIn.getOpcode() == ISD::CARRY_FALSE) | 
|  | return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADDCARRY(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue CarryIn = N->getOperand(2); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // canonicalize constant to RHS | 
|  | ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | if (N0C && !N1C) | 
|  | return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); | 
|  |  | 
|  | // fold (addcarry x, y, false) -> (uaddo x, y) | 
|  | if (isNullConstant(CarryIn)) { | 
|  | if (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) | 
|  | return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); | 
|  | } | 
|  |  | 
|  | EVT CarryVT = CarryIn.getValueType(); | 
|  |  | 
|  | // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. | 
|  | if (isNullConstant(N0) && isNullConstant(N1)) { | 
|  | EVT VT = N0.getValueType(); | 
|  | SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); | 
|  | AddToWorklist(CarryExt.getNode()); | 
|  | return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, | 
|  | DAG.getConstant(1, DL, VT)), | 
|  | DAG.getConstant(0, DL, CarryVT)); | 
|  | } | 
|  |  | 
|  | // fold (addcarry (xor a, -1), 0, !b) -> (subcarry 0, a, b) and flip carry. | 
|  | if (isBitwiseNot(N0) && isNullConstant(N1)) { | 
|  | if (SDValue B = extractBooleanFlip(CarryIn, TLI)) { | 
|  | SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), | 
|  | DAG.getConstant(0, DL, N0.getValueType()), | 
|  | N0.getOperand(0), B); | 
|  | return CombineTo(N, Sub, | 
|  | flipBoolean(Sub.getValue(1), DL, DAG, TLI)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) | 
|  | return Combined; | 
|  |  | 
|  | if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) | 
|  | return Combined; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * If we are facing some sort of diamond carry propapagtion pattern try to | 
|  | * break it up to generate something like: | 
|  | *   (addcarry X, 0, (addcarry A, B, Z):Carry) | 
|  | * | 
|  | * The end result is usually an increase in operation required, but because the | 
|  | * carry is now linearized, other tranforms can kick in and optimize the DAG. | 
|  | * | 
|  | * Patterns typically look something like | 
|  | *            (uaddo A, B) | 
|  | *             /       \ | 
|  | *          Carry      Sum | 
|  | *            |          \ | 
|  | *            | (addcarry *, 0, Z) | 
|  | *            |       / | 
|  | *             \   Carry | 
|  | *              |   / | 
|  | * (addcarry X, *, *) | 
|  | * | 
|  | * But numerous variation exist. Our goal is to identify A, B, X and Z and | 
|  | * produce a combine with a single path for carry propagation. | 
|  | */ | 
|  | static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, | 
|  | SDValue X, SDValue Carry0, SDValue Carry1, | 
|  | SDNode *N) { | 
|  | if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) | 
|  | return SDValue(); | 
|  | if (Carry1.getOpcode() != ISD::UADDO) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Z; | 
|  |  | 
|  | /** | 
|  | * First look for a suitable Z. It will present itself in the form of | 
|  | * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true | 
|  | */ | 
|  | if (Carry0.getOpcode() == ISD::ADDCARRY && | 
|  | isNullConstant(Carry0.getOperand(1))) { | 
|  | Z = Carry0.getOperand(2); | 
|  | } else if (Carry0.getOpcode() == ISD::UADDO && | 
|  | isOneConstant(Carry0.getOperand(1))) { | 
|  | EVT VT = Combiner.getSetCCResultType(Carry0.getValueType()); | 
|  | Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); | 
|  | } else { | 
|  | // We couldn't find a suitable Z. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | auto cancelDiamond = [&](SDValue A,SDValue B) { | 
|  | SDLoc DL(N); | 
|  | SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z); | 
|  | Combiner.AddToWorklist(NewY.getNode()); | 
|  | return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X, | 
|  | DAG.getConstant(0, DL, X.getValueType()), | 
|  | NewY.getValue(1)); | 
|  | }; | 
|  |  | 
|  | /** | 
|  | *      (uaddo A, B) | 
|  | *           | | 
|  | *          Sum | 
|  | *           | | 
|  | * (addcarry *, 0, Z) | 
|  | */ | 
|  | if (Carry0.getOperand(0) == Carry1.getValue(0)) { | 
|  | return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * (addcarry A, 0, Z) | 
|  | *         | | 
|  | *        Sum | 
|  | *         | | 
|  | *  (uaddo *, B) | 
|  | */ | 
|  | if (Carry1.getOperand(0) == Carry0.getValue(0)) { | 
|  | return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); | 
|  | } | 
|  |  | 
|  | if (Carry1.getOperand(1) == Carry0.getValue(0)) { | 
|  | return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, | 
|  | SDNode *N) { | 
|  | // Iff the flag result is dead: | 
|  | // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) | 
|  | // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo | 
|  | // or the dependency between the instructions. | 
|  | if ((N0.getOpcode() == ISD::ADD || | 
|  | (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && | 
|  | N0.getValue(1) != CarryIn)) && | 
|  | isNullConstant(N1) && !N->hasAnyUseOfValue(1)) | 
|  | return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), | 
|  | N0.getOperand(0), N0.getOperand(1), CarryIn); | 
|  |  | 
|  | /** | 
|  | * When one of the addcarry argument is itself a carry, we may be facing | 
|  | * a diamond carry propagation. In which case we try to transform the DAG | 
|  | * to ensure linear carry propagation if that is possible. | 
|  | */ | 
|  | if (auto Y = getAsCarry(TLI, N1)) { | 
|  | // Because both are carries, Y and Z can be swapped. | 
|  | if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) | 
|  | return R; | 
|  | if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Since it may not be valid to emit a fold to zero for vector initializers | 
|  | // check if we can before folding. | 
|  | static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, | 
|  | SelectionDAG &DAG, bool LegalOperations) { | 
|  | if (!VT.isVector()) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSUB(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (sub x, 0) -> x, vector edition | 
|  | if (ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | return N0; | 
|  | } | 
|  |  | 
|  | // fold (sub x, x) -> 0 | 
|  | // FIXME: Refactor this and xor and other similar operations together. | 
|  | if (N0 == N1) | 
|  | return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | DAG.isConstantIntBuildVectorOrConstantInt(N1)) { | 
|  | // fold (sub c1, c2) -> c1-c2 | 
|  | return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(), | 
|  | N1.getNode()); | 
|  | } | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); | 
|  |  | 
|  | // fold (sub x, c) -> (add x, -c) | 
|  | if (N1C) { | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0, | 
|  | DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); | 
|  | } | 
|  |  | 
|  | if (isNullOrNullSplat(N0)) { | 
|  | unsigned BitWidth = VT.getScalarSizeInBits(); | 
|  | // Right-shifting everything out but the sign bit followed by negation is | 
|  | // the same as flipping arithmetic/logical shift type without the negation: | 
|  | // -(X >>u 31) -> (X >>s 31) | 
|  | // -(X >>s 31) -> (X >>u 31) | 
|  | if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { | 
|  | ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); | 
|  | if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { | 
|  | auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; | 
|  | if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) | 
|  | return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // 0 - X --> 0 if the sub is NUW. | 
|  | if (N->getFlags().hasNoUnsignedWrap()) | 
|  | return N0; | 
|  |  | 
|  | if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { | 
|  | // N1 is either 0 or the minimum signed value. If the sub is NSW, then | 
|  | // N1 must be 0 because negating the minimum signed value is undefined. | 
|  | if (N->getFlags().hasNoSignedWrap()) | 
|  | return N0; | 
|  |  | 
|  | // 0 - X --> X if X is 0 or the minimum signed value. | 
|  | return N1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) | 
|  | if (isAllOnesOrAllOnesSplat(N0)) | 
|  | return DAG.getNode(ISD::XOR, DL, VT, N1, N0); | 
|  |  | 
|  | // fold (A - (0-B)) -> A+B | 
|  | if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); | 
|  |  | 
|  | // fold A-(A-B) -> B | 
|  | if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) | 
|  | return N1.getOperand(1); | 
|  |  | 
|  | // fold (A+B)-A -> B | 
|  | if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) | 
|  | return N0.getOperand(1); | 
|  |  | 
|  | // fold (A+B)-B -> A | 
|  | if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) | 
|  | return N0.getOperand(0); | 
|  |  | 
|  | // fold (A+C1)-C2 -> A+(C1-C2) | 
|  | if (N0.getOpcode() == ISD::ADD && | 
|  | isConstantOrConstantVector(N1, /* NoOpaques */ true) && | 
|  | isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { | 
|  | SDValue NewC = DAG.FoldConstantArithmetic( | 
|  | ISD::SUB, DL, VT, N0.getOperand(1).getNode(), N1.getNode()); | 
|  | assert(NewC && "Constant folding failed"); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); | 
|  | } | 
|  |  | 
|  | // fold C2-(A+C1) -> (C2-C1)-A | 
|  | if (N1.getOpcode() == ISD::ADD) { | 
|  | SDValue N11 = N1.getOperand(1); | 
|  | if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && | 
|  | isConstantOrConstantVector(N11, /* NoOpaques */ true)) { | 
|  | SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(), | 
|  | N11.getNode()); | 
|  | assert(NewC && "Constant folding failed"); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (A-C1)-C2 -> A-(C1+C2) | 
|  | if (N0.getOpcode() == ISD::SUB && | 
|  | isConstantOrConstantVector(N1, /* NoOpaques */ true) && | 
|  | isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { | 
|  | SDValue NewC = DAG.FoldConstantArithmetic( | 
|  | ISD::ADD, DL, VT, N0.getOperand(1).getNode(), N1.getNode()); | 
|  | assert(NewC && "Constant folding failed"); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); | 
|  | } | 
|  |  | 
|  | // fold (c1-A)-c2 -> (c1-c2)-A | 
|  | if (N0.getOpcode() == ISD::SUB && | 
|  | isConstantOrConstantVector(N1, /* NoOpaques */ true) && | 
|  | isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) { | 
|  | SDValue NewC = DAG.FoldConstantArithmetic( | 
|  | ISD::SUB, DL, VT, N0.getOperand(0).getNode(), N1.getNode()); | 
|  | assert(NewC && "Constant folding failed"); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | // fold ((A+(B+or-C))-B) -> A+or-C | 
|  | if (N0.getOpcode() == ISD::ADD && | 
|  | (N0.getOperand(1).getOpcode() == ISD::SUB || | 
|  | N0.getOperand(1).getOpcode() == ISD::ADD) && | 
|  | N0.getOperand(1).getOperand(0) == N1) | 
|  | return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), | 
|  | N0.getOperand(1).getOperand(1)); | 
|  |  | 
|  | // fold ((A+(C+B))-B) -> A+C | 
|  | if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && | 
|  | N0.getOperand(1).getOperand(1) == N1) | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), | 
|  | N0.getOperand(1).getOperand(0)); | 
|  |  | 
|  | // fold ((A-(B-C))-C) -> A-B | 
|  | if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && | 
|  | N0.getOperand(1).getOperand(1) == N1) | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), | 
|  | N0.getOperand(1).getOperand(0)); | 
|  |  | 
|  | // fold (A-(B-C)) -> A+(C-B) | 
|  | if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0, | 
|  | DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), | 
|  | N1.getOperand(0))); | 
|  |  | 
|  | // fold (X - (-Y * Z)) -> (X + (Y * Z)) | 
|  | if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { | 
|  | if (N1.getOperand(0).getOpcode() == ISD::SUB && | 
|  | isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, | 
|  | N1.getOperand(0).getOperand(1), | 
|  | N1.getOperand(1)); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); | 
|  | } | 
|  | if (N1.getOperand(1).getOpcode() == ISD::SUB && | 
|  | isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, | 
|  | N1.getOperand(0), | 
|  | N1.getOperand(1).getOperand(1)); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If either operand of a sub is undef, the result is undef | 
|  | if (N0.isUndef()) | 
|  | return N0; | 
|  | if (N1.isUndef()) | 
|  | return N1; | 
|  |  | 
|  | if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) | 
|  | return V; | 
|  |  | 
|  | if (SDValue V = foldAddSubOfSignBit(N, DAG)) | 
|  | return V; | 
|  |  | 
|  | if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) | 
|  | return V; | 
|  |  | 
|  | // (x - y) - 1  ->  add (xor y, -1), x | 
|  | if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) { | 
|  | SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), | 
|  | DAG.getAllOnesConstant(DL, VT)); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); | 
|  | } | 
|  |  | 
|  | // Look for: | 
|  | //   sub y, (xor x, -1) | 
|  | // And if the target does not like this form then turn into: | 
|  | //   add (add x, y), 1 | 
|  | if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); | 
|  | } | 
|  |  | 
|  | // Hoist one-use addition by non-opaque constant: | 
|  | //   (x + C) - y  ->  (x - y) + C | 
|  | if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD && | 
|  | isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); | 
|  | } | 
|  | // y - (x + C)  ->  (y - x) - C | 
|  | if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD && | 
|  | isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); | 
|  | } | 
|  | // (x - C) - y  ->  (x - y) - C | 
|  | // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. | 
|  | if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && | 
|  | isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); | 
|  | } | 
|  | // (C - x) - y  ->  C - (x + y) | 
|  | if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && | 
|  | isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); | 
|  | } | 
|  |  | 
|  | // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' | 
|  | // rather than 'sub 0/1' (the sext should get folded). | 
|  | // sub X, (zext i1 Y) --> add X, (sext i1 Y) | 
|  | if (N1.getOpcode() == ISD::ZERO_EXTEND && | 
|  | N1.getOperand(0).getScalarValueSizeInBits() == 1 && | 
|  | TLI.getBooleanContents(VT) == | 
|  | TargetLowering::ZeroOrNegativeOneBooleanContent) { | 
|  | SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); | 
|  | } | 
|  |  | 
|  | // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) | 
|  | if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { | 
|  | if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { | 
|  | SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); | 
|  | SDValue S0 = N1.getOperand(0); | 
|  | if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) { | 
|  | unsigned OpSizeInBits = VT.getScalarSizeInBits(); | 
|  | if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) | 
|  | if (C->getAPIntValue() == (OpSizeInBits - 1)) | 
|  | return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the relocation model supports it, consider symbol offsets. | 
|  | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) | 
|  | if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { | 
|  | // fold (sub Sym, c) -> Sym-c | 
|  | if (N1C && GA->getOpcode() == ISD::GlobalAddress) | 
|  | return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, | 
|  | GA->getOffset() - | 
|  | (uint64_t)N1C->getSExtValue()); | 
|  | // fold (sub Sym+c1, Sym+c2) -> c1-c2 | 
|  | if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) | 
|  | if (GA->getGlobal() == GB->getGlobal()) | 
|  | return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), | 
|  | DL, VT); | 
|  | } | 
|  |  | 
|  | // sub X, (sextinreg Y i1) -> add X, (and Y 1) | 
|  | if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { | 
|  | VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); | 
|  | if (TN->getVT() == MVT::i1) { | 
|  | SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), | 
|  | DAG.getConstant(1, DL, VT)); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prefer an add for more folding potential and possibly better codegen: | 
|  | // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) | 
|  | if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { | 
|  | SDValue ShAmt = N1.getOperand(1); | 
|  | ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); | 
|  | if (ShAmtC && | 
|  | ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) { | 
|  | SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSUBSAT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | // TODO SimplifyVBinOp | 
|  |  | 
|  | // fold (sub_sat x, 0) -> x, vector edition | 
|  | if (ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | return N0; | 
|  | } | 
|  |  | 
|  | // fold (sub_sat x, undef) -> 0 | 
|  | if (N0.isUndef() || N1.isUndef()) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  |  | 
|  | // fold (sub_sat x, x) -> 0 | 
|  | if (N0 == N1) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  |  | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | DAG.isConstantIntBuildVectorOrConstantInt(N1)) { | 
|  | // fold (sub_sat c1, c2) -> c3 | 
|  | return DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, N0.getNode(), | 
|  | N1.getNode()); | 
|  | } | 
|  |  | 
|  | // fold (sub_sat x, 0) -> x | 
|  | if (isNullConstant(N1)) | 
|  | return N0; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSUBC(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the flag result is dead, turn this into an SUB. | 
|  | if (!N->hasAnyUseOfValue(1)) | 
|  | return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), | 
|  | DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
|  |  | 
|  | // fold (subc x, x) -> 0 + no borrow | 
|  | if (N0 == N1) | 
|  | return CombineTo(N, DAG.getConstant(0, DL, VT), | 
|  | DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
|  |  | 
|  | // fold (subc x, 0) -> x + no borrow | 
|  | if (isNullConstant(N1)) | 
|  | return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
|  |  | 
|  | // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow | 
|  | if (isAllOnesConstant(N0)) | 
|  | return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), | 
|  | DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSUBO(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | bool IsSigned = (ISD::SSUBO == N->getOpcode()); | 
|  |  | 
|  | EVT CarryVT = N->getValueType(1); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the flag result is dead, turn this into an SUB. | 
|  | if (!N->hasAnyUseOfValue(1)) | 
|  | return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), | 
|  | DAG.getUNDEF(CarryVT)); | 
|  |  | 
|  | // fold (subo x, x) -> 0 + no borrow | 
|  | if (N0 == N1) | 
|  | return CombineTo(N, DAG.getConstant(0, DL, VT), | 
|  | DAG.getConstant(0, DL, CarryVT)); | 
|  |  | 
|  | ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); | 
|  |  | 
|  | // fold (subox, c) -> (addo x, -c) | 
|  | if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { | 
|  | return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, | 
|  | DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); | 
|  | } | 
|  |  | 
|  | // fold (subo x, 0) -> x + no borrow | 
|  | if (isNullOrNullSplat(N1)) | 
|  | return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); | 
|  |  | 
|  | // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow | 
|  | if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) | 
|  | return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), | 
|  | DAG.getConstant(0, DL, CarryVT)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSUBE(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue CarryIn = N->getOperand(2); | 
|  |  | 
|  | // fold (sube x, y, false) -> (subc x, y) | 
|  | if (CarryIn.getOpcode() == ISD::CARRY_FALSE) | 
|  | return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue CarryIn = N->getOperand(2); | 
|  |  | 
|  | // fold (subcarry x, y, false) -> (usubo x, y) | 
|  | if (isNullConstant(CarryIn)) { | 
|  | if (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) | 
|  | return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMUL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold (mul x, undef) -> 0 | 
|  | if (N0.isUndef() || N1.isUndef()) | 
|  | return DAG.getConstant(0, SDLoc(N), VT); | 
|  |  | 
|  | bool N0IsConst = false; | 
|  | bool N1IsConst = false; | 
|  | bool N1IsOpaqueConst = false; | 
|  | bool N0IsOpaqueConst = false; | 
|  | APInt ConstValue0, ConstValue1; | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0); | 
|  | N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); | 
|  | assert((!N0IsConst || | 
|  | ConstValue0.getBitWidth() == VT.getScalarSizeInBits()) && | 
|  | "Splat APInt should be element width"); | 
|  | assert((!N1IsConst || | 
|  | ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && | 
|  | "Splat APInt should be element width"); | 
|  | } else { | 
|  | N0IsConst = isa<ConstantSDNode>(N0); | 
|  | if (N0IsConst) { | 
|  | ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); | 
|  | N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); | 
|  | } | 
|  | N1IsConst = isa<ConstantSDNode>(N1); | 
|  | if (N1IsConst) { | 
|  | ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); | 
|  | N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (mul c1, c2) -> c1*c2 | 
|  | if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) | 
|  | return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, | 
|  | N0.getNode(), N1.getNode()); | 
|  |  | 
|  | // canonicalize constant to RHS (vector doesn't have to splat) | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
|  | return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); | 
|  | // fold (mul x, 0) -> 0 | 
|  | if (N1IsConst && ConstValue1.isNullValue()) | 
|  | return N1; | 
|  | // fold (mul x, 1) -> x | 
|  | if (N1IsConst && ConstValue1.isOneValue()) | 
|  | return N0; | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | // fold (mul x, -1) -> 0-x | 
|  | if (N1IsConst && ConstValue1.isAllOnesValue()) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, | 
|  | DAG.getConstant(0, DL, VT), N0); | 
|  | } | 
|  | // fold (mul x, (1 << c)) -> x << c | 
|  | if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && | 
|  | DAG.isKnownToBeAPowerOfTwo(N1) && | 
|  | (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { | 
|  | SDLoc DL(N); | 
|  | SDValue LogBase2 = BuildLogBase2(N1, DL); | 
|  | EVT ShiftVT = getShiftAmountTy(N0.getValueType()); | 
|  | SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); | 
|  | return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); | 
|  | } | 
|  | // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c | 
|  | if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) { | 
|  | unsigned Log2Val = (-ConstValue1).logBase2(); | 
|  | SDLoc DL(N); | 
|  | // FIXME: If the input is something that is easily negated (e.g. a | 
|  | // single-use add), we should put the negate there. | 
|  | return DAG.getNode(ISD::SUB, DL, VT, | 
|  | DAG.getConstant(0, DL, VT), | 
|  | DAG.getNode(ISD::SHL, DL, VT, N0, | 
|  | DAG.getConstant(Log2Val, DL, | 
|  | getShiftAmountTy(N0.getValueType())))); | 
|  | } | 
|  |  | 
|  | // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub. | 
|  | // mul x, (2^N + 1) --> add (shl x, N), x | 
|  | // mul x, (2^N - 1) --> sub (shl x, N), x | 
|  | // Examples: x * 33 --> (x << 5) + x | 
|  | //           x * 15 --> (x << 4) - x | 
|  | //           x * -33 --> -((x << 5) + x) | 
|  | //           x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) | 
|  | if (N1IsConst && TLI.decomposeMulByConstant(VT, N1)) { | 
|  | // TODO: We could handle more general decomposition of any constant by | 
|  | //       having the target set a limit on number of ops and making a | 
|  | //       callback to determine that sequence (similar to sqrt expansion). | 
|  | unsigned MathOp = ISD::DELETED_NODE; | 
|  | APInt MulC = ConstValue1.abs(); | 
|  | if ((MulC - 1).isPowerOf2()) | 
|  | MathOp = ISD::ADD; | 
|  | else if ((MulC + 1).isPowerOf2()) | 
|  | MathOp = ISD::SUB; | 
|  |  | 
|  | if (MathOp != ISD::DELETED_NODE) { | 
|  | unsigned ShAmt = | 
|  | MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); | 
|  | assert(ShAmt < VT.getScalarSizeInBits() && | 
|  | "multiply-by-constant generated out of bounds shift"); | 
|  | SDLoc DL(N); | 
|  | SDValue Shl = | 
|  | DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); | 
|  | SDValue R = DAG.getNode(MathOp, DL, VT, Shl, N0); | 
|  | if (ConstValue1.isNegative()) | 
|  | R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); | 
|  | return R; | 
|  | } | 
|  | } | 
|  |  | 
|  | // (mul (shl X, c1), c2) -> (mul X, c2 << c1) | 
|  | if (N0.getOpcode() == ISD::SHL && | 
|  | isConstantOrConstantVector(N1, /* NoOpaques */ true) && | 
|  | isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { | 
|  | SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); | 
|  | if (isConstantOrConstantVector(C3)) | 
|  | return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); | 
|  | } | 
|  |  | 
|  | // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one | 
|  | // use. | 
|  | { | 
|  | SDValue Sh(nullptr, 0), Y(nullptr, 0); | 
|  |  | 
|  | // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)). | 
|  | if (N0.getOpcode() == ISD::SHL && | 
|  | isConstantOrConstantVector(N0.getOperand(1)) && | 
|  | N0.getNode()->hasOneUse()) { | 
|  | Sh = N0; Y = N1; | 
|  | } else if (N1.getOpcode() == ISD::SHL && | 
|  | isConstantOrConstantVector(N1.getOperand(1)) && | 
|  | N1.getNode()->hasOneUse()) { | 
|  | Sh = N1; Y = N0; | 
|  | } | 
|  |  | 
|  | if (Sh.getNode()) { | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); | 
|  | return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && | 
|  | N0.getOpcode() == ISD::ADD && | 
|  | DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && | 
|  | isMulAddWithConstProfitable(N, N0, N1)) | 
|  | return DAG.getNode(ISD::ADD, SDLoc(N), VT, | 
|  | DAG.getNode(ISD::MUL, SDLoc(N0), VT, | 
|  | N0.getOperand(0), N1), | 
|  | DAG.getNode(ISD::MUL, SDLoc(N1), VT, | 
|  | N0.getOperand(1), N1)); | 
|  |  | 
|  | // reassociate mul | 
|  | if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) | 
|  | return RMUL; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Return true if divmod libcall is available. | 
|  | static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, | 
|  | const TargetLowering &TLI) { | 
|  | RTLIB::Libcall LC; | 
|  | EVT NodeType = Node->getValueType(0); | 
|  | if (!NodeType.isSimple()) | 
|  | return false; | 
|  | switch (NodeType.getSimpleVT().SimpleTy) { | 
|  | default: return false; // No libcall for vector types. | 
|  | case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break; | 
|  | case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; | 
|  | case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; | 
|  | case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; | 
|  | case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; | 
|  | } | 
|  |  | 
|  | return TLI.getLibcallName(LC) != nullptr; | 
|  | } | 
|  |  | 
|  | /// Issue divrem if both quotient and remainder are needed. | 
|  | SDValue DAGCombiner::useDivRem(SDNode *Node) { | 
|  | if (Node->use_empty()) | 
|  | return SDValue(); // This is a dead node, leave it alone. | 
|  |  | 
|  | unsigned Opcode = Node->getOpcode(); | 
|  | bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); | 
|  | unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; | 
|  |  | 
|  | // DivMod lib calls can still work on non-legal types if using lib-calls. | 
|  | EVT VT = Node->getValueType(0); | 
|  | if (VT.isVector() || !VT.isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If DIVREM is going to get expanded into a libcall, | 
|  | // but there is no libcall available, then don't combine. | 
|  | if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && | 
|  | !isDivRemLibcallAvailable(Node, isSigned, TLI)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If div is legal, it's better to do the normal expansion | 
|  | unsigned OtherOpcode = 0; | 
|  | if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { | 
|  | OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; | 
|  | if (TLI.isOperationLegalOrCustom(Opcode, VT)) | 
|  | return SDValue(); | 
|  | } else { | 
|  | OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; | 
|  | if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue Op0 = Node->getOperand(0); | 
|  | SDValue Op1 = Node->getOperand(1); | 
|  | SDValue combined; | 
|  | for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), | 
|  | UE = Op0.getNode()->use_end(); UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User == Node || User->getOpcode() == ISD::DELETED_NODE || | 
|  | User->use_empty()) | 
|  | continue; | 
|  | // Convert the other matching node(s), too; | 
|  | // otherwise, the DIVREM may get target-legalized into something | 
|  | // target-specific that we won't be able to recognize. | 
|  | unsigned UserOpc = User->getOpcode(); | 
|  | if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && | 
|  | User->getOperand(0) == Op0 && | 
|  | User->getOperand(1) == Op1) { | 
|  | if (!combined) { | 
|  | if (UserOpc == OtherOpcode) { | 
|  | SDVTList VTs = DAG.getVTList(VT, VT); | 
|  | combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); | 
|  | } else if (UserOpc == DivRemOpc) { | 
|  | combined = SDValue(User, 0); | 
|  | } else { | 
|  | assert(UserOpc == Opcode); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) | 
|  | CombineTo(User, combined); | 
|  | else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) | 
|  | CombineTo(User, combined.getValue(1)); | 
|  | } | 
|  | } | 
|  | return combined; | 
|  | } | 
|  |  | 
|  | static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | unsigned Opc = N->getOpcode(); | 
|  | bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); | 
|  | ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
|  |  | 
|  | // X / undef -> undef | 
|  | // X % undef -> undef | 
|  | // X / 0 -> undef | 
|  | // X % 0 -> undef | 
|  | // NOTE: This includes vectors where any divisor element is zero/undef. | 
|  | if (DAG.isUndef(Opc, {N0, N1})) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // undef / X -> 0 | 
|  | // undef % X -> 0 | 
|  | if (N0.isUndef()) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  |  | 
|  | // 0 / X -> 0 | 
|  | // 0 % X -> 0 | 
|  | ConstantSDNode *N0C = isConstOrConstSplat(N0); | 
|  | if (N0C && N0C->isNullValue()) | 
|  | return N0; | 
|  |  | 
|  | // X / X -> 1 | 
|  | // X % X -> 0 | 
|  | if (N0 == N1) | 
|  | return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); | 
|  |  | 
|  | // X / 1 -> X | 
|  | // X % 1 -> 0 | 
|  | // If this is a boolean op (single-bit element type), we can't have | 
|  | // division-by-zero or remainder-by-zero, so assume the divisor is 1. | 
|  | // TODO: Similarly, if we're zero-extending a boolean divisor, then assume | 
|  | // it's a 1. | 
|  | if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) | 
|  | return IsDiv ? N0 : DAG.getConstant(0, DL, VT); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSDIV(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT CCVT = getSetCCResultType(VT); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // fold (sdiv c1, c2) -> c1/c2 | 
|  | ConstantSDNode *N0C = isConstOrConstSplat(N0); | 
|  | ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
|  | if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) | 
|  | return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); | 
|  | // fold (sdiv X, -1) -> 0-X | 
|  | if (N1C && N1C->isAllOnesValue()) | 
|  | return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); | 
|  | // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) | 
|  | if (N1C && N1C->getAPIntValue().isMinSignedValue()) | 
|  | return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), | 
|  | DAG.getConstant(1, DL, VT), | 
|  | DAG.getConstant(0, DL, VT)); | 
|  |  | 
|  | if (SDValue V = simplifyDivRem(N, DAG)) | 
|  | return V; | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | // If we know the sign bits of both operands are zero, strength reduce to a | 
|  | // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2 | 
|  | if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); | 
|  |  | 
|  | if (SDValue V = visitSDIVLike(N0, N1, N)) { | 
|  | // If the corresponding remainder node exists, update its users with | 
|  | // (Dividend - (Quotient * Divisor). | 
|  | if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), | 
|  | { N0, N1 })) { | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); | 
|  | AddToWorklist(Mul.getNode()); | 
|  | AddToWorklist(Sub.getNode()); | 
|  | CombineTo(RemNode, Sub); | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // sdiv, srem -> sdivrem | 
|  | // If the divisor is constant, then return DIVREM only if isIntDivCheap() is | 
|  | // true.  Otherwise, we break the simplification logic in visitREM(). | 
|  | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); | 
|  | if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) | 
|  | if (SDValue DivRem = useDivRem(N)) | 
|  | return DivRem; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT CCVT = getSetCCResultType(VT); | 
|  | unsigned BitWidth = VT.getScalarSizeInBits(); | 
|  |  | 
|  | // Helper for determining whether a value is a power-2 constant scalar or a | 
|  | // vector of such elements. | 
|  | auto IsPowerOfTwo = [](ConstantSDNode *C) { | 
|  | if (C->isNullValue() || C->isOpaque()) | 
|  | return false; | 
|  | if (C->getAPIntValue().isPowerOf2()) | 
|  | return true; | 
|  | if ((-C->getAPIntValue()).isPowerOf2()) | 
|  | return true; | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // fold (sdiv X, pow2) -> simple ops after legalize | 
|  | // FIXME: We check for the exact bit here because the generic lowering gives | 
|  | // better results in that case. The target-specific lowering should learn how | 
|  | // to handle exact sdivs efficiently. | 
|  | if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { | 
|  | // Target-specific implementation of sdiv x, pow2. | 
|  | if (SDValue Res = BuildSDIVPow2(N)) | 
|  | return Res; | 
|  |  | 
|  | // Create constants that are functions of the shift amount value. | 
|  | EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); | 
|  | SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); | 
|  | SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); | 
|  | C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); | 
|  | SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); | 
|  | if (!isConstantOrConstantVector(Inexact)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Splat the sign bit into the register | 
|  | SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, | 
|  | DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); | 
|  | AddToWorklist(Sign.getNode()); | 
|  |  | 
|  | // Add (N0 < 0) ? abs2 - 1 : 0; | 
|  | SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); | 
|  | AddToWorklist(Srl.getNode()); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); | 
|  | AddToWorklist(Add.getNode()); | 
|  | SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); | 
|  | AddToWorklist(Sra.getNode()); | 
|  |  | 
|  | // Special case: (sdiv X, 1) -> X | 
|  | // Special Case: (sdiv X, -1) -> 0-X | 
|  | SDValue One = DAG.getConstant(1, DL, VT); | 
|  | SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); | 
|  | SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); | 
|  | SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); | 
|  | SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); | 
|  | Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); | 
|  |  | 
|  | // If dividing by a positive value, we're done. Otherwise, the result must | 
|  | // be negated. | 
|  | SDValue Zero = DAG.getConstant(0, DL, VT); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); | 
|  |  | 
|  | // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. | 
|  | SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); | 
|  | SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // If integer divide is expensive and we satisfy the requirements, emit an | 
|  | // alternate sequence.  Targets may check function attributes for size/speed | 
|  | // trade-offs. | 
|  | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); | 
|  | if (isConstantOrConstantVector(N1) && | 
|  | !TLI.isIntDivCheap(N->getValueType(0), Attr)) | 
|  | if (SDValue Op = BuildSDIV(N)) | 
|  | return Op; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUDIV(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT CCVT = getSetCCResultType(VT); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // fold (udiv c1, c2) -> c1/c2 | 
|  | ConstantSDNode *N0C = isConstOrConstSplat(N0); | 
|  | ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
|  | if (N0C && N1C) | 
|  | if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, | 
|  | N0C, N1C)) | 
|  | return Folded; | 
|  | // fold (udiv X, -1) -> select(X == -1, 1, 0) | 
|  | if (N1C && N1C->getAPIntValue().isAllOnesValue()) | 
|  | return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), | 
|  | DAG.getConstant(1, DL, VT), | 
|  | DAG.getConstant(0, DL, VT)); | 
|  |  | 
|  | if (SDValue V = simplifyDivRem(N, DAG)) | 
|  | return V; | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | if (SDValue V = visitUDIVLike(N0, N1, N)) { | 
|  | // If the corresponding remainder node exists, update its users with | 
|  | // (Dividend - (Quotient * Divisor). | 
|  | if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), | 
|  | { N0, N1 })) { | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); | 
|  | AddToWorklist(Mul.getNode()); | 
|  | AddToWorklist(Sub.getNode()); | 
|  | CombineTo(RemNode, Sub); | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // sdiv, srem -> sdivrem | 
|  | // If the divisor is constant, then return DIVREM only if isIntDivCheap() is | 
|  | // true.  Otherwise, we break the simplification logic in visitREM(). | 
|  | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); | 
|  | if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) | 
|  | if (SDValue DivRem = useDivRem(N)) | 
|  | return DivRem; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (udiv x, (1 << c)) -> x >>u c | 
|  | if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && | 
|  | DAG.isKnownToBeAPowerOfTwo(N1)) { | 
|  | SDValue LogBase2 = BuildLogBase2(N1, DL); | 
|  | AddToWorklist(LogBase2.getNode()); | 
|  |  | 
|  | EVT ShiftVT = getShiftAmountTy(N0.getValueType()); | 
|  | SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); | 
|  | AddToWorklist(Trunc.getNode()); | 
|  | return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); | 
|  | } | 
|  |  | 
|  | // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 | 
|  | if (N1.getOpcode() == ISD::SHL) { | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && | 
|  | DAG.isKnownToBeAPowerOfTwo(N10)) { | 
|  | SDValue LogBase2 = BuildLogBase2(N10, DL); | 
|  | AddToWorklist(LogBase2.getNode()); | 
|  |  | 
|  | EVT ADDVT = N1.getOperand(1).getValueType(); | 
|  | SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); | 
|  | AddToWorklist(Trunc.getNode()); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); | 
|  | AddToWorklist(Add.getNode()); | 
|  | return DAG.getNode(ISD::SRL, DL, VT, N0, Add); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (udiv x, c) -> alternate | 
|  | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); | 
|  | if (isConstantOrConstantVector(N1) && | 
|  | !TLI.isIntDivCheap(N->getValueType(0), Attr)) | 
|  | if (SDValue Op = BuildUDIV(N)) | 
|  | return Op; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // handles ISD::SREM and ISD::UREM | 
|  | SDValue DAGCombiner::visitREM(SDNode *N) { | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT CCVT = getSetCCResultType(VT); | 
|  |  | 
|  | bool isSigned = (Opcode == ISD::SREM); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // fold (rem c1, c2) -> c1%c2 | 
|  | ConstantSDNode *N0C = isConstOrConstSplat(N0); | 
|  | ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
|  | if (N0C && N1C) | 
|  | if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) | 
|  | return Folded; | 
|  | // fold (urem X, -1) -> select(X == -1, 0, x) | 
|  | if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue()) | 
|  | return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), | 
|  | DAG.getConstant(0, DL, VT), N0); | 
|  |  | 
|  | if (SDValue V = simplifyDivRem(N, DAG)) | 
|  | return V; | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | if (isSigned) { | 
|  | // If we know the sign bits of both operands are zero, strength reduce to a | 
|  | // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15 | 
|  | if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::UREM, DL, VT, N0, N1); | 
|  | } else { | 
|  | SDValue NegOne = DAG.getAllOnesConstant(DL, VT); | 
|  | if (DAG.isKnownToBeAPowerOfTwo(N1)) { | 
|  | // fold (urem x, pow2) -> (and x, pow2-1) | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); | 
|  | AddToWorklist(Add.getNode()); | 
|  | return DAG.getNode(ISD::AND, DL, VT, N0, Add); | 
|  | } | 
|  | if (N1.getOpcode() == ISD::SHL && | 
|  | DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { | 
|  | // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); | 
|  | AddToWorklist(Add.getNode()); | 
|  | return DAG.getNode(ISD::AND, DL, VT, N0, Add); | 
|  | } | 
|  | } | 
|  |  | 
|  | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); | 
|  |  | 
|  | // If X/C can be simplified by the division-by-constant logic, lower | 
|  | // X%C to the equivalent of X-X/C*C. | 
|  | // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the | 
|  | // speculative DIV must not cause a DIVREM conversion.  We guard against this | 
|  | // by skipping the simplification if isIntDivCheap().  When div is not cheap, | 
|  | // combine will not return a DIVREM.  Regardless, checking cheapness here | 
|  | // makes sense since the simplification results in fatter code. | 
|  | if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { | 
|  | SDValue OptimizedDiv = | 
|  | isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); | 
|  | if (OptimizedDiv.getNode()) { | 
|  | // If the equivalent Div node also exists, update its users. | 
|  | unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; | 
|  | if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), | 
|  | { N0, N1 })) | 
|  | CombineTo(DivNode, OptimizedDiv); | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); | 
|  | AddToWorklist(OptimizedDiv.getNode()); | 
|  | AddToWorklist(Mul.getNode()); | 
|  | return Sub; | 
|  | } | 
|  | } | 
|  |  | 
|  | // sdiv, srem -> sdivrem | 
|  | if (SDValue DivRem = useDivRem(N)) | 
|  | return DivRem.getValue(1); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMULHS(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if (VT.isVector()) { | 
|  | // fold (mulhs x, 0) -> 0 | 
|  | if (ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | return N1; | 
|  | if (ISD::isBuildVectorAllZeros(N0.getNode())) | 
|  | return N0; | 
|  | } | 
|  |  | 
|  | // fold (mulhs x, 0) -> 0 | 
|  | if (isNullConstant(N1)) | 
|  | return N1; | 
|  | // fold (mulhs x, 1) -> (sra x, size(x)-1) | 
|  | if (isOneConstant(N1)) | 
|  | return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, | 
|  | DAG.getConstant(N0.getValueSizeInBits() - 1, DL, | 
|  | getShiftAmountTy(N0.getValueType()))); | 
|  |  | 
|  | // fold (mulhs x, undef) -> 0 | 
|  | if (N0.isUndef() || N1.isUndef()) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  |  | 
|  | // If the type twice as wide is legal, transform the mulhs to a wider multiply | 
|  | // plus a shift. | 
|  | if (VT.isSimple() && !VT.isVector()) { | 
|  | MVT Simple = VT.getSimpleVT(); | 
|  | unsigned SimpleSize = Simple.getSizeInBits(); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
|  | if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
|  | N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); | 
|  | N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); | 
|  | N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); | 
|  | N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, | 
|  | DAG.getConstant(SimpleSize, DL, | 
|  | getShiftAmountTy(N1.getValueType()))); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMULHU(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if (VT.isVector()) { | 
|  | // fold (mulhu x, 0) -> 0 | 
|  | if (ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | return N1; | 
|  | if (ISD::isBuildVectorAllZeros(N0.getNode())) | 
|  | return N0; | 
|  | } | 
|  |  | 
|  | // fold (mulhu x, 0) -> 0 | 
|  | if (isNullConstant(N1)) | 
|  | return N1; | 
|  | // fold (mulhu x, 1) -> 0 | 
|  | if (isOneConstant(N1)) | 
|  | return DAG.getConstant(0, DL, N0.getValueType()); | 
|  | // fold (mulhu x, undef) -> 0 | 
|  | if (N0.isUndef() || N1.isUndef()) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  |  | 
|  | // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) | 
|  | if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && | 
|  | DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { | 
|  | unsigned NumEltBits = VT.getScalarSizeInBits(); | 
|  | SDValue LogBase2 = BuildLogBase2(N1, DL); | 
|  | SDValue SRLAmt = DAG.getNode( | 
|  | ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); | 
|  | EVT ShiftVT = getShiftAmountTy(N0.getValueType()); | 
|  | SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); | 
|  | return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); | 
|  | } | 
|  |  | 
|  | // If the type twice as wide is legal, transform the mulhu to a wider multiply | 
|  | // plus a shift. | 
|  | if (VT.isSimple() && !VT.isVector()) { | 
|  | MVT Simple = VT.getSimpleVT(); | 
|  | unsigned SimpleSize = Simple.getSizeInBits(); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
|  | if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
|  | N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); | 
|  | N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); | 
|  | N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); | 
|  | N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, | 
|  | DAG.getConstant(SimpleSize, DL, | 
|  | getShiftAmountTy(N1.getValueType()))); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Perform optimizations common to nodes that compute two values. LoOp and HiOp | 
|  | /// give the opcodes for the two computations that are being performed. Return | 
|  | /// true if a simplification was made. | 
|  | SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, | 
|  | unsigned HiOp) { | 
|  | // If the high half is not needed, just compute the low half. | 
|  | bool HiExists = N->hasAnyUseOfValue(1); | 
|  | if (!HiExists && (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { | 
|  | SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); | 
|  | return CombineTo(N, Res, Res); | 
|  | } | 
|  |  | 
|  | // If the low half is not needed, just compute the high half. | 
|  | bool LoExists = N->hasAnyUseOfValue(0); | 
|  | if (!LoExists && (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { | 
|  | SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); | 
|  | return CombineTo(N, Res, Res); | 
|  | } | 
|  |  | 
|  | // If both halves are used, return as it is. | 
|  | if (LoExists && HiExists) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the two computed results can be simplified separately, separate them. | 
|  | if (LoExists) { | 
|  | SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); | 
|  | AddToWorklist(Lo.getNode()); | 
|  | SDValue LoOpt = combine(Lo.getNode()); | 
|  | if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) | 
|  | return CombineTo(N, LoOpt, LoOpt); | 
|  | } | 
|  |  | 
|  | if (HiExists) { | 
|  | SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); | 
|  | AddToWorklist(Hi.getNode()); | 
|  | SDValue HiOpt = combine(Hi.getNode()); | 
|  | if (HiOpt.getNode() && HiOpt != Hi && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) | 
|  | return CombineTo(N, HiOpt, HiOpt); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { | 
|  | if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) | 
|  | return Res; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the type is twice as wide is legal, transform the mulhu to a wider | 
|  | // multiply plus a shift. | 
|  | if (VT.isSimple() && !VT.isVector()) { | 
|  | MVT Simple = VT.getSimpleVT(); | 
|  | unsigned SimpleSize = Simple.getSizeInBits(); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
|  | if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
|  | SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); | 
|  | SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); | 
|  | Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); | 
|  | // Compute the high part as N1. | 
|  | Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, | 
|  | DAG.getConstant(SimpleSize, DL, | 
|  | getShiftAmountTy(Lo.getValueType()))); | 
|  | Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); | 
|  | // Compute the low part as N0. | 
|  | Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); | 
|  | return CombineTo(N, Lo, Hi); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { | 
|  | if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) | 
|  | return Res; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the type is twice as wide is legal, transform the mulhu to a wider | 
|  | // multiply plus a shift. | 
|  | if (VT.isSimple() && !VT.isVector()) { | 
|  | MVT Simple = VT.getSimpleVT(); | 
|  | unsigned SimpleSize = Simple.getSizeInBits(); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
|  | if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
|  | SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); | 
|  | SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); | 
|  | Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); | 
|  | // Compute the high part as N1. | 
|  | Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, | 
|  | DAG.getConstant(SimpleSize, DL, | 
|  | getShiftAmountTy(Lo.getValueType()))); | 
|  | Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); | 
|  | // Compute the low part as N0. | 
|  | Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); | 
|  | return CombineTo(N, Lo, Hi); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMULO(SDNode *N) { | 
|  | bool IsSigned = (ISD::SMULO == N->getOpcode()); | 
|  |  | 
|  | // (mulo x, 2) -> (addo x, x) | 
|  | if (ConstantSDNode *C2 = isConstOrConstSplat(N->getOperand(1))) | 
|  | if (C2->getAPIntValue() == 2) | 
|  | return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, SDLoc(N), | 
|  | N->getVTList(), N->getOperand(0), N->getOperand(0)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitIMINMAX(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold operation with constant operands. | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); | 
|  | if (N0C && N1C) | 
|  | return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); | 
|  |  | 
|  | // canonicalize constant to RHS | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
|  | return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); | 
|  |  | 
|  | // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. | 
|  | // Only do this if the current op isn't legal and the flipped is. | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (!TLI.isOperationLegal(Opcode, VT) && | 
|  | (N0.isUndef() || DAG.SignBitIsZero(N0)) && | 
|  | (N1.isUndef() || DAG.SignBitIsZero(N1))) { | 
|  | unsigned AltOpcode; | 
|  | switch (Opcode) { | 
|  | case ISD::SMIN: AltOpcode = ISD::UMIN; break; | 
|  | case ISD::SMAX: AltOpcode = ISD::UMAX; break; | 
|  | case ISD::UMIN: AltOpcode = ISD::SMIN; break; | 
|  | case ISD::UMAX: AltOpcode = ISD::SMAX; break; | 
|  | default: llvm_unreachable("Unknown MINMAX opcode"); | 
|  | } | 
|  | if (TLI.isOperationLegal(AltOpcode, VT)) | 
|  | return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// If this is a bitwise logic instruction and both operands have the same | 
|  | /// opcode, try to sink the other opcode after the logic instruction. | 
|  | SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  | unsigned LogicOpcode = N->getOpcode(); | 
|  | unsigned HandOpcode = N0.getOpcode(); | 
|  | assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || | 
|  | LogicOpcode == ISD::XOR) && "Expected logic opcode"); | 
|  | assert(HandOpcode == N1.getOpcode() && "Bad input!"); | 
|  |  | 
|  | // Bail early if none of these transforms apply. | 
|  | if (N0.getNumOperands() == 0) | 
|  | return SDValue(); | 
|  |  | 
|  | // FIXME: We should check number of uses of the operands to not increase | 
|  | //        the instruction count for all transforms. | 
|  |  | 
|  | // Handle size-changing casts. | 
|  | SDValue X = N0.getOperand(0); | 
|  | SDValue Y = N1.getOperand(0); | 
|  | EVT XVT = X.getValueType(); | 
|  | SDLoc DL(N); | 
|  | if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || | 
|  | HandOpcode == ISD::SIGN_EXTEND) { | 
|  | // If both operands have other uses, this transform would create extra | 
|  | // instructions without eliminating anything. | 
|  | if (!N0.hasOneUse() && !N1.hasOneUse()) | 
|  | return SDValue(); | 
|  | // We need matching integer source types. | 
|  | if (XVT != Y.getValueType()) | 
|  | return SDValue(); | 
|  | // Don't create an illegal op during or after legalization. Don't ever | 
|  | // create an unsupported vector op. | 
|  | if ((VT.isVector() || LegalOperations) && | 
|  | !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) | 
|  | return SDValue(); | 
|  | // Avoid infinite looping with PromoteIntBinOp. | 
|  | // TODO: Should we apply desirable/legal constraints to all opcodes? | 
|  | if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && | 
|  | !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) | 
|  | return SDValue(); | 
|  | // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) | 
|  | SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); | 
|  | return DAG.getNode(HandOpcode, DL, VT, Logic); | 
|  | } | 
|  |  | 
|  | // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) | 
|  | if (HandOpcode == ISD::TRUNCATE) { | 
|  | // If both operands have other uses, this transform would create extra | 
|  | // instructions without eliminating anything. | 
|  | if (!N0.hasOneUse() && !N1.hasOneUse()) | 
|  | return SDValue(); | 
|  | // We need matching source types. | 
|  | if (XVT != Y.getValueType()) | 
|  | return SDValue(); | 
|  | // Don't create an illegal op during or after legalization. | 
|  | if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) | 
|  | return SDValue(); | 
|  | // Be extra careful sinking truncate. If it's free, there's no benefit in | 
|  | // widening a binop. Also, don't create a logic op on an illegal type. | 
|  | if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) | 
|  | return SDValue(); | 
|  | if (!TLI.isTypeLegal(XVT)) | 
|  | return SDValue(); | 
|  | SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); | 
|  | return DAG.getNode(HandOpcode, DL, VT, Logic); | 
|  | } | 
|  |  | 
|  | // For binops SHL/SRL/SRA/AND: | 
|  | //   logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z | 
|  | if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || | 
|  | HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && | 
|  | N0.getOperand(1) == N1.getOperand(1)) { | 
|  | // If either operand has other uses, this transform is not an improvement. | 
|  | if (!N0.hasOneUse() || !N1.hasOneUse()) | 
|  | return SDValue(); | 
|  | SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); | 
|  | return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) | 
|  | if (HandOpcode == ISD::BSWAP) { | 
|  | // If either operand has other uses, this transform is not an improvement. | 
|  | if (!N0.hasOneUse() || !N1.hasOneUse()) | 
|  | return SDValue(); | 
|  | SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); | 
|  | return DAG.getNode(HandOpcode, DL, VT, Logic); | 
|  | } | 
|  |  | 
|  | // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) | 
|  | // Only perform this optimization up until type legalization, before | 
|  | // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by | 
|  | // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and | 
|  | // we don't want to undo this promotion. | 
|  | // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper | 
|  | // on scalars. | 
|  | if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && | 
|  | Level <= AfterLegalizeTypes) { | 
|  | // Input types must be integer and the same. | 
|  | if (XVT.isInteger() && XVT == Y.getValueType()) { | 
|  | SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); | 
|  | return DAG.getNode(HandOpcode, DL, VT, Logic); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). | 
|  | // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) | 
|  | // If both shuffles use the same mask, and both shuffle within a single | 
|  | // vector, then it is worthwhile to move the swizzle after the operation. | 
|  | // The type-legalizer generates this pattern when loading illegal | 
|  | // vector types from memory. In many cases this allows additional shuffle | 
|  | // optimizations. | 
|  | // There are other cases where moving the shuffle after the xor/and/or | 
|  | // is profitable even if shuffles don't perform a swizzle. | 
|  | // If both shuffles use the same mask, and both shuffles have the same first | 
|  | // or second operand, then it might still be profitable to move the shuffle | 
|  | // after the xor/and/or operation. | 
|  | if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { | 
|  | auto *SVN0 = cast<ShuffleVectorSDNode>(N0); | 
|  | auto *SVN1 = cast<ShuffleVectorSDNode>(N1); | 
|  | assert(X.getValueType() == Y.getValueType() && | 
|  | "Inputs to shuffles are not the same type"); | 
|  |  | 
|  | // Check that both shuffles use the same mask. The masks are known to be of | 
|  | // the same length because the result vector type is the same. | 
|  | // Check also that shuffles have only one use to avoid introducing extra | 
|  | // instructions. | 
|  | if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || | 
|  | !SVN0->getMask().equals(SVN1->getMask())) | 
|  | return SDValue(); | 
|  |  | 
|  | // Don't try to fold this node if it requires introducing a | 
|  | // build vector of all zeros that might be illegal at this stage. | 
|  | SDValue ShOp = N0.getOperand(1); | 
|  | if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) | 
|  | ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); | 
|  |  | 
|  | // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) | 
|  | if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { | 
|  | SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, | 
|  | N0.getOperand(0), N1.getOperand(0)); | 
|  | return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); | 
|  | } | 
|  |  | 
|  | // Don't try to fold this node if it requires introducing a | 
|  | // build vector of all zeros that might be illegal at this stage. | 
|  | ShOp = N0.getOperand(0); | 
|  | if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) | 
|  | ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); | 
|  |  | 
|  | // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) | 
|  | if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { | 
|  | SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), | 
|  | N1.getOperand(1)); | 
|  | return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. | 
|  | SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, | 
|  | const SDLoc &DL) { | 
|  | SDValue LL, LR, RL, RR, N0CC, N1CC; | 
|  | if (!isSetCCEquivalent(N0, LL, LR, N0CC) || | 
|  | !isSetCCEquivalent(N1, RL, RR, N1CC)) | 
|  | return SDValue(); | 
|  |  | 
|  | assert(N0.getValueType() == N1.getValueType() && | 
|  | "Unexpected operand types for bitwise logic op"); | 
|  | assert(LL.getValueType() == LR.getValueType() && | 
|  | RL.getValueType() == RR.getValueType() && | 
|  | "Unexpected operand types for setcc"); | 
|  |  | 
|  | // If we're here post-legalization or the logic op type is not i1, the logic | 
|  | // op type must match a setcc result type. Also, all folds require new | 
|  | // operations on the left and right operands, so those types must match. | 
|  | EVT VT = N0.getValueType(); | 
|  | EVT OpVT = LL.getValueType(); | 
|  | if (LegalOperations || VT.getScalarType() != MVT::i1) | 
|  | if (VT != getSetCCResultType(OpVT)) | 
|  | return SDValue(); | 
|  | if (OpVT != RL.getValueType()) | 
|  | return SDValue(); | 
|  |  | 
|  | ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); | 
|  | ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); | 
|  | bool IsInteger = OpVT.isInteger(); | 
|  | if (LR == RR && CC0 == CC1 && IsInteger) { | 
|  | bool IsZero = isNullOrNullSplat(LR); | 
|  | bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); | 
|  |  | 
|  | // All bits clear? | 
|  | bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; | 
|  | // All sign bits clear? | 
|  | bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; | 
|  | // Any bits set? | 
|  | bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; | 
|  | // Any sign bits set? | 
|  | bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; | 
|  |  | 
|  | // (and (seteq X,  0), (seteq Y,  0)) --> (seteq (or X, Y),  0) | 
|  | // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) | 
|  | // (or  (setne X,  0), (setne Y,  0)) --> (setne (or X, Y),  0) | 
|  | // (or  (setlt X,  0), (setlt Y,  0)) --> (setlt (or X, Y),  0) | 
|  | if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { | 
|  | SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); | 
|  | AddToWorklist(Or.getNode()); | 
|  | return DAG.getSetCC(DL, VT, Or, LR, CC1); | 
|  | } | 
|  |  | 
|  | // All bits set? | 
|  | bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; | 
|  | // All sign bits set? | 
|  | bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; | 
|  | // Any bits clear? | 
|  | bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; | 
|  | // Any sign bits clear? | 
|  | bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; | 
|  |  | 
|  | // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) | 
|  | // (and (setlt X,  0), (setlt Y,  0)) --> (setlt (and X, Y),  0) | 
|  | // (or  (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) | 
|  | // (or  (setgt X, -1), (setgt Y  -1)) --> (setgt (and X, Y), -1) | 
|  | if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { | 
|  | SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); | 
|  | AddToWorklist(And.getNode()); | 
|  | return DAG.getSetCC(DL, VT, And, LR, CC1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: What is the 'or' equivalent of this fold? | 
|  | // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) | 
|  | if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && | 
|  | IsInteger && CC0 == ISD::SETNE && | 
|  | ((isNullConstant(LR) && isAllOnesConstant(RR)) || | 
|  | (isAllOnesConstant(LR) && isNullConstant(RR)))) { | 
|  | SDValue One = DAG.getConstant(1, DL, OpVT); | 
|  | SDValue Two = DAG.getConstant(2, DL, OpVT); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); | 
|  | AddToWorklist(Add.getNode()); | 
|  | return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); | 
|  | } | 
|  |  | 
|  | // Try more general transforms if the predicates match and the only user of | 
|  | // the compares is the 'and' or 'or'. | 
|  | if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && | 
|  | N0.hasOneUse() && N1.hasOneUse()) { | 
|  | // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 | 
|  | // or  (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 | 
|  | if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { | 
|  | SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); | 
|  | SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); | 
|  | SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); | 
|  | SDValue Zero = DAG.getConstant(0, DL, OpVT); | 
|  | return DAG.getSetCC(DL, VT, Or, Zero, CC1); | 
|  | } | 
|  |  | 
|  | // Turn compare of constants whose difference is 1 bit into add+and+setcc. | 
|  | // TODO - support non-uniform vector amounts. | 
|  | if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { | 
|  | // Match a shared variable operand and 2 non-opaque constant operands. | 
|  | ConstantSDNode *C0 = isConstOrConstSplat(LR); | 
|  | ConstantSDNode *C1 = isConstOrConstSplat(RR); | 
|  | if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) { | 
|  | // Canonicalize larger constant as C0. | 
|  | if (C1->getAPIntValue().ugt(C0->getAPIntValue())) | 
|  | std::swap(C0, C1); | 
|  |  | 
|  | // The difference of the constants must be a single bit. | 
|  | const APInt &C0Val = C0->getAPIntValue(); | 
|  | const APInt &C1Val = C1->getAPIntValue(); | 
|  | if ((C0Val - C1Val).isPowerOf2()) { | 
|  | // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) --> | 
|  | // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq | 
|  | SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC); | 
|  | SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT); | 
|  | SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC); | 
|  | SDValue Zero = DAG.getConstant(0, DL, OpVT); | 
|  | return DAG.getSetCC(DL, VT, And, Zero, CC0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Canonicalize equivalent operands to LL == RL. | 
|  | if (LL == RR && LR == RL) { | 
|  | CC1 = ISD::getSetCCSwappedOperands(CC1); | 
|  | std::swap(RL, RR); | 
|  | } | 
|  |  | 
|  | // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) | 
|  | // (or  (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) | 
|  | if (LL == RL && LR == RR) { | 
|  | ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, IsInteger) | 
|  | : ISD::getSetCCOrOperation(CC0, CC1, IsInteger); | 
|  | if (NewCC != ISD::SETCC_INVALID && | 
|  | (!LegalOperations || | 
|  | (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && | 
|  | TLI.isOperationLegal(ISD::SETCC, OpVT)))) | 
|  | return DAG.getSetCC(DL, VT, LL, LR, NewCC); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// This contains all DAGCombine rules which reduce two values combined by | 
|  | /// an And operation to a single value. This makes them reusable in the context | 
|  | /// of visitSELECT(). Rules involving constants are not included as | 
|  | /// visitSELECT() already handles those cases. | 
|  | SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { | 
|  | EVT VT = N1.getValueType(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // fold (and x, undef) -> 0 | 
|  | if (N0.isUndef() || N1.isUndef()) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  |  | 
|  | if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) | 
|  | return V; | 
|  |  | 
|  | if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && | 
|  | VT.getSizeInBits() <= 64) { | 
|  | if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { | 
|  | // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal | 
|  | // immediate for an add, but it is legal if its top c2 bits are set, | 
|  | // transform the ADD so the immediate doesn't need to be materialized | 
|  | // in a register. | 
|  | APInt ADDC = ADDI->getAPIntValue(); | 
|  | APInt SRLC = SRLI->getAPIntValue(); | 
|  | if (ADDC.getMinSignedBits() <= 64 && | 
|  | SRLC.ult(VT.getSizeInBits()) && | 
|  | !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { | 
|  | APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), | 
|  | SRLC.getZExtValue()); | 
|  | if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { | 
|  | ADDC |= Mask; | 
|  | if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { | 
|  | SDLoc DL0(N0); | 
|  | SDValue NewAdd = | 
|  | DAG.getNode(ISD::ADD, DL0, VT, | 
|  | N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); | 
|  | CombineTo(N0.getNode(), NewAdd); | 
|  | // Return N so it doesn't get rechecked! | 
|  | return SDValue(N, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reduce bit extract of low half of an integer to the narrower type. | 
|  | // (and (srl i64:x, K), KMask) -> | 
|  | //   (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) | 
|  | if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { | 
|  | if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { | 
|  | if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | unsigned Size = VT.getSizeInBits(); | 
|  | const APInt &AndMask = CAnd->getAPIntValue(); | 
|  | unsigned ShiftBits = CShift->getZExtValue(); | 
|  |  | 
|  | // Bail out, this node will probably disappear anyway. | 
|  | if (ShiftBits == 0) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned MaskBits = AndMask.countTrailingOnes(); | 
|  | EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); | 
|  |  | 
|  | if (AndMask.isMask() && | 
|  | // Required bits must not span the two halves of the integer and | 
|  | // must fit in the half size type. | 
|  | (ShiftBits + MaskBits <= Size / 2) && | 
|  | TLI.isNarrowingProfitable(VT, HalfVT) && | 
|  | TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && | 
|  | TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && | 
|  | TLI.isTruncateFree(VT, HalfVT) && | 
|  | TLI.isZExtFree(HalfVT, VT)) { | 
|  | // The isNarrowingProfitable is to avoid regressions on PPC and | 
|  | // AArch64 which match a few 64-bit bit insert / bit extract patterns | 
|  | // on downstream users of this. Those patterns could probably be | 
|  | // extended to handle extensions mixed in. | 
|  |  | 
|  | SDValue SL(N0); | 
|  | assert(MaskBits <= Size); | 
|  |  | 
|  | // Extracting the highest bit of the low half. | 
|  | EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, | 
|  | N0.getOperand(0)); | 
|  |  | 
|  | SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); | 
|  | SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); | 
|  | SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); | 
|  | SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, | 
|  | EVT LoadResultTy, EVT &ExtVT) { | 
|  | if (!AndC->getAPIntValue().isMask()) | 
|  | return false; | 
|  |  | 
|  | unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); | 
|  |  | 
|  | ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); | 
|  | EVT LoadedVT = LoadN->getMemoryVT(); | 
|  |  | 
|  | if (ExtVT == LoadedVT && | 
|  | (!LegalOperations || | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { | 
|  | // ZEXTLOAD will match without needing to change the size of the value being | 
|  | // loaded. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Do not change the width of a volatile load. | 
|  | if (LoadN->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | // Do not generate loads of non-round integer types since these can | 
|  | // be expensive (and would be wrong if the type is not byte sized). | 
|  | if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) | 
|  | return false; | 
|  |  | 
|  | if (LegalOperations && | 
|  | !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) | 
|  | return false; | 
|  |  | 
|  | if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, | 
|  | ISD::LoadExtType ExtType, EVT &MemVT, | 
|  | unsigned ShAmt) { | 
|  | if (!LDST) | 
|  | return false; | 
|  | // Only allow byte offsets. | 
|  | if (ShAmt % 8) | 
|  | return false; | 
|  |  | 
|  | // Do not generate loads of non-round integer types since these can | 
|  | // be expensive (and would be wrong if the type is not byte sized). | 
|  | if (!MemVT.isRound()) | 
|  | return false; | 
|  |  | 
|  | // Don't change the width of a volatile load. | 
|  | if (LDST->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | // Verify that we are actually reducing a load width here. | 
|  | if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits()) | 
|  | return false; | 
|  |  | 
|  | // Ensure that this isn't going to produce an unsupported unaligned access. | 
|  | if (ShAmt && | 
|  | !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, | 
|  | LDST->getAddressSpace(), ShAmt / 8, | 
|  | LDST->getMemOperand()->getFlags())) | 
|  | return false; | 
|  |  | 
|  | // It's not possible to generate a constant of extended or untyped type. | 
|  | EVT PtrType = LDST->getBasePtr().getValueType(); | 
|  | if (PtrType == MVT::Untyped || PtrType.isExtended()) | 
|  | return false; | 
|  |  | 
|  | if (isa<LoadSDNode>(LDST)) { | 
|  | LoadSDNode *Load = cast<LoadSDNode>(LDST); | 
|  | // Don't transform one with multiple uses, this would require adding a new | 
|  | // load. | 
|  | if (!SDValue(Load, 0).hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | if (LegalOperations && | 
|  | !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) | 
|  | return false; | 
|  |  | 
|  | // For the transform to be legal, the load must produce only two values | 
|  | // (the value loaded and the chain).  Don't transform a pre-increment | 
|  | // load, for example, which produces an extra value.  Otherwise the | 
|  | // transformation is not equivalent, and the downstream logic to replace | 
|  | // uses gets things wrong. | 
|  | if (Load->getNumValues() > 2) | 
|  | return false; | 
|  |  | 
|  | // If the load that we're shrinking is an extload and we're not just | 
|  | // discarding the extension we can't simply shrink the load. Bail. | 
|  | // TODO: It would be possible to merge the extensions in some cases. | 
|  | if (Load->getExtensionType() != ISD::NON_EXTLOAD && | 
|  | Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) | 
|  | return false; | 
|  |  | 
|  | if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) | 
|  | return false; | 
|  | } else { | 
|  | assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); | 
|  | StoreSDNode *Store = cast<StoreSDNode>(LDST); | 
|  | // Can't write outside the original store | 
|  | if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) | 
|  | return false; | 
|  |  | 
|  | if (LegalOperations && | 
|  | !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::SearchForAndLoads(SDNode *N, | 
|  | SmallVectorImpl<LoadSDNode*> &Loads, | 
|  | SmallPtrSetImpl<SDNode*> &NodesWithConsts, | 
|  | ConstantSDNode *Mask, | 
|  | SDNode *&NodeToMask) { | 
|  | // Recursively search for the operands, looking for loads which can be | 
|  | // narrowed. | 
|  | for (SDValue Op : N->op_values()) { | 
|  | if (Op.getValueType().isVector()) | 
|  | return false; | 
|  |  | 
|  | // Some constants may need fixing up later if they are too large. | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && | 
|  | (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) | 
|  | NodesWithConsts.insert(N); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!Op.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | switch(Op.getOpcode()) { | 
|  | case ISD::LOAD: { | 
|  | auto *Load = cast<LoadSDNode>(Op); | 
|  | EVT ExtVT; | 
|  | if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && | 
|  | isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { | 
|  |  | 
|  | // ZEXTLOAD is already small enough. | 
|  | if (Load->getExtensionType() == ISD::ZEXTLOAD && | 
|  | ExtVT.bitsGE(Load->getMemoryVT())) | 
|  | continue; | 
|  |  | 
|  | // Use LE to convert equal sized loads to zext. | 
|  | if (ExtVT.bitsLE(Load->getMemoryVT())) | 
|  | Loads.push_back(Load); | 
|  |  | 
|  | continue; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::AssertZext: { | 
|  | unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); | 
|  | EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); | 
|  | EVT VT = Op.getOpcode() == ISD::AssertZext ? | 
|  | cast<VTSDNode>(Op.getOperand(1))->getVT() : | 
|  | Op.getOperand(0).getValueType(); | 
|  |  | 
|  | // We can accept extending nodes if the mask is wider or an equal | 
|  | // width to the original type. | 
|  | if (ExtVT.bitsGE(VT)) | 
|  | continue; | 
|  | break; | 
|  | } | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::AND: | 
|  | if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, | 
|  | NodeToMask)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Allow one node which will masked along with any loads found. | 
|  | if (NodeToMask) | 
|  | return false; | 
|  |  | 
|  | // Also ensure that the node to be masked only produces one data result. | 
|  | NodeToMask = Op.getNode(); | 
|  | if (NodeToMask->getNumValues() > 1) { | 
|  | bool HasValue = false; | 
|  | for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { | 
|  | MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); | 
|  | if (VT != MVT::Glue && VT != MVT::Other) { | 
|  | if (HasValue) { | 
|  | NodeToMask = nullptr; | 
|  | return false; | 
|  | } | 
|  | HasValue = true; | 
|  | } | 
|  | } | 
|  | assert(HasValue && "Node to be masked has no data result?"); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG) { | 
|  | auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (!Mask) | 
|  | return false; | 
|  |  | 
|  | if (!Mask->getAPIntValue().isMask()) | 
|  | return false; | 
|  |  | 
|  | // No need to do anything if the and directly uses a load. | 
|  | if (isa<LoadSDNode>(N->getOperand(0))) | 
|  | return false; | 
|  |  | 
|  | SmallVector<LoadSDNode*, 8> Loads; | 
|  | SmallPtrSet<SDNode*, 2> NodesWithConsts; | 
|  | SDNode *FixupNode = nullptr; | 
|  | if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { | 
|  | if (Loads.size() == 0) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); | 
|  | SDValue MaskOp = N->getOperand(1); | 
|  |  | 
|  | // If it exists, fixup the single node we allow in the tree that needs | 
|  | // masking. | 
|  | if (FixupNode) { | 
|  | LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); | 
|  | SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), | 
|  | FixupNode->getValueType(0), | 
|  | SDValue(FixupNode, 0), MaskOp); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); | 
|  | if (And.getOpcode() == ISD ::AND) | 
|  | DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); | 
|  | } | 
|  |  | 
|  | // Narrow any constants that need it. | 
|  | for (auto *LogicN : NodesWithConsts) { | 
|  | SDValue Op0 = LogicN->getOperand(0); | 
|  | SDValue Op1 = LogicN->getOperand(1); | 
|  |  | 
|  | if (isa<ConstantSDNode>(Op0)) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), | 
|  | Op1, MaskOp); | 
|  |  | 
|  | DAG.UpdateNodeOperands(LogicN, Op0, And); | 
|  | } | 
|  |  | 
|  | // Create narrow loads. | 
|  | for (auto *Load : Loads) { | 
|  | LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); | 
|  | SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), | 
|  | SDValue(Load, 0), MaskOp); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); | 
|  | if (And.getOpcode() == ISD ::AND) | 
|  | And = SDValue( | 
|  | DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); | 
|  | SDValue NewLoad = ReduceLoadWidth(And.getNode()); | 
|  | assert(NewLoad && | 
|  | "Shouldn't be masking the load if it can't be narrowed"); | 
|  | CombineTo(Load, NewLoad, NewLoad.getValue(1)); | 
|  | } | 
|  | DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Unfold | 
|  | //    x &  (-1 'logical shift' y) | 
|  | // To | 
|  | //    (x 'opposite logical shift' y) 'logical shift' y | 
|  | // if it is better for performance. | 
|  | SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::AND); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | // Do we actually prefer shifts over mask? | 
|  | if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Try to match  (-1 '[outer] logical shift' y) | 
|  | unsigned OuterShift; | 
|  | unsigned InnerShift; // The opposite direction to the OuterShift. | 
|  | SDValue Y;           // Shift amount. | 
|  | auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { | 
|  | if (!M.hasOneUse()) | 
|  | return false; | 
|  | OuterShift = M->getOpcode(); | 
|  | if (OuterShift == ISD::SHL) | 
|  | InnerShift = ISD::SRL; | 
|  | else if (OuterShift == ISD::SRL) | 
|  | InnerShift = ISD::SHL; | 
|  | else | 
|  | return false; | 
|  | if (!isAllOnesConstant(M->getOperand(0))) | 
|  | return false; | 
|  | Y = M->getOperand(1); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | SDValue X; | 
|  | if (matchMask(N1)) | 
|  | X = N0; | 
|  | else if (matchMask(N0)) | 
|  | X = N1; | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | //     tmp = x   'opposite logical shift' y | 
|  | SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); | 
|  | //     ret = tmp 'logical shift' y | 
|  | SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); | 
|  |  | 
|  | return T1; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitAND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N1.getValueType(); | 
|  |  | 
|  | // x & x --> x | 
|  | if (N0 == N1) | 
|  | return N0; | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (and x, 0) -> 0, vector edition | 
|  | if (ISD::isBuildVectorAllZeros(N0.getNode())) | 
|  | // do not return N0, because undef node may exist in N0 | 
|  | return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), | 
|  | SDLoc(N), N0.getValueType()); | 
|  | if (ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | // do not return N1, because undef node may exist in N1 | 
|  | return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), | 
|  | SDLoc(N), N1.getValueType()); | 
|  |  | 
|  | // fold (and x, -1) -> x, vector edition | 
|  | if (ISD::isBuildVectorAllOnes(N0.getNode())) | 
|  | return N1; | 
|  | if (ISD::isBuildVectorAllOnes(N1.getNode())) | 
|  | return N0; | 
|  | } | 
|  |  | 
|  | // fold (and c1, c2) -> c1&c2 | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
|  | if (N0C && N1C && !N1C->isOpaque()) | 
|  | return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); | 
|  | // canonicalize constant to RHS | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
|  | return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); | 
|  | // fold (and x, -1) -> x | 
|  | if (isAllOnesConstant(N1)) | 
|  | return N0; | 
|  | // if (and x, c) is known to be zero, return 0 | 
|  | unsigned BitWidth = VT.getScalarSizeInBits(); | 
|  | if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), | 
|  | APInt::getAllOnesValue(BitWidth))) | 
|  | return DAG.getConstant(0, SDLoc(N), VT); | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | // reassociate and | 
|  | if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) | 
|  | return RAND; | 
|  |  | 
|  | // Try to convert a constant mask AND into a shuffle clear mask. | 
|  | if (VT.isVector()) | 
|  | if (SDValue Shuffle = XformToShuffleWithZero(N)) | 
|  | return Shuffle; | 
|  |  | 
|  | // fold (and (or x, C), D) -> D if (C & D) == D | 
|  | auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { | 
|  | return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); | 
|  | }; | 
|  | if (N0.getOpcode() == ISD::OR && | 
|  | ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) | 
|  | return N1; | 
|  | // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. | 
|  | if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | SDValue N0Op0 = N0.getOperand(0); | 
|  | APInt Mask = ~N1C->getAPIntValue(); | 
|  | Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); | 
|  | if (DAG.MaskedValueIsZero(N0Op0, Mask)) { | 
|  | SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), | 
|  | N0.getValueType(), N0Op0); | 
|  |  | 
|  | // Replace uses of the AND with uses of the Zero extend node. | 
|  | CombineTo(N, Zext); | 
|  |  | 
|  | // We actually want to replace all uses of the any_extend with the | 
|  | // zero_extend, to avoid duplicating things.  This will later cause this | 
|  | // AND to be folded. | 
|  | CombineTo(N0.getNode(), Zext); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> | 
|  | // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must | 
|  | // already be zero by virtue of the width of the base type of the load. | 
|  | // | 
|  | // the 'X' node here can either be nothing or an extract_vector_elt to catch | 
|  | // more cases. | 
|  | if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && | 
|  | N0.getOperand(0).getOpcode() == ISD::LOAD && | 
|  | N0.getOperand(0).getResNo() == 0) || | 
|  | (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { | 
|  | LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? | 
|  | N0 : N0.getOperand(0) ); | 
|  |  | 
|  | // Get the constant (if applicable) the zero'th operand is being ANDed with. | 
|  | // This can be a pure constant or a vector splat, in which case we treat the | 
|  | // vector as a scalar and use the splat value. | 
|  | APInt Constant = APInt::getNullValue(1); | 
|  | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { | 
|  | Constant = C->getAPIntValue(); | 
|  | } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { | 
|  | APInt SplatValue, SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  | bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, | 
|  | SplatBitSize, HasAnyUndefs); | 
|  | if (IsSplat) { | 
|  | // Undef bits can contribute to a possible optimisation if set, so | 
|  | // set them. | 
|  | SplatValue |= SplatUndef; | 
|  |  | 
|  | // The splat value may be something like "0x00FFFFFF", which means 0 for | 
|  | // the first vector value and FF for the rest, repeating. We need a mask | 
|  | // that will apply equally to all members of the vector, so AND all the | 
|  | // lanes of the constant together. | 
|  | unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); | 
|  |  | 
|  | // If the splat value has been compressed to a bitlength lower | 
|  | // than the size of the vector lane, we need to re-expand it to | 
|  | // the lane size. | 
|  | if (EltBitWidth > SplatBitSize) | 
|  | for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth); | 
|  | SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2) | 
|  | SplatValue |= SplatValue.shl(SplatBitSize); | 
|  |  | 
|  | // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a | 
|  | // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. | 
|  | if ((SplatBitSize % EltBitWidth) == 0) { | 
|  | Constant = APInt::getAllOnesValue(EltBitWidth); | 
|  | for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) | 
|  | Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is | 
|  | // actually legal and isn't going to get expanded, else this is a false | 
|  | // optimisation. | 
|  | bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, | 
|  | Load->getValueType(0), | 
|  | Load->getMemoryVT()); | 
|  |  | 
|  | // Resize the constant to the same size as the original memory access before | 
|  | // extension. If it is still the AllOnesValue then this AND is completely | 
|  | // unneeded. | 
|  | Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); | 
|  |  | 
|  | bool B; | 
|  | switch (Load->getExtensionType()) { | 
|  | default: B = false; break; | 
|  | case ISD::EXTLOAD: B = CanZextLoadProfitably; break; | 
|  | case ISD::ZEXTLOAD: | 
|  | case ISD::NON_EXTLOAD: B = true; break; | 
|  | } | 
|  |  | 
|  | if (B && Constant.isAllOnesValue()) { | 
|  | // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to | 
|  | // preserve semantics once we get rid of the AND. | 
|  | SDValue NewLoad(Load, 0); | 
|  |  | 
|  | // Fold the AND away. NewLoad may get replaced immediately. | 
|  | CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); | 
|  |  | 
|  | if (Load->getExtensionType() == ISD::EXTLOAD) { | 
|  | NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, | 
|  | Load->getValueType(0), SDLoc(Load), | 
|  | Load->getChain(), Load->getBasePtr(), | 
|  | Load->getOffset(), Load->getMemoryVT(), | 
|  | Load->getMemOperand()); | 
|  | // Replace uses of the EXTLOAD with the new ZEXTLOAD. | 
|  | if (Load->getNumValues() == 3) { | 
|  | // PRE/POST_INC loads have 3 values. | 
|  | SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), | 
|  | NewLoad.getValue(2) }; | 
|  | CombineTo(Load, To, 3, true); | 
|  | } else { | 
|  | CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (and (load x), 255) -> (zextload x, i8) | 
|  | // fold (and (extload x, i16), 255) -> (zextload x, i8) | 
|  | // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) | 
|  | if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || | 
|  | (N0.getOpcode() == ISD::ANY_EXTEND && | 
|  | N0.getOperand(0).getOpcode() == ISD::LOAD))) { | 
|  | if (SDValue Res = ReduceLoadWidth(N)) { | 
|  | LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND | 
|  | ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); | 
|  | AddToWorklist(N); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); | 
|  | return SDValue(N, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Level >= AfterLegalizeTypes) { | 
|  | // Attempt to propagate the AND back up to the leaves which, if they're | 
|  | // loads, can be combined to narrow loads and the AND node can be removed. | 
|  | // Perform after legalization so that extend nodes will already be | 
|  | // combined into the loads. | 
|  | if (BackwardsPropagateMask(N, DAG)) { | 
|  | return SDValue(N, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue Combined = visitANDLike(N0, N1, N)) | 
|  | return Combined; | 
|  |  | 
|  | // Simplify: (and (op x...), (op y...))  -> (op (and x, y)) | 
|  | if (N0.getOpcode() == N1.getOpcode()) | 
|  | if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) | 
|  | return V; | 
|  |  | 
|  | // Masking the negated extension of a boolean is just the zero-extended | 
|  | // boolean: | 
|  | // and (sub 0, zext(bool X)), 1 --> zext(bool X) | 
|  | // and (sub 0, sext(bool X)), 1 --> zext(bool X) | 
|  | // | 
|  | // Note: the SimplifyDemandedBits fold below can make an information-losing | 
|  | // transform, and then we have no way to find this better fold. | 
|  | if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { | 
|  | if (isNullOrNullSplat(N0.getOperand(0))) { | 
|  | SDValue SubRHS = N0.getOperand(1); | 
|  | if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && | 
|  | SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) | 
|  | return SubRHS; | 
|  | if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && | 
|  | SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) | 
|  | // fold (and (sra)) -> (and (srl)) when possible. | 
|  | if (SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // fold (zext_inreg (extload x)) -> (zextload x) | 
|  | // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use | 
|  | if (ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | (ISD::isEXTLoad(N0.getNode()) || | 
|  | (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | EVT MemVT = LN0->getMemoryVT(); | 
|  | // If we zero all the possible extended bits, then we can turn this into | 
|  | // a zextload if we are running before legalize or the operation is legal. | 
|  | unsigned ExtBitSize = N1.getScalarValueSizeInBits(); | 
|  | unsigned MemBitSize = MemVT.getScalarSizeInBits(); | 
|  | APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); | 
|  | if (DAG.MaskedValueIsZero(N1, ExtBits) && | 
|  | ((!LegalOperations && !LN0->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { | 
|  | SDValue ExtLoad = | 
|  | DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), | 
|  | LN0->getBasePtr(), MemVT, LN0->getMemOperand()); | 
|  | AddToWorklist(N); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) | 
|  | if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { | 
|  | if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), | 
|  | N0.getOperand(1), false)) | 
|  | return BSwap; | 
|  | } | 
|  |  | 
|  | if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) | 
|  | return Shifts; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. | 
|  | SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, | 
|  | bool DemandHighBits) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) | 
|  | return SDValue(); | 
|  | if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) | 
|  | bool LookPassAnd0 = false; | 
|  | bool LookPassAnd1 = false; | 
|  | if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) | 
|  | std::swap(N0, N1); | 
|  | if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) | 
|  | std::swap(N0, N1); | 
|  | if (N0.getOpcode() == ISD::AND) { | 
|  | if (!N0.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  | ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | // Also handle 0xffff since the LHS is guaranteed to have zeros there. | 
|  | // This is needed for X86. | 
|  | if (!N01C || (N01C->getZExtValue() != 0xFF00 && | 
|  | N01C->getZExtValue() != 0xFFFF)) | 
|  | return SDValue(); | 
|  | N0 = N0.getOperand(0); | 
|  | LookPassAnd0 = true; | 
|  | } | 
|  |  | 
|  | if (N1.getOpcode() == ISD::AND) { | 
|  | if (!N1.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  | ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); | 
|  | if (!N11C || N11C->getZExtValue() != 0xFF) | 
|  | return SDValue(); | 
|  | N1 = N1.getOperand(0); | 
|  | LookPassAnd1 = true; | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) | 
|  | std::swap(N0, N1); | 
|  | if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) | 
|  | return SDValue(); | 
|  | if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); | 
|  | if (!N01C || !N11C) | 
|  | return SDValue(); | 
|  | if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) | 
|  | return SDValue(); | 
|  |  | 
|  | // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) | 
|  | SDValue N00 = N0->getOperand(0); | 
|  | if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { | 
|  | if (!N00.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  | ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); | 
|  | if (!N001C || N001C->getZExtValue() != 0xFF) | 
|  | return SDValue(); | 
|  | N00 = N00.getOperand(0); | 
|  | LookPassAnd0 = true; | 
|  | } | 
|  |  | 
|  | SDValue N10 = N1->getOperand(0); | 
|  | if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { | 
|  | if (!N10.getNode()->hasOneUse()) | 
|  | return SDValue(); | 
|  | ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); | 
|  | // Also allow 0xFFFF since the bits will be shifted out. This is needed | 
|  | // for X86. | 
|  | if (!N101C || (N101C->getZExtValue() != 0xFF00 && | 
|  | N101C->getZExtValue() != 0xFFFF)) | 
|  | return SDValue(); | 
|  | N10 = N10.getOperand(0); | 
|  | LookPassAnd1 = true; | 
|  | } | 
|  |  | 
|  | if (N00 != N10) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make sure everything beyond the low halfword gets set to zero since the SRL | 
|  | // 16 will clear the top bits. | 
|  | unsigned OpSizeInBits = VT.getSizeInBits(); | 
|  | if (DemandHighBits && OpSizeInBits > 16) { | 
|  | // If the left-shift isn't masked out then the only way this is a bswap is | 
|  | // if all bits beyond the low 8 are 0. In that case the entire pattern | 
|  | // reduces to a left shift anyway: leave it for other parts of the combiner. | 
|  | if (!LookPassAnd0) | 
|  | return SDValue(); | 
|  |  | 
|  | // However, if the right shift isn't masked out then it might be because | 
|  | // it's not needed. See if we can spot that too. | 
|  | if (!LookPassAnd1 && | 
|  | !DAG.MaskedValueIsZero( | 
|  | N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); | 
|  | if (OpSizeInBits > 16) { | 
|  | SDLoc DL(N); | 
|  | Res = DAG.getNode(ISD::SRL, DL, VT, Res, | 
|  | DAG.getConstant(OpSizeInBits - 16, DL, | 
|  | getShiftAmountTy(VT))); | 
|  | } | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | /// Return true if the specified node is an element that makes up a 32-bit | 
|  | /// packed halfword byteswap. | 
|  | /// ((x & 0x000000ff) << 8) | | 
|  | /// ((x & 0x0000ff00) >> 8) | | 
|  | /// ((x & 0x00ff0000) << 8) | | 
|  | /// ((x & 0xff000000) >> 8) | 
|  | static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { | 
|  | if (!N.getNode()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc = N.getOpcode(); | 
|  | if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) | 
|  | return false; | 
|  |  | 
|  | SDValue N0 = N.getOperand(0); | 
|  | unsigned Opc0 = N0.getOpcode(); | 
|  | if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) | 
|  | return false; | 
|  |  | 
|  | ConstantSDNode *N1C = nullptr; | 
|  | // SHL or SRL: look upstream for AND mask operand | 
|  | if (Opc == ISD::AND) | 
|  | N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | else if (Opc0 == ISD::AND) | 
|  | N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!N1C) | 
|  | return false; | 
|  |  | 
|  | unsigned MaskByteOffset; | 
|  | switch (N1C->getZExtValue()) { | 
|  | default: | 
|  | return false; | 
|  | case 0xFF:       MaskByteOffset = 0; break; | 
|  | case 0xFF00:     MaskByteOffset = 1; break; | 
|  | case 0xFFFF: | 
|  | // In case demanded bits didn't clear the bits that will be shifted out. | 
|  | // This is needed for X86. | 
|  | if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { | 
|  | MaskByteOffset = 1; | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | case 0xFF0000:   MaskByteOffset = 2; break; | 
|  | case 0xFF000000: MaskByteOffset = 3; break; | 
|  | } | 
|  |  | 
|  | // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). | 
|  | if (Opc == ISD::AND) { | 
|  | if (MaskByteOffset == 0 || MaskByteOffset == 2) { | 
|  | // (x >> 8) & 0xff | 
|  | // (x >> 8) & 0xff0000 | 
|  | if (Opc0 != ISD::SRL) | 
|  | return false; | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 8) | 
|  | return false; | 
|  | } else { | 
|  | // (x << 8) & 0xff00 | 
|  | // (x << 8) & 0xff000000 | 
|  | if (Opc0 != ISD::SHL) | 
|  | return false; | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 8) | 
|  | return false; | 
|  | } | 
|  | } else if (Opc == ISD::SHL) { | 
|  | // (x & 0xff) << 8 | 
|  | // (x & 0xff0000) << 8 | 
|  | if (MaskByteOffset != 0 && MaskByteOffset != 2) | 
|  | return false; | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 8) | 
|  | return false; | 
|  | } else { // Opc == ISD::SRL | 
|  | // (x & 0xff00) >> 8 | 
|  | // (x & 0xff000000) >> 8 | 
|  | if (MaskByteOffset != 1 && MaskByteOffset != 3) | 
|  | return false; | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 8) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Parts[MaskByteOffset]) | 
|  | return false; | 
|  |  | 
|  | Parts[MaskByteOffset] = N0.getOperand(0).getNode(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Match a 32-bit packed halfword bswap. That is | 
|  | /// ((x & 0x000000ff) << 8) | | 
|  | /// ((x & 0x0000ff00) >> 8) | | 
|  | /// ((x & 0x00ff0000) << 8) | | 
|  | /// ((x & 0xff000000) >> 8) | 
|  | /// => (rotl (bswap x), 16) | 
|  | SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { | 
|  | if (!LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i32) | 
|  | return SDValue(); | 
|  | if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Look for either | 
|  | // (or (or (and), (and)), (or (and), (and))) | 
|  | // (or (or (or (and), (and)), (and)), (and)) | 
|  | if (N0.getOpcode() != ISD::OR) | 
|  | return SDValue(); | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | SDValue N01 = N0.getOperand(1); | 
|  | SDNode *Parts[4] = {}; | 
|  |  | 
|  | if (N1.getOpcode() == ISD::OR && | 
|  | N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { | 
|  | // (or (or (and), (and)), (or (and), (and))) | 
|  | if (!isBSwapHWordElement(N00, Parts)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!isBSwapHWordElement(N01, Parts)) | 
|  | return SDValue(); | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | if (!isBSwapHWordElement(N10, Parts)) | 
|  | return SDValue(); | 
|  | SDValue N11 = N1.getOperand(1); | 
|  | if (!isBSwapHWordElement(N11, Parts)) | 
|  | return SDValue(); | 
|  | } else { | 
|  | // (or (or (or (and), (and)), (and)), (and)) | 
|  | if (!isBSwapHWordElement(N1, Parts)) | 
|  | return SDValue(); | 
|  | if (!isBSwapHWordElement(N01, Parts)) | 
|  | return SDValue(); | 
|  | if (N00.getOpcode() != ISD::OR) | 
|  | return SDValue(); | 
|  | SDValue N000 = N00.getOperand(0); | 
|  | if (!isBSwapHWordElement(N000, Parts)) | 
|  | return SDValue(); | 
|  | SDValue N001 = N00.getOperand(1); | 
|  | if (!isBSwapHWordElement(N001, Parts)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Make sure the parts are all coming from the same node. | 
|  | if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, | 
|  | SDValue(Parts[0], 0)); | 
|  |  | 
|  | // Result of the bswap should be rotated by 16. If it's not legal, then | 
|  | // do  (x << 16) | (x >> 16). | 
|  | SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); | 
|  | if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) | 
|  | return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); | 
|  | if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) | 
|  | return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); | 
|  | return DAG.getNode(ISD::OR, DL, VT, | 
|  | DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), | 
|  | DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); | 
|  | } | 
|  |  | 
|  | /// This contains all DAGCombine rules which reduce two values combined by | 
|  | /// an Or operation to a single value \see visitANDLike(). | 
|  | SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { | 
|  | EVT VT = N1.getValueType(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // fold (or x, undef) -> -1 | 
|  | if (!LegalOperations && (N0.isUndef() || N1.isUndef())) | 
|  | return DAG.getAllOnesConstant(DL, VT); | 
|  |  | 
|  | if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) | 
|  | return V; | 
|  |  | 
|  | // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible. | 
|  | if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && | 
|  | // Don't increase # computations. | 
|  | (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { | 
|  | // We can only do this xform if we know that bits from X that are set in C2 | 
|  | // but not in C1 are already zero.  Likewise for Y. | 
|  | if (const ConstantSDNode *N0O1C = | 
|  | getAsNonOpaqueConstant(N0.getOperand(1))) { | 
|  | if (const ConstantSDNode *N1O1C = | 
|  | getAsNonOpaqueConstant(N1.getOperand(1))) { | 
|  | // We can only do this xform if we know that bits from X that are set in | 
|  | // C2 but not in C1 are already zero.  Likewise for Y. | 
|  | const APInt &LHSMask = N0O1C->getAPIntValue(); | 
|  | const APInt &RHSMask = N1O1C->getAPIntValue(); | 
|  |  | 
|  | if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && | 
|  | DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { | 
|  | SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, | 
|  | N0.getOperand(0), N1.getOperand(0)); | 
|  | return DAG.getNode(ISD::AND, DL, VT, X, | 
|  | DAG.getConstant(LHSMask | RHSMask, DL, VT)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // (or (and X, M), (and X, N)) -> (and X, (or M, N)) | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N1.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0) == N1.getOperand(0) && | 
|  | // Don't increase # computations. | 
|  | (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { | 
|  | SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, | 
|  | N0.getOperand(1), N1.getOperand(1)); | 
|  | return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// OR combines for which the commuted variant will be tried as well. | 
|  | static SDValue visitORCommutative( | 
|  | SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) { | 
|  | EVT VT = N0.getValueType(); | 
|  | if (N0.getOpcode() == ISD::AND) { | 
|  | // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) | 
|  | if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1) | 
|  | return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1); | 
|  |  | 
|  | // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) | 
|  | if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1) | 
|  | return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitOR(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N1.getValueType(); | 
|  |  | 
|  | // x | x --> x | 
|  | if (N0 == N1) | 
|  | return N0; | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (or x, 0) -> x, vector edition | 
|  | if (ISD::isBuildVectorAllZeros(N0.getNode())) | 
|  | return N1; | 
|  | if (ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | return N0; | 
|  |  | 
|  | // fold (or x, -1) -> -1, vector edition | 
|  | if (ISD::isBuildVectorAllOnes(N0.getNode())) | 
|  | // do not return N0, because undef node may exist in N0 | 
|  | return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType()); | 
|  | if (ISD::isBuildVectorAllOnes(N1.getNode())) | 
|  | // do not return N1, because undef node may exist in N1 | 
|  | return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); | 
|  |  | 
|  | // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) | 
|  | // Do this only if the resulting shuffle is legal. | 
|  | if (isa<ShuffleVectorSDNode>(N0) && | 
|  | isa<ShuffleVectorSDNode>(N1) && | 
|  | // Avoid folding a node with illegal type. | 
|  | TLI.isTypeLegal(VT)) { | 
|  | bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); | 
|  | bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); | 
|  | bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); | 
|  | bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); | 
|  | // Ensure both shuffles have a zero input. | 
|  | if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { | 
|  | assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); | 
|  | assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); | 
|  | const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); | 
|  | const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); | 
|  | bool CanFold = true; | 
|  | int NumElts = VT.getVectorNumElements(); | 
|  | SmallVector<int, 4> Mask(NumElts); | 
|  |  | 
|  | for (int i = 0; i != NumElts; ++i) { | 
|  | int M0 = SV0->getMaskElt(i); | 
|  | int M1 = SV1->getMaskElt(i); | 
|  |  | 
|  | // Determine if either index is pointing to a zero vector. | 
|  | bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); | 
|  | bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); | 
|  |  | 
|  | // If one element is zero and the otherside is undef, keep undef. | 
|  | // This also handles the case that both are undef. | 
|  | if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { | 
|  | Mask[i] = -1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Make sure only one of the elements is zero. | 
|  | if (M0Zero == M1Zero) { | 
|  | CanFold = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert((M0 >= 0 || M1 >= 0) && "Undef index!"); | 
|  |  | 
|  | // We have a zero and non-zero element. If the non-zero came from | 
|  | // SV0 make the index a LHS index. If it came from SV1, make it | 
|  | // a RHS index. We need to mod by NumElts because we don't care | 
|  | // which operand it came from in the original shuffles. | 
|  | Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; | 
|  | } | 
|  |  | 
|  | if (CanFold) { | 
|  | SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); | 
|  | SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); | 
|  |  | 
|  | bool LegalMask = TLI.isShuffleMaskLegal(Mask, VT); | 
|  | if (!LegalMask) { | 
|  | std::swap(NewLHS, NewRHS); | 
|  | ShuffleVectorSDNode::commuteMask(Mask); | 
|  | LegalMask = TLI.isShuffleMaskLegal(Mask, VT); | 
|  | } | 
|  |  | 
|  | if (LegalMask) | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, Mask); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (or c1, c2) -> c1|c2 | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | if (N0C && N1C && !N1C->isOpaque()) | 
|  | return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); | 
|  | // canonicalize constant to RHS | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
|  | return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); | 
|  | // fold (or x, 0) -> x | 
|  | if (isNullConstant(N1)) | 
|  | return N0; | 
|  | // fold (or x, -1) -> -1 | 
|  | if (isAllOnesConstant(N1)) | 
|  | return N1; | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | // fold (or x, c) -> c iff (x & ~c) == 0 | 
|  | if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) | 
|  | return N1; | 
|  |  | 
|  | if (SDValue Combined = visitORLike(N0, N1, N)) | 
|  | return Combined; | 
|  |  | 
|  | // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) | 
|  | if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) | 
|  | return BSwap; | 
|  | if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) | 
|  | return BSwap; | 
|  |  | 
|  | // reassociate or | 
|  | if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) | 
|  | return ROR; | 
|  |  | 
|  | // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) | 
|  | // iff (c1 & c2) != 0 or c1/c2 are undef. | 
|  | auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { | 
|  | return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); | 
|  | }; | 
|  | if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && | 
|  | ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { | 
|  | if (SDValue COR = DAG.FoldConstantArithmetic( | 
|  | ISD::OR, SDLoc(N1), VT, N1.getNode(), N0.getOperand(1).getNode())) { | 
|  | SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); | 
|  | AddToWorklist(IOR.getNode()); | 
|  | return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) | 
|  | return Combined; | 
|  | if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) | 
|  | return Combined; | 
|  |  | 
|  | // Simplify: (or (op x...), (op y...))  -> (op (or x, y)) | 
|  | if (N0.getOpcode() == N1.getOpcode()) | 
|  | if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) | 
|  | return V; | 
|  |  | 
|  | // See if this is some rotate idiom. | 
|  | if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) | 
|  | return SDValue(Rot, 0); | 
|  |  | 
|  | if (SDValue Load = MatchLoadCombine(N)) | 
|  | return Load; | 
|  |  | 
|  | // Simplify the operands using demanded-bits information. | 
|  | if (SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // If OR can be rewritten into ADD, try combines based on ADD. | 
|  | if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && | 
|  | DAG.haveNoCommonBitsSet(N0, N1)) | 
|  | if (SDValue Combined = visitADDLike(N)) | 
|  | return Combined; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { | 
|  | if (Op.getOpcode() == ISD::AND && | 
|  | DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { | 
|  | Mask = Op.getOperand(1); | 
|  | return Op.getOperand(0); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | /// Match "(X shl/srl V1) & V2" where V2 may not be present. | 
|  | static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, | 
|  | SDValue &Mask) { | 
|  | Op = stripConstantMask(DAG, Op, Mask); | 
|  | if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { | 
|  | Shift = Op; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Helper function for visitOR to extract the needed side of a rotate idiom | 
|  | /// from a shl/srl/mul/udiv.  This is meant to handle cases where | 
|  | /// InstCombine merged some outside op with one of the shifts from | 
|  | /// the rotate pattern. | 
|  | /// \returns An empty \c SDValue if the needed shift couldn't be extracted. | 
|  | /// Otherwise, returns an expansion of \p ExtractFrom based on the following | 
|  | /// patterns: | 
|  | /// | 
|  | ///   (or (mul v c0) (shrl (mul v c1) c2)): | 
|  | ///     expands (mul v c0) -> (shl (mul v c1) c3) | 
|  | /// | 
|  | ///   (or (udiv v c0) (shl (udiv v c1) c2)): | 
|  | ///     expands (udiv v c0) -> (shrl (udiv v c1) c3) | 
|  | /// | 
|  | ///   (or (shl v c0) (shrl (shl v c1) c2)): | 
|  | ///     expands (shl v c0) -> (shl (shl v c1) c3) | 
|  | /// | 
|  | ///   (or (shrl v c0) (shl (shrl v c1) c2)): | 
|  | ///     expands (shrl v c0) -> (shrl (shrl v c1) c3) | 
|  | /// | 
|  | /// Such that in all cases, c3+c2==bitwidth(op v c1). | 
|  | static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, | 
|  | SDValue ExtractFrom, SDValue &Mask, | 
|  | const SDLoc &DL) { | 
|  | assert(OppShift && ExtractFrom && "Empty SDValue"); | 
|  | assert( | 
|  | (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && | 
|  | "Existing shift must be valid as a rotate half"); | 
|  |  | 
|  | ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); | 
|  | // Preconditions: | 
|  | //    (or (op0 v c0) (shiftl/r (op0 v c1) c2)) | 
|  | // | 
|  | // Find opcode of the needed shift to be extracted from (op0 v c0). | 
|  | unsigned Opcode = ISD::DELETED_NODE; | 
|  | bool IsMulOrDiv = false; | 
|  | // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift | 
|  | // opcode or its arithmetic (mul or udiv) variant. | 
|  | auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { | 
|  | IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; | 
|  | if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) | 
|  | return false; | 
|  | Opcode = NeededShift; | 
|  | return true; | 
|  | }; | 
|  | // op0 must be either the needed shift opcode or the mul/udiv equivalent | 
|  | // that the needed shift can be extracted from. | 
|  | if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && | 
|  | (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) | 
|  | return SDValue(); | 
|  |  | 
|  | // op0 must be the same opcode on both sides, have the same LHS argument, | 
|  | // and produce the same value type. | 
|  | SDValue OppShiftLHS = OppShift.getOperand(0); | 
|  | EVT ShiftedVT = OppShiftLHS.getValueType(); | 
|  | if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || | 
|  | OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || | 
|  | ShiftedVT != ExtractFrom.getValueType()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Amount of the existing shift. | 
|  | ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); | 
|  | // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. | 
|  | ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); | 
|  | // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. | 
|  | ConstantSDNode *ExtractFromCst = | 
|  | isConstOrConstSplat(ExtractFrom.getOperand(1)); | 
|  | // TODO: We should be able to handle non-uniform constant vectors for these values | 
|  | // Check that we have constant values. | 
|  | if (!OppShiftCst || !OppShiftCst->getAPIntValue() || | 
|  | !OppLHSCst || !OppLHSCst->getAPIntValue() || | 
|  | !ExtractFromCst || !ExtractFromCst->getAPIntValue()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Compute the shift amount we need to extract to complete the rotate. | 
|  | const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); | 
|  | if (OppShiftCst->getAPIntValue().ugt(VTWidth)) | 
|  | return SDValue(); | 
|  | APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); | 
|  | // Normalize the bitwidth of the two mul/udiv/shift constant operands. | 
|  | APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); | 
|  | APInt OppLHSAmt = OppLHSCst->getAPIntValue(); | 
|  | zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); | 
|  |  | 
|  | // Now try extract the needed shift from the ExtractFrom op and see if the | 
|  | // result matches up with the existing shift's LHS op. | 
|  | if (IsMulOrDiv) { | 
|  | // Op to extract from is a mul or udiv by a constant. | 
|  | // Check: | 
|  | //     c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 | 
|  | //     c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 | 
|  | const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), | 
|  | NeededShiftAmt.getZExtValue()); | 
|  | APInt ResultAmt; | 
|  | APInt Rem; | 
|  | APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); | 
|  | if (Rem != 0 || ResultAmt != OppLHSAmt) | 
|  | return SDValue(); | 
|  | } else { | 
|  | // Op to extract from is a shift by a constant. | 
|  | // Check: | 
|  | //      c2 - (bitwidth(op0 v c0) - c1) == c0 | 
|  | if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( | 
|  | ExtractFromAmt.getBitWidth())) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Return the expanded shift op that should allow a rotate to be formed. | 
|  | EVT ShiftVT = OppShift.getOperand(1).getValueType(); | 
|  | EVT ResVT = ExtractFrom.getValueType(); | 
|  | SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); | 
|  | return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); | 
|  | } | 
|  |  | 
|  | // Return true if we can prove that, whenever Neg and Pos are both in the | 
|  | // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos).  This means that | 
|  | // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: | 
|  | // | 
|  | //     (or (shift1 X, Neg), (shift2 X, Pos)) | 
|  | // | 
|  | // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate | 
|  | // in direction shift1 by Neg.  The range [0, EltSize) means that we only need | 
|  | // to consider shift amounts with defined behavior. | 
|  | static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, | 
|  | SelectionDAG &DAG) { | 
|  | // If EltSize is a power of 2 then: | 
|  | // | 
|  | //  (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) | 
|  | //  (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). | 
|  | // | 
|  | // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check | 
|  | // for the stronger condition: | 
|  | // | 
|  | //     Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1)    [A] | 
|  | // | 
|  | // for all Neg and Pos.  Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) | 
|  | // we can just replace Neg with Neg' for the rest of the function. | 
|  | // | 
|  | // In other cases we check for the even stronger condition: | 
|  | // | 
|  | //     Neg == EltSize - Pos                                    [B] | 
|  | // | 
|  | // for all Neg and Pos.  Note that the (or ...) then invokes undefined | 
|  | // behavior if Pos == 0 (and consequently Neg == EltSize). | 
|  | // | 
|  | // We could actually use [A] whenever EltSize is a power of 2, but the | 
|  | // only extra cases that it would match are those uninteresting ones | 
|  | // where Neg and Pos are never in range at the same time.  E.g. for | 
|  | // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) | 
|  | // as well as (sub 32, Pos), but: | 
|  | // | 
|  | //     (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) | 
|  | // | 
|  | // always invokes undefined behavior for 32-bit X. | 
|  | // | 
|  | // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. | 
|  | unsigned MaskLoBits = 0; | 
|  | if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { | 
|  | if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { | 
|  | KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); | 
|  | unsigned Bits = Log2_64(EltSize); | 
|  | if (NegC->getAPIntValue().getActiveBits() <= Bits && | 
|  | ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { | 
|  | Neg = Neg.getOperand(0); | 
|  | MaskLoBits = Bits; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. | 
|  | if (Neg.getOpcode() != ISD::SUB) | 
|  | return false; | 
|  | ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); | 
|  | if (!NegC) | 
|  | return false; | 
|  | SDValue NegOp1 = Neg.getOperand(1); | 
|  |  | 
|  | // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with | 
|  | // Pos'.  The truncation is redundant for the purpose of the equality. | 
|  | if (MaskLoBits && Pos.getOpcode() == ISD::AND) { | 
|  | if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { | 
|  | KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); | 
|  | if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && | 
|  | ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= | 
|  | MaskLoBits)) | 
|  | Pos = Pos.getOperand(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The condition we need is now: | 
|  | // | 
|  | //     (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask | 
|  | // | 
|  | // If NegOp1 == Pos then we need: | 
|  | // | 
|  | //              EltSize & Mask == NegC & Mask | 
|  | // | 
|  | // (because "x & Mask" is a truncation and distributes through subtraction). | 
|  | APInt Width; | 
|  | if (Pos == NegOp1) | 
|  | Width = NegC->getAPIntValue(); | 
|  |  | 
|  | // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. | 
|  | // Then the condition we want to prove becomes: | 
|  | // | 
|  | //     (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask | 
|  | // | 
|  | // which, again because "x & Mask" is a truncation, becomes: | 
|  | // | 
|  | //                NegC & Mask == (EltSize - PosC) & Mask | 
|  | //             EltSize & Mask == (NegC + PosC) & Mask | 
|  | else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { | 
|  | if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) | 
|  | Width = PosC->getAPIntValue() + NegC->getAPIntValue(); | 
|  | else | 
|  | return false; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // Now we just need to check that EltSize & Mask == Width & Mask. | 
|  | if (MaskLoBits) | 
|  | // EltSize & Mask is 0 since Mask is EltSize - 1. | 
|  | return Width.getLoBits(MaskLoBits) == 0; | 
|  | return Width == EltSize; | 
|  | } | 
|  |  | 
|  | // A subroutine of MatchRotate used once we have found an OR of two opposite | 
|  | // shifts of Shifted.  If Neg == <operand size> - Pos then the OR reduces | 
|  | // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the | 
|  | // former being preferred if supported.  InnerPos and InnerNeg are Pos and | 
|  | // Neg with outer conversions stripped away. | 
|  | SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, | 
|  | SDValue Neg, SDValue InnerPos, | 
|  | SDValue InnerNeg, unsigned PosOpcode, | 
|  | unsigned NegOpcode, const SDLoc &DL) { | 
|  | // fold (or (shl x, (*ext y)), | 
|  | //          (srl x, (*ext (sub 32, y)))) -> | 
|  | //   (rotl x, y) or (rotr x, (sub 32, y)) | 
|  | // | 
|  | // fold (or (shl x, (*ext (sub 32, y))), | 
|  | //          (srl x, (*ext y))) -> | 
|  | //   (rotr x, y) or (rotl x, (sub 32, y)) | 
|  | EVT VT = Shifted.getValueType(); | 
|  | if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) { | 
|  | bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); | 
|  | return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, | 
|  | HasPos ? Pos : Neg).getNode(); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // MatchRotate - Handle an 'or' of two operands.  If this is one of the many | 
|  | // idioms for rotate, and if the target supports rotation instructions, generate | 
|  | // a rot[lr]. | 
|  | SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { | 
|  | // Must be a legal type.  Expanded 'n promoted things won't work with rotates. | 
|  | EVT VT = LHS.getValueType(); | 
|  | if (!TLI.isTypeLegal(VT)) return nullptr; | 
|  |  | 
|  | // The target must have at least one rotate flavor. | 
|  | bool HasROTL = hasOperation(ISD::ROTL, VT); | 
|  | bool HasROTR = hasOperation(ISD::ROTR, VT); | 
|  | if (!HasROTL && !HasROTR) return nullptr; | 
|  |  | 
|  | // Check for truncated rotate. | 
|  | if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && | 
|  | LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { | 
|  | assert(LHS.getValueType() == RHS.getValueType()); | 
|  | if (SDNode *Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), | 
|  | SDValue(Rot, 0)).getNode(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Match "(X shl/srl V1) & V2" where V2 may not be present. | 
|  | SDValue LHSShift;   // The shift. | 
|  | SDValue LHSMask;    // AND value if any. | 
|  | matchRotateHalf(DAG, LHS, LHSShift, LHSMask); | 
|  |  | 
|  | SDValue RHSShift;   // The shift. | 
|  | SDValue RHSMask;    // AND value if any. | 
|  | matchRotateHalf(DAG, RHS, RHSShift, RHSMask); | 
|  |  | 
|  | // If neither side matched a rotate half, bail | 
|  | if (!LHSShift && !RHSShift) | 
|  | return nullptr; | 
|  |  | 
|  | // InstCombine may have combined a constant shl, srl, mul, or udiv with one | 
|  | // side of the rotate, so try to handle that here. In all cases we need to | 
|  | // pass the matched shift from the opposite side to compute the opcode and | 
|  | // needed shift amount to extract.  We still want to do this if both sides | 
|  | // matched a rotate half because one half may be a potential overshift that | 
|  | // can be broken down (ie if InstCombine merged two shl or srl ops into a | 
|  | // single one). | 
|  |  | 
|  | // Have LHS side of the rotate, try to extract the needed shift from the RHS. | 
|  | if (LHSShift) | 
|  | if (SDValue NewRHSShift = | 
|  | extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) | 
|  | RHSShift = NewRHSShift; | 
|  | // Have RHS side of the rotate, try to extract the needed shift from the LHS. | 
|  | if (RHSShift) | 
|  | if (SDValue NewLHSShift = | 
|  | extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) | 
|  | LHSShift = NewLHSShift; | 
|  |  | 
|  | // If a side is still missing, nothing else we can do. | 
|  | if (!RHSShift || !LHSShift) | 
|  | return nullptr; | 
|  |  | 
|  | // At this point we've matched or extracted a shift op on each side. | 
|  |  | 
|  | if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) | 
|  | return nullptr;   // Not shifting the same value. | 
|  |  | 
|  | if (LHSShift.getOpcode() == RHSShift.getOpcode()) | 
|  | return nullptr;   // Shifts must disagree. | 
|  |  | 
|  | // Canonicalize shl to left side in a shl/srl pair. | 
|  | if (RHSShift.getOpcode() == ISD::SHL) { | 
|  | std::swap(LHS, RHS); | 
|  | std::swap(LHSShift, RHSShift); | 
|  | std::swap(LHSMask, RHSMask); | 
|  | } | 
|  |  | 
|  | unsigned EltSizeInBits = VT.getScalarSizeInBits(); | 
|  | SDValue LHSShiftArg = LHSShift.getOperand(0); | 
|  | SDValue LHSShiftAmt = LHSShift.getOperand(1); | 
|  | SDValue RHSShiftArg = RHSShift.getOperand(0); | 
|  | SDValue RHSShiftAmt = RHSShift.getOperand(1); | 
|  |  | 
|  | // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) | 
|  | // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) | 
|  | auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, | 
|  | ConstantSDNode *RHS) { | 
|  | return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; | 
|  | }; | 
|  | if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { | 
|  | SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, | 
|  | LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); | 
|  |  | 
|  | // If there is an AND of either shifted operand, apply it to the result. | 
|  | if (LHSMask.getNode() || RHSMask.getNode()) { | 
|  | SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); | 
|  | SDValue Mask = AllOnes; | 
|  |  | 
|  | if (LHSMask.getNode()) { | 
|  | SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); | 
|  | Mask = DAG.getNode(ISD::AND, DL, VT, Mask, | 
|  | DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); | 
|  | } | 
|  | if (RHSMask.getNode()) { | 
|  | SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); | 
|  | Mask = DAG.getNode(ISD::AND, DL, VT, Mask, | 
|  | DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); | 
|  | } | 
|  |  | 
|  | Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); | 
|  | } | 
|  |  | 
|  | return Rot.getNode(); | 
|  | } | 
|  |  | 
|  | // If there is a mask here, and we have a variable shift, we can't be sure | 
|  | // that we're masking out the right stuff. | 
|  | if (LHSMask.getNode() || RHSMask.getNode()) | 
|  | return nullptr; | 
|  |  | 
|  | // If the shift amount is sign/zext/any-extended just peel it off. | 
|  | SDValue LExtOp0 = LHSShiftAmt; | 
|  | SDValue RExtOp0 = RHSShiftAmt; | 
|  | if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || | 
|  | LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || | 
|  | LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || | 
|  | LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && | 
|  | (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || | 
|  | RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || | 
|  | RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || | 
|  | RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { | 
|  | LExtOp0 = LHSShiftAmt.getOperand(0); | 
|  | RExtOp0 = RHSShiftAmt.getOperand(0); | 
|  | } | 
|  |  | 
|  | SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, | 
|  | LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); | 
|  | if (TryL) | 
|  | return TryL; | 
|  |  | 
|  | SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, | 
|  | RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); | 
|  | if (TryR) | 
|  | return TryR; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Represents known origin of an individual byte in load combine pattern. The | 
|  | /// value of the byte is either constant zero or comes from memory. | 
|  | struct ByteProvider { | 
|  | // For constant zero providers Load is set to nullptr. For memory providers | 
|  | // Load represents the node which loads the byte from memory. | 
|  | // ByteOffset is the offset of the byte in the value produced by the load. | 
|  | LoadSDNode *Load = nullptr; | 
|  | unsigned ByteOffset = 0; | 
|  |  | 
|  | ByteProvider() = default; | 
|  |  | 
|  | static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { | 
|  | return ByteProvider(Load, ByteOffset); | 
|  | } | 
|  |  | 
|  | static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } | 
|  |  | 
|  | bool isConstantZero() const { return !Load; } | 
|  | bool isMemory() const { return Load; } | 
|  |  | 
|  | bool operator==(const ByteProvider &Other) const { | 
|  | return Other.Load == Load && Other.ByteOffset == ByteOffset; | 
|  | } | 
|  |  | 
|  | private: | 
|  | ByteProvider(LoadSDNode *Load, unsigned ByteOffset) | 
|  | : Load(Load), ByteOffset(ByteOffset) {} | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Recursively traverses the expression calculating the origin of the requested | 
|  | /// byte of the given value. Returns None if the provider can't be calculated. | 
|  | /// | 
|  | /// For all the values except the root of the expression verifies that the value | 
|  | /// has exactly one use and if it's not true return None. This way if the origin | 
|  | /// of the byte is returned it's guaranteed that the values which contribute to | 
|  | /// the byte are not used outside of this expression. | 
|  | /// | 
|  | /// Because the parts of the expression are not allowed to have more than one | 
|  | /// use this function iterates over trees, not DAGs. So it never visits the same | 
|  | /// node more than once. | 
|  | static const Optional<ByteProvider> | 
|  | calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, | 
|  | bool Root = false) { | 
|  | // Typical i64 by i8 pattern requires recursion up to 8 calls depth | 
|  | if (Depth == 10) | 
|  | return None; | 
|  |  | 
|  | if (!Root && !Op.hasOneUse()) | 
|  | return None; | 
|  |  | 
|  | assert(Op.getValueType().isScalarInteger() && "can't handle other types"); | 
|  | unsigned BitWidth = Op.getValueSizeInBits(); | 
|  | if (BitWidth % 8 != 0) | 
|  | return None; | 
|  | unsigned ByteWidth = BitWidth / 8; | 
|  | assert(Index < ByteWidth && "invalid index requested"); | 
|  | (void) ByteWidth; | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::OR: { | 
|  | auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); | 
|  | if (!LHS) | 
|  | return None; | 
|  | auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); | 
|  | if (!RHS) | 
|  | return None; | 
|  |  | 
|  | if (LHS->isConstantZero()) | 
|  | return RHS; | 
|  | if (RHS->isConstantZero()) | 
|  | return LHS; | 
|  | return None; | 
|  | } | 
|  | case ISD::SHL: { | 
|  | auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); | 
|  | if (!ShiftOp) | 
|  | return None; | 
|  |  | 
|  | uint64_t BitShift = ShiftOp->getZExtValue(); | 
|  | if (BitShift % 8 != 0) | 
|  | return None; | 
|  | uint64_t ByteShift = BitShift / 8; | 
|  |  | 
|  | return Index < ByteShift | 
|  | ? ByteProvider::getConstantZero() | 
|  | : calculateByteProvider(Op->getOperand(0), Index - ByteShift, | 
|  | Depth + 1); | 
|  | } | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: { | 
|  | SDValue NarrowOp = Op->getOperand(0); | 
|  | unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); | 
|  | if (NarrowBitWidth % 8 != 0) | 
|  | return None; | 
|  | uint64_t NarrowByteWidth = NarrowBitWidth / 8; | 
|  |  | 
|  | if (Index >= NarrowByteWidth) | 
|  | return Op.getOpcode() == ISD::ZERO_EXTEND | 
|  | ? Optional<ByteProvider>(ByteProvider::getConstantZero()) | 
|  | : None; | 
|  | return calculateByteProvider(NarrowOp, Index, Depth + 1); | 
|  | } | 
|  | case ISD::BSWAP: | 
|  | return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, | 
|  | Depth + 1); | 
|  | case ISD::LOAD: { | 
|  | auto L = cast<LoadSDNode>(Op.getNode()); | 
|  | if (L->isVolatile() || L->isIndexed()) | 
|  | return None; | 
|  |  | 
|  | unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); | 
|  | if (NarrowBitWidth % 8 != 0) | 
|  | return None; | 
|  | uint64_t NarrowByteWidth = NarrowBitWidth / 8; | 
|  |  | 
|  | if (Index >= NarrowByteWidth) | 
|  | return L->getExtensionType() == ISD::ZEXTLOAD | 
|  | ? Optional<ByteProvider>(ByteProvider::getConstantZero()) | 
|  | : None; | 
|  | return ByteProvider::getMemory(L, Index); | 
|  | } | 
|  | } | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | static unsigned LittleEndianByteAt(unsigned BW, unsigned i) { | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static unsigned BigEndianByteAt(unsigned BW, unsigned i) { | 
|  | return BW - i - 1; | 
|  | } | 
|  |  | 
|  | // Check if the bytes offsets we are looking at match with either big or | 
|  | // little endian value loaded. Return true for big endian, false for little | 
|  | // endian, and None if match failed. | 
|  | static Optional<bool> isBigEndian(const SmallVector<int64_t, 4> &ByteOffsets, | 
|  | int64_t FirstOffset) { | 
|  | // The endian can be decided only when it is 2 bytes at least. | 
|  | unsigned Width = ByteOffsets.size(); | 
|  | if (Width < 2) | 
|  | return None; | 
|  |  | 
|  | bool BigEndian = true, LittleEndian = true; | 
|  | for (unsigned i = 0; i < Width; i++) { | 
|  | int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; | 
|  | LittleEndian &= CurrentByteOffset == LittleEndianByteAt(Width, i); | 
|  | BigEndian &= CurrentByteOffset == BigEndianByteAt(Width, i); | 
|  | if (!BigEndian && !LittleEndian) | 
|  | return None; | 
|  | } | 
|  |  | 
|  | assert((BigEndian != LittleEndian) && "It should be either big endian or" | 
|  | "little endian"); | 
|  | return BigEndian; | 
|  | } | 
|  |  | 
|  | static SDValue stripTruncAndExt(SDValue Value) { | 
|  | switch (Value.getOpcode()) { | 
|  | case ISD::TRUNCATE: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | return stripTruncAndExt(Value.getOperand(0)); | 
|  | } | 
|  | return Value; | 
|  | } | 
|  |  | 
|  | /// Match a pattern where a wide type scalar value is stored by several narrow | 
|  | /// stores. Fold it into a single store or a BSWAP and a store if the targets | 
|  | /// supports it. | 
|  | /// | 
|  | /// Assuming little endian target: | 
|  | ///  i8 *p = ... | 
|  | ///  i32 val = ... | 
|  | ///  p[0] = (val >> 0) & 0xFF; | 
|  | ///  p[1] = (val >> 8) & 0xFF; | 
|  | ///  p[2] = (val >> 16) & 0xFF; | 
|  | ///  p[3] = (val >> 24) & 0xFF; | 
|  | /// => | 
|  | ///  *((i32)p) = val; | 
|  | /// | 
|  | ///  i8 *p = ... | 
|  | ///  i32 val = ... | 
|  | ///  p[0] = (val >> 24) & 0xFF; | 
|  | ///  p[1] = (val >> 16) & 0xFF; | 
|  | ///  p[2] = (val >> 8) & 0xFF; | 
|  | ///  p[3] = (val >> 0) & 0xFF; | 
|  | /// => | 
|  | ///  *((i32)p) = BSWAP(val); | 
|  | SDValue DAGCombiner::MatchStoreCombine(StoreSDNode *N) { | 
|  | // Collect all the stores in the chain. | 
|  | SDValue Chain; | 
|  | SmallVector<StoreSDNode *, 8> Stores; | 
|  | for (StoreSDNode *Store = N; Store; Store = dyn_cast<StoreSDNode>(Chain)) { | 
|  | if (Store->getMemoryVT() != MVT::i8 || | 
|  | Store->isVolatile() || Store->isIndexed()) | 
|  | return SDValue(); | 
|  | Stores.push_back(Store); | 
|  | Chain = Store->getChain(); | 
|  | } | 
|  | // Handle the simple type only. | 
|  | unsigned Width = Stores.size(); | 
|  | EVT VT = EVT::getIntegerVT( | 
|  | *DAG.getContext(), Width * N->getMemoryVT().getSizeInBits()); | 
|  | if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (LegalOperations && !TLI.isOperationLegal(ISD::STORE, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check if all the bytes of the combined value we are looking at are stored | 
|  | // to the same base address. Collect bytes offsets from Base address into | 
|  | // ByteOffsets. | 
|  | SDValue CombinedValue; | 
|  | SmallVector<int64_t, 4> ByteOffsets(Width, INT64_MAX); | 
|  | int64_t FirstOffset = INT64_MAX; | 
|  | StoreSDNode *FirstStore = nullptr; | 
|  | Optional<BaseIndexOffset> Base; | 
|  | for (auto Store : Stores) { | 
|  | // All the stores store different byte of the CombinedValue. A truncate is | 
|  | // required to get that byte value. | 
|  | SDValue Trunc = Store->getValue(); | 
|  | if (Trunc.getOpcode() != ISD::TRUNCATE) | 
|  | return SDValue(); | 
|  | // A shift operation is required to get the right byte offset, except the | 
|  | // first byte. | 
|  | int64_t Offset = 0; | 
|  | SDValue Value = Trunc.getOperand(0); | 
|  | if (Value.getOpcode() == ISD::SRL || | 
|  | Value.getOpcode() == ISD::SRA) { | 
|  | ConstantSDNode *ShiftOffset = | 
|  | dyn_cast<ConstantSDNode>(Value.getOperand(1)); | 
|  | // Trying to match the following pattern. The shift offset must be | 
|  | // a constant and a multiple of 8. It is the byte offset in "y". | 
|  | // | 
|  | // x = srl y, offset | 
|  | // i8 z = trunc x | 
|  | // store z, ... | 
|  | if (!ShiftOffset || (ShiftOffset->getSExtValue() % 8)) | 
|  | return SDValue(); | 
|  |  | 
|  | Offset = ShiftOffset->getSExtValue()/8; | 
|  | Value = Value.getOperand(0); | 
|  | } | 
|  |  | 
|  | // Stores must share the same combined value with different offsets. | 
|  | if (!CombinedValue) | 
|  | CombinedValue = Value; | 
|  | else if (stripTruncAndExt(CombinedValue) != stripTruncAndExt(Value)) | 
|  | return SDValue(); | 
|  |  | 
|  | // The trunc and all the extend operation should be stripped to get the | 
|  | // real value we are stored. | 
|  | else if (CombinedValue.getValueType() != VT) { | 
|  | if (Value.getValueType() == VT || | 
|  | Value.getValueSizeInBits() > CombinedValue.getValueSizeInBits()) | 
|  | CombinedValue = Value; | 
|  | // Give up if the combined value type is smaller than the store size. | 
|  | if (CombinedValue.getValueSizeInBits() < VT.getSizeInBits()) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Stores must share the same base address | 
|  | BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); | 
|  | int64_t ByteOffsetFromBase = 0; | 
|  | if (!Base) | 
|  | Base = Ptr; | 
|  | else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Remember the first byte store | 
|  | if (ByteOffsetFromBase < FirstOffset) { | 
|  | FirstStore = Store; | 
|  | FirstOffset = ByteOffsetFromBase; | 
|  | } | 
|  | // Map the offset in the store and the offset in the combined value, and | 
|  | // early return if it has been set before. | 
|  | if (Offset < 0 || Offset >= Width || ByteOffsets[Offset] != INT64_MAX) | 
|  | return SDValue(); | 
|  | ByteOffsets[Offset] = ByteOffsetFromBase; | 
|  | } | 
|  |  | 
|  | assert(FirstOffset != INT64_MAX && "First byte offset must be set"); | 
|  | assert(FirstStore && "First store must be set"); | 
|  |  | 
|  | // Check if the bytes of the combined value we are looking at match with | 
|  | // either big or little endian value store. | 
|  | Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset); | 
|  | if (!IsBigEndian.hasValue()) | 
|  | return SDValue(); | 
|  |  | 
|  | // The node we are looking at matches with the pattern, check if we can | 
|  | // replace it with a single bswap if needed and store. | 
|  |  | 
|  | // If the store needs byte swap check if the target supports it | 
|  | bool NeedsBswap = DAG.getDataLayout().isBigEndian() != *IsBigEndian; | 
|  |  | 
|  | // Before legalize we can introduce illegal bswaps which will be later | 
|  | // converted to an explicit bswap sequence. This way we end up with a single | 
|  | // store and byte shuffling instead of several stores and byte shuffling. | 
|  | if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check that a store of the wide type is both allowed and fast on the target | 
|  | bool Fast = false; | 
|  | bool Allowed = | 
|  | TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, | 
|  | *FirstStore->getMemOperand(), &Fast); | 
|  | if (!Allowed || !Fast) | 
|  | return SDValue(); | 
|  |  | 
|  | if (VT != CombinedValue.getValueType()) { | 
|  | assert(CombinedValue.getValueType().getSizeInBits() > VT.getSizeInBits() && | 
|  | "Get unexpected store value to combine"); | 
|  | CombinedValue = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, | 
|  | CombinedValue); | 
|  | } | 
|  |  | 
|  | if (NeedsBswap) | 
|  | CombinedValue = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, CombinedValue); | 
|  |  | 
|  | SDValue NewStore = | 
|  | DAG.getStore(Chain, SDLoc(N),  CombinedValue, FirstStore->getBasePtr(), | 
|  | FirstStore->getPointerInfo(), FirstStore->getAlignment()); | 
|  |  | 
|  | // Rely on other DAG combine rules to remove the other individual stores. | 
|  | DAG.ReplaceAllUsesWith(N, NewStore.getNode()); | 
|  | return NewStore; | 
|  | } | 
|  |  | 
|  | /// Match a pattern where a wide type scalar value is loaded by several narrow | 
|  | /// loads and combined by shifts and ors. Fold it into a single load or a load | 
|  | /// and a BSWAP if the targets supports it. | 
|  | /// | 
|  | /// Assuming little endian target: | 
|  | ///  i8 *a = ... | 
|  | ///  i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) | 
|  | /// => | 
|  | ///  i32 val = *((i32)a) | 
|  | /// | 
|  | ///  i8 *a = ... | 
|  | ///  i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] | 
|  | /// => | 
|  | ///  i32 val = BSWAP(*((i32)a)) | 
|  | /// | 
|  | /// TODO: This rule matches complex patterns with OR node roots and doesn't | 
|  | /// interact well with the worklist mechanism. When a part of the pattern is | 
|  | /// updated (e.g. one of the loads) its direct users are put into the worklist, | 
|  | /// but the root node of the pattern which triggers the load combine is not | 
|  | /// necessarily a direct user of the changed node. For example, once the address | 
|  | /// of t28 load is reassociated load combine won't be triggered: | 
|  | ///             t25: i32 = add t4, Constant:i32<2> | 
|  | ///           t26: i64 = sign_extend t25 | 
|  | ///        t27: i64 = add t2, t26 | 
|  | ///       t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 | 
|  | ///     t29: i32 = zero_extend t28 | 
|  | ///   t32: i32 = shl t29, Constant:i8<8> | 
|  | /// t33: i32 = or t23, t32 | 
|  | /// As a possible fix visitLoad can check if the load can be a part of a load | 
|  | /// combine pattern and add corresponding OR roots to the worklist. | 
|  | SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::OR && | 
|  | "Can only match load combining against OR nodes"); | 
|  |  | 
|  | // Handles simple types only | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) | 
|  | return SDValue(); | 
|  | unsigned ByteWidth = VT.getSizeInBits() / 8; | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | // Before legalize we can introduce too wide illegal loads which will be later | 
|  | // split into legal sized loads. This enables us to combine i64 load by i8 | 
|  | // patterns to a couple of i32 loads on 32 bit targets. | 
|  | if (LegalOperations && !TLI.isOperationLegal(ISD::LOAD, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); | 
|  | auto MemoryByteOffset = [&] (ByteProvider P) { | 
|  | assert(P.isMemory() && "Must be a memory byte provider"); | 
|  | unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); | 
|  | assert(LoadBitWidth % 8 == 0 && | 
|  | "can only analyze providers for individual bytes not bit"); | 
|  | unsigned LoadByteWidth = LoadBitWidth / 8; | 
|  | return IsBigEndianTarget | 
|  | ? BigEndianByteAt(LoadByteWidth, P.ByteOffset) | 
|  | : LittleEndianByteAt(LoadByteWidth, P.ByteOffset); | 
|  | }; | 
|  |  | 
|  | Optional<BaseIndexOffset> Base; | 
|  | SDValue Chain; | 
|  |  | 
|  | SmallPtrSet<LoadSDNode *, 8> Loads; | 
|  | Optional<ByteProvider> FirstByteProvider; | 
|  | int64_t FirstOffset = INT64_MAX; | 
|  |  | 
|  | // Check if all the bytes of the OR we are looking at are loaded from the same | 
|  | // base address. Collect bytes offsets from Base address in ByteOffsets. | 
|  | SmallVector<int64_t, 4> ByteOffsets(ByteWidth); | 
|  | for (unsigned i = 0; i < ByteWidth; i++) { | 
|  | auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); | 
|  | if (!P || !P->isMemory()) // All the bytes must be loaded from memory | 
|  | return SDValue(); | 
|  |  | 
|  | LoadSDNode *L = P->Load; | 
|  | assert(L->hasNUsesOfValue(1, 0) && !L->isVolatile() && !L->isIndexed() && | 
|  | "Must be enforced by calculateByteProvider"); | 
|  | assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); | 
|  |  | 
|  | // All loads must share the same chain | 
|  | SDValue LChain = L->getChain(); | 
|  | if (!Chain) | 
|  | Chain = LChain; | 
|  | else if (Chain != LChain) | 
|  | return SDValue(); | 
|  |  | 
|  | // Loads must share the same base address | 
|  | BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); | 
|  | int64_t ByteOffsetFromBase = 0; | 
|  | if (!Base) | 
|  | Base = Ptr; | 
|  | else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Calculate the offset of the current byte from the base address | 
|  | ByteOffsetFromBase += MemoryByteOffset(*P); | 
|  | ByteOffsets[i] = ByteOffsetFromBase; | 
|  |  | 
|  | // Remember the first byte load | 
|  | if (ByteOffsetFromBase < FirstOffset) { | 
|  | FirstByteProvider = P; | 
|  | FirstOffset = ByteOffsetFromBase; | 
|  | } | 
|  |  | 
|  | Loads.insert(L); | 
|  | } | 
|  | assert(!Loads.empty() && "All the bytes of the value must be loaded from " | 
|  | "memory, so there must be at least one load which produces the value"); | 
|  | assert(Base && "Base address of the accessed memory location must be set"); | 
|  | assert(FirstOffset != INT64_MAX && "First byte offset must be set"); | 
|  |  | 
|  | // Check if the bytes of the OR we are looking at match with either big or | 
|  | // little endian value load | 
|  | Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset); | 
|  | if (!IsBigEndian.hasValue()) | 
|  | return SDValue(); | 
|  |  | 
|  | assert(FirstByteProvider && "must be set"); | 
|  |  | 
|  | // Ensure that the first byte is loaded from zero offset of the first load. | 
|  | // So the combined value can be loaded from the first load address. | 
|  | if (MemoryByteOffset(*FirstByteProvider) != 0) | 
|  | return SDValue(); | 
|  | LoadSDNode *FirstLoad = FirstByteProvider->Load; | 
|  |  | 
|  | // The node we are looking at matches with the pattern, check if we can | 
|  | // replace it with a single load and bswap if needed. | 
|  |  | 
|  | // If the load needs byte swap check if the target supports it | 
|  | bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; | 
|  |  | 
|  | // Before legalize we can introduce illegal bswaps which will be later | 
|  | // converted to an explicit bswap sequence. This way we end up with a single | 
|  | // load and byte shuffling instead of several loads and byte shuffling. | 
|  | if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check that a load of the wide type is both allowed and fast on the target | 
|  | bool Fast = false; | 
|  | bool Allowed = TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), | 
|  | VT, *FirstLoad->getMemOperand(), &Fast); | 
|  | if (!Allowed || !Fast) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue NewLoad = | 
|  | DAG.getLoad(VT, SDLoc(N), Chain, FirstLoad->getBasePtr(), | 
|  | FirstLoad->getPointerInfo(), FirstLoad->getAlignment()); | 
|  |  | 
|  | // Transfer chain users from old loads to the new load. | 
|  | for (LoadSDNode *L : Loads) | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); | 
|  |  | 
|  | return NeedsBswap ? DAG.getNode(ISD::BSWAP, SDLoc(N), VT, NewLoad) : NewLoad; | 
|  | } | 
|  |  | 
|  | // If the target has andn, bsl, or a similar bit-select instruction, | 
|  | // we want to unfold masked merge, with canonical pattern of: | 
|  | //   |        A  |  |B| | 
|  | //   ((x ^ y) & m) ^ y | 
|  | //    |  D  | | 
|  | // Into: | 
|  | //   (x & m) | (y & ~m) | 
|  | // If y is a constant, and the 'andn' does not work with immediates, | 
|  | // we unfold into a different pattern: | 
|  | //   ~(~x & m) & (m | y) | 
|  | // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at | 
|  | //       the very least that breaks andnpd / andnps patterns, and because those | 
|  | //       patterns are simplified in IR and shouldn't be created in the DAG | 
|  | SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::XOR); | 
|  |  | 
|  | // Don't touch 'not' (i.e. where y = -1). | 
|  | if (isAllOnesOrAllOnesSplat(N->getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // There are 3 commutable operators in the pattern, | 
|  | // so we have to deal with 8 possible variants of the basic pattern. | 
|  | SDValue X, Y, M; | 
|  | auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { | 
|  | if (And.getOpcode() != ISD::AND || !And.hasOneUse()) | 
|  | return false; | 
|  | SDValue Xor = And.getOperand(XorIdx); | 
|  | if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) | 
|  | return false; | 
|  | SDValue Xor0 = Xor.getOperand(0); | 
|  | SDValue Xor1 = Xor.getOperand(1); | 
|  | // Don't touch 'not' (i.e. where y = -1). | 
|  | if (isAllOnesOrAllOnesSplat(Xor1)) | 
|  | return false; | 
|  | if (Other == Xor0) | 
|  | std::swap(Xor0, Xor1); | 
|  | if (Other != Xor1) | 
|  | return false; | 
|  | X = Xor0; | 
|  | Y = Xor1; | 
|  | M = And.getOperand(XorIdx ? 0 : 1); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && | 
|  | !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Don't do anything if the mask is constant. This should not be reachable. | 
|  | // InstCombine should have already unfolded this pattern, and DAGCombiner | 
|  | // probably shouldn't produce it, too. | 
|  | if (isa<ConstantSDNode>(M.getNode())) | 
|  | return SDValue(); | 
|  |  | 
|  | // We can transform if the target has AndNot | 
|  | if (!TLI.hasAndNot(M)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If Y is a constant, check that 'andn' works with immediates. | 
|  | if (!TLI.hasAndNot(Y)) { | 
|  | assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); | 
|  | // If not, we need to do a bit more work to make sure andn is still used. | 
|  | SDValue NotX = DAG.getNOT(DL, X, VT); | 
|  | SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); | 
|  | SDValue NotLHS = DAG.getNOT(DL, LHS, VT); | 
|  | SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); | 
|  | return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); | 
|  | } | 
|  |  | 
|  | SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); | 
|  | SDValue NotM = DAG.getNOT(DL, M, VT); | 
|  | SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); | 
|  |  | 
|  | return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitXOR(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (xor x, 0) -> x, vector edition | 
|  | if (ISD::isBuildVectorAllZeros(N0.getNode())) | 
|  | return N1; | 
|  | if (ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | return N0; | 
|  | } | 
|  |  | 
|  | // fold (xor undef, undef) -> 0. This is a common idiom (misuse). | 
|  | SDLoc DL(N); | 
|  | if (N0.isUndef() && N1.isUndef()) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  | // fold (xor x, undef) -> undef | 
|  | if (N0.isUndef()) | 
|  | return N0; | 
|  | if (N1.isUndef()) | 
|  | return N1; | 
|  | // fold (xor c1, c2) -> c1^c2 | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); | 
|  | if (N0C && N1C) | 
|  | return DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, N0C, N1C); | 
|  | // canonicalize constant to RHS | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
|  | return DAG.getNode(ISD::XOR, DL, VT, N1, N0); | 
|  | // fold (xor x, 0) -> x | 
|  | if (isNullConstant(N1)) | 
|  | return N0; | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | // reassociate xor | 
|  | if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) | 
|  | return RXOR; | 
|  |  | 
|  | // fold !(x cc y) -> (x !cc y) | 
|  | unsigned N0Opcode = N0.getOpcode(); | 
|  | SDValue LHS, RHS, CC; | 
|  | if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { | 
|  | ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), | 
|  | LHS.getValueType().isInteger()); | 
|  | if (!LegalOperations || | 
|  | TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { | 
|  | switch (N0Opcode) { | 
|  | default: | 
|  | llvm_unreachable("Unhandled SetCC Equivalent!"); | 
|  | case ISD::SETCC: | 
|  | return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); | 
|  | case ISD::SELECT_CC: | 
|  | return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), | 
|  | N0.getOperand(3), NotCC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) | 
|  | if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && | 
|  | isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ | 
|  | SDValue V = N0.getOperand(0); | 
|  | SDLoc DL0(N0); | 
|  | V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, | 
|  | DAG.getConstant(1, DL0, V.getValueType())); | 
|  | AddToWorklist(V.getNode()); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); | 
|  | } | 
|  |  | 
|  | // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc | 
|  | if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && | 
|  | (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { | 
|  | SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); | 
|  | if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { | 
|  | unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; | 
|  | LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS | 
|  | RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS | 
|  | AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); | 
|  | return DAG.getNode(NewOpcode, DL, VT, LHS, RHS); | 
|  | } | 
|  | } | 
|  | // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants | 
|  | if (isAllOnesConstant(N1) && N0.hasOneUse() && | 
|  | (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { | 
|  | SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); | 
|  | if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { | 
|  | unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; | 
|  | LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS | 
|  | RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS | 
|  | AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); | 
|  | return DAG.getNode(NewOpcode, DL, VT, LHS, RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (not (neg x)) -> (add X, -1) | 
|  | // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if | 
|  | // Y is a constant or the subtract has a single use. | 
|  | if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && | 
|  | isNullConstant(N0.getOperand(0))) { | 
|  | return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), | 
|  | DAG.getAllOnesConstant(DL, VT)); | 
|  | } | 
|  |  | 
|  | // fold (xor (and x, y), y) -> (and (not x), y) | 
|  | if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { | 
|  | SDValue X = N0.getOperand(0); | 
|  | SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); | 
|  | AddToWorklist(NotX.getNode()); | 
|  | return DAG.getNode(ISD::AND, DL, VT, NotX, N1); | 
|  | } | 
|  |  | 
|  | if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { | 
|  | ConstantSDNode *XorC = isConstOrConstSplat(N1); | 
|  | ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); | 
|  | unsigned BitWidth = VT.getScalarSizeInBits(); | 
|  | if (XorC && ShiftC) { | 
|  | // Don't crash on an oversized shift. We can not guarantee that a bogus | 
|  | // shift has been simplified to undef. | 
|  | uint64_t ShiftAmt = ShiftC->getLimitedValue(); | 
|  | if (ShiftAmt < BitWidth) { | 
|  | APInt Ones = APInt::getAllOnesValue(BitWidth); | 
|  | Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); | 
|  | if (XorC->getAPIntValue() == Ones) { | 
|  | // If the xor constant is a shifted -1, do a 'not' before the shift: | 
|  | // xor (X << ShiftC), XorC --> (not X) << ShiftC | 
|  | // xor (X >> ShiftC), XorC --> (not X) >> ShiftC | 
|  | SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); | 
|  | return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) | 
|  | if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { | 
|  | SDValue A = N0Opcode == ISD::ADD ? N0 : N1; | 
|  | SDValue S = N0Opcode == ISD::SRA ? N0 : N1; | 
|  | if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { | 
|  | SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); | 
|  | SDValue S0 = S.getOperand(0); | 
|  | if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) { | 
|  | unsigned OpSizeInBits = VT.getScalarSizeInBits(); | 
|  | if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) | 
|  | if (C->getAPIntValue() == (OpSizeInBits - 1)) | 
|  | return DAG.getNode(ISD::ABS, DL, VT, S0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (xor x, x) -> 0 | 
|  | if (N0 == N1) | 
|  | return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); | 
|  |  | 
|  | // fold (xor (shl 1, x), -1) -> (rotl ~1, x) | 
|  | // Here is a concrete example of this equivalence: | 
|  | // i16   x ==  14 | 
|  | // i16 shl ==   1 << 14  == 16384 == 0b0100000000000000 | 
|  | // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 | 
|  | // | 
|  | // => | 
|  | // | 
|  | // i16     ~1      == 0b1111111111111110 | 
|  | // i16 rol(~1, 14) == 0b1011111111111111 | 
|  | // | 
|  | // Some additional tips to help conceptualize this transform: | 
|  | // - Try to see the operation as placing a single zero in a value of all ones. | 
|  | // - There exists no value for x which would allow the result to contain zero. | 
|  | // - Values of x larger than the bitwidth are undefined and do not require a | 
|  | //   consistent result. | 
|  | // - Pushing the zero left requires shifting one bits in from the right. | 
|  | // A rotate left of ~1 is a nice way of achieving the desired result. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && | 
|  | isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { | 
|  | return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), | 
|  | N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | // Simplify: xor (op x...), (op y...)  -> (op (xor x, y)) | 
|  | if (N0Opcode == N1.getOpcode()) | 
|  | if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) | 
|  | return V; | 
|  |  | 
|  | // Unfold  ((x ^ y) & m) ^ y  into  (x & m) | (y & ~m)  if profitable | 
|  | if (SDValue MM = unfoldMaskedMerge(N)) | 
|  | return MM; | 
|  |  | 
|  | // Simplify the expression using non-local knowledge. | 
|  | if (SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Handle transforms common to the three shifts, when the shift amount is a | 
|  | /// constant. | 
|  | /// We are looking for: (shift being one of shl/sra/srl) | 
|  | ///   shift (binop X, C0), C1 | 
|  | /// And want to transform into: | 
|  | ///   binop (shift X, C1), (shift C0, C1) | 
|  | SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { | 
|  | // Do not turn a 'not' into a regular xor. | 
|  | if (isBitwiseNot(N->getOperand(0))) | 
|  | return SDValue(); | 
|  |  | 
|  | // The inner binop must be one-use, since we want to replace it. | 
|  | SDNode *LHS = N->getOperand(0).getNode(); | 
|  | if (!LHS->hasOneUse()) return SDValue(); | 
|  |  | 
|  | // We want to pull some binops through shifts, so that we have (and (shift)) | 
|  | // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of | 
|  | // thing happens with address calculations, so it's important to canonicalize | 
|  | // it. | 
|  | switch (LHS->getOpcode()) { | 
|  | default: | 
|  | return SDValue(); | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::AND: | 
|  | break; | 
|  | case ISD::ADD: | 
|  | if (N->getOpcode() != ISD::SHL) | 
|  | return SDValue(); // only shl(add) not sr[al](add). | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We require the RHS of the binop to be a constant and not opaque as well. | 
|  | ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); | 
|  | if (!BinOpCst) | 
|  | return SDValue(); | 
|  |  | 
|  | // FIXME: disable this unless the input to the binop is a shift by a constant | 
|  | // or is copy/select. Enable this in other cases when figure out it's exactly | 
|  | // profitable. | 
|  | SDValue BinOpLHSVal = LHS->getOperand(0); | 
|  | bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || | 
|  | BinOpLHSVal.getOpcode() == ISD::SRA || | 
|  | BinOpLHSVal.getOpcode() == ISD::SRL) && | 
|  | isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); | 
|  | bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || | 
|  | BinOpLHSVal.getOpcode() == ISD::SELECT; | 
|  |  | 
|  | if (!IsShiftByConstant && !IsCopyOrSelect) | 
|  | return SDValue(); | 
|  |  | 
|  | if (IsCopyOrSelect && N->hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (!TLI.isDesirableToCommuteWithShift(N, Level)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Fold the constants, shifting the binop RHS by the shift amount. | 
|  | SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), | 
|  | N->getValueType(0), | 
|  | LHS->getOperand(1), N->getOperand(1)); | 
|  | assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); | 
|  |  | 
|  | // Create the new shift. | 
|  | SDValue NewShift = DAG.getNode(N->getOpcode(), | 
|  | SDLoc(LHS->getOperand(0)), | 
|  | VT, LHS->getOperand(0), N->getOperand(1)); | 
|  |  | 
|  | // Create the new binop. | 
|  | return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::TRUNCATE); | 
|  | assert(N->getOperand(0).getOpcode() == ISD::AND); | 
|  |  | 
|  | // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) | 
|  | EVT TruncVT = N->getValueType(0); | 
|  | if (N->hasOneUse() && N->getOperand(0).hasOneUse() && | 
|  | TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { | 
|  | SDValue N01 = N->getOperand(0).getOperand(1); | 
|  | if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { | 
|  | SDLoc DL(N); | 
|  | SDValue N00 = N->getOperand(0).getOperand(0); | 
|  | SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); | 
|  | SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); | 
|  | AddToWorklist(Trunc00.getNode()); | 
|  | AddToWorklist(Trunc01.getNode()); | 
|  | return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitRotate(SDNode *N) { | 
|  | SDLoc dl(N); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | unsigned Bitsize = VT.getScalarSizeInBits(); | 
|  |  | 
|  | // fold (rot x, 0) -> x | 
|  | if (isNullOrNullSplat(N1)) | 
|  | return N0; | 
|  |  | 
|  | // fold (rot x, c) -> x iff (c % BitSize) == 0 | 
|  | if (isPowerOf2_32(Bitsize) && Bitsize > 1) { | 
|  | APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); | 
|  | if (DAG.MaskedValueIsZero(N1, ModuloMask)) | 
|  | return N0; | 
|  | } | 
|  |  | 
|  | // fold (rot x, c) -> (rot x, c % BitSize) | 
|  | // TODO - support non-uniform vector amounts. | 
|  | if (ConstantSDNode *Cst = isConstOrConstSplat(N1)) { | 
|  | if (Cst->getAPIntValue().uge(Bitsize)) { | 
|  | uint64_t RotAmt = Cst->getAPIntValue().urem(Bitsize); | 
|  | return DAG.getNode(N->getOpcode(), dl, VT, N0, | 
|  | DAG.getConstant(RotAmt, dl, N1.getValueType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). | 
|  | if (N1.getOpcode() == ISD::TRUNCATE && | 
|  | N1.getOperand(0).getOpcode() == ISD::AND) { | 
|  | if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) | 
|  | return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); | 
|  | } | 
|  |  | 
|  | unsigned NextOp = N0.getOpcode(); | 
|  | // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) | 
|  | if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { | 
|  | SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); | 
|  | SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); | 
|  | if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { | 
|  | EVT ShiftVT = C1->getValueType(0); | 
|  | bool SameSide = (N->getOpcode() == NextOp); | 
|  | unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; | 
|  | if (SDValue CombinedShift = | 
|  | DAG.FoldConstantArithmetic(CombineOp, dl, ShiftVT, C1, C2)) { | 
|  | SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); | 
|  | SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( | 
|  | ISD::SREM, dl, ShiftVT, CombinedShift.getNode(), | 
|  | BitsizeC.getNode()); | 
|  | return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), | 
|  | CombinedShiftNorm); | 
|  | } | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSHL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | if (SDValue V = DAG.simplifyShift(N0, N1)) | 
|  | return V; | 
|  |  | 
|  | EVT VT = N0.getValueType(); | 
|  | EVT ShiftVT = N1.getValueType(); | 
|  | unsigned OpSizeInBits = VT.getScalarSizeInBits(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); | 
|  | // If setcc produces all-one true value then: | 
|  | // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) | 
|  | if (N1CV && N1CV->isConstant()) { | 
|  | if (N0.getOpcode() == ISD::AND) { | 
|  | SDValue N00 = N0->getOperand(0); | 
|  | SDValue N01 = N0->getOperand(1); | 
|  | BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); | 
|  |  | 
|  | if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && | 
|  | TLI.getBooleanContents(N00.getOperand(0).getValueType()) == | 
|  | TargetLowering::ZeroOrNegativeOneBooleanContent) { | 
|  | if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, | 
|  | N01CV, N1CV)) | 
|  | return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
|  |  | 
|  | // fold (shl c1, c2) -> c1<<c2 | 
|  | // TODO - support non-uniform vector shift amounts. | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | if (N0C && N1C && !N1C->isOpaque()) | 
|  | return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | // if (shl x, c) is known to be zero, return 0 | 
|  | if (DAG.MaskedValueIsZero(SDValue(N, 0), | 
|  | APInt::getAllOnesValue(OpSizeInBits))) | 
|  | return DAG.getConstant(0, SDLoc(N), VT); | 
|  |  | 
|  | // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). | 
|  | if (N1.getOpcode() == ISD::TRUNCATE && | 
|  | N1.getOperand(0).getOpcode() == ISD::AND) { | 
|  | if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) | 
|  | return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); | 
|  | } | 
|  |  | 
|  | // TODO - support non-uniform vector shift amounts. | 
|  | if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) | 
|  | if (N0.getOpcode() == ISD::SHL) { | 
|  | auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, | 
|  | ConstantSDNode *RHS) { | 
|  | APInt c1 = LHS->getAPIntValue(); | 
|  | APInt c2 = RHS->getAPIntValue(); | 
|  | zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | 
|  | return (c1 + c2).uge(OpSizeInBits); | 
|  | }; | 
|  | if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) | 
|  | return DAG.getConstant(0, SDLoc(N), VT); | 
|  |  | 
|  | auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, | 
|  | ConstantSDNode *RHS) { | 
|  | APInt c1 = LHS->getAPIntValue(); | 
|  | APInt c2 = RHS->getAPIntValue(); | 
|  | zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | 
|  | return (c1 + c2).ult(OpSizeInBits); | 
|  | }; | 
|  | if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { | 
|  | SDLoc DL(N); | 
|  | SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); | 
|  | return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) | 
|  | // For this to be valid, the second form must not preserve any of the bits | 
|  | // that are shifted out by the inner shift in the first form.  This means | 
|  | // the outer shift size must be >= the number of bits added by the ext. | 
|  | // As a corollary, we don't care what kind of ext it is. | 
|  | if ((N0.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N0.getOpcode() == ISD::ANY_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND) && | 
|  | N0.getOperand(0).getOpcode() == ISD::SHL) { | 
|  | SDValue N0Op0 = N0.getOperand(0); | 
|  | SDValue InnerShiftAmt = N0Op0.getOperand(1); | 
|  | EVT InnerVT = N0Op0.getValueType(); | 
|  | uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); | 
|  |  | 
|  | auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, | 
|  | ConstantSDNode *RHS) { | 
|  | APInt c1 = LHS->getAPIntValue(); | 
|  | APInt c2 = RHS->getAPIntValue(); | 
|  | zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | 
|  | return c2.uge(OpSizeInBits - InnerBitwidth) && | 
|  | (c1 + c2).uge(OpSizeInBits); | 
|  | }; | 
|  | if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, | 
|  | /*AllowUndefs*/ false, | 
|  | /*AllowTypeMismatch*/ true)) | 
|  | return DAG.getConstant(0, SDLoc(N), VT); | 
|  |  | 
|  | auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, | 
|  | ConstantSDNode *RHS) { | 
|  | APInt c1 = LHS->getAPIntValue(); | 
|  | APInt c2 = RHS->getAPIntValue(); | 
|  | zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | 
|  | return c2.uge(OpSizeInBits - InnerBitwidth) && | 
|  | (c1 + c2).ult(OpSizeInBits); | 
|  | }; | 
|  | if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, | 
|  | /*AllowUndefs*/ false, | 
|  | /*AllowTypeMismatch*/ true)) { | 
|  | SDLoc DL(N); | 
|  | SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); | 
|  | SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); | 
|  | Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); | 
|  | return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) | 
|  | // Only fold this if the inner zext has no other uses to avoid increasing | 
|  | // the total number of instructions. | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && | 
|  | N0.getOperand(0).getOpcode() == ISD::SRL) { | 
|  | SDValue N0Op0 = N0.getOperand(0); | 
|  | SDValue InnerShiftAmt = N0Op0.getOperand(1); | 
|  |  | 
|  | auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { | 
|  | APInt c1 = LHS->getAPIntValue(); | 
|  | APInt c2 = RHS->getAPIntValue(); | 
|  | zeroExtendToMatch(c1, c2); | 
|  | return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); | 
|  | }; | 
|  | if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, | 
|  | /*AllowUndefs*/ false, | 
|  | /*AllowTypeMismatch*/ true)) { | 
|  | SDLoc DL(N); | 
|  | EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); | 
|  | SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); | 
|  | NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); | 
|  | AddToWorklist(NewSHL.getNode()); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (shl (sr[la] exact X,  C1), C2) -> (shl    X, (C2-C1)) if C1 <= C2 | 
|  | // fold (shl (sr[la] exact X,  C1), C2) -> (sr[la] X, (C2-C1)) if C1  > C2 | 
|  | // TODO - support non-uniform vector shift amounts. | 
|  | if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && | 
|  | N0->getFlags().hasExact()) { | 
|  | if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { | 
|  | uint64_t C1 = N0C1->getZExtValue(); | 
|  | uint64_t C2 = N1C->getZExtValue(); | 
|  | SDLoc DL(N); | 
|  | if (C1 <= C2) | 
|  | return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(C2 - C1, DL, ShiftVT)); | 
|  | return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(C1 - C2, DL, ShiftVT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or | 
|  | //                               (and (srl x, (sub c1, c2), MASK) | 
|  | // Only fold this if the inner shift has no other uses -- if it does, folding | 
|  | // this will increase the total number of instructions. | 
|  | // TODO - drop hasOneUse requirement if c1 == c2? | 
|  | // TODO - support non-uniform vector shift amounts. | 
|  | if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && | 
|  | TLI.shouldFoldConstantShiftPairToMask(N, Level)) { | 
|  | if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { | 
|  | if (N0C1->getAPIntValue().ult(OpSizeInBits)) { | 
|  | uint64_t c1 = N0C1->getZExtValue(); | 
|  | uint64_t c2 = N1C->getZExtValue(); | 
|  | APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); | 
|  | SDValue Shift; | 
|  | if (c2 > c1) { | 
|  | Mask <<= c2 - c1; | 
|  | SDLoc DL(N); | 
|  | Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(c2 - c1, DL, ShiftVT)); | 
|  | } else { | 
|  | Mask.lshrInPlace(c1 - c2); | 
|  | SDLoc DL(N); | 
|  | Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(c1 - c2, DL, ShiftVT)); | 
|  | } | 
|  | SDLoc DL(N0); | 
|  | return DAG.getNode(ISD::AND, DL, VT, Shift, | 
|  | DAG.getConstant(Mask, DL, VT)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) | 
|  | if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && | 
|  | isConstantOrConstantVector(N1, /* No Opaques */ true)) { | 
|  | SDLoc DL(N); | 
|  | SDValue AllBits = DAG.getAllOnesConstant(DL, VT); | 
|  | SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); | 
|  | return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); | 
|  | } | 
|  |  | 
|  | // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) | 
|  | // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) | 
|  | // Variant of version done on multiply, except mul by a power of 2 is turned | 
|  | // into a shift. | 
|  | if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && | 
|  | N0.getNode()->hasOneUse() && | 
|  | isConstantOrConstantVector(N1, /* No Opaques */ true) && | 
|  | isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && | 
|  | TLI.isDesirableToCommuteWithShift(N, Level)) { | 
|  | SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); | 
|  | SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); | 
|  | AddToWorklist(Shl0.getNode()); | 
|  | AddToWorklist(Shl1.getNode()); | 
|  | return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); | 
|  | } | 
|  |  | 
|  | // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) | 
|  | if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && | 
|  | isConstantOrConstantVector(N1, /* No Opaques */ true) && | 
|  | isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { | 
|  | SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); | 
|  | if (isConstantOrConstantVector(Shl)) | 
|  | return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); | 
|  | } | 
|  |  | 
|  | if (N1C && !N1C->isOpaque()) | 
|  | if (SDValue NewSHL = visitShiftByConstant(N, N1C)) | 
|  | return NewSHL; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSRA(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | if (SDValue V = DAG.simplifyShift(N0, N1)) | 
|  | return V; | 
|  |  | 
|  | EVT VT = N0.getValueType(); | 
|  | unsigned OpSizeInBits = VT.getScalarSizeInBits(); | 
|  |  | 
|  | // Arithmetic shifting an all-sign-bit value is a no-op. | 
|  | // fold (sra 0, x) -> 0 | 
|  | // fold (sra -1, x) -> -1 | 
|  | if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) | 
|  | return N0; | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
|  |  | 
|  | // fold (sra c1, c2) -> (sra c1, c2) | 
|  | // TODO - support non-uniform vector shift amounts. | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | if (N0C && N1C && !N1C->isOpaque()) | 
|  | return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports | 
|  | // sext_inreg. | 
|  | if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { | 
|  | unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); | 
|  | EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); | 
|  | if (VT.isVector()) | 
|  | ExtVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | ExtVT, VT.getVectorNumElements()); | 
|  | if ((!LegalOperations || | 
|  | TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, | 
|  | N0.getOperand(0), DAG.getValueType(ExtVT)); | 
|  | } | 
|  |  | 
|  | // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) | 
|  | // clamp (add c1, c2) to max shift. | 
|  | if (N0.getOpcode() == ISD::SRA) { | 
|  | SDLoc DL(N); | 
|  | EVT ShiftVT = N1.getValueType(); | 
|  | EVT ShiftSVT = ShiftVT.getScalarType(); | 
|  | SmallVector<SDValue, 16> ShiftValues; | 
|  |  | 
|  | auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { | 
|  | APInt c1 = LHS->getAPIntValue(); | 
|  | APInt c2 = RHS->getAPIntValue(); | 
|  | zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | 
|  | APInt Sum = c1 + c2; | 
|  | unsigned ShiftSum = | 
|  | Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); | 
|  | ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); | 
|  | return true; | 
|  | }; | 
|  | if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { | 
|  | SDValue ShiftValue; | 
|  | if (VT.isVector()) | 
|  | ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); | 
|  | else | 
|  | ShiftValue = ShiftValues[0]; | 
|  | return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sra (shl X, m), (sub result_size, n)) | 
|  | // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for | 
|  | // result_size - n != m. | 
|  | // If truncate is free for the target sext(shl) is likely to result in better | 
|  | // code. | 
|  | if (N0.getOpcode() == ISD::SHL && N1C) { | 
|  | // Get the two constanst of the shifts, CN0 = m, CN = n. | 
|  | const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); | 
|  | if (N01C) { | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | // Determine what the truncate's result bitsize and type would be. | 
|  | EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); | 
|  |  | 
|  | if (VT.isVector()) | 
|  | TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); | 
|  |  | 
|  | // Determine the residual right-shift amount. | 
|  | int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); | 
|  |  | 
|  | // If the shift is not a no-op (in which case this should be just a sign | 
|  | // extend already), the truncated to type is legal, sign_extend is legal | 
|  | // on that type, and the truncate to that type is both legal and free, | 
|  | // perform the transform. | 
|  | if ((ShiftAmt > 0) && | 
|  | TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && | 
|  | TLI.isTruncateFree(VT, TruncVT)) { | 
|  | SDLoc DL(N); | 
|  | SDValue Amt = DAG.getConstant(ShiftAmt, DL, | 
|  | getShiftAmountTy(N0.getOperand(0).getValueType())); | 
|  | SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, | 
|  | N0.getOperand(0), Amt); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, | 
|  | Shift); | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, DL, | 
|  | N->getValueType(0), Trunc); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). | 
|  | if (N1.getOpcode() == ISD::TRUNCATE && | 
|  | N1.getOperand(0).getOpcode() == ISD::AND) { | 
|  | if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) | 
|  | return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); | 
|  | } | 
|  |  | 
|  | // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) | 
|  | // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) | 
|  | //      if c1 is equal to the number of bits the trunc removes | 
|  | // TODO - support non-uniform vector shift amounts. | 
|  | if (N0.getOpcode() == ISD::TRUNCATE && | 
|  | (N0.getOperand(0).getOpcode() == ISD::SRL || | 
|  | N0.getOperand(0).getOpcode() == ISD::SRA) && | 
|  | N0.getOperand(0).hasOneUse() && | 
|  | N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { | 
|  | SDValue N0Op0 = N0.getOperand(0); | 
|  | if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { | 
|  | EVT LargeVT = N0Op0.getValueType(); | 
|  | unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; | 
|  | if (LargeShift->getAPIntValue() == TruncBits) { | 
|  | SDLoc DL(N); | 
|  | SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL, | 
|  | getShiftAmountTy(LargeVT)); | 
|  | SDValue SRA = | 
|  | DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify, based on bits shifted out of the LHS. | 
|  | // TODO - support non-uniform vector shift amounts. | 
|  | if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // If the sign bit is known to be zero, switch this to a SRL. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); | 
|  |  | 
|  | if (N1C && !N1C->isOpaque()) | 
|  | if (SDValue NewSRA = visitShiftByConstant(N, N1C)) | 
|  | return NewSRA; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSRL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | if (SDValue V = DAG.simplifyShift(N0, N1)) | 
|  | return V; | 
|  |  | 
|  | EVT VT = N0.getValueType(); | 
|  | unsigned OpSizeInBits = VT.getScalarSizeInBits(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
|  |  | 
|  | // fold (srl c1, c2) -> c1 >>u c2 | 
|  | // TODO - support non-uniform vector shift amounts. | 
|  | ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | 
|  | if (N0C && N1C && !N1C->isOpaque()) | 
|  | return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | // if (srl x, c) is known to be zero, return 0 | 
|  | if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), | 
|  | APInt::getAllOnesValue(OpSizeInBits))) | 
|  | return DAG.getConstant(0, SDLoc(N), VT); | 
|  |  | 
|  | // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) | 
|  | if (N0.getOpcode() == ISD::SRL) { | 
|  | auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, | 
|  | ConstantSDNode *RHS) { | 
|  | APInt c1 = LHS->getAPIntValue(); | 
|  | APInt c2 = RHS->getAPIntValue(); | 
|  | zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | 
|  | return (c1 + c2).uge(OpSizeInBits); | 
|  | }; | 
|  | if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) | 
|  | return DAG.getConstant(0, SDLoc(N), VT); | 
|  |  | 
|  | auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, | 
|  | ConstantSDNode *RHS) { | 
|  | APInt c1 = LHS->getAPIntValue(); | 
|  | APInt c2 = RHS->getAPIntValue(); | 
|  | zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | 
|  | return (c1 + c2).ult(OpSizeInBits); | 
|  | }; | 
|  | if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { | 
|  | SDLoc DL(N); | 
|  | EVT ShiftVT = N1.getValueType(); | 
|  | SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); | 
|  | return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) | 
|  | // TODO - support non-uniform vector shift amounts. | 
|  | if (N1C && N0.getOpcode() == ISD::TRUNCATE && | 
|  | N0.getOperand(0).getOpcode() == ISD::SRL) { | 
|  | if (auto N001C = isConstOrConstSplat(N0.getOperand(0).getOperand(1))) { | 
|  | uint64_t c1 = N001C->getZExtValue(); | 
|  | uint64_t c2 = N1C->getZExtValue(); | 
|  | EVT InnerShiftVT = N0.getOperand(0).getValueType(); | 
|  | EVT ShiftCountVT = N0.getOperand(0).getOperand(1).getValueType(); | 
|  | uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); | 
|  | // This is only valid if the OpSizeInBits + c1 = size of inner shift. | 
|  | if (c1 + OpSizeInBits == InnerShiftSize) { | 
|  | SDLoc DL(N0); | 
|  | if (c1 + c2 >= InnerShiftSize) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, VT, | 
|  | DAG.getNode(ISD::SRL, DL, InnerShiftVT, | 
|  | N0.getOperand(0).getOperand(0), | 
|  | DAG.getConstant(c1 + c2, DL, | 
|  | ShiftCountVT))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (srl (shl x, c), c) -> (and x, cst2) | 
|  | // TODO - (srl (shl x, c1), c2). | 
|  | if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && | 
|  | isConstantOrConstantVector(N1, /* NoOpaques */ true)) { | 
|  | SDLoc DL(N); | 
|  | SDValue Mask = | 
|  | DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); | 
|  | AddToWorklist(Mask.getNode()); | 
|  | return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); | 
|  | } | 
|  |  | 
|  | // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) | 
|  | // TODO - support non-uniform vector shift amounts. | 
|  | if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | // Shifting in all undef bits? | 
|  | EVT SmallVT = N0.getOperand(0).getValueType(); | 
|  | unsigned BitSize = SmallVT.getScalarSizeInBits(); | 
|  | if (N1C->getAPIntValue().uge(BitSize)) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { | 
|  | uint64_t ShiftAmt = N1C->getZExtValue(); | 
|  | SDLoc DL0(N0); | 
|  | SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, | 
|  | N0.getOperand(0), | 
|  | DAG.getConstant(ShiftAmt, DL0, | 
|  | getShiftAmountTy(SmallVT))); | 
|  | AddToWorklist(SmallShift.getNode()); | 
|  | APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::AND, DL, VT, | 
|  | DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), | 
|  | DAG.getConstant(Mask, DL, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign | 
|  | // bit, which is unmodified by sra. | 
|  | if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { | 
|  | if (N0.getOpcode() == ISD::SRA) | 
|  | return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); | 
|  | } | 
|  |  | 
|  | // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit). | 
|  | if (N1C && N0.getOpcode() == ISD::CTLZ && | 
|  | N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { | 
|  | KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); | 
|  |  | 
|  | // If any of the input bits are KnownOne, then the input couldn't be all | 
|  | // zeros, thus the result of the srl will always be zero. | 
|  | if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); | 
|  |  | 
|  | // If all of the bits input the to ctlz node are known to be zero, then | 
|  | // the result of the ctlz is "32" and the result of the shift is one. | 
|  | APInt UnknownBits = ~Known.Zero; | 
|  | if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); | 
|  |  | 
|  | // Otherwise, check to see if there is exactly one bit input to the ctlz. | 
|  | if (UnknownBits.isPowerOf2()) { | 
|  | // Okay, we know that only that the single bit specified by UnknownBits | 
|  | // could be set on input to the CTLZ node. If this bit is set, the SRL | 
|  | // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair | 
|  | // to an SRL/XOR pair, which is likely to simplify more. | 
|  | unsigned ShAmt = UnknownBits.countTrailingZeros(); | 
|  | SDValue Op = N0.getOperand(0); | 
|  |  | 
|  | if (ShAmt) { | 
|  | SDLoc DL(N0); | 
|  | Op = DAG.getNode(ISD::SRL, DL, VT, Op, | 
|  | DAG.getConstant(ShAmt, DL, | 
|  | getShiftAmountTy(Op.getValueType()))); | 
|  | AddToWorklist(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::XOR, DL, VT, | 
|  | Op, DAG.getConstant(1, DL, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). | 
|  | if (N1.getOpcode() == ISD::TRUNCATE && | 
|  | N1.getOperand(0).getOpcode() == ISD::AND) { | 
|  | if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) | 
|  | return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); | 
|  | } | 
|  |  | 
|  | // fold operands of srl based on knowledge that the low bits are not | 
|  | // demanded. | 
|  | // TODO - support non-uniform vector shift amounts. | 
|  | if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | if (N1C && !N1C->isOpaque()) | 
|  | if (SDValue NewSRL = visitShiftByConstant(N, N1C)) | 
|  | return NewSRL; | 
|  |  | 
|  | // Attempt to convert a srl of a load into a narrower zero-extending load. | 
|  | if (SDValue NarrowLoad = ReduceLoadWidth(N)) | 
|  | return NarrowLoad; | 
|  |  | 
|  | // Here is a common situation. We want to optimize: | 
|  | // | 
|  | //   %a = ... | 
|  | //   %b = and i32 %a, 2 | 
|  | //   %c = srl i32 %b, 1 | 
|  | //   brcond i32 %c ... | 
|  | // | 
|  | // into | 
|  | // | 
|  | //   %a = ... | 
|  | //   %b = and %a, 2 | 
|  | //   %c = setcc eq %b, 0 | 
|  | //   brcond %c ... | 
|  | // | 
|  | // However when after the source operand of SRL is optimized into AND, the SRL | 
|  | // itself may not be optimized further. Look for it and add the BRCOND into | 
|  | // the worklist. | 
|  | if (N->hasOneUse()) { | 
|  | SDNode *Use = *N->use_begin(); | 
|  | if (Use->getOpcode() == ISD::BRCOND) | 
|  | AddToWorklist(Use); | 
|  | else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { | 
|  | // Also look pass the truncate. | 
|  | Use = *Use->use_begin(); | 
|  | if (Use->getOpcode() == ISD::BRCOND) | 
|  | AddToWorklist(Use); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFunnelShift(SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | bool IsFSHL = N->getOpcode() == ISD::FSHL; | 
|  | unsigned BitWidth = VT.getScalarSizeInBits(); | 
|  |  | 
|  | // fold (fshl N0, N1, 0) -> N0 | 
|  | // fold (fshr N0, N1, 0) -> N1 | 
|  | if (isPowerOf2_32(BitWidth)) | 
|  | if (DAG.MaskedValueIsZero( | 
|  | N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) | 
|  | return IsFSHL ? N0 : N1; | 
|  |  | 
|  | auto IsUndefOrZero = [](SDValue V) { | 
|  | return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); | 
|  | }; | 
|  |  | 
|  | // TODO - support non-uniform vector shift amounts. | 
|  | if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { | 
|  | EVT ShAmtTy = N2.getValueType(); | 
|  |  | 
|  | // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) | 
|  | if (Cst->getAPIntValue().uge(BitWidth)) { | 
|  | uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); | 
|  | return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, | 
|  | DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); | 
|  | } | 
|  |  | 
|  | unsigned ShAmt = Cst->getZExtValue(); | 
|  | if (ShAmt == 0) | 
|  | return IsFSHL ? N0 : N1; | 
|  |  | 
|  | // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) | 
|  | // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) | 
|  | // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) | 
|  | // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) | 
|  | if (IsUndefOrZero(N0)) | 
|  | return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, | 
|  | DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, | 
|  | SDLoc(N), ShAmtTy)); | 
|  | if (IsUndefOrZero(N1)) | 
|  | return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, | 
|  | DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, | 
|  | SDLoc(N), ShAmtTy)); | 
|  | } | 
|  |  | 
|  | // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) | 
|  | // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) | 
|  | // iff We know the shift amount is in range. | 
|  | // TODO: when is it worth doing SUB(BW, N2) as well? | 
|  | if (isPowerOf2_32(BitWidth)) { | 
|  | APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); | 
|  | if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) | 
|  | return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); | 
|  | if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) | 
|  | return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); | 
|  | } | 
|  |  | 
|  | // fold (fshl N0, N0, N2) -> (rotl N0, N2) | 
|  | // fold (fshr N0, N0, N2) -> (rotr N0, N2) | 
|  | // TODO: Investigate flipping this rotate if only one is legal, if funnel shift | 
|  | // is legal as well we might be better off avoiding non-constant (BW - N2). | 
|  | unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; | 
|  | if (N0 == N1 && hasOperation(RotOpc, VT)) | 
|  | return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); | 
|  |  | 
|  | // Simplify, based on bits shifted out of N0/N1. | 
|  | if (SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitABS(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (abs c1) -> c2 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); | 
|  | // fold (abs (abs x)) -> (abs x) | 
|  | if (N0.getOpcode() == ISD::ABS) | 
|  | return N0; | 
|  | // fold (abs x) -> x iff not-negative | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return N0; | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBSWAP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (bswap c1) -> c2 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); | 
|  | // fold (bswap (bswap x)) -> x | 
|  | if (N0.getOpcode() == ISD::BSWAP) | 
|  | return N0->getOperand(0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (bitreverse c1) -> c2 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); | 
|  | // fold (bitreverse (bitreverse x)) -> x | 
|  | if (N0.getOpcode() == ISD::BITREVERSE) | 
|  | return N0.getOperand(0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTLZ(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ctlz c1) -> c2 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); | 
|  |  | 
|  | // If the value is known never to be zero, switch to the undef version. | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { | 
|  | if (DAG.isKnownNeverZero(N0)) | 
|  | return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ctlz_zero_undef c1) -> c2 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTTZ(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (cttz c1) -> c2 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); | 
|  |  | 
|  | // If the value is known never to be zero, switch to the undef version. | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { | 
|  | if (DAG.isKnownNeverZero(N0)) | 
|  | return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (cttz_zero_undef c1) -> c2 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCTPOP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ctpop c1) -> c2 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // FIXME: This should be checking for no signed zeros on individual operands, as | 
|  | // well as no nans. | 
|  | static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, | 
|  | SDValue RHS, | 
|  | const TargetLowering &TLI) { | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | EVT VT = LHS.getValueType(); | 
|  |  | 
|  | return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && | 
|  | TLI.isProfitableToCombineMinNumMaxNum(VT) && | 
|  | DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); | 
|  | } | 
|  |  | 
|  | /// Generate Min/Max node | 
|  | static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, | 
|  | SDValue RHS, SDValue True, SDValue False, | 
|  | ISD::CondCode CC, const TargetLowering &TLI, | 
|  | SelectionDAG &DAG) { | 
|  | if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); | 
|  | switch (CC) { | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: { | 
|  | // Since it's known never nan to get here already, either fminnum or | 
|  | // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is | 
|  | // expanded in terms of it. | 
|  | unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; | 
|  | if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) | 
|  | return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); | 
|  |  | 
|  | unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; | 
|  | if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) | 
|  | return DAG.getNode(Opcode, DL, VT, LHS, RHS); | 
|  | return SDValue(); | 
|  | } | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: { | 
|  | unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; | 
|  | if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) | 
|  | return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); | 
|  |  | 
|  | unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; | 
|  | if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) | 
|  | return DAG.getNode(Opcode, DL, VT, LHS, RHS); | 
|  | return SDValue(); | 
|  | } | 
|  | default: | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { | 
|  | SDValue Cond = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT CondVT = Cond.getValueType(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if (!VT.isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | auto *C1 = dyn_cast<ConstantSDNode>(N1); | 
|  | auto *C2 = dyn_cast<ConstantSDNode>(N2); | 
|  | if (!C1 || !C2) | 
|  | return SDValue(); | 
|  |  | 
|  | // Only do this before legalization to avoid conflicting with target-specific | 
|  | // transforms in the other direction (create a select from a zext/sext). There | 
|  | // is also a target-independent combine here in DAGCombiner in the other | 
|  | // direction for (select Cond, -1, 0) when the condition is not i1. | 
|  | if (CondVT == MVT::i1 && !LegalOperations) { | 
|  | if (C1->isNullValue() && C2->isOne()) { | 
|  | // select Cond, 0, 1 --> zext (!Cond) | 
|  | SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); | 
|  | if (VT != MVT::i1) | 
|  | NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); | 
|  | return NotCond; | 
|  | } | 
|  | if (C1->isNullValue() && C2->isAllOnesValue()) { | 
|  | // select Cond, 0, -1 --> sext (!Cond) | 
|  | SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); | 
|  | if (VT != MVT::i1) | 
|  | NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); | 
|  | return NotCond; | 
|  | } | 
|  | if (C1->isOne() && C2->isNullValue()) { | 
|  | // select Cond, 1, 0 --> zext (Cond) | 
|  | if (VT != MVT::i1) | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); | 
|  | return Cond; | 
|  | } | 
|  | if (C1->isAllOnesValue() && C2->isNullValue()) { | 
|  | // select Cond, -1, 0 --> sext (Cond) | 
|  | if (VT != MVT::i1) | 
|  | Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | // For any constants that differ by 1, we can transform the select into an | 
|  | // extend and add. Use a target hook because some targets may prefer to | 
|  | // transform in the other direction. | 
|  | if (TLI.convertSelectOfConstantsToMath(VT)) { | 
|  | if (C1->getAPIntValue() - 1 == C2->getAPIntValue()) { | 
|  | // select Cond, C1, C1-1 --> add (zext Cond), C1-1 | 
|  | if (VT != MVT::i1) | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); | 
|  | } | 
|  | if (C1->getAPIntValue() + 1 == C2->getAPIntValue()) { | 
|  | // select Cond, C1, C1+1 --> add (sext Cond), C1+1 | 
|  | if (VT != MVT::i1) | 
|  | Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // fold (select Cond, 0, 1) -> (xor Cond, 1) | 
|  | // We can't do this reliably if integer based booleans have different contents | 
|  | // to floating point based booleans. This is because we can't tell whether we | 
|  | // have an integer-based boolean or a floating-point-based boolean unless we | 
|  | // can find the SETCC that produced it and inspect its operands. This is | 
|  | // fairly easy if C is the SETCC node, but it can potentially be | 
|  | // undiscoverable (or not reasonably discoverable). For example, it could be | 
|  | // in another basic block or it could require searching a complicated | 
|  | // expression. | 
|  | if (CondVT.isInteger() && | 
|  | TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == | 
|  | TargetLowering::ZeroOrOneBooleanContent && | 
|  | TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == | 
|  | TargetLowering::ZeroOrOneBooleanContent && | 
|  | C1->isNullValue() && C2->isOne()) { | 
|  | SDValue NotCond = | 
|  | DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); | 
|  | if (VT.bitsEq(CondVT)) | 
|  | return NotCond; | 
|  | return DAG.getZExtOrTrunc(NotCond, DL, VT); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSELECT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT VT0 = N0.getValueType(); | 
|  | SDLoc DL(N); | 
|  | SDNodeFlags Flags = N->getFlags(); | 
|  |  | 
|  | if (SDValue V = DAG.simplifySelect(N0, N1, N2)) | 
|  | return V; | 
|  |  | 
|  | // fold (select X, X, Y) -> (or X, Y) | 
|  | // fold (select X, 1, Y) -> (or C, Y) | 
|  | if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) | 
|  | return DAG.getNode(ISD::OR, DL, VT, N0, N2); | 
|  |  | 
|  | if (SDValue V = foldSelectOfConstants(N)) | 
|  | return V; | 
|  |  | 
|  | // fold (select C, 0, X) -> (and (not C), X) | 
|  | if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { | 
|  | SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); | 
|  | AddToWorklist(NOTNode.getNode()); | 
|  | return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2); | 
|  | } | 
|  | // fold (select C, X, 1) -> (or (not C), X) | 
|  | if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { | 
|  | SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); | 
|  | AddToWorklist(NOTNode.getNode()); | 
|  | return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1); | 
|  | } | 
|  | // fold (select X, Y, X) -> (and X, Y) | 
|  | // fold (select X, Y, 0) -> (and X, Y) | 
|  | if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) | 
|  | return DAG.getNode(ISD::AND, DL, VT, N0, N1); | 
|  |  | 
|  | // If we can fold this based on the true/false value, do so. | 
|  | if (SimplifySelectOps(N, N1, N2)) | 
|  | return SDValue(N, 0); // Don't revisit N. | 
|  |  | 
|  | if (VT0 == MVT::i1) { | 
|  | // The code in this block deals with the following 2 equivalences: | 
|  | //    select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) | 
|  | //    select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) | 
|  | // The target can specify its preferred form with the | 
|  | // shouldNormalizeToSelectSequence() callback. However we always transform | 
|  | // to the right anyway if we find the inner select exists in the DAG anyway | 
|  | // and we always transform to the left side if we know that we can further | 
|  | // optimize the combination of the conditions. | 
|  | bool normalizeToSequence = | 
|  | TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); | 
|  | // select (and Cond0, Cond1), X, Y | 
|  | //   -> select Cond0, (select Cond1, X, Y), Y | 
|  | if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { | 
|  | SDValue Cond0 = N0->getOperand(0); | 
|  | SDValue Cond1 = N0->getOperand(1); | 
|  | SDValue InnerSelect = | 
|  | DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); | 
|  | if (normalizeToSequence || !InnerSelect.use_empty()) | 
|  | return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, | 
|  | InnerSelect, N2, Flags); | 
|  | // Cleanup on failure. | 
|  | if (InnerSelect.use_empty()) | 
|  | recursivelyDeleteUnusedNodes(InnerSelect.getNode()); | 
|  | } | 
|  | // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) | 
|  | if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { | 
|  | SDValue Cond0 = N0->getOperand(0); | 
|  | SDValue Cond1 = N0->getOperand(1); | 
|  | SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), | 
|  | Cond1, N1, N2, Flags); | 
|  | if (normalizeToSequence || !InnerSelect.use_empty()) | 
|  | return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, | 
|  | InnerSelect, Flags); | 
|  | // Cleanup on failure. | 
|  | if (InnerSelect.use_empty()) | 
|  | recursivelyDeleteUnusedNodes(InnerSelect.getNode()); | 
|  | } | 
|  |  | 
|  | // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y | 
|  | if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { | 
|  | SDValue N1_0 = N1->getOperand(0); | 
|  | SDValue N1_1 = N1->getOperand(1); | 
|  | SDValue N1_2 = N1->getOperand(2); | 
|  | if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { | 
|  | // Create the actual and node if we can generate good code for it. | 
|  | if (!normalizeToSequence) { | 
|  | SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); | 
|  | return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, | 
|  | N2, Flags); | 
|  | } | 
|  | // Otherwise see if we can optimize the "and" to a better pattern. | 
|  | if (SDValue Combined = visitANDLike(N0, N1_0, N)) { | 
|  | return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, | 
|  | N2, Flags); | 
|  | } | 
|  | } | 
|  | } | 
|  | // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y | 
|  | if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { | 
|  | SDValue N2_0 = N2->getOperand(0); | 
|  | SDValue N2_1 = N2->getOperand(1); | 
|  | SDValue N2_2 = N2->getOperand(2); | 
|  | if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { | 
|  | // Create the actual or node if we can generate good code for it. | 
|  | if (!normalizeToSequence) { | 
|  | SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); | 
|  | return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, | 
|  | N2_2, Flags); | 
|  | } | 
|  | // Otherwise see if we can optimize to a better pattern. | 
|  | if (SDValue Combined = visitORLike(N0, N2_0, N)) | 
|  | return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, | 
|  | N2_2, Flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // select (not Cond), N1, N2 -> select Cond, N2, N1 | 
|  | if (SDValue F = extractBooleanFlip(N0, TLI)) { | 
|  | SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); | 
|  | SelectOp->setFlags(Flags); | 
|  | return SelectOp; | 
|  | } | 
|  |  | 
|  | // Fold selects based on a setcc into other things, such as min/max/abs. | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | 
|  |  | 
|  | // select (fcmp lt x, y), x, y -> fminnum x, y | 
|  | // select (fcmp gt x, y), x, y -> fmaxnum x, y | 
|  | // | 
|  | // This is OK if we don't care what happens if either operand is a NaN. | 
|  | if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) | 
|  | if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, | 
|  | CC, TLI, DAG)) | 
|  | return FMinMax; | 
|  |  | 
|  | // Use 'unsigned add with overflow' to optimize an unsigned saturating add. | 
|  | // This is conservatively limited to pre-legal-operations to give targets | 
|  | // a chance to reverse the transform if they want to do that. Also, it is | 
|  | // unlikely that the pattern would be formed late, so it's probably not | 
|  | // worth going through the other checks. | 
|  | if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && | 
|  | CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && | 
|  | N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { | 
|  | auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); | 
|  | auto *NotC = dyn_cast<ConstantSDNode>(Cond1); | 
|  | if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { | 
|  | // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> | 
|  | // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 | 
|  | // | 
|  | // The IR equivalent of this transform would have this form: | 
|  | //   %a = add %x, C | 
|  | //   %c = icmp ugt %x, ~C | 
|  | //   %r = select %c, -1, %a | 
|  | //   => | 
|  | //   %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) | 
|  | //   %u0 = extractvalue %u, 0 | 
|  | //   %u1 = extractvalue %u, 1 | 
|  | //   %r = select %u1, -1, %u0 | 
|  | SDVTList VTs = DAG.getVTList(VT, VT0); | 
|  | SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); | 
|  | return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || | 
|  | (!LegalOperations && | 
|  | TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { | 
|  | // Any flags available in a select/setcc fold will be on the setcc as they | 
|  | // migrated from fcmp | 
|  | Flags = N0.getNode()->getFlags(); | 
|  | SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, | 
|  | N2, N0.getOperand(2)); | 
|  | SelectNode->setFlags(Flags); | 
|  | return SelectNode; | 
|  | } | 
|  |  | 
|  | return SimplifySelect(DL, N0, N1, N2); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static | 
|  | std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { | 
|  | SDLoc DL(N); | 
|  | EVT LoVT, HiVT; | 
|  | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); | 
|  |  | 
|  | // Split the inputs. | 
|  | SDValue Lo, Hi, LL, LH, RL, RH; | 
|  | std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); | 
|  | std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); | 
|  |  | 
|  | Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); | 
|  | Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); | 
|  |  | 
|  | return std::make_pair(Lo, Hi); | 
|  | } | 
|  |  | 
|  | // This function assumes all the vselect's arguments are CONCAT_VECTOR | 
|  | // nodes and that the condition is a BV of ConstantSDNodes (or undefs). | 
|  | static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { | 
|  | SDLoc DL(N); | 
|  | SDValue Cond = N->getOperand(0); | 
|  | SDValue LHS = N->getOperand(1); | 
|  | SDValue RHS = N->getOperand(2); | 
|  | EVT VT = N->getValueType(0); | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  | assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | RHS.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | Cond.getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about | 
|  | // binary ones here. | 
|  | if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) | 
|  | return SDValue(); | 
|  |  | 
|  | // We're sure we have an even number of elements due to the | 
|  | // concat_vectors we have as arguments to vselect. | 
|  | // Skip BV elements until we find one that's not an UNDEF | 
|  | // After we find an UNDEF element, keep looping until we get to half the | 
|  | // length of the BV and see if all the non-undef nodes are the same. | 
|  | ConstantSDNode *BottomHalf = nullptr; | 
|  | for (int i = 0; i < NumElems / 2; ++i) { | 
|  | if (Cond->getOperand(i)->isUndef()) | 
|  | continue; | 
|  |  | 
|  | if (BottomHalf == nullptr) | 
|  | BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); | 
|  | else if (Cond->getOperand(i).getNode() != BottomHalf) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Do the same for the second half of the BuildVector | 
|  | ConstantSDNode *TopHalf = nullptr; | 
|  | for (int i = NumElems / 2; i < NumElems; ++i) { | 
|  | if (Cond->getOperand(i)->isUndef()) | 
|  | continue; | 
|  |  | 
|  | if (TopHalf == nullptr) | 
|  | TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); | 
|  | else if (Cond->getOperand(i).getNode() != TopHalf) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | assert(TopHalf && BottomHalf && | 
|  | "One half of the selector was all UNDEFs and the other was all the " | 
|  | "same value. This should have been addressed before this function."); | 
|  | return DAG.getNode( | 
|  | ISD::CONCAT_VECTORS, DL, VT, | 
|  | BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), | 
|  | TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMSCATTER(SDNode *N) { | 
|  | MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); | 
|  | SDValue Mask = MSC->getMask(); | 
|  | SDValue Data = MSC->getValue(); | 
|  | SDValue Chain = MSC->getChain(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Zap scatters with a zero mask. | 
|  | if (ISD::isBuildVectorAllZeros(Mask.getNode())) | 
|  | return Chain; | 
|  |  | 
|  | if (Level >= AfterLegalizeTypes) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the MSCATTER data type requires splitting and the mask is provided by a | 
|  | // SETCC, then split both nodes and its operands before legalization. This | 
|  | // prevents the type legalizer from unrolling SETCC into scalar comparisons | 
|  | // and enables future optimizations (e.g. min/max pattern matching on X86). | 
|  | if (Mask.getOpcode() != ISD::SETCC) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check if any splitting is required. | 
|  | if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != | 
|  | TargetLowering::TypeSplitVector) | 
|  | return SDValue(); | 
|  | SDValue MaskLo, MaskHi; | 
|  | std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); | 
|  |  | 
|  | EVT LoVT, HiVT; | 
|  | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); | 
|  |  | 
|  | EVT MemoryVT = MSC->getMemoryVT(); | 
|  | unsigned Alignment = MSC->getOriginalAlignment(); | 
|  |  | 
|  | EVT LoMemVT, HiMemVT; | 
|  | std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); | 
|  |  | 
|  | SDValue DataLo, DataHi; | 
|  | std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); | 
|  |  | 
|  | SDValue Scale = MSC->getScale(); | 
|  | SDValue BasePtr = MSC->getBasePtr(); | 
|  | SDValue IndexLo, IndexHi; | 
|  | std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); | 
|  |  | 
|  | MachineMemOperand *MMO = DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MSC->getPointerInfo(), | 
|  | MachineMemOperand::MOStore,  LoMemVT.getStoreSize(), | 
|  | Alignment, MSC->getAAInfo(), MSC->getRanges()); | 
|  |  | 
|  | SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo, Scale }; | 
|  | SDValue Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), | 
|  | DataLo.getValueType(), DL, OpsLo, MMO); | 
|  |  | 
|  | // The order of the Scatter operation after split is well defined. The "Hi" | 
|  | // part comes after the "Lo". So these two operations should be chained one | 
|  | // after another. | 
|  | SDValue OpsHi[] = { Lo, DataHi, MaskHi, BasePtr, IndexHi, Scale }; | 
|  | return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), | 
|  | DL, OpsHi, MMO); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMSTORE(SDNode *N) { | 
|  | MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); | 
|  | SDValue Mask = MST->getMask(); | 
|  | SDValue Data = MST->getValue(); | 
|  | SDValue Chain = MST->getChain(); | 
|  | EVT VT = Data.getValueType(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Zap masked stores with a zero mask. | 
|  | if (ISD::isBuildVectorAllZeros(Mask.getNode())) | 
|  | return Chain; | 
|  |  | 
|  | if (Level >= AfterLegalizeTypes) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the MSTORE data type requires splitting and the mask is provided by a | 
|  | // SETCC, then split both nodes and its operands before legalization. This | 
|  | // prevents the type legalizer from unrolling SETCC into scalar comparisons | 
|  | // and enables future optimizations (e.g. min/max pattern matching on X86). | 
|  | if (Mask.getOpcode() == ISD::SETCC) { | 
|  | // Check if any splitting is required. | 
|  | if (TLI.getTypeAction(*DAG.getContext(), VT) != | 
|  | TargetLowering::TypeSplitVector) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue MaskLo, MaskHi, Lo, Hi; | 
|  | std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); | 
|  |  | 
|  | SDValue Ptr   = MST->getBasePtr(); | 
|  |  | 
|  | EVT MemoryVT = MST->getMemoryVT(); | 
|  | unsigned Alignment = MST->getOriginalAlignment(); | 
|  |  | 
|  | EVT LoMemVT, HiMemVT; | 
|  | std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); | 
|  |  | 
|  | SDValue DataLo, DataHi; | 
|  | std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); | 
|  |  | 
|  | MachineMemOperand *MMO = DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MST->getPointerInfo(), | 
|  | MachineMemOperand::MOStore,  LoMemVT.getStoreSize(), | 
|  | Alignment, MST->getAAInfo(), MST->getRanges()); | 
|  |  | 
|  | Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, | 
|  | MST->isTruncatingStore(), | 
|  | MST->isCompressingStore()); | 
|  |  | 
|  | Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG, | 
|  | MST->isCompressingStore()); | 
|  | unsigned HiOffset = LoMemVT.getStoreSize(); | 
|  |  | 
|  | MMO = DAG.getMachineFunction().getMachineMemOperand( | 
|  | MST->getPointerInfo().getWithOffset(HiOffset), | 
|  | MachineMemOperand::MOStore, HiMemVT.getStoreSize(), Alignment, | 
|  | MST->getAAInfo(), MST->getRanges()); | 
|  |  | 
|  | Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, | 
|  | MST->isTruncatingStore(), | 
|  | MST->isCompressingStore()); | 
|  |  | 
|  | AddToWorklist(Lo.getNode()); | 
|  | AddToWorklist(Hi.getNode()); | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMGATHER(SDNode *N) { | 
|  | MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); | 
|  | SDValue Mask = MGT->getMask(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Zap gathers with a zero mask. | 
|  | if (ISD::isBuildVectorAllZeros(Mask.getNode())) | 
|  | return CombineTo(N, MGT->getPassThru(), MGT->getChain()); | 
|  |  | 
|  | if (Level >= AfterLegalizeTypes) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the MGATHER result requires splitting and the mask is provided by a | 
|  | // SETCC, then split both nodes and its operands before legalization. This | 
|  | // prevents the type legalizer from unrolling SETCC into scalar comparisons | 
|  | // and enables future optimizations (e.g. min/max pattern matching on X86). | 
|  |  | 
|  | if (Mask.getOpcode() != ISD::SETCC) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Check if any splitting is required. | 
|  | if (TLI.getTypeAction(*DAG.getContext(), VT) != | 
|  | TargetLowering::TypeSplitVector) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue MaskLo, MaskHi, Lo, Hi; | 
|  | std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); | 
|  |  | 
|  | SDValue PassThru = MGT->getPassThru(); | 
|  | SDValue PassThruLo, PassThruHi; | 
|  | std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, DL); | 
|  |  | 
|  | EVT LoVT, HiVT; | 
|  | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); | 
|  |  | 
|  | SDValue Chain = MGT->getChain(); | 
|  | EVT MemoryVT = MGT->getMemoryVT(); | 
|  | unsigned Alignment = MGT->getOriginalAlignment(); | 
|  |  | 
|  | EVT LoMemVT, HiMemVT; | 
|  | std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); | 
|  |  | 
|  | SDValue Scale = MGT->getScale(); | 
|  | SDValue BasePtr = MGT->getBasePtr(); | 
|  | SDValue Index = MGT->getIndex(); | 
|  | SDValue IndexLo, IndexHi; | 
|  | std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); | 
|  |  | 
|  | MachineMemOperand *MMO = DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MGT->getPointerInfo(), | 
|  | MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(), | 
|  | Alignment, MGT->getAAInfo(), MGT->getRanges()); | 
|  |  | 
|  | SDValue OpsLo[] = { Chain, PassThruLo, MaskLo, BasePtr, IndexLo, Scale }; | 
|  | Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, | 
|  | MMO); | 
|  |  | 
|  | SDValue OpsHi[] = { Chain, PassThruHi, MaskHi, BasePtr, IndexHi, Scale }; | 
|  | Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, | 
|  | MMO); | 
|  |  | 
|  | AddToWorklist(Lo.getNode()); | 
|  | AddToWorklist(Hi.getNode()); | 
|  |  | 
|  | // Build a factor node to remember that this load is independent of the | 
|  | // other one. | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | // Legalized the chain result - switch anything that used the old chain to | 
|  | // use the new one. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); | 
|  |  | 
|  | SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); | 
|  |  | 
|  | SDValue RetOps[] = { GatherRes, Chain }; | 
|  | return DAG.getMergeValues(RetOps, DL); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitMLOAD(SDNode *N) { | 
|  | MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); | 
|  | SDValue Mask = MLD->getMask(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Zap masked loads with a zero mask. | 
|  | if (ISD::isBuildVectorAllZeros(Mask.getNode())) | 
|  | return CombineTo(N, MLD->getPassThru(), MLD->getChain()); | 
|  |  | 
|  | if (Level >= AfterLegalizeTypes) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the MLOAD result requires splitting and the mask is provided by a | 
|  | // SETCC, then split both nodes and its operands before legalization. This | 
|  | // prevents the type legalizer from unrolling SETCC into scalar comparisons | 
|  | // and enables future optimizations (e.g. min/max pattern matching on X86). | 
|  | if (Mask.getOpcode() == ISD::SETCC) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Check if any splitting is required. | 
|  | if (TLI.getTypeAction(*DAG.getContext(), VT) != | 
|  | TargetLowering::TypeSplitVector) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue MaskLo, MaskHi, Lo, Hi; | 
|  | std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); | 
|  |  | 
|  | SDValue PassThru = MLD->getPassThru(); | 
|  | SDValue PassThruLo, PassThruHi; | 
|  | std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, DL); | 
|  |  | 
|  | EVT LoVT, HiVT; | 
|  | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); | 
|  |  | 
|  | SDValue Chain = MLD->getChain(); | 
|  | SDValue Ptr   = MLD->getBasePtr(); | 
|  | EVT MemoryVT = MLD->getMemoryVT(); | 
|  | unsigned Alignment = MLD->getOriginalAlignment(); | 
|  |  | 
|  | EVT LoMemVT, HiMemVT; | 
|  | std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); | 
|  |  | 
|  | MachineMemOperand *MMO = DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MLD->getPointerInfo(), | 
|  | MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(), | 
|  | Alignment, MLD->getAAInfo(), MLD->getRanges()); | 
|  |  | 
|  | Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, PassThruLo, LoMemVT, | 
|  | MMO, ISD::NON_EXTLOAD, MLD->isExpandingLoad()); | 
|  |  | 
|  | Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG, | 
|  | MLD->isExpandingLoad()); | 
|  | unsigned HiOffset = LoMemVT.getStoreSize(); | 
|  |  | 
|  | MMO = DAG.getMachineFunction().getMachineMemOperand( | 
|  | MLD->getPointerInfo().getWithOffset(HiOffset), | 
|  | MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), Alignment, | 
|  | MLD->getAAInfo(), MLD->getRanges()); | 
|  |  | 
|  | Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, PassThruHi, HiMemVT, | 
|  | MMO, ISD::NON_EXTLOAD, MLD->isExpandingLoad()); | 
|  |  | 
|  | AddToWorklist(Lo.getNode()); | 
|  | AddToWorklist(Hi.getNode()); | 
|  |  | 
|  | // Build a factor node to remember that this load is independent of the | 
|  | // other one. | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | // Legalized the chain result - switch anything that used the old chain to | 
|  | // use the new one. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); | 
|  |  | 
|  | SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); | 
|  |  | 
|  | SDValue RetOps[] = { LoadRes, Chain }; | 
|  | return DAG.getMergeValues(RetOps, DL); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// A vector select of 2 constant vectors can be simplified to math/logic to | 
|  | /// avoid a variable select instruction and possibly avoid constant loads. | 
|  | SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { | 
|  | SDValue Cond = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || | 
|  | !TLI.convertSelectOfConstantsToMath(VT) || | 
|  | !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || | 
|  | !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check if we can use the condition value to increment/decrement a single | 
|  | // constant value. This simplifies a select to an add and removes a constant | 
|  | // load/materialization from the general case. | 
|  | bool AllAddOne = true; | 
|  | bool AllSubOne = true; | 
|  | unsigned Elts = VT.getVectorNumElements(); | 
|  | for (unsigned i = 0; i != Elts; ++i) { | 
|  | SDValue N1Elt = N1.getOperand(i); | 
|  | SDValue N2Elt = N2.getOperand(i); | 
|  | if (N1Elt.isUndef() || N2Elt.isUndef()) | 
|  | continue; | 
|  |  | 
|  | const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); | 
|  | const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); | 
|  | if (C1 != C2 + 1) | 
|  | AllAddOne = false; | 
|  | if (C1 != C2 - 1) | 
|  | AllSubOne = false; | 
|  | } | 
|  |  | 
|  | // Further simplifications for the extra-special cases where the constants are | 
|  | // all 0 or all -1 should be implemented as folds of these patterns. | 
|  | SDLoc DL(N); | 
|  | if (AllAddOne || AllSubOne) { | 
|  | // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C | 
|  | // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C | 
|  | auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; | 
|  | SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); | 
|  | } | 
|  |  | 
|  | // The general case for select-of-constants: | 
|  | // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 | 
|  | // ...but that only makes sense if a vselect is slower than 2 logic ops, so | 
|  | // leave that to a machine-specific pass. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitVSELECT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if (SDValue V = DAG.simplifySelect(N0, N1, N2)) | 
|  | return V; | 
|  |  | 
|  | // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 | 
|  | if (SDValue F = extractBooleanFlip(N0, TLI)) | 
|  | return DAG.getSelect(DL, VT, F, N2, N1); | 
|  |  | 
|  | // Canonicalize integer abs. | 
|  | // vselect (setg[te] X,  0),  X, -X -> | 
|  | // vselect (setgt    X, -1),  X, -X -> | 
|  | // vselect (setl[te] X,  0), -X,  X -> | 
|  | // Y = sra (X, size(X)-1); xor (add (X, Y), Y) | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | 
|  | bool isAbs = false; | 
|  | bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); | 
|  |  | 
|  | if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || | 
|  | (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && | 
|  | N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) | 
|  | isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); | 
|  | else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && | 
|  | N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) | 
|  | isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); | 
|  |  | 
|  | if (isAbs) { | 
|  | EVT VT = LHS.getValueType(); | 
|  | if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) | 
|  | return DAG.getNode(ISD::ABS, DL, VT, LHS); | 
|  |  | 
|  | SDValue Shift = DAG.getNode( | 
|  | ISD::SRA, DL, VT, LHS, | 
|  | DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT)); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); | 
|  | AddToWorklist(Shift.getNode()); | 
|  | AddToWorklist(Add.getNode()); | 
|  | return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); | 
|  | } | 
|  |  | 
|  | // vselect x, y (fcmp lt x, y) -> fminnum x, y | 
|  | // vselect x, y (fcmp gt x, y) -> fmaxnum x, y | 
|  | // | 
|  | // This is OK if we don't care about what happens if either operand is a | 
|  | // NaN. | 
|  | // | 
|  | if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N0.getOperand(0), | 
|  | N0.getOperand(1), TLI)) { | 
|  | if (SDValue FMinMax = combineMinNumMaxNum( | 
|  | DL, VT, N0.getOperand(0), N0.getOperand(1), N1, N2, CC, TLI, DAG)) | 
|  | return FMinMax; | 
|  | } | 
|  |  | 
|  | // If this select has a condition (setcc) with narrower operands than the | 
|  | // select, try to widen the compare to match the select width. | 
|  | // TODO: This should be extended to handle any constant. | 
|  | // TODO: This could be extended to handle non-loading patterns, but that | 
|  | //       requires thorough testing to avoid regressions. | 
|  | if (isNullOrNullSplat(RHS)) { | 
|  | EVT NarrowVT = LHS.getValueType(); | 
|  | EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); | 
|  | EVT SetCCVT = getSetCCResultType(LHS.getValueType()); | 
|  | unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); | 
|  | unsigned WideWidth = WideVT.getScalarSizeInBits(); | 
|  | bool IsSigned = isSignedIntSetCC(CC); | 
|  | auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; | 
|  | if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && | 
|  | SetCCWidth != 1 && SetCCWidth < WideWidth && | 
|  | TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { | 
|  | // Both compare operands can be widened for free. The LHS can use an | 
|  | // extended load, and the RHS is a constant: | 
|  | //   vselect (ext (setcc load(X), C)), N1, N2 --> | 
|  | //   vselect (setcc extload(X), C'), N1, N2 | 
|  | auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); | 
|  | SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); | 
|  | EVT WideSetCCVT = getSetCCResultType(WideVT); | 
|  | SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); | 
|  | return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SimplifySelectOps(N, N1, N2)) | 
|  | return SDValue(N, 0);  // Don't revisit N. | 
|  |  | 
|  | // Fold (vselect (build_vector all_ones), N1, N2) -> N1 | 
|  | if (ISD::isBuildVectorAllOnes(N0.getNode())) | 
|  | return N1; | 
|  | // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 | 
|  | if (ISD::isBuildVectorAllZeros(N0.getNode())) | 
|  | return N2; | 
|  |  | 
|  | // The ConvertSelectToConcatVector function is assuming both the above | 
|  | // checks for (vselect (build_vector all{ones,zeros) ...) have been made | 
|  | // and addressed. | 
|  | if (N1.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | N2.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { | 
|  | if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) | 
|  | return CV; | 
|  | } | 
|  |  | 
|  | if (SDValue V = foldVSelectOfConstants(N)) | 
|  | return V; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | SDValue N3 = N->getOperand(3); | 
|  | SDValue N4 = N->getOperand(4); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); | 
|  |  | 
|  | // fold select_cc lhs, rhs, x, x, cc -> x | 
|  | if (N2 == N3) | 
|  | return N2; | 
|  |  | 
|  | // Determine if the condition we're dealing with is constant | 
|  | if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, | 
|  | CC, SDLoc(N), false)) { | 
|  | AddToWorklist(SCC.getNode()); | 
|  |  | 
|  | if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { | 
|  | if (!SCCC->isNullValue()) | 
|  | return N2;    // cond always true -> true val | 
|  | else | 
|  | return N3;    // cond always false -> false val | 
|  | } else if (SCC->isUndef()) { | 
|  | // When the condition is UNDEF, just return the first operand. This is | 
|  | // coherent the DAG creation, no setcc node is created in this case | 
|  | return N2; | 
|  | } else if (SCC.getOpcode() == ISD::SETCC) { | 
|  | // Fold to a simpler select_cc | 
|  | SDValue SelectOp = DAG.getNode( | 
|  | ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), | 
|  | SCC.getOperand(1), N2, N3, SCC.getOperand(2)); | 
|  | SelectOp->setFlags(SCC->getFlags()); | 
|  | return SelectOp; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can fold this based on the true/false value, do so. | 
|  | if (SimplifySelectOps(N, N2, N3)) | 
|  | return SDValue(N, 0);  // Don't revisit N. | 
|  |  | 
|  | // fold select_cc into other things, such as min/max/abs | 
|  | return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSETCC(SDNode *N) { | 
|  | // setcc is very commonly used as an argument to brcond. This pattern | 
|  | // also lend itself to numerous combines and, as a result, it is desired | 
|  | // we keep the argument to a brcond as a setcc as much as possible. | 
|  | bool PreferSetCC = | 
|  | N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; | 
|  |  | 
|  | SDValue Combined = SimplifySetCC( | 
|  | N->getValueType(0), N->getOperand(0), N->getOperand(1), | 
|  | cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC); | 
|  |  | 
|  | if (!Combined) | 
|  | return SDValue(); | 
|  |  | 
|  | // If we prefer to have a setcc, and we don't, we'll try our best to | 
|  | // recreate one using rebuildSetCC. | 
|  | if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { | 
|  | SDValue NewSetCC = rebuildSetCC(Combined); | 
|  |  | 
|  | // We don't have anything interesting to combine to. | 
|  | if (NewSetCC.getNode() == N) | 
|  | return SDValue(); | 
|  |  | 
|  | if (NewSetCC) | 
|  | return NewSetCC; | 
|  | } | 
|  |  | 
|  | return Combined; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | SDValue Carry = N->getOperand(2); | 
|  | SDValue Cond = N->getOperand(3); | 
|  |  | 
|  | // If Carry is false, fold to a regular SETCC. | 
|  | if (isNullConstant(Carry)) | 
|  | return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or | 
|  | /// a build_vector of constants. | 
|  | /// This function is called by the DAGCombiner when visiting sext/zext/aext | 
|  | /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). | 
|  | /// Vector extends are not folded if operations are legal; this is to | 
|  | /// avoid introducing illegal build_vector dag nodes. | 
|  | static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, | 
|  | SelectionDAG &DAG, bool LegalTypes) { | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || | 
|  | Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || | 
|  | Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) | 
|  | && "Expected EXTEND dag node in input!"); | 
|  |  | 
|  | // fold (sext c1) -> c1 | 
|  | // fold (zext c1) -> c1 | 
|  | // fold (aext c1) -> c1 | 
|  | if (isa<ConstantSDNode>(N0)) | 
|  | return DAG.getNode(Opcode, DL, VT, N0); | 
|  |  | 
|  | // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) | 
|  | // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) | 
|  | // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) | 
|  | if (N0->getOpcode() == ISD::SELECT) { | 
|  | SDValue Op1 = N0->getOperand(1); | 
|  | SDValue Op2 = N0->getOperand(2); | 
|  | if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && | 
|  | (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { | 
|  | // For any_extend, choose sign extension of the constants to allow a | 
|  | // possible further transform to sign_extend_inreg.i.e. | 
|  | // | 
|  | // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> | 
|  | // t2: i64 = any_extend t1 | 
|  | // --> | 
|  | // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> | 
|  | // --> | 
|  | // t4: i64 = sign_extend_inreg t3 | 
|  | unsigned FoldOpc = Opcode; | 
|  | if (FoldOpc == ISD::ANY_EXTEND) | 
|  | FoldOpc = ISD::SIGN_EXTEND; | 
|  | return DAG.getSelect(DL, VT, N0->getOperand(0), | 
|  | DAG.getNode(FoldOpc, DL, VT, Op1), | 
|  | DAG.getNode(FoldOpc, DL, VT, Op2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) | 
|  | // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) | 
|  | // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) | 
|  | EVT SVT = VT.getScalarType(); | 
|  | if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && | 
|  | ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) | 
|  | return SDValue(); | 
|  |  | 
|  | // We can fold this node into a build_vector. | 
|  | unsigned VTBits = SVT.getSizeInBits(); | 
|  | unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); | 
|  | SmallVector<SDValue, 8> Elts; | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | // For zero-extensions, UNDEF elements still guarantee to have the upper | 
|  | // bits set to zero. | 
|  | bool IsZext = | 
|  | Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; | 
|  |  | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | SDValue Op = N0.getOperand(i); | 
|  | if (Op.isUndef()) { | 
|  | Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | // Get the constant value and if needed trunc it to the size of the type. | 
|  | // Nodes like build_vector might have constants wider than the scalar type. | 
|  | APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); | 
|  | if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) | 
|  | Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); | 
|  | else | 
|  | Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); | 
|  | } | 
|  |  | 
|  | return DAG.getBuildVector(VT, DL, Elts); | 
|  | } | 
|  |  | 
|  | // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: | 
|  | // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" | 
|  | // transformation. Returns true if extension are possible and the above | 
|  | // mentioned transformation is profitable. | 
|  | static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, | 
|  | unsigned ExtOpc, | 
|  | SmallVectorImpl<SDNode *> &ExtendNodes, | 
|  | const TargetLowering &TLI) { | 
|  | bool HasCopyToRegUses = false; | 
|  | bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); | 
|  | for (SDNode::use_iterator UI = N0.getNode()->use_begin(), | 
|  | UE = N0.getNode()->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User == N) | 
|  | continue; | 
|  | if (UI.getUse().getResNo() != N0.getResNo()) | 
|  | continue; | 
|  | // FIXME: Only extend SETCC N, N and SETCC N, c for now. | 
|  | if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); | 
|  | if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) | 
|  | // Sign bits will be lost after a zext. | 
|  | return false; | 
|  | bool Add = false; | 
|  | for (unsigned i = 0; i != 2; ++i) { | 
|  | SDValue UseOp = User->getOperand(i); | 
|  | if (UseOp == N0) | 
|  | continue; | 
|  | if (!isa<ConstantSDNode>(UseOp)) | 
|  | return false; | 
|  | Add = true; | 
|  | } | 
|  | if (Add) | 
|  | ExtendNodes.push_back(User); | 
|  | continue; | 
|  | } | 
|  | // If truncates aren't free and there are users we can't | 
|  | // extend, it isn't worthwhile. | 
|  | if (!isTruncFree) | 
|  | return false; | 
|  | // Remember if this value is live-out. | 
|  | if (User->getOpcode() == ISD::CopyToReg) | 
|  | HasCopyToRegUses = true; | 
|  | } | 
|  |  | 
|  | if (HasCopyToRegUses) { | 
|  | bool BothLiveOut = false; | 
|  | for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDUse &Use = UI.getUse(); | 
|  | if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { | 
|  | BothLiveOut = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (BothLiveOut) | 
|  | // Both unextended and extended values are live out. There had better be | 
|  | // a good reason for the transformation. | 
|  | return ExtendNodes.size(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, | 
|  | SDValue OrigLoad, SDValue ExtLoad, | 
|  | ISD::NodeType ExtType) { | 
|  | // Extend SetCC uses if necessary. | 
|  | SDLoc DL(ExtLoad); | 
|  | for (SDNode *SetCC : SetCCs) { | 
|  | SmallVector<SDValue, 4> Ops; | 
|  |  | 
|  | for (unsigned j = 0; j != 2; ++j) { | 
|  | SDValue SOp = SetCC->getOperand(j); | 
|  | if (SOp == OrigLoad) | 
|  | Ops.push_back(ExtLoad); | 
|  | else | 
|  | Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); | 
|  | } | 
|  |  | 
|  | Ops.push_back(SetCC->getOperand(2)); | 
|  | CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). | 
|  | SDValue DAGCombiner::CombineExtLoad(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT DstVT = N->getValueType(0); | 
|  | EVT SrcVT = N0.getValueType(); | 
|  |  | 
|  | assert((N->getOpcode() == ISD::SIGN_EXTEND || | 
|  | N->getOpcode() == ISD::ZERO_EXTEND) && | 
|  | "Unexpected node type (not an extend)!"); | 
|  |  | 
|  | // fold (sext (load x)) to multiple smaller sextloads; same for zext. | 
|  | // For example, on a target with legal v4i32, but illegal v8i32, turn: | 
|  | //   (v8i32 (sext (v8i16 (load x)))) | 
|  | // into: | 
|  | //   (v8i32 (concat_vectors (v4i32 (sextload x)), | 
|  | //                          (v4i32 (sextload (x + 16))))) | 
|  | // Where uses of the original load, i.e.: | 
|  | //   (v8i16 (load x)) | 
|  | // are replaced with: | 
|  | //   (v8i16 (truncate | 
|  | //     (v8i32 (concat_vectors (v4i32 (sextload x)), | 
|  | //                            (v4i32 (sextload (x + 16))))))) | 
|  | // | 
|  | // This combine is only applicable to illegal, but splittable, vectors. | 
|  | // All legal types, and illegal non-vector types, are handled elsewhere. | 
|  | // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. | 
|  | // | 
|  | if (N0->getOpcode() != ISD::LOAD) | 
|  | return SDValue(); | 
|  |  | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  |  | 
|  | if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || | 
|  | !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || | 
|  | !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<SDNode *, 4> SetCCs; | 
|  | if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) | 
|  | return SDValue(); | 
|  |  | 
|  | ISD::LoadExtType ExtType = | 
|  | N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; | 
|  |  | 
|  | // Try to split the vector types to get down to legal types. | 
|  | EVT SplitSrcVT = SrcVT; | 
|  | EVT SplitDstVT = DstVT; | 
|  | while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && | 
|  | SplitSrcVT.getVectorNumElements() > 1) { | 
|  | SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; | 
|  | SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; | 
|  | } | 
|  |  | 
|  | if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | const unsigned NumSplits = | 
|  | DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); | 
|  | const unsigned Stride = SplitSrcVT.getStoreSize(); | 
|  | SmallVector<SDValue, 4> Loads; | 
|  | SmallVector<SDValue, 4> Chains; | 
|  |  | 
|  | SDValue BasePtr = LN0->getBasePtr(); | 
|  | for (unsigned Idx = 0; Idx < NumSplits; Idx++) { | 
|  | const unsigned Offset = Idx * Stride; | 
|  | const unsigned Align = MinAlign(LN0->getAlignment(), Offset); | 
|  |  | 
|  | SDValue SplitLoad = DAG.getExtLoad( | 
|  | ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, | 
|  | LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, | 
|  | LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); | 
|  |  | 
|  | BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, | 
|  | DAG.getConstant(Stride, DL, BasePtr.getValueType())); | 
|  |  | 
|  | Loads.push_back(SplitLoad.getValue(0)); | 
|  | Chains.push_back(SplitLoad.getValue(1)); | 
|  | } | 
|  |  | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); | 
|  | SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); | 
|  |  | 
|  | // Simplify TF. | 
|  | AddToWorklist(NewChain.getNode()); | 
|  |  | 
|  | CombineTo(N, NewValue); | 
|  |  | 
|  | // Replace uses of the original load (before extension) | 
|  | // with a truncate of the concatenated sextloaded vectors. | 
|  | SDValue Trunc = | 
|  | DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); | 
|  | ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); | 
|  | CombineTo(N0.getNode(), Trunc, NewChain); | 
|  | return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> | 
|  | //      (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) | 
|  | SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::ZERO_EXTEND); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT OrigVT = N->getOperand(0).getValueType(); | 
|  | if (TLI.isZExtFree(OrigVT, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // and/or/xor | 
|  | SDValue N0 = N->getOperand(0); | 
|  | if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || | 
|  | N0.getOpcode() == ISD::XOR) || | 
|  | N0.getOperand(1).getOpcode() != ISD::Constant || | 
|  | (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) | 
|  | return SDValue(); | 
|  |  | 
|  | // shl/shr | 
|  | SDValue N1 = N0->getOperand(0); | 
|  | if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || | 
|  | N1.getOperand(1).getOpcode() != ISD::Constant || | 
|  | (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) | 
|  | return SDValue(); | 
|  |  | 
|  | // load | 
|  | if (!isa<LoadSDNode>(N1.getOperand(0))) | 
|  | return SDValue(); | 
|  | LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); | 
|  | EVT MemVT = Load->getMemoryVT(); | 
|  | if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || | 
|  | Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) | 
|  | return SDValue(); | 
|  |  | 
|  |  | 
|  | // If the shift op is SHL, the logic op must be AND, otherwise the result | 
|  | // will be wrong. | 
|  | if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!N0.hasOneUse() || !N1.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), | 
|  | ISD::ZERO_EXTEND, SetCCs, TLI)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Actually do the transformation. | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, | 
|  | Load->getChain(), Load->getBasePtr(), | 
|  | Load->getMemoryVT(), Load->getMemOperand()); | 
|  |  | 
|  | SDLoc DL1(N1); | 
|  | SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, | 
|  | N1.getOperand(1)); | 
|  |  | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask = Mask.zext(VT.getSizeInBits()); | 
|  | SDLoc DL0(N0); | 
|  | SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, | 
|  | DAG.getConstant(Mask, DL0, VT)); | 
|  |  | 
|  | ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); | 
|  | CombineTo(N, And); | 
|  | if (SDValue(Load, 0).hasOneUse()) { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); | 
|  | } else { | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), | 
|  | Load->getValueType(0), ExtLoad); | 
|  | CombineTo(Load, Trunc, ExtLoad.getValue(1)); | 
|  | } | 
|  |  | 
|  | // N0 is dead at this point. | 
|  | recursivelyDeleteUnusedNodes(N0.getNode()); | 
|  |  | 
|  | return SDValue(N,0); // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | /// If we're narrowing or widening the result of a vector select and the final | 
|  | /// size is the same size as a setcc (compare) feeding the select, then try to | 
|  | /// apply the cast operation to the select's operands because matching vector | 
|  | /// sizes for a select condition and other operands should be more efficient. | 
|  | SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { | 
|  | unsigned CastOpcode = Cast->getOpcode(); | 
|  | assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || | 
|  | CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || | 
|  | CastOpcode == ISD::FP_ROUND) && | 
|  | "Unexpected opcode for vector select narrowing/widening"); | 
|  |  | 
|  | // We only do this transform before legal ops because the pattern may be | 
|  | // obfuscated by target-specific operations after legalization. Do not create | 
|  | // an illegal select op, however, because that may be difficult to lower. | 
|  | EVT VT = Cast->getValueType(0); | 
|  | if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue VSel = Cast->getOperand(0); | 
|  | if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || | 
|  | VSel.getOperand(0).getOpcode() != ISD::SETCC) | 
|  | return SDValue(); | 
|  |  | 
|  | // Does the setcc have the same vector size as the casted select? | 
|  | SDValue SetCC = VSel.getOperand(0); | 
|  | EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); | 
|  | if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) | 
|  | SDValue A = VSel.getOperand(1); | 
|  | SDValue B = VSel.getOperand(2); | 
|  | SDValue CastA, CastB; | 
|  | SDLoc DL(Cast); | 
|  | if (CastOpcode == ISD::FP_ROUND) { | 
|  | // FP_ROUND (fptrunc) has an extra flag operand to pass along. | 
|  | CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); | 
|  | CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); | 
|  | } else { | 
|  | CastA = DAG.getNode(CastOpcode, DL, VT, A); | 
|  | CastB = DAG.getNode(CastOpcode, DL, VT, B); | 
|  | } | 
|  | return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); | 
|  | } | 
|  |  | 
|  | // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) | 
|  | // fold ([s|z]ext (     extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) | 
|  | static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, | 
|  | const TargetLowering &TLI, EVT VT, | 
|  | bool LegalOperations, SDNode *N, | 
|  | SDValue N0, ISD::LoadExtType ExtLoadType) { | 
|  | SDNode *N0Node = N0.getNode(); | 
|  | bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) | 
|  | : ISD::isZEXTLoad(N0Node); | 
|  | if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || | 
|  | !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | EVT MemVT = LN0->getMemoryVT(); | 
|  | if ((LegalOperations || LN0->isVolatile() || VT.isVector()) && | 
|  | !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue ExtLoad = | 
|  | DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), | 
|  | LN0->getBasePtr(), MemVT, LN0->getMemOperand()); | 
|  | Combiner.CombineTo(N, ExtLoad); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); | 
|  | if (LN0->use_empty()) | 
|  | Combiner.recursivelyDeleteUnusedNodes(LN0); | 
|  | return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) | 
|  | // Only generate vector extloads when 1) they're legal, and 2) they are | 
|  | // deemed desirable by the target. | 
|  | static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, | 
|  | const TargetLowering &TLI, EVT VT, | 
|  | bool LegalOperations, SDNode *N, SDValue N0, | 
|  | ISD::LoadExtType ExtLoadType, | 
|  | ISD::NodeType ExtOpc) { | 
|  | if (!ISD::isNON_EXTLoad(N0.getNode()) || | 
|  | !ISD::isUNINDEXEDLoad(N0.getNode()) || | 
|  | ((LegalOperations || VT.isVector() || | 
|  | cast<LoadSDNode>(N0)->isVolatile()) && | 
|  | !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) | 
|  | return {}; | 
|  |  | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode *, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) | 
|  | DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); | 
|  | if (VT.isVector()) | 
|  | DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); | 
|  | if (!DoXform) | 
|  | return {}; | 
|  |  | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), | 
|  | LN0->getBasePtr(), N0.getValueType(), | 
|  | LN0->getMemOperand()); | 
|  | Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); | 
|  | // If the load value is used only by N, replace it via CombineTo N. | 
|  | bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); | 
|  | Combiner.CombineTo(N, ExtLoad); | 
|  | if (NoReplaceTrunc) { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); | 
|  | Combiner.recursivelyDeleteUnusedNodes(LN0); | 
|  | } else { | 
|  | SDValue Trunc = | 
|  | DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); | 
|  | Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); | 
|  | } | 
|  | return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, | 
|  | bool LegalOperations) { | 
|  | assert((N->getOpcode() == ISD::SIGN_EXTEND || | 
|  | N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); | 
|  |  | 
|  | SDValue SetCC = N->getOperand(0); | 
|  | if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || | 
|  | !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue X = SetCC.getOperand(0); | 
|  | SDValue Ones = SetCC.getOperand(1); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT XVT = X.getValueType(); | 
|  | // setge X, C is canonicalized to setgt, so we do not need to match that | 
|  | // pattern. The setlt sibling is folded in SimplifySelectCC() because it does | 
|  | // not require the 'not' op. | 
|  | if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { | 
|  | // Invert and smear/shift the sign bit: | 
|  | // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) | 
|  | // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) | 
|  | SDLoc DL(N); | 
|  | SDValue NotX = DAG.getNOT(DL, X, VT); | 
|  | SDValue ShiftAmount = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT); | 
|  | auto ShiftOpcode = N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; | 
|  | return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) | 
|  | return Res; | 
|  |  | 
|  | // fold (sext (sext x)) -> (sext x) | 
|  | // fold (sext (aext x)) -> (sext x) | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); | 
|  |  | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | // fold (sext (truncate (load x))) -> (sext (smaller load x)) | 
|  | // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) | 
|  | if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { | 
|  | SDNode *oye = N0.getOperand(0).getNode(); | 
|  | if (NarrowLoad.getNode() != N0.getNode()) { | 
|  | CombineTo(N0.getNode(), NarrowLoad); | 
|  | // CombineTo deleted the truncate, if needed, but not what's under it. | 
|  | AddToWorklist(oye); | 
|  | } | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | // See if the value being truncated is already sign extended.  If so, just | 
|  | // eliminate the trunc/sext pair. | 
|  | SDValue Op = N0.getOperand(0); | 
|  | unsigned OpBits   = Op.getScalarValueSizeInBits(); | 
|  | unsigned MidBits  = N0.getScalarValueSizeInBits(); | 
|  | unsigned DestBits = VT.getScalarSizeInBits(); | 
|  | unsigned NumSignBits = DAG.ComputeNumSignBits(Op); | 
|  |  | 
|  | if (OpBits == DestBits) { | 
|  | // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign | 
|  | // bits, it is already ready. | 
|  | if (NumSignBits > DestBits-MidBits) | 
|  | return Op; | 
|  | } else if (OpBits < DestBits) { | 
|  | // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign | 
|  | // bits, just sext from i32. | 
|  | if (NumSignBits > OpBits-MidBits) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); | 
|  | } else { | 
|  | // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign | 
|  | // bits, just truncate to i32. | 
|  | if (NumSignBits > OpBits-MidBits) | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); | 
|  | } | 
|  |  | 
|  | // fold (sext (truncate x)) -> (sextinreg x). | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, | 
|  | N0.getValueType())) { | 
|  | if (OpBits < DestBits) | 
|  | Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); | 
|  | else if (OpBits > DestBits) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, | 
|  | DAG.getValueType(N0.getValueType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to simplify (sext (load x)). | 
|  | if (SDValue foldedExt = | 
|  | tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, | 
|  | ISD::SEXTLOAD, ISD::SIGN_EXTEND)) | 
|  | return foldedExt; | 
|  |  | 
|  | // fold (sext (load x)) to multiple smaller sextloads. | 
|  | // Only on illegal but splittable vectors. | 
|  | if (SDValue ExtLoad = CombineExtLoad(N)) | 
|  | return ExtLoad; | 
|  |  | 
|  | // Try to simplify (sext (sextload x)). | 
|  | if (SDValue foldedExt = tryToFoldExtOfExtload( | 
|  | DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) | 
|  | return foldedExt; | 
|  |  | 
|  | // fold (sext (and/or/xor (load x), cst)) -> | 
|  | //      (and/or/xor (sextload x), (sext cst)) | 
|  | if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || | 
|  | N0.getOpcode() == ISD::XOR) && | 
|  | isa<LoadSDNode>(N0.getOperand(0)) && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { | 
|  | LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); | 
|  | EVT MemVT = LN00->getMemoryVT(); | 
|  | if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && | 
|  | LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), | 
|  | ISD::SIGN_EXTEND, SetCCs, TLI); | 
|  | if (DoXform) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, | 
|  | LN00->getChain(), LN00->getBasePtr(), | 
|  | LN00->getMemoryVT(), | 
|  | LN00->getMemOperand()); | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask = Mask.sext(VT.getSizeInBits()); | 
|  | SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, | 
|  | ExtLoad, DAG.getConstant(Mask, DL, VT)); | 
|  | ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); | 
|  | bool NoReplaceTruncAnd = !N0.hasOneUse(); | 
|  | bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); | 
|  | CombineTo(N, And); | 
|  | // If N0 has multiple uses, change other uses as well. | 
|  | if (NoReplaceTruncAnd) { | 
|  | SDValue TruncAnd = | 
|  | DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); | 
|  | CombineTo(N0.getNode(), TruncAnd); | 
|  | } | 
|  | if (NoReplaceTrunc) { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); | 
|  | } else { | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), | 
|  | LN00->getValueType(0), ExtLoad); | 
|  | CombineTo(LN00, Trunc, ExtLoad.getValue(1)); | 
|  | } | 
|  | return SDValue(N,0); // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) | 
|  | return V; | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | SDValue N01 = N0.getOperand(1); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | 
|  | EVT N00VT = N0.getOperand(0).getValueType(); | 
|  |  | 
|  | // sext(setcc) -> sext_in_reg(vsetcc) for vectors. | 
|  | // Only do this before legalize for now. | 
|  | if (VT.isVector() && !LegalOperations && | 
|  | TLI.getBooleanContents(N00VT) == | 
|  | TargetLowering::ZeroOrNegativeOneBooleanContent) { | 
|  | // On some architectures (such as SSE/NEON/etc) the SETCC result type is | 
|  | // of the same size as the compared operands. Only optimize sext(setcc()) | 
|  | // if this is the case. | 
|  | EVT SVT = getSetCCResultType(N00VT); | 
|  |  | 
|  | // If we already have the desired type, don't change it. | 
|  | if (SVT != N0.getValueType()) { | 
|  | // We know that the # elements of the results is the same as the | 
|  | // # elements of the compare (and the # elements of the compare result | 
|  | // for that matter).  Check to see that they are the same size.  If so, | 
|  | // we know that the element size of the sext'd result matches the | 
|  | // element size of the compare operands. | 
|  | if (VT.getSizeInBits() == SVT.getSizeInBits()) | 
|  | return DAG.getSetCC(DL, VT, N00, N01, CC); | 
|  |  | 
|  | // If the desired elements are smaller or larger than the source | 
|  | // elements, we can use a matching integer vector type and then | 
|  | // truncate/sign extend. | 
|  | EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); | 
|  | if (SVT == MatchingVecType) { | 
|  | SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); | 
|  | return DAG.getSExtOrTrunc(VsetCC, DL, VT); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) | 
|  | // Here, T can be 1 or -1, depending on the type of the setcc and | 
|  | // getBooleanContents(). | 
|  | unsigned SetCCWidth = N0.getScalarValueSizeInBits(); | 
|  |  | 
|  | // To determine the "true" side of the select, we need to know the high bit | 
|  | // of the value returned by the setcc if it evaluates to true. | 
|  | // If the type of the setcc is i1, then the true case of the select is just | 
|  | // sext(i1 1), that is, -1. | 
|  | // If the type of the setcc is larger (say, i8) then the value of the high | 
|  | // bit depends on getBooleanContents(), so ask TLI for a real "true" value | 
|  | // of the appropriate width. | 
|  | SDValue ExtTrueVal = (SetCCWidth == 1) | 
|  | ? DAG.getAllOnesConstant(DL, VT) | 
|  | : DAG.getBoolConstant(true, DL, VT, N00VT); | 
|  | SDValue Zero = DAG.getConstant(0, DL, VT); | 
|  | if (SDValue SCC = | 
|  | SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) | 
|  | return SCC; | 
|  |  | 
|  | if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { | 
|  | EVT SetCCVT = getSetCCResultType(N00VT); | 
|  | // Don't do this transform for i1 because there's a select transform | 
|  | // that would reverse it. | 
|  | // TODO: We should not do this transform at all without a target hook | 
|  | // because a sext is likely cheaper than a select? | 
|  | if (SetCCVT.getScalarSizeInBits() != 1 && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { | 
|  | SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); | 
|  | return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext x) -> (zext x) if the sign bit is known zero. | 
|  | if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && | 
|  | DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); | 
|  |  | 
|  | if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) | 
|  | return NewVSel; | 
|  |  | 
|  | // Eliminate this sign extend by doing a negation in the destination type: | 
|  | // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) | 
|  | if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && | 
|  | isNullOrNullSplat(N0.getOperand(0)) && | 
|  | N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && | 
|  | TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { | 
|  | SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext); | 
|  | } | 
|  | // Eliminate this sign extend by doing a decrement in the destination type: | 
|  | // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) | 
|  | if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && | 
|  | isAllOnesOrAllOnesSplat(N0.getOperand(1)) && | 
|  | N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && | 
|  | TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { | 
|  | SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // isTruncateOf - If N is a truncate of some other value, return true, record | 
|  | // the value being truncated in Op and which of Op's bits are zero/one in Known. | 
|  | // This function computes KnownBits to avoid a duplicated call to | 
|  | // computeKnownBits in the caller. | 
|  | static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, | 
|  | KnownBits &Known) { | 
|  | if (N->getOpcode() == ISD::TRUNCATE) { | 
|  | Op = N->getOperand(0); | 
|  | Known = DAG.computeKnownBits(Op); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (N.getOpcode() != ISD::SETCC || | 
|  | N.getValueType().getScalarType() != MVT::i1 || | 
|  | cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) | 
|  | return false; | 
|  |  | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | assert(Op0.getValueType() == Op1.getValueType()); | 
|  |  | 
|  | if (isNullOrNullSplat(Op0)) | 
|  | Op = Op1; | 
|  | else if (isNullOrNullSplat(Op1)) | 
|  | Op = Op0; | 
|  | else | 
|  | return false; | 
|  |  | 
|  | Known = DAG.computeKnownBits(Op); | 
|  |  | 
|  | return (Known.Zero | 1).isAllOnesValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) | 
|  | return Res; | 
|  |  | 
|  | // fold (zext (zext x)) -> (zext x) | 
|  | // fold (zext (aext x)) -> (zext x) | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, | 
|  | N0.getOperand(0)); | 
|  |  | 
|  | // fold (zext (truncate x)) -> (zext x) or | 
|  | //      (zext (truncate x)) -> (truncate x) | 
|  | // This is valid when the truncated bits of x are already zero. | 
|  | SDValue Op; | 
|  | KnownBits Known; | 
|  | if (isTruncateOf(DAG, N0, Op, Known)) { | 
|  | APInt TruncatedBits = | 
|  | (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? | 
|  | APInt(Op.getScalarValueSizeInBits(), 0) : | 
|  | APInt::getBitsSet(Op.getScalarValueSizeInBits(), | 
|  | N0.getScalarValueSizeInBits(), | 
|  | std::min(Op.getScalarValueSizeInBits(), | 
|  | VT.getScalarSizeInBits())); | 
|  | if (TruncatedBits.isSubsetOf(Known.Zero)) | 
|  | return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); | 
|  | } | 
|  |  | 
|  | // fold (zext (truncate x)) -> (and x, mask) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | // fold (zext (truncate (load x))) -> (zext (smaller load x)) | 
|  | // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) | 
|  | if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { | 
|  | SDNode *oye = N0.getOperand(0).getNode(); | 
|  | if (NarrowLoad.getNode() != N0.getNode()) { | 
|  | CombineTo(N0.getNode(), NarrowLoad); | 
|  | // CombineTo deleted the truncate, if needed, but not what's under it. | 
|  | AddToWorklist(oye); | 
|  | } | 
|  | return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | EVT SrcVT = N0.getOperand(0).getValueType(); | 
|  | EVT MinVT = N0.getValueType(); | 
|  |  | 
|  | // Try to mask before the extension to avoid having to generate a larger mask, | 
|  | // possibly over several sub-vectors. | 
|  | if (SrcVT.bitsLT(VT) && VT.isVector()) { | 
|  | if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && | 
|  | TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { | 
|  | SDValue Op = N0.getOperand(0); | 
|  | Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); | 
|  | AddToWorklist(Op.getNode()); | 
|  | SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); | 
|  | // Transfer the debug info; the new node is equivalent to N0. | 
|  | DAG.transferDbgValues(N0, ZExtOrTrunc); | 
|  | return ZExtOrTrunc; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { | 
|  | SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); | 
|  | AddToWorklist(Op.getNode()); | 
|  | SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); | 
|  | // We may safely transfer the debug info describing the truncate node over | 
|  | // to the equivalent and operation. | 
|  | DAG.transferDbgValues(N0, And); | 
|  | return And; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold (zext (and (trunc x), cst)) -> (and x, cst), | 
|  | // if either of the casts is not free. | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0).getOpcode() == ISD::TRUNCATE && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), | 
|  | N0.getValueType()) || | 
|  | !TLI.isZExtFree(N0.getValueType(), VT))) { | 
|  | SDValue X = N0.getOperand(0).getOperand(0); | 
|  | X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask = Mask.zext(VT.getSizeInBits()); | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::AND, DL, VT, | 
|  | X, DAG.getConstant(Mask, DL, VT)); | 
|  | } | 
|  |  | 
|  | // Try to simplify (zext (load x)). | 
|  | if (SDValue foldedExt = | 
|  | tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, | 
|  | ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) | 
|  | return foldedExt; | 
|  |  | 
|  | // fold (zext (load x)) to multiple smaller zextloads. | 
|  | // Only on illegal but splittable vectors. | 
|  | if (SDValue ExtLoad = CombineExtLoad(N)) | 
|  | return ExtLoad; | 
|  |  | 
|  | // fold (zext (and/or/xor (load x), cst)) -> | 
|  | //      (and/or/xor (zextload x), (zext cst)) | 
|  | // Unless (and (load x) cst) will match as a zextload already and has | 
|  | // additional users. | 
|  | if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || | 
|  | N0.getOpcode() == ISD::XOR) && | 
|  | isa<LoadSDNode>(N0.getOperand(0)) && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { | 
|  | LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); | 
|  | EVT MemVT = LN00->getMemoryVT(); | 
|  | if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && | 
|  | LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) { | 
|  | if (N0.getOpcode() == ISD::AND) { | 
|  | auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | EVT LoadResultTy = AndC->getValueType(0); | 
|  | EVT ExtVT; | 
|  | if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) | 
|  | DoXform = false; | 
|  | } | 
|  | } | 
|  | if (DoXform) | 
|  | DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), | 
|  | ISD::ZERO_EXTEND, SetCCs, TLI); | 
|  | if (DoXform) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, | 
|  | LN00->getChain(), LN00->getBasePtr(), | 
|  | LN00->getMemoryVT(), | 
|  | LN00->getMemOperand()); | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask = Mask.zext(VT.getSizeInBits()); | 
|  | SDLoc DL(N); | 
|  | SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, | 
|  | ExtLoad, DAG.getConstant(Mask, DL, VT)); | 
|  | ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); | 
|  | bool NoReplaceTruncAnd = !N0.hasOneUse(); | 
|  | bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); | 
|  | CombineTo(N, And); | 
|  | // If N0 has multiple uses, change other uses as well. | 
|  | if (NoReplaceTruncAnd) { | 
|  | SDValue TruncAnd = | 
|  | DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); | 
|  | CombineTo(N0.getNode(), TruncAnd); | 
|  | } | 
|  | if (NoReplaceTrunc) { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); | 
|  | } else { | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), | 
|  | LN00->getValueType(0), ExtLoad); | 
|  | CombineTo(LN00, Trunc, ExtLoad.getValue(1)); | 
|  | } | 
|  | return SDValue(N,0); // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> | 
|  | //      (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) | 
|  | if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) | 
|  | return ZExtLoad; | 
|  |  | 
|  | // Try to simplify (zext (zextload x)). | 
|  | if (SDValue foldedExt = tryToFoldExtOfExtload( | 
|  | DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) | 
|  | return foldedExt; | 
|  |  | 
|  | if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) | 
|  | return V; | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | // Only do this before legalize for now. | 
|  | if (!LegalOperations && VT.isVector() && | 
|  | N0.getValueType().getVectorElementType() == MVT::i1) { | 
|  | EVT N00VT = N0.getOperand(0).getValueType(); | 
|  | if (getSetCCResultType(N00VT) == N0.getValueType()) | 
|  | return SDValue(); | 
|  |  | 
|  | // We know that the # elements of the results is the same as the # | 
|  | // elements of the compare (and the # elements of the compare result for | 
|  | // that matter). Check to see that they are the same size. If so, we know | 
|  | // that the element size of the sext'd result matches the element size of | 
|  | // the compare operands. | 
|  | SDLoc DL(N); | 
|  | SDValue VecOnes = DAG.getConstant(1, DL, VT); | 
|  | if (VT.getSizeInBits() == N00VT.getSizeInBits()) { | 
|  | // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. | 
|  | SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), | 
|  | N0.getOperand(1), N0.getOperand(2)); | 
|  | return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes); | 
|  | } | 
|  |  | 
|  | // If the desired elements are smaller or larger than the source | 
|  | // elements we can use a matching integer vector type and then | 
|  | // truncate/sign extend. | 
|  | EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); | 
|  | SDValue VsetCC = | 
|  | DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), | 
|  | N0.getOperand(1), N0.getOperand(2)); | 
|  | return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT), | 
|  | VecOnes); | 
|  | } | 
|  |  | 
|  | // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc | 
|  | SDLoc DL(N); | 
|  | if (SDValue SCC = SimplifySelectCC( | 
|  | DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), | 
|  | DAG.getConstant(0, DL, VT), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) | 
|  | return SCC; | 
|  | } | 
|  |  | 
|  | // (zext (shl (zext x), cst)) -> (shl (zext x), cst) | 
|  | if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && | 
|  | isa<ConstantSDNode>(N0.getOperand(1)) && | 
|  | N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && | 
|  | N0.hasOneUse()) { | 
|  | SDValue ShAmt = N0.getOperand(1); | 
|  | if (N0.getOpcode() == ISD::SHL) { | 
|  | SDValue InnerZExt = N0.getOperand(0); | 
|  | // If the original shl may be shifting out bits, do not perform this | 
|  | // transformation. | 
|  | unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - | 
|  | InnerZExt.getOperand(0).getValueSizeInBits(); | 
|  | if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Ensure that the shift amount is wide enough for the shifted value. | 
|  | if (VT.getSizeInBits() >= 256) | 
|  | ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); | 
|  |  | 
|  | return DAG.getNode(N0.getOpcode(), DL, VT, | 
|  | DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), | 
|  | ShAmt); | 
|  | } | 
|  |  | 
|  | if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) | 
|  | return NewVSel; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) | 
|  | return Res; | 
|  |  | 
|  | // fold (aext (aext x)) -> (aext x) | 
|  | // fold (aext (zext x)) -> (zext x) | 
|  | // fold (aext (sext x)) -> (sext x) | 
|  | if (N0.getOpcode() == ISD::ANY_EXTEND  || | 
|  | N0.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND) | 
|  | return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); | 
|  |  | 
|  | // fold (aext (truncate (load x))) -> (aext (smaller load x)) | 
|  | // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { | 
|  | SDNode *oye = N0.getOperand(0).getNode(); | 
|  | if (NarrowLoad.getNode() != N0.getNode()) { | 
|  | CombineTo(N0.getNode(), NarrowLoad); | 
|  | // CombineTo deleted the truncate, if needed, but not what's under it. | 
|  | AddToWorklist(oye); | 
|  | } | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (aext (truncate x)) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) | 
|  | return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); | 
|  |  | 
|  | // Fold (aext (and (trunc x), cst)) -> (and x, cst) | 
|  | // if the trunc is not free. | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0).getOpcode() == ISD::TRUNCATE && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant && | 
|  | !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), | 
|  | N0.getValueType())) { | 
|  | SDLoc DL(N); | 
|  | SDValue X = N0.getOperand(0).getOperand(0); | 
|  | X = DAG.getAnyExtOrTrunc(X, DL, VT); | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | Mask = Mask.zext(VT.getSizeInBits()); | 
|  | return DAG.getNode(ISD::AND, DL, VT, | 
|  | X, DAG.getConstant(Mask, DL, VT)); | 
|  | } | 
|  |  | 
|  | // fold (aext (load x)) -> (aext (truncate (extload x))) | 
|  | // None of the supported targets knows how to perform load and any_ext | 
|  | // on vectors in one instruction.  We only perform this transformation on | 
|  | // scalars. | 
|  | if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && | 
|  | ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { | 
|  | bool DoXform = true; | 
|  | SmallVector<SDNode*, 4> SetCCs; | 
|  | if (!N0.hasOneUse()) | 
|  | DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, | 
|  | TLI); | 
|  | if (DoXform) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), N0.getValueType(), | 
|  | LN0->getMemOperand()); | 
|  | ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); | 
|  | // If the load value is used only by N, replace it via CombineTo N. | 
|  | bool NoReplaceTrunc = N0.hasOneUse(); | 
|  | CombineTo(N, ExtLoad); | 
|  | if (NoReplaceTrunc) { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); | 
|  | recursivelyDeleteUnusedNodes(LN0); | 
|  | } else { | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), | 
|  | N0.getValueType(), ExtLoad); | 
|  | CombineTo(LN0, Trunc, ExtLoad.getValue(1)); | 
|  | } | 
|  | return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (aext (zextload x)) -> (aext (truncate (zextload x))) | 
|  | // fold (aext (sextload x)) -> (aext (truncate (sextload x))) | 
|  | // fold (aext ( extload x)) -> (aext (truncate (extload  x))) | 
|  | if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && | 
|  | ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | ISD::LoadExtType ExtType = LN0->getExtensionType(); | 
|  | EVT MemVT = LN0->getMemoryVT(); | 
|  | if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { | 
|  | SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), | 
|  | VT, LN0->getChain(), LN0->getBasePtr(), | 
|  | MemVT, LN0->getMemOperand()); | 
|  | CombineTo(N, ExtLoad); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); | 
|  | recursivelyDeleteUnusedNodes(LN0); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SETCC) { | 
|  | // For vectors: | 
|  | // aext(setcc) -> vsetcc | 
|  | // aext(setcc) -> truncate(vsetcc) | 
|  | // aext(setcc) -> aext(vsetcc) | 
|  | // Only do this before legalize for now. | 
|  | if (VT.isVector() && !LegalOperations) { | 
|  | EVT N00VT = N0.getOperand(0).getValueType(); | 
|  | if (getSetCCResultType(N00VT) == N0.getValueType()) | 
|  | return SDValue(); | 
|  |  | 
|  | // We know that the # elements of the results is the same as the | 
|  | // # elements of the compare (and the # elements of the compare result | 
|  | // for that matter).  Check to see that they are the same size.  If so, | 
|  | // we know that the element size of the sext'd result matches the | 
|  | // element size of the compare operands. | 
|  | if (VT.getSizeInBits() == N00VT.getSizeInBits()) | 
|  | return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), | 
|  | N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  |  | 
|  | // If the desired elements are smaller or larger than the source | 
|  | // elements we can use a matching integer vector type and then | 
|  | // truncate/any extend | 
|  | EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); | 
|  | SDValue VsetCC = | 
|  | DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), | 
|  | N0.getOperand(1), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  | return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); | 
|  | } | 
|  |  | 
|  | // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc | 
|  | SDLoc DL(N); | 
|  | if (SDValue SCC = SimplifySelectCC( | 
|  | DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), | 
|  | DAG.getConstant(0, DL, VT), | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) | 
|  | return SCC; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitAssertExt(SDNode *N) { | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT AssertVT = cast<VTSDNode>(N1)->getVT(); | 
|  |  | 
|  | // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) | 
|  | if (N0.getOpcode() == Opcode && | 
|  | AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) | 
|  | return N0; | 
|  |  | 
|  | if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && | 
|  | N0.getOperand(0).getOpcode() == Opcode) { | 
|  | // We have an assert, truncate, assert sandwich. Make one stronger assert | 
|  | // by asserting on the smallest asserted type to the larger source type. | 
|  | // This eliminates the later assert: | 
|  | // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN | 
|  | // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN | 
|  | SDValue BigA = N0.getOperand(0); | 
|  | EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); | 
|  | assert(BigA_AssertVT.bitsLE(N0.getValueType()) && | 
|  | "Asserting zero/sign-extended bits to a type larger than the " | 
|  | "truncated destination does not provide information"); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; | 
|  | SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); | 
|  | SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), | 
|  | BigA.getOperand(0), MinAssertVTVal); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); | 
|  | } | 
|  |  | 
|  | // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller | 
|  | // than X. Just move the AssertZext in front of the truncate and drop the | 
|  | // AssertSExt. | 
|  | if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && | 
|  | N0.getOperand(0).getOpcode() == ISD::AssertSext && | 
|  | Opcode == ISD::AssertZext) { | 
|  | SDValue BigA = N0.getOperand(0); | 
|  | EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); | 
|  | assert(BigA_AssertVT.bitsLE(N0.getValueType()) && | 
|  | "Asserting zero/sign-extended bits to a type larger than the " | 
|  | "truncated destination does not provide information"); | 
|  |  | 
|  | if (AssertVT.bitsLT(BigA_AssertVT)) { | 
|  | SDLoc DL(N); | 
|  | SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), | 
|  | BigA.getOperand(0), N1); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// If the result of a wider load is shifted to right of N  bits and then | 
|  | /// truncated to a narrower type and where N is a multiple of number of bits of | 
|  | /// the narrower type, transform it to a narrower load from address + N / num of | 
|  | /// bits of new type. Also narrow the load if the result is masked with an AND | 
|  | /// to effectively produce a smaller type. If the result is to be extended, also | 
|  | /// fold the extension to form a extending load. | 
|  | SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { | 
|  | unsigned Opc = N->getOpcode(); | 
|  |  | 
|  | ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT ExtVT = VT; | 
|  |  | 
|  | // This transformation isn't valid for vector loads. | 
|  | if (VT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned ShAmt = 0; | 
|  | bool HasShiftedOffset = false; | 
|  | // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then | 
|  | // extended to VT. | 
|  | if (Opc == ISD::SIGN_EXTEND_INREG) { | 
|  | ExtType = ISD::SEXTLOAD; | 
|  | ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); | 
|  | } else if (Opc == ISD::SRL) { | 
|  | // Another special-case: SRL is basically zero-extending a narrower value, | 
|  | // or it maybe shifting a higher subword, half or byte into the lowest | 
|  | // bits. | 
|  | ExtType = ISD::ZEXTLOAD; | 
|  | N0 = SDValue(N, 0); | 
|  |  | 
|  | auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0)); | 
|  | auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!N01 || !LN0) | 
|  | return SDValue(); | 
|  |  | 
|  | uint64_t ShiftAmt = N01->getZExtValue(); | 
|  | uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits(); | 
|  | if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt) | 
|  | ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt); | 
|  | else | 
|  | ExtVT = EVT::getIntegerVT(*DAG.getContext(), | 
|  | VT.getSizeInBits() - ShiftAmt); | 
|  | } else if (Opc == ISD::AND) { | 
|  | // An AND with a constant mask is the same as a truncate + zero-extend. | 
|  | auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (!AndC) | 
|  | return SDValue(); | 
|  |  | 
|  | const APInt &Mask = AndC->getAPIntValue(); | 
|  | unsigned ActiveBits = 0; | 
|  | if (Mask.isMask()) { | 
|  | ActiveBits = Mask.countTrailingOnes(); | 
|  | } else if (Mask.isShiftedMask()) { | 
|  | ShAmt = Mask.countTrailingZeros(); | 
|  | APInt ShiftedMask = Mask.lshr(ShAmt); | 
|  | ActiveBits = ShiftedMask.countTrailingOnes(); | 
|  | HasShiftedOffset = true; | 
|  | } else | 
|  | return SDValue(); | 
|  |  | 
|  | ExtType = ISD::ZEXTLOAD; | 
|  | ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { | 
|  | SDValue SRL = N0; | 
|  | if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) { | 
|  | ShAmt = ConstShift->getZExtValue(); | 
|  | unsigned EVTBits = ExtVT.getSizeInBits(); | 
|  | // Is the shift amount a multiple of size of VT? | 
|  | if ((ShAmt & (EVTBits-1)) == 0) { | 
|  | N0 = N0.getOperand(0); | 
|  | // Is the load width a multiple of size of VT? | 
|  | if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // At this point, we must have a load or else we can't do the transform. | 
|  | if (!isa<LoadSDNode>(N0)) return SDValue(); | 
|  |  | 
|  | auto *LN0 = cast<LoadSDNode>(N0); | 
|  |  | 
|  | // Because a SRL must be assumed to *need* to zero-extend the high bits | 
|  | // (as opposed to anyext the high bits), we can't combine the zextload | 
|  | // lowering of SRL and an sextload. | 
|  | if (LN0->getExtensionType() == ISD::SEXTLOAD) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the shift amount is larger than the input type then we're not | 
|  | // accessing any of the loaded bytes.  If the load was a zextload/extload | 
|  | // then the result of the shift+trunc is zero/undef (handled elsewhere). | 
|  | if (ShAmt >= LN0->getMemoryVT().getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the SRL is only used by a masking AND, we may be able to adjust | 
|  | // the ExtVT to make the AND redundant. | 
|  | SDNode *Mask = *(SRL->use_begin()); | 
|  | if (Mask->getOpcode() == ISD::AND && | 
|  | isa<ConstantSDNode>(Mask->getOperand(1))) { | 
|  | const APInt &ShiftMask = | 
|  | cast<ConstantSDNode>(Mask->getOperand(1))->getAPIntValue(); | 
|  | if (ShiftMask.isMask()) { | 
|  | EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), | 
|  | ShiftMask.countTrailingOnes()); | 
|  | // If the mask is smaller, recompute the type. | 
|  | if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) && | 
|  | TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT)) | 
|  | ExtVT = MaskedVT; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the load is shifted left (and the result isn't shifted back right), | 
|  | // we can fold the truncate through the shift. | 
|  | unsigned ShLeftAmt = 0; | 
|  | if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && | 
|  | ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { | 
|  | if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | ShLeftAmt = N01->getZExtValue(); | 
|  | N0 = N0.getOperand(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we haven't found a load, we can't narrow it. | 
|  | if (!isa<LoadSDNode>(N0)) | 
|  | return SDValue(); | 
|  |  | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | if (!isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) | 
|  | return SDValue(); | 
|  |  | 
|  | auto AdjustBigEndianShift = [&](unsigned ShAmt) { | 
|  | unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); | 
|  | unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); | 
|  | return LVTStoreBits - EVTStoreBits - ShAmt; | 
|  | }; | 
|  |  | 
|  | // For big endian targets, we need to adjust the offset to the pointer to | 
|  | // load the correct bytes. | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | ShAmt = AdjustBigEndianShift(ShAmt); | 
|  |  | 
|  | EVT PtrType = N0.getOperand(1).getValueType(); | 
|  | uint64_t PtrOff = ShAmt / 8; | 
|  | unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); | 
|  | SDLoc DL(LN0); | 
|  | // The original load itself didn't wrap, so an offset within it doesn't. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setNoUnsignedWrap(true); | 
|  | SDValue NewPtr = DAG.getNode(ISD::ADD, DL, | 
|  | PtrType, LN0->getBasePtr(), | 
|  | DAG.getConstant(PtrOff, DL, PtrType), | 
|  | Flags); | 
|  | AddToWorklist(NewPtr.getNode()); | 
|  |  | 
|  | SDValue Load; | 
|  | if (ExtType == ISD::NON_EXTLOAD) | 
|  | Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, | 
|  | LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, | 
|  | LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); | 
|  | else | 
|  | Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(), NewPtr, | 
|  | LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, | 
|  | NewAlign, LN0->getMemOperand()->getFlags(), | 
|  | LN0->getAAInfo()); | 
|  |  | 
|  | // Replace the old load's chain with the new load's chain. | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); | 
|  |  | 
|  | // Shift the result left, if we've swallowed a left shift. | 
|  | SDValue Result = Load; | 
|  | if (ShLeftAmt != 0) { | 
|  | EVT ShImmTy = getShiftAmountTy(Result.getValueType()); | 
|  | if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) | 
|  | ShImmTy = VT; | 
|  | // If the shift amount is as large as the result size (but, presumably, | 
|  | // no larger than the source) then the useful bits of the result are | 
|  | // zero; we can't simply return the shortened shift, because the result | 
|  | // of that operation is undefined. | 
|  | SDLoc DL(N0); | 
|  | if (ShLeftAmt >= VT.getSizeInBits()) | 
|  | Result = DAG.getConstant(0, DL, VT); | 
|  | else | 
|  | Result = DAG.getNode(ISD::SHL, DL, VT, | 
|  | Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); | 
|  | } | 
|  |  | 
|  | if (HasShiftedOffset) { | 
|  | // Recalculate the shift amount after it has been altered to calculate | 
|  | // the offset. | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | ShAmt = AdjustBigEndianShift(ShAmt); | 
|  |  | 
|  | // We're using a shifted mask, so the load now has an offset. This means | 
|  | // that data has been loaded into the lower bytes than it would have been | 
|  | // before, so we need to shl the loaded data into the correct position in the | 
|  | // register. | 
|  | SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); | 
|  | Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); | 
|  | } | 
|  |  | 
|  | // Return the new loaded value. | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT EVT = cast<VTSDNode>(N1)->getVT(); | 
|  | unsigned VTBits = VT.getScalarSizeInBits(); | 
|  | unsigned EVTBits = EVT.getScalarSizeInBits(); | 
|  |  | 
|  | if (N0.isUndef()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // fold (sext_in_reg c1) -> c1 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); | 
|  |  | 
|  | // If the input is already sign extended, just drop the extension. | 
|  | if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) | 
|  | return N0; | 
|  |  | 
|  | // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
|  | EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, | 
|  | N0.getOperand(0), N1); | 
|  |  | 
|  | // fold (sext_in_reg (sext x)) -> (sext x) | 
|  | // fold (sext_in_reg (aext x)) -> (sext x) | 
|  | // if x is small enough or if we know that x has more than 1 sign bit and the | 
|  | // sign_extend_inreg is extending from one of them. | 
|  | if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | unsigned N00Bits = N00.getScalarValueSizeInBits(); | 
|  | if ((N00Bits <= EVTBits || | 
|  | (N00Bits - DAG.ComputeNumSignBits(N00)) < EVTBits) && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); | 
|  | } | 
|  |  | 
|  | // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) | 
|  | if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || | 
|  | N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) && | 
|  | N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) { | 
|  | if (!LegalOperations || | 
|  | TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, | 
|  | N0.getOperand(0)); | 
|  | } | 
|  |  | 
|  | // fold (sext_in_reg (zext x)) -> (sext x) | 
|  | // iff we are extending the source sign bit. | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getScalarValueSizeInBits() == EVTBits && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); | 
|  | } | 
|  |  | 
|  | // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. | 
|  | if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1))) | 
|  | return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType()); | 
|  |  | 
|  | // fold operands of sext_in_reg based on knowledge that the top bits are not | 
|  | // demanded. | 
|  | if (SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // fold (sext_in_reg (load x)) -> (smaller sextload x) | 
|  | // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) | 
|  | if (SDValue NarrowLoad = ReduceLoadWidth(N)) | 
|  | return NarrowLoad; | 
|  |  | 
|  | // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) | 
|  | // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. | 
|  | // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. | 
|  | if (N0.getOpcode() == ISD::SRL) { | 
|  | if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) | 
|  | if (ShAmt->getAPIntValue().ule(VTBits - EVTBits)) { | 
|  | // We can turn this into an SRA iff the input to the SRL is already sign | 
|  | // extended enough. | 
|  | unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); | 
|  | if (((VTBits - EVTBits) - ShAmt->getZExtValue()) < InSignBits) | 
|  | return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), | 
|  | N0.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (sext_inreg (extload x)) -> (sextload x) | 
|  | // If sextload is not supported by target, we can only do the combine when | 
|  | // load has one use. Doing otherwise can block folding the extload with other | 
|  | // extends that the target does support. | 
|  | if (ISD::isEXTLoad(N0.getNode()) && | 
|  | ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | EVT == cast<LoadSDNode>(N0)->getMemoryVT() && | 
|  | ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile() && | 
|  | N0.hasOneUse()) || | 
|  | TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), EVT, | 
|  | LN0->getMemOperand()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | AddToWorklist(ExtLoad.getNode()); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use | 
|  | if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | 
|  | N0.hasOneUse() && | 
|  | EVT == cast<LoadSDNode>(N0)->getMemoryVT() && | 
|  | ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), EVT, | 
|  | LN0->getMemOperand()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) | 
|  | if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { | 
|  | if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), | 
|  | N0.getOperand(1), false)) | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, | 
|  | BSwap, N1); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (N0.isUndef()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) | 
|  | return Res; | 
|  |  | 
|  | if (SimplifyDemandedVectorElts(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (N0.isUndef()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) | 
|  | return Res; | 
|  |  | 
|  | if (SimplifyDemandedVectorElts(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT SrcVT = N0.getValueType(); | 
|  | bool isLE = DAG.getDataLayout().isLittleEndian(); | 
|  |  | 
|  | // noop truncate | 
|  | if (SrcVT == VT) | 
|  | return N0; | 
|  |  | 
|  | // fold (truncate (truncate x)) -> (truncate x) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); | 
|  |  | 
|  | // fold (truncate c1) -> c1 | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { | 
|  | SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); | 
|  | if (C.getNode() != N) | 
|  | return C; | 
|  | } | 
|  |  | 
|  | // fold (truncate (ext x)) -> (ext x) or (truncate x) or x | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND || | 
|  | N0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | // if the source is smaller than the dest, we still need an extend. | 
|  | if (N0.getOperand(0).getValueType().bitsLT(VT)) | 
|  | return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); | 
|  | // if the source is larger than the dest, than we just need the truncate. | 
|  | if (N0.getOperand(0).getValueType().bitsGT(VT)) | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); | 
|  | // if the source and dest are the same type, we can drop both the extend | 
|  | // and the truncate. | 
|  | return N0.getOperand(0); | 
|  | } | 
|  |  | 
|  | // If this is anyext(trunc), don't fold it, allow ourselves to be folded. | 
|  | if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Fold extract-and-trunc into a narrow extract. For example: | 
|  | //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) | 
|  | //   i32 y = TRUNCATE(i64 x) | 
|  | //        -- becomes -- | 
|  | //   v16i8 b = BITCAST (v2i64 val) | 
|  | //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) | 
|  | // | 
|  | // Note: We only run this optimization after type legalization (which often | 
|  | // creates this pattern) and before operation legalization after which | 
|  | // we need to be more careful about the vector instructions that we generate. | 
|  | if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { | 
|  | EVT VecTy = N0.getOperand(0).getValueType(); | 
|  | EVT ExTy = N0.getValueType(); | 
|  | EVT TrTy = N->getValueType(0); | 
|  |  | 
|  | unsigned NumElem = VecTy.getVectorNumElements(); | 
|  | unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); | 
|  |  | 
|  | EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); | 
|  | assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); | 
|  |  | 
|  | SDValue EltNo = N0->getOperand(1); | 
|  | if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { | 
|  | int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); | 
|  | EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); | 
|  | int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, | 
|  | DAG.getBitcast(NVT, N0.getOperand(0)), | 
|  | DAG.getConstant(Index, DL, IndexTy)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // trunc (select c, a, b) -> select c, (trunc a), (trunc b) | 
|  | if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { | 
|  | if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && | 
|  | TLI.isTruncateFree(SrcVT, VT)) { | 
|  | SDLoc SL(N0); | 
|  | SDValue Cond = N0.getOperand(0); | 
|  | SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); | 
|  | SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); | 
|  | return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() | 
|  | if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && | 
|  | TLI.isTypeDesirableForOp(ISD::SHL, VT)) { | 
|  | SDValue Amt = N0.getOperand(1); | 
|  | KnownBits Known = DAG.computeKnownBits(Amt); | 
|  | unsigned Size = VT.getScalarSizeInBits(); | 
|  | if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { | 
|  | SDLoc SL(N); | 
|  | EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  |  | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); | 
|  | if (AmtVT != Amt.getValueType()) { | 
|  | Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); | 
|  | AddToWorklist(Amt.getNode()); | 
|  | } | 
|  | return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Attempt to pre-truncate BUILD_VECTOR sources. | 
|  | if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && | 
|  | TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType())) { | 
|  | SDLoc DL(N); | 
|  | EVT SVT = VT.getScalarType(); | 
|  | SmallVector<SDValue, 8> TruncOps; | 
|  | for (const SDValue &Op : N0->op_values()) { | 
|  | SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); | 
|  | TruncOps.push_back(TruncOp); | 
|  | } | 
|  | return DAG.getBuildVector(VT, DL, TruncOps); | 
|  | } | 
|  |  | 
|  | // Fold a series of buildvector, bitcast, and truncate if possible. | 
|  | // For example fold | 
|  | //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to | 
|  | //   (2xi32 (buildvector x, y)). | 
|  | if (Level == AfterLegalizeVectorOps && VT.isVector() && | 
|  | N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && | 
|  | N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && | 
|  | N0.getOperand(0).hasOneUse()) { | 
|  | SDValue BuildVect = N0.getOperand(0); | 
|  | EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); | 
|  | EVT TruncVecEltTy = VT.getVectorElementType(); | 
|  |  | 
|  | // Check that the element types match. | 
|  | if (BuildVectEltTy == TruncVecEltTy) { | 
|  | // Now we only need to compute the offset of the truncated elements. | 
|  | unsigned BuildVecNumElts =  BuildVect.getNumOperands(); | 
|  | unsigned TruncVecNumElts = VT.getVectorNumElements(); | 
|  | unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; | 
|  |  | 
|  | assert((BuildVecNumElts % TruncVecNumElts) == 0 && | 
|  | "Invalid number of elements"); | 
|  |  | 
|  | SmallVector<SDValue, 8> Opnds; | 
|  | for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) | 
|  | Opnds.push_back(BuildVect.getOperand(i)); | 
|  |  | 
|  | return DAG.getBuildVector(VT, SDLoc(N), Opnds); | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we can simplify the input to this truncate through knowledge that | 
|  | // only the low bits are being used. | 
|  | // For example "trunc (or (shl x, 8), y)" // -> trunc y | 
|  | // Currently we only perform this optimization on scalars because vectors | 
|  | // may have different active low bits. | 
|  | if (!VT.isVector()) { | 
|  | APInt Mask = | 
|  | APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); | 
|  | if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); | 
|  | } | 
|  |  | 
|  | // fold (truncate (load x)) -> (smaller load x) | 
|  | // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) | 
|  | if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { | 
|  | if (SDValue Reduced = ReduceLoadWidth(N)) | 
|  | return Reduced; | 
|  |  | 
|  | // Handle the case where the load remains an extending load even | 
|  | // after truncation. | 
|  | if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | if (!LN0->isVolatile() && | 
|  | LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { | 
|  | SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), | 
|  | VT, LN0->getChain(), LN0->getBasePtr(), | 
|  | LN0->getMemoryVT(), | 
|  | LN0->getMemOperand()); | 
|  | DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); | 
|  | return NewLoad; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), | 
|  | // where ... are all 'undef'. | 
|  | if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { | 
|  | SmallVector<EVT, 8> VTs; | 
|  | SDValue V; | 
|  | unsigned Idx = 0; | 
|  | unsigned NumDefs = 0; | 
|  |  | 
|  | for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { | 
|  | SDValue X = N0.getOperand(i); | 
|  | if (!X.isUndef()) { | 
|  | V = X; | 
|  | Idx = i; | 
|  | NumDefs++; | 
|  | } | 
|  | // Stop if more than one members are non-undef. | 
|  | if (NumDefs > 1) | 
|  | break; | 
|  | VTs.push_back(EVT::getVectorVT(*DAG.getContext(), | 
|  | VT.getVectorElementType(), | 
|  | X.getValueType().getVectorNumElements())); | 
|  | } | 
|  |  | 
|  | if (NumDefs == 0) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (NumDefs == 1) { | 
|  | assert(V.getNode() && "The single defined operand is empty!"); | 
|  | SmallVector<SDValue, 8> Opnds; | 
|  | for (unsigned i = 0, e = VTs.size(); i != e; ++i) { | 
|  | if (i != Idx) { | 
|  | Opnds.push_back(DAG.getUNDEF(VTs[i])); | 
|  | continue; | 
|  | } | 
|  | SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); | 
|  | AddToWorklist(NV.getNode()); | 
|  | Opnds.push_back(NV); | 
|  | } | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold truncate of a bitcast of a vector to an extract of the low vector | 
|  | // element. | 
|  | // | 
|  | // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx | 
|  | if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { | 
|  | SDValue VecSrc = N0.getOperand(0); | 
|  | EVT SrcVT = VecSrc.getValueType(); | 
|  | if (SrcVT.isVector() && SrcVT.getScalarType() == VT && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) { | 
|  | SDLoc SL(N); | 
|  |  | 
|  | EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); | 
|  | unsigned Idx = isLE ? 0 : SrcVT.getVectorNumElements() - 1; | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, | 
|  | VecSrc, DAG.getConstant(Idx, SL, IdxVT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify the operands using demanded-bits information. | 
|  | if (!VT.isVector() && | 
|  | SimplifyDemandedBits(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) | 
|  | // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) | 
|  | // When the adde's carry is not used. | 
|  | if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && | 
|  | N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && | 
|  | // We only do for addcarry before legalize operation | 
|  | ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || | 
|  | TLI.isOperationLegal(N0.getOpcode(), VT))) { | 
|  | SDLoc SL(N); | 
|  | auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); | 
|  | auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); | 
|  | auto VTs = DAG.getVTList(VT, N0->getValueType(1)); | 
|  | return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); | 
|  | } | 
|  |  | 
|  | // fold (truncate (extract_subvector(ext x))) -> | 
|  | //      (extract_subvector x) | 
|  | // TODO: This can be generalized to cover cases where the truncate and extract | 
|  | // do not fully cancel each other out. | 
|  | if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == ISD::SIGN_EXTEND || | 
|  | N00.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N00.getOpcode() == ISD::ANY_EXTEND) { | 
|  | if (N00.getOperand(0)->getValueType(0).getVectorElementType() == | 
|  | VT.getVectorElementType()) | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, | 
|  | N00.getOperand(0), N0.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) | 
|  | return NewVSel; | 
|  |  | 
|  | // Narrow a suitable binary operation with a non-opaque constant operand by | 
|  | // moving it ahead of the truncate. This is limited to pre-legalization | 
|  | // because targets may prefer a wider type during later combines and invert | 
|  | // this transform. | 
|  | switch (N0.getOpcode()) { | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | if (!LegalOperations && N0.hasOneUse() && | 
|  | (isConstantOrConstantVector(N0.getOperand(0), true) || | 
|  | isConstantOrConstantVector(N0.getOperand(1), true))) { | 
|  | // TODO: We already restricted this to pre-legalization, but for vectors | 
|  | // we are extra cautious to not create an unsupported operation. | 
|  | // Target-specific changes are likely needed to avoid regressions here. | 
|  | if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { | 
|  | SDLoc DL(N); | 
|  | SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); | 
|  | SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); | 
|  | return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDNode *getBuildPairElt(SDNode *N, unsigned i) { | 
|  | SDValue Elt = N->getOperand(i); | 
|  | if (Elt.getOpcode() != ISD::MERGE_VALUES) | 
|  | return Elt.getNode(); | 
|  | return Elt.getOperand(Elt.getResNo()).getNode(); | 
|  | } | 
|  |  | 
|  | /// build_pair (load, load) -> load | 
|  | /// if load locations are consecutive. | 
|  | SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { | 
|  | assert(N->getOpcode() == ISD::BUILD_PAIR); | 
|  |  | 
|  | LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); | 
|  | LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); | 
|  |  | 
|  | // A BUILD_PAIR is always having the least significant part in elt 0 and the | 
|  | // most significant part in elt 1. So when combining into one large load, we | 
|  | // need to consider the endianness. | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | std::swap(LD1, LD2); | 
|  |  | 
|  | if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || | 
|  | LD1->getAddressSpace() != LD2->getAddressSpace()) | 
|  | return SDValue(); | 
|  | EVT LD1VT = LD1->getValueType(0); | 
|  | unsigned LD1Bytes = LD1VT.getStoreSize(); | 
|  | if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && | 
|  | DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { | 
|  | unsigned Align = LD1->getAlignment(); | 
|  | unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( | 
|  | VT.getTypeForEVT(*DAG.getContext())); | 
|  |  | 
|  | if (NewAlign <= Align && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) | 
|  | return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), | 
|  | LD1->getPointerInfo(), Align); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { | 
|  | // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi | 
|  | // and Lo parts; on big-endian machines it doesn't. | 
|  | return DAG.getDataLayout().isBigEndian() ? 1 : 0; | 
|  | } | 
|  |  | 
|  | static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | // If this is not a bitcast to an FP type or if the target doesn't have | 
|  | // IEEE754-compliant FP logic, we're done. | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // TODO: Handle cases where the integer constant is a different scalar | 
|  | // bitwidth to the FP. | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT SourceVT = N0.getValueType(); | 
|  | if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned FPOpcode; | 
|  | APInt SignMask; | 
|  | switch (N0.getOpcode()) { | 
|  | case ISD::AND: | 
|  | FPOpcode = ISD::FABS; | 
|  | SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); | 
|  | break; | 
|  | case ISD::XOR: | 
|  | FPOpcode = ISD::FNEG; | 
|  | SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); | 
|  | break; | 
|  | case ISD::OR: | 
|  | FPOpcode = ISD::FABS; | 
|  | SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); | 
|  | break; | 
|  | default: | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X | 
|  | // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X | 
|  | // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> | 
|  | //   fneg (fabs X) | 
|  | SDValue LogicOp0 = N0.getOperand(0); | 
|  | ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); | 
|  | if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && | 
|  | LogicOp0.getOpcode() == ISD::BITCAST && | 
|  | LogicOp0.getOperand(0).getValueType() == VT) { | 
|  | SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); | 
|  | NumFPLogicOpsConv++; | 
|  | if (N0.getOpcode() == ISD::OR) | 
|  | return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); | 
|  | return FPOp; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBITCAST(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (N0.isUndef()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // If the input is a BUILD_VECTOR with all constant elements, fold this now. | 
|  | // Only do this before legalize types, unless both types are integer and the | 
|  | // scalar type is legal. Only do this before legalize ops, since the target | 
|  | // maybe depending on the bitcast. | 
|  | // First check to see if this is all constant. | 
|  | // TODO: Support FP bitcasts after legalize types. | 
|  | if (VT.isVector() && | 
|  | (!LegalTypes || | 
|  | (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && | 
|  | TLI.isTypeLegal(VT.getVectorElementType()))) && | 
|  | N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && | 
|  | cast<BuildVectorSDNode>(N0)->isConstant()) | 
|  | return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), | 
|  | VT.getVectorElementType()); | 
|  |  | 
|  | // If the input is a constant, let getNode fold it. | 
|  | if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { | 
|  | // If we can't allow illegal operations, we need to check that this is just | 
|  | // a fp -> int or int -> conversion and that the resulting operation will | 
|  | // be legal. | 
|  | if (!LegalOperations || | 
|  | (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && | 
|  | TLI.isOperationLegal(ISD::ConstantFP, VT)) || | 
|  | (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && | 
|  | TLI.isOperationLegal(ISD::Constant, VT))) { | 
|  | SDValue C = DAG.getBitcast(VT, N0); | 
|  | if (C.getNode() != N) | 
|  | return C; | 
|  | } | 
|  | } | 
|  |  | 
|  | // (conv (conv x, t1), t2) -> (conv x, t2) | 
|  | if (N0.getOpcode() == ISD::BITCAST) | 
|  | return DAG.getBitcast(VT, N0.getOperand(0)); | 
|  |  | 
|  | // fold (conv (load x)) -> (load (conv*)x) | 
|  | // If the resultant load doesn't need a higher alignment than the original! | 
|  | if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | 
|  | // Do not remove the cast if the types differ in endian layout. | 
|  | TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == | 
|  | TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && | 
|  | // If the load is volatile, we only want to change the load type if the | 
|  | // resulting load is legal. Otherwise we might increase the number of | 
|  | // memory accesses. We don't care if the original type was legal or not | 
|  | // as we assume software couldn't rely on the number of accesses of an | 
|  | // illegal type. | 
|  | ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || | 
|  | TLI.isOperationLegal(ISD::LOAD, VT))) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  |  | 
|  | if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, | 
|  | *LN0->getMemOperand())) { | 
|  | SDValue Load = | 
|  | DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), | 
|  | LN0->getPointerInfo(), LN0->getAlignment(), | 
|  | LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); | 
|  | DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); | 
|  | return Load; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) | 
|  | return V; | 
|  |  | 
|  | // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) | 
|  | // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) | 
|  | // | 
|  | // For ppc_fp128: | 
|  | // fold (bitcast (fneg x)) -> | 
|  | //     flipbit = signbit | 
|  | //     (xor (bitcast x) (build_pair flipbit, flipbit)) | 
|  | // | 
|  | // fold (bitcast (fabs x)) -> | 
|  | //     flipbit = (and (extract_element (bitcast x), 0), signbit) | 
|  | //     (xor (bitcast x) (build_pair flipbit, flipbit)) | 
|  | // This often reduces constant pool loads. | 
|  | if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || | 
|  | (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && | 
|  | N0.getNode()->hasOneUse() && VT.isInteger() && | 
|  | !VT.isVector() && !N0.getValueType().isVector()) { | 
|  | SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); | 
|  | AddToWorklist(NewConv.getNode()); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { | 
|  | assert(VT.getSizeInBits() == 128); | 
|  | SDValue SignBit = DAG.getConstant( | 
|  | APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); | 
|  | SDValue FlipBit; | 
|  | if (N0.getOpcode() == ISD::FNEG) { | 
|  | FlipBit = SignBit; | 
|  | AddToWorklist(FlipBit.getNode()); | 
|  | } else { | 
|  | assert(N0.getOpcode() == ISD::FABS); | 
|  | SDValue Hi = | 
|  | DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, | 
|  | DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), | 
|  | SDLoc(NewConv))); | 
|  | AddToWorklist(Hi.getNode()); | 
|  | FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); | 
|  | AddToWorklist(FlipBit.getNode()); | 
|  | } | 
|  | SDValue FlipBits = | 
|  | DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); | 
|  | AddToWorklist(FlipBits.getNode()); | 
|  | return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); | 
|  | } | 
|  | APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); | 
|  | if (N0.getOpcode() == ISD::FNEG) | 
|  | return DAG.getNode(ISD::XOR, DL, VT, | 
|  | NewConv, DAG.getConstant(SignBit, DL, VT)); | 
|  | assert(N0.getOpcode() == ISD::FABS); | 
|  | return DAG.getNode(ISD::AND, DL, VT, | 
|  | NewConv, DAG.getConstant(~SignBit, DL, VT)); | 
|  | } | 
|  |  | 
|  | // fold (bitconvert (fcopysign cst, x)) -> | 
|  | //         (or (and (bitconvert x), sign), (and cst, (not sign))) | 
|  | // Note that we don't handle (copysign x, cst) because this can always be | 
|  | // folded to an fneg or fabs. | 
|  | // | 
|  | // For ppc_fp128: | 
|  | // fold (bitcast (fcopysign cst, x)) -> | 
|  | //     flipbit = (and (extract_element | 
|  | //                     (xor (bitcast cst), (bitcast x)), 0), | 
|  | //                    signbit) | 
|  | //     (xor (bitcast cst) (build_pair flipbit, flipbit)) | 
|  | if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && | 
|  | isa<ConstantFPSDNode>(N0.getOperand(0)) && | 
|  | VT.isInteger() && !VT.isVector()) { | 
|  | unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); | 
|  | EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); | 
|  | if (isTypeLegal(IntXVT)) { | 
|  | SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); | 
|  | AddToWorklist(X.getNode()); | 
|  |  | 
|  | // If X has a different width than the result/lhs, sext it or truncate it. | 
|  | unsigned VTWidth = VT.getSizeInBits(); | 
|  | if (OrigXWidth < VTWidth) { | 
|  | X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); | 
|  | AddToWorklist(X.getNode()); | 
|  | } else if (OrigXWidth > VTWidth) { | 
|  | // To get the sign bit in the right place, we have to shift it right | 
|  | // before truncating. | 
|  | SDLoc DL(X); | 
|  | X = DAG.getNode(ISD::SRL, DL, | 
|  | X.getValueType(), X, | 
|  | DAG.getConstant(OrigXWidth-VTWidth, DL, | 
|  | X.getValueType())); | 
|  | AddToWorklist(X.getNode()); | 
|  | X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); | 
|  | AddToWorklist(X.getNode()); | 
|  | } | 
|  |  | 
|  | if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { | 
|  | APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); | 
|  | SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); | 
|  | AddToWorklist(Cst.getNode()); | 
|  | SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); | 
|  | AddToWorklist(X.getNode()); | 
|  | SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); | 
|  | AddToWorklist(XorResult.getNode()); | 
|  | SDValue XorResult64 = DAG.getNode( | 
|  | ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, | 
|  | DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), | 
|  | SDLoc(XorResult))); | 
|  | AddToWorklist(XorResult64.getNode()); | 
|  | SDValue FlipBit = | 
|  | DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, | 
|  | DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); | 
|  | AddToWorklist(FlipBit.getNode()); | 
|  | SDValue FlipBits = | 
|  | DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); | 
|  | AddToWorklist(FlipBits.getNode()); | 
|  | return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); | 
|  | } | 
|  | APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); | 
|  | X = DAG.getNode(ISD::AND, SDLoc(X), VT, | 
|  | X, DAG.getConstant(SignBit, SDLoc(X), VT)); | 
|  | AddToWorklist(X.getNode()); | 
|  |  | 
|  | SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); | 
|  | Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, | 
|  | Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); | 
|  | AddToWorklist(Cst.getNode()); | 
|  |  | 
|  | return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); | 
|  | } | 
|  | } | 
|  |  | 
|  | // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. | 
|  | if (N0.getOpcode() == ISD::BUILD_PAIR) | 
|  | if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) | 
|  | return CombineLD; | 
|  |  | 
|  | // Remove double bitcasts from shuffles - this is often a legacy of | 
|  | // XformToShuffleWithZero being used to combine bitmaskings (of | 
|  | // float vectors bitcast to integer vectors) into shuffles. | 
|  | // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) | 
|  | if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && | 
|  | N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && | 
|  | VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && | 
|  | !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { | 
|  | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); | 
|  |  | 
|  | // If operands are a bitcast, peek through if it casts the original VT. | 
|  | // If operands are a constant, just bitcast back to original VT. | 
|  | auto PeekThroughBitcast = [&](SDValue Op) { | 
|  | if (Op.getOpcode() == ISD::BITCAST && | 
|  | Op.getOperand(0).getValueType() == VT) | 
|  | return SDValue(Op.getOperand(0)); | 
|  | if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || | 
|  | ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) | 
|  | return DAG.getBitcast(VT, Op); | 
|  | return SDValue(); | 
|  | }; | 
|  |  | 
|  | // FIXME: If either input vector is bitcast, try to convert the shuffle to | 
|  | // the result type of this bitcast. This would eliminate at least one | 
|  | // bitcast. See the transform in InstCombine. | 
|  | SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); | 
|  | SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); | 
|  | if (!(SV0 && SV1)) | 
|  | return SDValue(); | 
|  |  | 
|  | int MaskScale = | 
|  | VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (int M : SVN->getMask()) | 
|  | for (int i = 0; i != MaskScale; ++i) | 
|  | NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); | 
|  |  | 
|  | bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); | 
|  | if (!LegalMask) { | 
|  | std::swap(SV0, SV1); | 
|  | ShuffleVectorSDNode::commuteMask(NewMask); | 
|  | LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); | 
|  | } | 
|  |  | 
|  | if (LegalMask) | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  | return CombineConsecutiveLoads(N, VT); | 
|  | } | 
|  |  | 
|  | /// We know that BV is a build_vector node with Constant, ConstantFP or Undef | 
|  | /// operands. DstEltVT indicates the destination element value type. | 
|  | SDValue DAGCombiner:: | 
|  | ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { | 
|  | EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); | 
|  |  | 
|  | // If this is already the right type, we're done. | 
|  | if (SrcEltVT == DstEltVT) return SDValue(BV, 0); | 
|  |  | 
|  | unsigned SrcBitSize = SrcEltVT.getSizeInBits(); | 
|  | unsigned DstBitSize = DstEltVT.getSizeInBits(); | 
|  |  | 
|  | // If this is a conversion of N elements of one type to N elements of another | 
|  | // type, convert each element.  This handles FP<->INT cases. | 
|  | if (SrcBitSize == DstBitSize) { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (SDValue Op : BV->op_values()) { | 
|  | // If the vector element type is not legal, the BUILD_VECTOR operands | 
|  | // are promoted and implicitly truncated.  Make that explicit here. | 
|  | if (Op.getValueType() != SrcEltVT) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); | 
|  | Ops.push_back(DAG.getBitcast(DstEltVT, Op)); | 
|  | AddToWorklist(Ops.back().getNode()); | 
|  | } | 
|  | EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, | 
|  | BV->getValueType(0).getVectorNumElements()); | 
|  | return DAG.getBuildVector(VT, SDLoc(BV), Ops); | 
|  | } | 
|  |  | 
|  | // Otherwise, we're growing or shrinking the elements.  To avoid having to | 
|  | // handle annoying details of growing/shrinking FP values, we convert them to | 
|  | // int first. | 
|  | if (SrcEltVT.isFloatingPoint()) { | 
|  | // Convert the input float vector to a int vector where the elements are the | 
|  | // same sizes. | 
|  | EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); | 
|  | BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); | 
|  | SrcEltVT = IntVT; | 
|  | } | 
|  |  | 
|  | // Now we know the input is an integer vector.  If the output is a FP type, | 
|  | // convert to integer first, then to FP of the right size. | 
|  | if (DstEltVT.isFloatingPoint()) { | 
|  | EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); | 
|  | SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); | 
|  |  | 
|  | // Next, convert to FP elements of the same size. | 
|  | return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); | 
|  | } | 
|  |  | 
|  | SDLoc DL(BV); | 
|  |  | 
|  | // Okay, we know the src/dst types are both integers of differing types. | 
|  | // Handling growing first. | 
|  | assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); | 
|  | if (SrcBitSize < DstBitSize) { | 
|  | unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0, e = BV->getNumOperands(); i != e; | 
|  | i += NumInputsPerOutput) { | 
|  | bool isLE = DAG.getDataLayout().isLittleEndian(); | 
|  | APInt NewBits = APInt(DstBitSize, 0); | 
|  | bool EltIsUndef = true; | 
|  | for (unsigned j = 0; j != NumInputsPerOutput; ++j) { | 
|  | // Shift the previously computed bits over. | 
|  | NewBits <<= SrcBitSize; | 
|  | SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); | 
|  | if (Op.isUndef()) continue; | 
|  | EltIsUndef = false; | 
|  |  | 
|  | NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). | 
|  | zextOrTrunc(SrcBitSize).zext(DstBitSize); | 
|  | } | 
|  |  | 
|  | if (EltIsUndef) | 
|  | Ops.push_back(DAG.getUNDEF(DstEltVT)); | 
|  | else | 
|  | Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); | 
|  | } | 
|  |  | 
|  | EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); | 
|  | return DAG.getBuildVector(VT, DL, Ops); | 
|  | } | 
|  |  | 
|  | // Finally, this must be the case where we are shrinking elements: each input | 
|  | // turns into multiple outputs. | 
|  | unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; | 
|  | EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, | 
|  | NumOutputsPerInput*BV->getNumOperands()); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  |  | 
|  | for (const SDValue &Op : BV->op_values()) { | 
|  | if (Op.isUndef()) { | 
|  | Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | APInt OpVal = cast<ConstantSDNode>(Op)-> | 
|  | getAPIntValue().zextOrTrunc(SrcBitSize); | 
|  |  | 
|  | for (unsigned j = 0; j != NumOutputsPerInput; ++j) { | 
|  | APInt ThisVal = OpVal.trunc(DstBitSize); | 
|  | Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); | 
|  | OpVal.lshrInPlace(DstBitSize); | 
|  | } | 
|  |  | 
|  | // For big endian targets, swap the order of the pieces of each element. | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); | 
|  | } | 
|  |  | 
|  | return DAG.getBuildVector(VT, DL, Ops); | 
|  | } | 
|  |  | 
|  | static bool isContractable(SDNode *N) { | 
|  | SDNodeFlags F = N->getFlags(); | 
|  | return F.hasAllowContract() || F.hasAllowReassociation(); | 
|  | } | 
|  |  | 
|  | /// Try to perform FMA combining on a given FADD node. | 
|  | SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc SL(N); | 
|  |  | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  |  | 
|  | // Floating-point multiply-add with intermediate rounding. | 
|  | bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); | 
|  |  | 
|  | // Floating-point multiply-add without intermediate rounding. | 
|  | bool HasFMA = | 
|  | TLI.isFMAFasterThanFMulAndFAdd(VT) && | 
|  | (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); | 
|  |  | 
|  | // No valid opcode, do not combine. | 
|  | if (!HasFMAD && !HasFMA) | 
|  | return SDValue(); | 
|  |  | 
|  | SDNodeFlags Flags = N->getFlags(); | 
|  | bool CanFuse = Options.UnsafeFPMath || isContractable(N); | 
|  | bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || | 
|  | CanFuse || HasFMAD); | 
|  | // If the addition is not contractable, do not combine. | 
|  | if (!AllowFusionGlobally && !isContractable(N)) | 
|  | return SDValue(); | 
|  |  | 
|  | const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); | 
|  | if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Always prefer FMAD to FMA for precision. | 
|  | unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; | 
|  | bool Aggressive = TLI.enableAggressiveFMAFusion(VT); | 
|  |  | 
|  | // Is the node an FMUL and contractable either due to global flags or | 
|  | // SDNodeFlags. | 
|  | auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { | 
|  | if (N.getOpcode() != ISD::FMUL) | 
|  | return false; | 
|  | return AllowFusionGlobally || isContractable(N.getNode()); | 
|  | }; | 
|  | // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), | 
|  | // prefer to fold the multiply with fewer uses. | 
|  | if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { | 
|  | if (N0.getNode()->use_size() > N1.getNode()->use_size()) | 
|  | std::swap(N0, N1); | 
|  | } | 
|  |  | 
|  | // fold (fadd (fmul x, y), z) -> (fma x, y, z) | 
|  | if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N0.getOperand(0), N0.getOperand(1), N1, Flags); | 
|  | } | 
|  |  | 
|  | // fold (fadd x, (fmul y, z)) -> (fma y, z, x) | 
|  | // Note: Commutes FADD operands. | 
|  | if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N1.getOperand(0), N1.getOperand(1), N0, Flags); | 
|  | } | 
|  |  | 
|  | // Look through FP_EXTEND nodes to do more combining. | 
|  |  | 
|  | // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) | 
|  | if (N0.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (isContractableFMUL(N00) && | 
|  | TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N00.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N00.getOperand(1)), N1, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) | 
|  | // Note: Commutes FADD operands. | 
|  | if (N1.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | if (isContractableFMUL(N10) && | 
|  | TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N10.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N10.getOperand(1)), N0, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // More folding opportunities when target permits. | 
|  | if (Aggressive) { | 
|  | // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) | 
|  | if (CanFuse && | 
|  | N0.getOpcode() == PreferredFusedOpcode && | 
|  | N0.getOperand(2).getOpcode() == ISD::FMUL && | 
|  | N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N0.getOperand(2).getOperand(0), | 
|  | N0.getOperand(2).getOperand(1), | 
|  | N1, Flags), Flags); | 
|  | } | 
|  |  | 
|  | // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) | 
|  | if (CanFuse && | 
|  | N1->getOpcode() == PreferredFusedOpcode && | 
|  | N1.getOperand(2).getOpcode() == ISD::FMUL && | 
|  | N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N1.getOperand(0), N1.getOperand(1), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N1.getOperand(2).getOperand(0), | 
|  | N1.getOperand(2).getOperand(1), | 
|  | N0, Flags), Flags); | 
|  | } | 
|  |  | 
|  |  | 
|  | // fold (fadd (fma x, y, (fpext (fmul u, v))), z) | 
|  | //   -> (fma x, y, (fma (fpext u), (fpext v), z)) | 
|  | auto FoldFAddFMAFPExtFMul = [&] ( | 
|  | SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z, | 
|  | SDNodeFlags Flags) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, U), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, V), | 
|  | Z, Flags), Flags); | 
|  | }; | 
|  | if (N0.getOpcode() == PreferredFusedOpcode) { | 
|  | SDValue N02 = N0.getOperand(2); | 
|  | if (N02.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N020 = N02.getOperand(0); | 
|  | if (isContractableFMUL(N020) && | 
|  | TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) { | 
|  | return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), | 
|  | N020.getOperand(0), N020.getOperand(1), | 
|  | N1, Flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fadd (fpext (fma x, y, (fmul u, v))), z) | 
|  | //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) | 
|  | // FIXME: This turns two single-precision and one double-precision | 
|  | // operation into two double-precision operations, which might not be | 
|  | // interesting for all targets, especially GPUs. | 
|  | auto FoldFAddFPExtFMAFMul = [&] ( | 
|  | SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z, | 
|  | SDNodeFlags Flags) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, X), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, U), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, V), | 
|  | Z, Flags), Flags); | 
|  | }; | 
|  | if (N0.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == PreferredFusedOpcode) { | 
|  | SDValue N002 = N00.getOperand(2); | 
|  | if (isContractableFMUL(N002) && | 
|  | TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { | 
|  | return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), | 
|  | N002.getOperand(0), N002.getOperand(1), | 
|  | N1, Flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fadd x, (fma y, z, (fpext (fmul u, v))) | 
|  | //   -> (fma y, z, (fma (fpext u), (fpext v), x)) | 
|  | if (N1.getOpcode() == PreferredFusedOpcode) { | 
|  | SDValue N12 = N1.getOperand(2); | 
|  | if (N12.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N120 = N12.getOperand(0); | 
|  | if (isContractableFMUL(N120) && | 
|  | TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) { | 
|  | return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), | 
|  | N120.getOperand(0), N120.getOperand(1), | 
|  | N0, Flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fadd x, (fpext (fma y, z, (fmul u, v))) | 
|  | //   -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) | 
|  | // FIXME: This turns two single-precision and one double-precision | 
|  | // operation into two double-precision operations, which might not be | 
|  | // interesting for all targets, especially GPUs. | 
|  | if (N1.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | if (N10.getOpcode() == PreferredFusedOpcode) { | 
|  | SDValue N102 = N10.getOperand(2); | 
|  | if (isContractableFMUL(N102) && | 
|  | TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { | 
|  | return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), | 
|  | N102.getOperand(0), N102.getOperand(1), | 
|  | N0, Flags); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Try to perform FMA combining on a given FSUB node. | 
|  | SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc SL(N); | 
|  |  | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | // Floating-point multiply-add with intermediate rounding. | 
|  | bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); | 
|  |  | 
|  | // Floating-point multiply-add without intermediate rounding. | 
|  | bool HasFMA = | 
|  | TLI.isFMAFasterThanFMulAndFAdd(VT) && | 
|  | (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); | 
|  |  | 
|  | // No valid opcode, do not combine. | 
|  | if (!HasFMAD && !HasFMA) | 
|  | return SDValue(); | 
|  |  | 
|  | const SDNodeFlags Flags = N->getFlags(); | 
|  | bool CanFuse = Options.UnsafeFPMath || isContractable(N); | 
|  | bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || | 
|  | CanFuse || HasFMAD); | 
|  |  | 
|  | // If the subtraction is not contractable, do not combine. | 
|  | if (!AllowFusionGlobally && !isContractable(N)) | 
|  | return SDValue(); | 
|  |  | 
|  | const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); | 
|  | if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Always prefer FMAD to FMA for precision. | 
|  | unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; | 
|  | bool Aggressive = TLI.enableAggressiveFMAFusion(VT); | 
|  |  | 
|  | // Is the node an FMUL and contractable either due to global flags or | 
|  | // SDNodeFlags. | 
|  | auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { | 
|  | if (N.getOpcode() != ISD::FMUL) | 
|  | return false; | 
|  | return AllowFusionGlobally || isContractable(N.getNode()); | 
|  | }; | 
|  |  | 
|  | // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) | 
|  | if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); | 
|  | } | 
|  |  | 
|  | // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) | 
|  | // Note: Commutes FSUB operands. | 
|  | if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | N1.getOperand(0)), | 
|  | N1.getOperand(1), N0, Flags); | 
|  | } | 
|  |  | 
|  | // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) | 
|  | if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && | 
|  | (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { | 
|  | SDValue N00 = N0.getOperand(0).getOperand(0); | 
|  | SDValue N01 = N0.getOperand(0).getOperand(1); | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, N00), N01, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); | 
|  | } | 
|  |  | 
|  | // Look through FP_EXTEND nodes to do more combining. | 
|  |  | 
|  | // fold (fsub (fpext (fmul x, y)), z) | 
|  | //   -> (fma (fpext x), (fpext y), (fneg z)) | 
|  | if (N0.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (isContractableFMUL(N00) && | 
|  | TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N00.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N00.getOperand(1)), | 
|  | DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fsub x, (fpext (fmul y, z))) | 
|  | //   -> (fma (fneg (fpext y)), (fpext z), x) | 
|  | // Note: Commutes FSUB operands. | 
|  | if (N1.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | if (isContractableFMUL(N10) && | 
|  | TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N10.getOperand(0))), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N10.getOperand(1)), | 
|  | N0, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fsub (fpext (fneg (fmul, x, y))), z) | 
|  | //   -> (fneg (fma (fpext x), (fpext y), z)) | 
|  | // Note: This could be removed with appropriate canonicalization of the | 
|  | // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the | 
|  | // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent | 
|  | // from implementing the canonicalization in visitFSUB. | 
|  | if (N0.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == ISD::FNEG) { | 
|  | SDValue N000 = N00.getOperand(0); | 
|  | if (isContractableFMUL(N000) && | 
|  | TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { | 
|  | return DAG.getNode(ISD::FNEG, SL, VT, | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N000.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N000.getOperand(1)), | 
|  | N1, Flags)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fsub (fneg (fpext (fmul, x, y))), z) | 
|  | //   -> (fneg (fma (fpext x)), (fpext y), z) | 
|  | // Note: This could be removed with appropriate canonicalization of the | 
|  | // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the | 
|  | // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent | 
|  | // from implementing the canonicalization in visitFSUB. | 
|  | if (N0.getOpcode() == ISD::FNEG) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N000 = N00.getOperand(0); | 
|  | if (isContractableFMUL(N000) && | 
|  | TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N000.getValueType())) { | 
|  | return DAG.getNode(ISD::FNEG, SL, VT, | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N000.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N000.getOperand(1)), | 
|  | N1, Flags)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // More folding opportunities when target permits. | 
|  | if (Aggressive) { | 
|  | // fold (fsub (fma x, y, (fmul u, v)), z) | 
|  | //   -> (fma x, y (fma u, v, (fneg z))) | 
|  | if (CanFuse && N0.getOpcode() == PreferredFusedOpcode && | 
|  | isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() && | 
|  | N0.getOperand(2)->hasOneUse()) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N0.getOperand(2).getOperand(0), | 
|  | N0.getOperand(2).getOperand(1), | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | N1), Flags), Flags); | 
|  | } | 
|  |  | 
|  | // fold (fsub x, (fma y, z, (fmul u, v))) | 
|  | //   -> (fma (fneg y), z, (fma (fneg u), v, x)) | 
|  | if (CanFuse && N1.getOpcode() == PreferredFusedOpcode && | 
|  | isContractableFMUL(N1.getOperand(2))) { | 
|  | SDValue N20 = N1.getOperand(2).getOperand(0); | 
|  | SDValue N21 = N1.getOperand(2).getOperand(1); | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | N1.getOperand(0)), | 
|  | N1.getOperand(1), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, N20), | 
|  | N21, N0, Flags), Flags); | 
|  | } | 
|  |  | 
|  |  | 
|  | // fold (fsub (fma x, y, (fpext (fmul u, v))), z) | 
|  | //   -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) | 
|  | if (N0.getOpcode() == PreferredFusedOpcode) { | 
|  | SDValue N02 = N0.getOperand(2); | 
|  | if (N02.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N020 = N02.getOperand(0); | 
|  | if (isContractableFMUL(N020) && | 
|  | TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N020.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N020.getOperand(1)), | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | N1), Flags), Flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fsub (fpext (fma x, y, (fmul u, v))), z) | 
|  | //   -> (fma (fpext x), (fpext y), | 
|  | //           (fma (fpext u), (fpext v), (fneg z))) | 
|  | // FIXME: This turns two single-precision and one double-precision | 
|  | // operation into two double-precision operations, which might not be | 
|  | // interesting for all targets, especially GPUs. | 
|  | if (N0.getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == PreferredFusedOpcode) { | 
|  | SDValue N002 = N00.getOperand(2); | 
|  | if (isContractableFMUL(N002) && | 
|  | TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N00.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N00.getOperand(1)), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N002.getOperand(0)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N002.getOperand(1)), | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | N1), Flags), Flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) | 
|  | //   -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) | 
|  | if (N1.getOpcode() == PreferredFusedOpcode && | 
|  | N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { | 
|  | SDValue N120 = N1.getOperand(2).getOperand(0); | 
|  | if (isContractableFMUL(N120) && | 
|  | TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) { | 
|  | SDValue N1200 = N120.getOperand(0); | 
|  | SDValue N1201 = N120.getOperand(1); | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), | 
|  | N1.getOperand(1), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, | 
|  | VT, N1200)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N1201), | 
|  | N0, Flags), Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) | 
|  | //   -> (fma (fneg (fpext y)), (fpext z), | 
|  | //           (fma (fneg (fpext u)), (fpext v), x)) | 
|  | // FIXME: This turns two single-precision and one double-precision | 
|  | // operation into two double-precision operations, which might not be | 
|  | // interesting for all targets, especially GPUs. | 
|  | if (N1.getOpcode() == ISD::FP_EXTEND && | 
|  | N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { | 
|  | SDValue CvtSrc = N1.getOperand(0); | 
|  | SDValue N100 = CvtSrc.getOperand(0); | 
|  | SDValue N101 = CvtSrc.getOperand(1); | 
|  | SDValue N102 = CvtSrc.getOperand(2); | 
|  | if (isContractableFMUL(N102) && | 
|  | TLI.isFPExtFoldable(PreferredFusedOpcode, VT, CvtSrc.getValueType())) { | 
|  | SDValue N1020 = N102.getOperand(0); | 
|  | SDValue N1021 = N102.getOperand(1); | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N100)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), | 
|  | DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, | 
|  | VT, N1020)), | 
|  | DAG.getNode(ISD::FP_EXTEND, SL, VT, | 
|  | N1021), | 
|  | N0, Flags), Flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Try to perform FMA combining on a given FMUL node based on the distributive | 
|  | /// law x * (y + 1) = x * y + x and variants thereof (commuted versions, | 
|  | /// subtraction instead of addition). | 
|  | SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc SL(N); | 
|  | const SDNodeFlags Flags = N->getFlags(); | 
|  |  | 
|  | assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); | 
|  |  | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  |  | 
|  | // The transforms below are incorrect when x == 0 and y == inf, because the | 
|  | // intermediate multiplication produces a nan. | 
|  | if (!Options.NoInfsFPMath) | 
|  | return SDValue(); | 
|  |  | 
|  | // Floating-point multiply-add without intermediate rounding. | 
|  | bool HasFMA = | 
|  | (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && | 
|  | TLI.isFMAFasterThanFMulAndFAdd(VT) && | 
|  | (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); | 
|  |  | 
|  | // Floating-point multiply-add with intermediate rounding. This can result | 
|  | // in a less precise result due to the changed rounding order. | 
|  | bool HasFMAD = Options.UnsafeFPMath && | 
|  | (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); | 
|  |  | 
|  | // No valid opcode, do not combine. | 
|  | if (!HasFMAD && !HasFMA) | 
|  | return SDValue(); | 
|  |  | 
|  | // Always prefer FMAD to FMA for precision. | 
|  | unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; | 
|  | bool Aggressive = TLI.enableAggressiveFMAFusion(VT); | 
|  |  | 
|  | // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) | 
|  | // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) | 
|  | auto FuseFADD = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) { | 
|  | if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { | 
|  | if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { | 
|  | if (C->isExactlyValue(+1.0)) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, | 
|  | Y, Flags); | 
|  | if (C->isExactlyValue(-1.0)) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | }; | 
|  |  | 
|  | if (SDValue FMA = FuseFADD(N0, N1, Flags)) | 
|  | return FMA; | 
|  | if (SDValue FMA = FuseFADD(N1, N0, Flags)) | 
|  | return FMA; | 
|  |  | 
|  | // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) | 
|  | // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) | 
|  | // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) | 
|  | // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) | 
|  | auto FuseFSUB = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) { | 
|  | if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { | 
|  | if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { | 
|  | if (C0->isExactlyValue(+1.0)) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, | 
|  | Y, Flags); | 
|  | if (C0->isExactlyValue(-1.0)) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); | 
|  | } | 
|  | if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { | 
|  | if (C1->isExactlyValue(+1.0)) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, | 
|  | DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); | 
|  | if (C1->isExactlyValue(-1.0)) | 
|  | return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, | 
|  | Y, Flags); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | }; | 
|  |  | 
|  | if (SDValue FMA = FuseFSUB(N0, N1, Flags)) | 
|  | return FMA; | 
|  | if (SDValue FMA = FuseFSUB(N1, N0, Flags)) | 
|  | return FMA; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFADD(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); | 
|  | bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | const SDNodeFlags Flags = N->getFlags(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (fadd c1, c2) -> c1 + c2 | 
|  | if (N0CFP && N1CFP) | 
|  | return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); | 
|  |  | 
|  | // canonicalize constant to RHS | 
|  | if (N0CFP && !N1CFP) | 
|  | return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); | 
|  |  | 
|  | // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) | 
|  | ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); | 
|  | if (N1C && N1C->isZero()) | 
|  | if (N1C->isNegative() || Options.UnsafeFPMath || Flags.hasNoSignedZeros()) | 
|  | return N0; | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | // fold (fadd A, (fneg B)) -> (fsub A, B) | 
|  | if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && | 
|  | isNegatibleForFree(N1, LegalOperations, TLI, &Options, ForCodeSize) == 2) | 
|  | return DAG.getNode(ISD::FSUB, DL, VT, N0, | 
|  | GetNegatedExpression(N1, DAG, LegalOperations, | 
|  | ForCodeSize), Flags); | 
|  |  | 
|  | // fold (fadd (fneg A), B) -> (fsub B, A) | 
|  | if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && | 
|  | isNegatibleForFree(N0, LegalOperations, TLI, &Options, ForCodeSize) == 2) | 
|  | return DAG.getNode(ISD::FSUB, DL, VT, N1, | 
|  | GetNegatedExpression(N0, DAG, LegalOperations, | 
|  | ForCodeSize), Flags); | 
|  |  | 
|  | auto isFMulNegTwo = [](SDValue FMul) { | 
|  | if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) | 
|  | return false; | 
|  | auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); | 
|  | return C && C->isExactlyValue(-2.0); | 
|  | }; | 
|  |  | 
|  | // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) | 
|  | if (isFMulNegTwo(N0)) { | 
|  | SDValue B = N0.getOperand(0); | 
|  | SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags); | 
|  | return DAG.getNode(ISD::FSUB, DL, VT, N1, Add, Flags); | 
|  | } | 
|  | // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) | 
|  | if (isFMulNegTwo(N1)) { | 
|  | SDValue B = N1.getOperand(0); | 
|  | SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags); | 
|  | return DAG.getNode(ISD::FSUB, DL, VT, N0, Add, Flags); | 
|  | } | 
|  |  | 
|  | // No FP constant should be created after legalization as Instruction | 
|  | // Selection pass has a hard time dealing with FP constants. | 
|  | bool AllowNewConst = (Level < AfterLegalizeDAG); | 
|  |  | 
|  | // If 'unsafe math' or nnan is enabled, fold lots of things. | 
|  | if ((Options.UnsafeFPMath || Flags.hasNoNaNs()) && AllowNewConst) { | 
|  | // If allowed, fold (fadd (fneg x), x) -> 0.0 | 
|  | if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) | 
|  | return DAG.getConstantFP(0.0, DL, VT); | 
|  |  | 
|  | // If allowed, fold (fadd x, (fneg x)) -> 0.0 | 
|  | if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) | 
|  | return DAG.getConstantFP(0.0, DL, VT); | 
|  | } | 
|  |  | 
|  | // If 'unsafe math' or reassoc and nsz, fold lots of things. | 
|  | // TODO: break out portions of the transformations below for which Unsafe is | 
|  | //       considered and which do not require both nsz and reassoc | 
|  | if ((Options.UnsafeFPMath || | 
|  | (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && | 
|  | AllowNewConst) { | 
|  | // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 | 
|  | if (N1CFP && N0.getOpcode() == ISD::FADD && | 
|  | isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { | 
|  | SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags); | 
|  | return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC, Flags); | 
|  | } | 
|  |  | 
|  | // We can fold chains of FADD's of the same value into multiplications. | 
|  | // This transform is not safe in general because we are reducing the number | 
|  | // of rounding steps. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { | 
|  | if (N0.getOpcode() == ISD::FMUL) { | 
|  | bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); | 
|  | bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); | 
|  |  | 
|  | // (fadd (fmul x, c), x) -> (fmul x, c+1) | 
|  | if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { | 
|  | SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), | 
|  | DAG.getConstantFP(1.0, DL, VT), Flags); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); | 
|  | } | 
|  |  | 
|  | // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) | 
|  | if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && | 
|  | N1.getOperand(0) == N1.getOperand(1) && | 
|  | N0.getOperand(0) == N1.getOperand(0)) { | 
|  | SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), | 
|  | DAG.getConstantFP(2.0, DL, VT), Flags); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N1.getOpcode() == ISD::FMUL) { | 
|  | bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); | 
|  | bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); | 
|  |  | 
|  | // (fadd x, (fmul x, c)) -> (fmul x, c+1) | 
|  | if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { | 
|  | SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), | 
|  | DAG.getConstantFP(1.0, DL, VT), Flags); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); | 
|  | } | 
|  |  | 
|  | // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) | 
|  | if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && | 
|  | N0.getOperand(0) == N0.getOperand(1) && | 
|  | N1.getOperand(0) == N0.getOperand(0)) { | 
|  | SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), | 
|  | DAG.getConstantFP(2.0, DL, VT), Flags); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::FADD) { | 
|  | bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); | 
|  | // (fadd (fadd x, x), x) -> (fmul x, 3.0) | 
|  | if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && | 
|  | (N0.getOperand(0) == N1)) { | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, | 
|  | N1, DAG.getConstantFP(3.0, DL, VT), Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N1.getOpcode() == ISD::FADD) { | 
|  | bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); | 
|  | // (fadd x, (fadd x, x)) -> (fmul x, 3.0) | 
|  | if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && | 
|  | N1.getOperand(0) == N0) { | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, | 
|  | N0, DAG.getConstantFP(3.0, DL, VT), Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) | 
|  | if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && | 
|  | N0.getOperand(0) == N0.getOperand(1) && | 
|  | N1.getOperand(0) == N1.getOperand(1) && | 
|  | N0.getOperand(0) == N1.getOperand(0)) { | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstantFP(4.0, DL, VT), Flags); | 
|  | } | 
|  | } | 
|  | } // enable-unsafe-fp-math | 
|  |  | 
|  | // FADD -> FMA combines: | 
|  | if (SDValue Fused = visitFADDForFMACombine(N)) { | 
|  | AddToWorklist(Fused.getNode()); | 
|  | return Fused; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFSUB(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); | 
|  | ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | const SDNodeFlags Flags = N->getFlags(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (fsub c1, c2) -> c1-c2 | 
|  | if (N0CFP && N1CFP) | 
|  | return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags); | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | // (fsub A, 0) -> A | 
|  | if (N1CFP && N1CFP->isZero()) { | 
|  | if (!N1CFP->isNegative() || Options.UnsafeFPMath || | 
|  | Flags.hasNoSignedZeros()) { | 
|  | return N0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0 == N1) { | 
|  | // (fsub x, x) -> 0.0 | 
|  | if (Options.UnsafeFPMath || Flags.hasNoNaNs()) | 
|  | return DAG.getConstantFP(0.0f, DL, VT); | 
|  | } | 
|  |  | 
|  | // (fsub -0.0, N1) -> -N1 | 
|  | // NOTE: It is safe to transform an FSUB(-0.0,X) into an FNEG(X), since the | 
|  | //       FSUB does not specify the sign bit of a NaN. Also note that for | 
|  | //       the same reason, the inverse transform is not safe, unless fast math | 
|  | //       flags are in play. | 
|  | if (N0CFP && N0CFP->isZero()) { | 
|  | if (N0CFP->isNegative() || | 
|  | (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { | 
|  | if (isNegatibleForFree(N1, LegalOperations, TLI, &Options, ForCodeSize)) | 
|  | return GetNegatedExpression(N1, DAG, LegalOperations, ForCodeSize); | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) | 
|  | return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((Options.UnsafeFPMath || | 
|  | (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) | 
|  | && N1.getOpcode() == ISD::FADD) { | 
|  | // X - (X + Y) -> -Y | 
|  | if (N0 == N1->getOperand(0)) | 
|  | return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1), Flags); | 
|  | // X - (Y + X) -> -Y | 
|  | if (N0 == N1->getOperand(1)) | 
|  | return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0), Flags); | 
|  | } | 
|  |  | 
|  | // fold (fsub A, (fneg B)) -> (fadd A, B) | 
|  | if (isNegatibleForFree(N1, LegalOperations, TLI, &Options, ForCodeSize)) | 
|  | return DAG.getNode(ISD::FADD, DL, VT, N0, | 
|  | GetNegatedExpression(N1, DAG, LegalOperations, | 
|  | ForCodeSize), Flags); | 
|  |  | 
|  | // FSUB -> FMA combines: | 
|  | if (SDValue Fused = visitFSUBForFMACombine(N)) { | 
|  | AddToWorklist(Fused.getNode()); | 
|  | return Fused; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFMUL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); | 
|  | ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | const SDNodeFlags Flags = N->getFlags(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) { | 
|  | // This just handles C1 * C2 for vectors. Other vector folds are below. | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  | } | 
|  |  | 
|  | // fold (fmul c1, c2) -> c1*c2 | 
|  | if (N0CFP && N1CFP) | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); | 
|  |  | 
|  | // canonicalize constant to RHS | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0) && | 
|  | !isConstantFPBuildVectorOrConstantFP(N1)) | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); | 
|  |  | 
|  | // fold (fmul A, 1.0) -> A | 
|  | if (N1CFP && N1CFP->isExactlyValue(1.0)) | 
|  | return N0; | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | if (Options.UnsafeFPMath || | 
|  | (Flags.hasNoNaNs() && Flags.hasNoSignedZeros())) { | 
|  | // fold (fmul A, 0) -> 0 | 
|  | if (N1CFP && N1CFP->isZero()) | 
|  | return N1; | 
|  | } | 
|  |  | 
|  | if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { | 
|  | // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 | 
|  | if (isConstantFPBuildVectorOrConstantFP(N1) && | 
|  | N0.getOpcode() == ISD::FMUL) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | SDValue N01 = N0.getOperand(1); | 
|  | // Avoid an infinite loop by making sure that N00 is not a constant | 
|  | // (the inner multiply has not been constant folded yet). | 
|  | if (isConstantFPBuildVectorOrConstantFP(N01) && | 
|  | !isConstantFPBuildVectorOrConstantFP(N00)) { | 
|  | SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Match a special-case: we convert X * 2.0 into fadd. | 
|  | // fmul (fadd X, X), C -> fmul X, 2.0 * C | 
|  | if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && | 
|  | N0.getOperand(0) == N0.getOperand(1)) { | 
|  | const SDValue Two = DAG.getConstantFP(2.0, DL, VT); | 
|  | SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fmul X, 2.0) -> (fadd X, X) | 
|  | if (N1CFP && N1CFP->isExactlyValue(+2.0)) | 
|  | return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); | 
|  |  | 
|  | // fold (fmul X, -1.0) -> (fneg X) | 
|  | if (N1CFP && N1CFP->isExactlyValue(-1.0)) | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) | 
|  | return DAG.getNode(ISD::FNEG, DL, VT, N0); | 
|  |  | 
|  | // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) | 
|  | if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options, | 
|  | ForCodeSize)) { | 
|  | if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options, | 
|  | ForCodeSize)) { | 
|  | // Both can be negated for free, check to see if at least one is cheaper | 
|  | // negated. | 
|  | if (LHSNeg == 2 || RHSNeg == 2) | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, | 
|  | GetNegatedExpression(N0, DAG, LegalOperations, | 
|  | ForCodeSize), | 
|  | GetNegatedExpression(N1, DAG, LegalOperations, | 
|  | ForCodeSize), | 
|  | Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) | 
|  | // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) | 
|  | if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && | 
|  | (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && | 
|  | TLI.isOperationLegal(ISD::FABS, VT)) { | 
|  | SDValue Select = N0, X = N1; | 
|  | if (Select.getOpcode() != ISD::SELECT) | 
|  | std::swap(Select, X); | 
|  |  | 
|  | SDValue Cond = Select.getOperand(0); | 
|  | auto TrueOpnd  = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); | 
|  | auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); | 
|  |  | 
|  | if (TrueOpnd && FalseOpnd && | 
|  | Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && | 
|  | isa<ConstantFPSDNode>(Cond.getOperand(1)) && | 
|  | cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETULT: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | std::swap(TrueOpnd, FalseOpnd); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && | 
|  | TLI.isOperationLegal(ISD::FNEG, VT)) | 
|  | return DAG.getNode(ISD::FNEG, DL, VT, | 
|  | DAG.getNode(ISD::FABS, DL, VT, X)); | 
|  | if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) | 
|  | return DAG.getNode(ISD::FABS, DL, VT, X); | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // FMUL -> FMA combines: | 
|  | if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { | 
|  | AddToWorklist(Fused.getNode()); | 
|  | return Fused; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFMA(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  |  | 
|  | // FMA nodes have flags that propagate to the created nodes. | 
|  | const SDNodeFlags Flags = N->getFlags(); | 
|  | bool UnsafeFPMath = Options.UnsafeFPMath || isContractable(N); | 
|  |  | 
|  | // Constant fold FMA. | 
|  | if (isa<ConstantFPSDNode>(N0) && | 
|  | isa<ConstantFPSDNode>(N1) && | 
|  | isa<ConstantFPSDNode>(N2)) { | 
|  | return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); | 
|  | } | 
|  |  | 
|  | if (UnsafeFPMath) { | 
|  | if (N0CFP && N0CFP->isZero()) | 
|  | return N2; | 
|  | if (N1CFP && N1CFP->isZero()) | 
|  | return N2; | 
|  | } | 
|  | // TODO: The FMA node should have flags that propagate to these nodes. | 
|  | if (N0CFP && N0CFP->isExactlyValue(1.0)) | 
|  | return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); | 
|  | if (N1CFP && N1CFP->isExactlyValue(1.0)) | 
|  | return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); | 
|  |  | 
|  | // Canonicalize (fma c, x, y) -> (fma x, c, y) | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0) && | 
|  | !isConstantFPBuildVectorOrConstantFP(N1)) | 
|  | return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); | 
|  |  | 
|  | if (UnsafeFPMath) { | 
|  | // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) | 
|  | if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && | 
|  | isConstantFPBuildVectorOrConstantFP(N1) && | 
|  | isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, | 
|  | DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1), | 
|  | Flags), Flags); | 
|  | } | 
|  |  | 
|  | // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) | 
|  | if (N0.getOpcode() == ISD::FMUL && | 
|  | isConstantFPBuildVectorOrConstantFP(N1) && | 
|  | isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { | 
|  | return DAG.getNode(ISD::FMA, DL, VT, | 
|  | N0.getOperand(0), | 
|  | DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1), | 
|  | Flags), | 
|  | N2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (fma x, 1, y) -> (fadd x, y) | 
|  | // (fma x, -1, y) -> (fadd (fneg x), y) | 
|  | if (N1CFP) { | 
|  | if (N1CFP->isExactlyValue(1.0)) | 
|  | // TODO: The FMA node should have flags that propagate to this node. | 
|  | return DAG.getNode(ISD::FADD, DL, VT, N0, N2); | 
|  |  | 
|  | if (N1CFP->isExactlyValue(-1.0) && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { | 
|  | SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); | 
|  | AddToWorklist(RHSNeg.getNode()); | 
|  | // TODO: The FMA node should have flags that propagate to this node. | 
|  | return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); | 
|  | } | 
|  |  | 
|  | // fma (fneg x), K, y -> fma x -K, y | 
|  | if (N0.getOpcode() == ISD::FNEG && | 
|  | (TLI.isOperationLegal(ISD::ConstantFP, VT) || | 
|  | (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, | 
|  | ForCodeSize)))) { | 
|  | return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), | 
|  | DAG.getNode(ISD::FNEG, DL, VT, N1, Flags), N2); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (UnsafeFPMath) { | 
|  | // (fma x, c, x) -> (fmul x, (c+1)) | 
|  | if (N1CFP && N0 == N2) { | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, | 
|  | DAG.getNode(ISD::FADD, DL, VT, N1, | 
|  | DAG.getConstantFP(1.0, DL, VT), Flags), | 
|  | Flags); | 
|  | } | 
|  |  | 
|  | // (fma x, c, (fneg x)) -> (fmul x, (c-1)) | 
|  | if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, | 
|  | DAG.getNode(ISD::FADD, DL, VT, N1, | 
|  | DAG.getConstantFP(-1.0, DL, VT), Flags), | 
|  | Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Combine multiple FDIVs with the same divisor into multiple FMULs by the | 
|  | // reciprocal. | 
|  | // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) | 
|  | // Notice that this is not always beneficial. One reason is different targets | 
|  | // may have different costs for FDIV and FMUL, so sometimes the cost of two | 
|  | // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason | 
|  | // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". | 
|  | SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { | 
|  | // TODO: Limit this transform based on optsize/minsize - it always creates at | 
|  | //       least 1 extra instruction. But the perf win may be substantial enough | 
|  | //       that only minsize should restrict this. | 
|  | bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; | 
|  | const SDNodeFlags Flags = N->getFlags(); | 
|  | if (!UnsafeMath && !Flags.hasAllowReciprocal()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Skip if current node is a reciprocal/fneg-reciprocal. | 
|  | SDValue N0 = N->getOperand(0); | 
|  | ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); | 
|  | if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0))) | 
|  | return SDValue(); | 
|  |  | 
|  | // Exit early if the target does not want this transform or if there can't | 
|  | // possibly be enough uses of the divisor to make the transform worthwhile. | 
|  | SDValue N1 = N->getOperand(1); | 
|  | unsigned MinUses = TLI.combineRepeatedFPDivisors(); | 
|  |  | 
|  | // For splat vectors, scale the number of uses by the splat factor. If we can | 
|  | // convert the division into a scalar op, that will likely be much faster. | 
|  | unsigned NumElts = 1; | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT.isVector() && DAG.isSplatValue(N1)) | 
|  | NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | if (!MinUses || (N1->use_size() * NumElts) < MinUses) | 
|  | return SDValue(); | 
|  |  | 
|  | // Find all FDIV users of the same divisor. | 
|  | // Use a set because duplicates may be present in the user list. | 
|  | SetVector<SDNode *> Users; | 
|  | for (auto *U : N1->uses()) { | 
|  | if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { | 
|  | // This division is eligible for optimization only if global unsafe math | 
|  | // is enabled or if this division allows reciprocal formation. | 
|  | if (UnsafeMath || U->getFlags().hasAllowReciprocal()) | 
|  | Users.insert(U); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we have the actual number of divisor uses, make sure it meets | 
|  | // the minimum threshold specified by the target. | 
|  | if ((Users.size() * NumElts) < MinUses) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); | 
|  | SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); | 
|  |  | 
|  | // Dividend / Divisor -> Dividend * Reciprocal | 
|  | for (auto *U : Users) { | 
|  | SDValue Dividend = U->getOperand(0); | 
|  | if (Dividend != FPOne) { | 
|  | SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, | 
|  | Reciprocal, Flags); | 
|  | CombineTo(U, NewNode); | 
|  | } else if (U != Reciprocal.getNode()) { | 
|  | // In the absence of fast-math-flags, this user node is always the | 
|  | // same node as Reciprocal, but with FMF they may be different nodes. | 
|  | CombineTo(U, Reciprocal); | 
|  | } | 
|  | } | 
|  | return SDValue(N, 0);  // N was replaced. | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFDIV(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | SDNodeFlags Flags = N->getFlags(); | 
|  |  | 
|  | // fold vector ops | 
|  | if (VT.isVector()) | 
|  | if (SDValue FoldedVOp = SimplifyVBinOp(N)) | 
|  | return FoldedVOp; | 
|  |  | 
|  | // fold (fdiv c1, c2) -> c1/c2 | 
|  | if (N0CFP && N1CFP) | 
|  | return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | if (SDValue V = combineRepeatedFPDivisors(N)) | 
|  | return V; | 
|  |  | 
|  | if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { | 
|  | // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. | 
|  | if (N1CFP) { | 
|  | // Compute the reciprocal 1.0 / c2. | 
|  | const APFloat &N1APF = N1CFP->getValueAPF(); | 
|  | APFloat Recip(N1APF.getSemantics(), 1); // 1.0 | 
|  | APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); | 
|  | // Only do the transform if the reciprocal is a legal fp immediate that | 
|  | // isn't too nasty (eg NaN, denormal, ...). | 
|  | if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty | 
|  | (!LegalOperations || | 
|  | // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM | 
|  | // backend)... we should handle this gracefully after Legalize. | 
|  | // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || | 
|  | TLI.isOperationLegal(ISD::ConstantFP, VT) || | 
|  | TLI.isFPImmLegal(Recip, VT, ForCodeSize))) | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, | 
|  | DAG.getConstantFP(Recip, DL, VT), Flags); | 
|  | } | 
|  |  | 
|  | // If this FDIV is part of a reciprocal square root, it may be folded | 
|  | // into a target-specific square root estimate instruction. | 
|  | if (N1.getOpcode() == ISD::FSQRT) { | 
|  | if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) { | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | 
|  | } | 
|  | } else if (N1.getOpcode() == ISD::FP_EXTEND && | 
|  | N1.getOperand(0).getOpcode() == ISD::FSQRT) { | 
|  | if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), | 
|  | Flags)) { | 
|  | RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); | 
|  | AddToWorklist(RV.getNode()); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | 
|  | } | 
|  | } else if (N1.getOpcode() == ISD::FP_ROUND && | 
|  | N1.getOperand(0).getOpcode() == ISD::FSQRT) { | 
|  | if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), | 
|  | Flags)) { | 
|  | RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); | 
|  | AddToWorklist(RV.getNode()); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | 
|  | } | 
|  | } else if (N1.getOpcode() == ISD::FMUL) { | 
|  | // Look through an FMUL. Even though this won't remove the FDIV directly, | 
|  | // it's still worthwhile to get rid of the FSQRT if possible. | 
|  | SDValue SqrtOp; | 
|  | SDValue OtherOp; | 
|  | if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { | 
|  | SqrtOp = N1.getOperand(0); | 
|  | OtherOp = N1.getOperand(1); | 
|  | } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { | 
|  | SqrtOp = N1.getOperand(1); | 
|  | OtherOp = N1.getOperand(0); | 
|  | } | 
|  | if (SqrtOp.getNode()) { | 
|  | // We found a FSQRT, so try to make this fold: | 
|  | // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) | 
|  | if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { | 
|  | RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); | 
|  | AddToWorklist(RV.getNode()); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold into a reciprocal estimate and multiply instead of a real divide. | 
|  | if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { | 
|  | AddToWorklist(RV.getNode()); | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) | 
|  | if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options, | 
|  | ForCodeSize)) { | 
|  | if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options, | 
|  | ForCodeSize)) { | 
|  | // Both can be negated for free, check to see if at least one is cheaper | 
|  | // negated. | 
|  | if (LHSNeg == 2 || RHSNeg == 2) | 
|  | return DAG.getNode(ISD::FDIV, SDLoc(N), VT, | 
|  | GetNegatedExpression(N0, DAG, LegalOperations, | 
|  | ForCodeSize), | 
|  | GetNegatedExpression(N1, DAG, LegalOperations, | 
|  | ForCodeSize), | 
|  | Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFREM(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (frem c1, c2) -> fmod(c1,c2) | 
|  | if (N0CFP && N1CFP) | 
|  | return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, N->getFlags()); | 
|  |  | 
|  | if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
|  | return NewSel; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFSQRT(SDNode *N) { | 
|  | SDNodeFlags Flags = N->getFlags(); | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | !Flags.hasApproximateFuncs()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | if (TLI.isFsqrtCheap(N0, DAG)) | 
|  | return SDValue(); | 
|  |  | 
|  | // FSQRT nodes have flags that propagate to the created nodes. | 
|  | return buildSqrtEstimate(N0, Flags); | 
|  | } | 
|  |  | 
|  | /// copysign(x, fp_extend(y)) -> copysign(x, y) | 
|  | /// copysign(x, fp_round(y)) -> copysign(x, y) | 
|  | static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { | 
|  | SDValue N1 = N->getOperand(1); | 
|  | if ((N1.getOpcode() == ISD::FP_EXTEND || | 
|  | N1.getOpcode() == ISD::FP_ROUND)) { | 
|  | // Do not optimize out type conversion of f128 type yet. | 
|  | // For some targets like x86_64, configuration is changed to keep one f128 | 
|  | // value in one SSE register, but instruction selection cannot handle | 
|  | // FCOPYSIGN on SSE registers yet. | 
|  | EVT N1VT = N1->getValueType(0); | 
|  | EVT N1Op0VT = N1->getOperand(0).getValueType(); | 
|  | return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); | 
|  | bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (N0CFP && N1CFP) // Constant fold | 
|  | return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); | 
|  |  | 
|  | if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { | 
|  | const APFloat &V = N1C->getValueAPF(); | 
|  | // copysign(x, c1) -> fabs(x)       iff ispos(c1) | 
|  | // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) | 
|  | if (!V.isNegative()) { | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) | 
|  | return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); | 
|  | } else { | 
|  | if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) | 
|  | return DAG.getNode(ISD::FNEG, SDLoc(N), VT, | 
|  | DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // copysign(fabs(x), y) -> copysign(x, y) | 
|  | // copysign(fneg(x), y) -> copysign(x, y) | 
|  | // copysign(copysign(x,z), y) -> copysign(x, y) | 
|  | if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || | 
|  | N0.getOpcode() == ISD::FCOPYSIGN) | 
|  | return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); | 
|  |  | 
|  | // copysign(x, abs(y)) -> abs(x) | 
|  | if (N1.getOpcode() == ISD::FABS) | 
|  | return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); | 
|  |  | 
|  | // copysign(x, copysign(y,z)) -> copysign(x, z) | 
|  | if (N1.getOpcode() == ISD::FCOPYSIGN) | 
|  | return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); | 
|  |  | 
|  | // copysign(x, fp_extend(y)) -> copysign(x, y) | 
|  | // copysign(x, fp_round(y)) -> copysign(x, y) | 
|  | if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) | 
|  | return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFPOW(SDNode *N) { | 
|  | ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); | 
|  | if (!ExponentC) | 
|  | return SDValue(); | 
|  |  | 
|  | // Try to convert x ** (1/3) into cube root. | 
|  | // TODO: Handle the various flavors of long double. | 
|  | // TODO: Since we're approximating, we don't need an exact 1/3 exponent. | 
|  | //       Some range near 1/3 should be fine. | 
|  | EVT VT = N->getValueType(0); | 
|  | if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || | 
|  | (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { | 
|  | // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. | 
|  | // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. | 
|  | // pow(-val, 1/3) =  nan; cbrt(-val) = -num. | 
|  | // For regular numbers, rounding may cause the results to differ. | 
|  | // Therefore, we require { nsz ninf nnan afn } for this transform. | 
|  | // TODO: We could select out the special cases if we don't have nsz/ninf. | 
|  | SDNodeFlags Flags = N->getFlags(); | 
|  | if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || | 
|  | !Flags.hasApproximateFuncs()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Do not create a cbrt() libcall if the target does not have it, and do not | 
|  | // turn a pow that has lowering support into a cbrt() libcall. | 
|  | if (!DAG.getLibInfo().has(LibFunc_cbrt) || | 
|  | (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && | 
|  | DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0), Flags); | 
|  | } | 
|  |  | 
|  | // Try to convert x ** (1/4) and x ** (3/4) into square roots. | 
|  | // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. | 
|  | // TODO: This could be extended (using a target hook) to handle smaller | 
|  | // power-of-2 fractional exponents. | 
|  | bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); | 
|  | bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); | 
|  | if (ExponentIs025 || ExponentIs075) { | 
|  | // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. | 
|  | // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) =  NaN. | 
|  | // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. | 
|  | // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) =  NaN. | 
|  | // For regular numbers, rounding may cause the results to differ. | 
|  | // Therefore, we require { nsz ninf afn } for this transform. | 
|  | // TODO: We could select out the special cases if we don't have nsz/ninf. | 
|  | SDNodeFlags Flags = N->getFlags(); | 
|  |  | 
|  | // We only need no signed zeros for the 0.25 case. | 
|  | if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || | 
|  | !Flags.hasApproximateFuncs()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Don't double the number of libcalls. We are trying to inline fast code. | 
|  | if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Assume that libcalls are the smallest code. | 
|  | // TODO: This restriction should probably be lifted for vectors. | 
|  | if (DAG.getMachineFunction().getFunction().hasOptSize()) | 
|  | return SDValue(); | 
|  |  | 
|  | // pow(X, 0.25) --> sqrt(sqrt(X)) | 
|  | SDLoc DL(N); | 
|  | SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0), Flags); | 
|  | SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt, Flags); | 
|  | if (ExponentIs025) | 
|  | return SqrtSqrt; | 
|  | // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) | 
|  | return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt, Flags); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | // This optimization is guarded by a function attribute because it may produce | 
|  | // unexpected results. Ie, programs may be relying on the platform-specific | 
|  | // undefined behavior when the float-to-int conversion overflows. | 
|  | const Function &F = DAG.getMachineFunction().getFunction(); | 
|  | Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow"); | 
|  | if (StrictOverflow.getValueAsString().equals("false")) | 
|  | return SDValue(); | 
|  |  | 
|  | // We only do this if the target has legal ftrunc. Otherwise, we'd likely be | 
|  | // replacing casts with a libcall. We also must be allowed to ignore -0.0 | 
|  | // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer | 
|  | // conversions would return +0.0. | 
|  | // FIXME: We should be able to use node-level FMF here. | 
|  | // TODO: If strict math, should we use FABS (+ range check for signed cast)? | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || | 
|  | !DAG.getTarget().Options.NoSignedZerosFPMath) | 
|  | return SDValue(); | 
|  |  | 
|  | // fptosi/fptoui round towards zero, so converting from FP to integer and | 
|  | // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X | 
|  | SDValue N0 = N->getOperand(0); | 
|  | if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && | 
|  | N0.getOperand(0).getValueType() == VT) | 
|  | return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); | 
|  |  | 
|  | if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && | 
|  | N0.getOperand(0).getValueType() == VT) | 
|  | return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT OpVT = N0.getValueType(); | 
|  |  | 
|  | // [us]itofp(undef) = 0, because the result value is bounded. | 
|  | if (N0.isUndef()) | 
|  | return DAG.getConstantFP(0.0, SDLoc(N), VT); | 
|  |  | 
|  | // fold (sint_to_fp c1) -> c1fp | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | // ...but only if the target supports immediate floating-point values | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) | 
|  | return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); | 
|  |  | 
|  | // If the input is a legal type, and SINT_TO_FP is not legal on this target, | 
|  | // but UINT_TO_FP is legal on this target, try to convert. | 
|  | if (!hasOperation(ISD::SINT_TO_FP, OpVT) && | 
|  | hasOperation(ISD::UINT_TO_FP, OpVT)) { | 
|  | // If the sign bit is known to be zero, we can change this to UINT_TO_FP. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); | 
|  | } | 
|  |  | 
|  | // The next optimizations are desirable only if SELECT_CC can be lowered. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { | 
|  | // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) | 
|  | if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && | 
|  | !VT.isVector() && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { | 
|  | SDLoc DL(N); | 
|  | SDValue Ops[] = | 
|  | { N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), | 
|  | N0.getOperand(2) }; | 
|  | return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); | 
|  | } | 
|  |  | 
|  | // fold (sint_to_fp (zext (setcc x, y, cc))) -> | 
|  | //      (select_cc x, y, 1.0, 0.0,, cc) | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND && | 
|  | N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { | 
|  | SDLoc DL(N); | 
|  | SDValue Ops[] = | 
|  | { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), | 
|  | DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), | 
|  | N0.getOperand(0).getOperand(2) }; | 
|  | return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) | 
|  | return FTrunc; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT OpVT = N0.getValueType(); | 
|  |  | 
|  | // [us]itofp(undef) = 0, because the result value is bounded. | 
|  | if (N0.isUndef()) | 
|  | return DAG.getConstantFP(0.0, SDLoc(N), VT); | 
|  |  | 
|  | // fold (uint_to_fp c1) -> c1fp | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
|  | // ...but only if the target supports immediate floating-point values | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) | 
|  | return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); | 
|  |  | 
|  | // If the input is a legal type, and UINT_TO_FP is not legal on this target, | 
|  | // but SINT_TO_FP is legal on this target, try to convert. | 
|  | if (!hasOperation(ISD::UINT_TO_FP, OpVT) && | 
|  | hasOperation(ISD::SINT_TO_FP, OpVT)) { | 
|  | // If the sign bit is known to be zero, we can change this to SINT_TO_FP. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); | 
|  | } | 
|  |  | 
|  | // The next optimizations are desirable only if SELECT_CC can be lowered. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { | 
|  | // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) | 
|  | if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && | 
|  | (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { | 
|  | SDLoc DL(N); | 
|  | SDValue Ops[] = | 
|  | { N0.getOperand(0), N0.getOperand(1), | 
|  | DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), | 
|  | N0.getOperand(2) }; | 
|  | return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) | 
|  | return FTrunc; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x | 
|  | static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Src = N0.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; | 
|  | bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; | 
|  |  | 
|  | // We can safely assume the conversion won't overflow the output range, | 
|  | // because (for example) (uint8_t)18293.f is undefined behavior. | 
|  |  | 
|  | // Since we can assume the conversion won't overflow, our decision as to | 
|  | // whether the input will fit in the float should depend on the minimum | 
|  | // of the input range and output range. | 
|  |  | 
|  | // This means this is also safe for a signed input and unsigned output, since | 
|  | // a negative input would lead to undefined behavior. | 
|  | unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; | 
|  | unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; | 
|  | unsigned ActualSize = std::min(InputSize, OutputSize); | 
|  | const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); | 
|  |  | 
|  | // We can only fold away the float conversion if the input range can be | 
|  | // represented exactly in the float range. | 
|  | if (APFloat::semanticsPrecision(sem) >= ActualSize) { | 
|  | if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { | 
|  | unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND | 
|  | : ISD::ZERO_EXTEND; | 
|  | return DAG.getNode(ExtOp, SDLoc(N), VT, Src); | 
|  | } | 
|  | if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); | 
|  | return DAG.getBitcast(VT, Src); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fp_to_sint undef) -> undef | 
|  | if (N0.isUndef()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // fold (fp_to_sint c1fp) -> c1 | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); | 
|  |  | 
|  | return FoldIntToFPToInt(N, DAG); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fp_to_uint undef) -> undef | 
|  | if (N0.isUndef()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // fold (fp_to_uint c1fp) -> c1 | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); | 
|  |  | 
|  | return FoldIntToFPToInt(N, DAG); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fp_round c1fp) -> c1fp | 
|  | if (N0CFP) | 
|  | return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); | 
|  |  | 
|  | // fold (fp_round (fp_extend x)) -> x | 
|  | if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) | 
|  | return N0.getOperand(0); | 
|  |  | 
|  | // fold (fp_round (fp_round x)) -> (fp_round x) | 
|  | if (N0.getOpcode() == ISD::FP_ROUND) { | 
|  | const bool NIsTrunc = N->getConstantOperandVal(1) == 1; | 
|  | const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; | 
|  |  | 
|  | // Skip this folding if it results in an fp_round from f80 to f16. | 
|  | // | 
|  | // f80 to f16 always generates an expensive (and as yet, unimplemented) | 
|  | // libcall to __truncxfhf2 instead of selecting native f16 conversion | 
|  | // instructions from f32 or f64.  Moreover, the first (value-preserving) | 
|  | // fp_round from f80 to either f32 or f64 may become a NOP in platforms like | 
|  | // x86. | 
|  | if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the first fp_round isn't a value preserving truncation, it might | 
|  | // introduce a tie in the second fp_round, that wouldn't occur in the | 
|  | // single-step fp_round we want to fold to. | 
|  | // In other words, double rounding isn't the same as rounding. | 
|  | // Also, this is a value preserving truncation iff both fp_round's are. | 
|  | if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), | 
|  | DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) | 
|  | if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { | 
|  | SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, | 
|  | N0.getOperand(0), N1); | 
|  | AddToWorklist(Tmp.getNode()); | 
|  | return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, | 
|  | Tmp, N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) | 
|  | return NewVSel; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); | 
|  | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
|  |  | 
|  | // fold (fp_round_inreg c1fp) -> c1fp | 
|  | if (N0CFP && isTypeLegal(EVT)) { | 
|  | SDLoc DL(N); | 
|  | SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); | 
|  | return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. | 
|  | if (N->hasOneUse() && | 
|  | N->use_begin()->getOpcode() == ISD::FP_ROUND) | 
|  | return SDValue(); | 
|  |  | 
|  | // fold (fp_extend c1fp) -> c1fp | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); | 
|  |  | 
|  | // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) | 
|  | if (N0.getOpcode() == ISD::FP16_TO_FP && | 
|  | TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) | 
|  | return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); | 
|  |  | 
|  | // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the | 
|  | // value of X. | 
|  | if (N0.getOpcode() == ISD::FP_ROUND | 
|  | && N0.getConstantOperandVal(1) == 1) { | 
|  | SDValue In = N0.getOperand(0); | 
|  | if (In.getValueType() == VT) return In; | 
|  | if (VT.bitsLT(In.getValueType())) | 
|  | return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, | 
|  | In, N0.getOperand(1)); | 
|  | return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); | 
|  | } | 
|  |  | 
|  | // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) | 
|  | if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | 
|  | TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
|  | SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, | 
|  | LN0->getChain(), | 
|  | LN0->getBasePtr(), N0.getValueType(), | 
|  | LN0->getMemOperand()); | 
|  | CombineTo(N, ExtLoad); | 
|  | CombineTo(N0.getNode(), | 
|  | DAG.getNode(ISD::FP_ROUND, SDLoc(N0), | 
|  | N0.getValueType(), ExtLoad, | 
|  | DAG.getIntPtrConstant(1, SDLoc(N0))), | 
|  | ExtLoad.getValue(1)); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  |  | 
|  | if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) | 
|  | return NewVSel; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFCEIL(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fceil c1) -> fceil(c1) | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFTRUNC(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ftrunc c1) -> ftrunc(c1) | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); | 
|  |  | 
|  | // fold ftrunc (known rounded int x) -> x | 
|  | // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is | 
|  | // likely to be generated to extract integer from a rounded floating value. | 
|  | switch (N0.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::FRINT: | 
|  | case ISD::FTRUNC: | 
|  | case ISD::FNEARBYINT: | 
|  | case ISD::FFLOOR: | 
|  | case ISD::FCEIL: | 
|  | return N0; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFFLOOR(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (ffloor c1) -> ffloor(c1) | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // FIXME: FNEG and FABS have a lot in common; refactor. | 
|  | SDValue DAGCombiner::visitFNEG(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Constant fold FNEG. | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); | 
|  |  | 
|  | if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), | 
|  | &DAG.getTarget().Options, ForCodeSize)) | 
|  | return GetNegatedExpression(N0, DAG, LegalOperations, ForCodeSize); | 
|  |  | 
|  | // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading | 
|  | // constant pool values. | 
|  | if (!TLI.isFNegFree(VT) && | 
|  | N0.getOpcode() == ISD::BITCAST && | 
|  | N0.getNode()->hasOneUse()) { | 
|  | SDValue Int = N0.getOperand(0); | 
|  | EVT IntVT = Int.getValueType(); | 
|  | if (IntVT.isInteger() && !IntVT.isVector()) { | 
|  | APInt SignMask; | 
|  | if (N0.getValueType().isVector()) { | 
|  | // For a vector, get a mask such as 0x80... per scalar element | 
|  | // and splat it. | 
|  | SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); | 
|  | SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); | 
|  | } else { | 
|  | // For a scalar, just generate 0x80... | 
|  | SignMask = APInt::getSignMask(IntVT.getSizeInBits()); | 
|  | } | 
|  | SDLoc DL0(N0); | 
|  | Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, | 
|  | DAG.getConstant(SignMask, DL0, IntVT)); | 
|  | AddToWorklist(Int.getNode()); | 
|  | return DAG.getBitcast(VT, Int); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (fneg (fmul c, x)) -> (fmul -c, x) | 
|  | if (N0.getOpcode() == ISD::FMUL && | 
|  | (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { | 
|  | ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); | 
|  | if (CFP1) { | 
|  | APFloat CVal = CFP1->getValueAPF(); | 
|  | CVal.changeSign(); | 
|  | if (Level >= AfterLegalizeDAG && | 
|  | (TLI.isFPImmLegal(CVal, VT, ForCodeSize) || | 
|  | TLI.isOperationLegal(ISD::ConstantFP, VT))) | 
|  | return DAG.getNode( | 
|  | ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), | 
|  | DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)), | 
|  | N0->getFlags()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N, | 
|  | APFloat (*Op)(const APFloat &, const APFloat &)) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); | 
|  | const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); | 
|  |  | 
|  | if (N0CFP && N1CFP) { | 
|  | const APFloat &C0 = N0CFP->getValueAPF(); | 
|  | const APFloat &C1 = N1CFP->getValueAPF(); | 
|  | return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT); | 
|  | } | 
|  |  | 
|  | // Canonicalize to constant on RHS. | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0) && | 
|  | !isConstantFPBuildVectorOrConstantFP(N1)) | 
|  | return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFMINNUM(SDNode *N) { | 
|  | return visitFMinMax(DAG, N, minnum); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { | 
|  | return visitFMinMax(DAG, N, maxnum); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFMINIMUM(SDNode *N) { | 
|  | return visitFMinMax(DAG, N, minimum); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) { | 
|  | return visitFMinMax(DAG, N, maximum); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFABS(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fold (fabs c1) -> fabs(c1) | 
|  | if (isConstantFPBuildVectorOrConstantFP(N0)) | 
|  | return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); | 
|  |  | 
|  | // fold (fabs (fabs x)) -> (fabs x) | 
|  | if (N0.getOpcode() == ISD::FABS) | 
|  | return N->getOperand(0); | 
|  |  | 
|  | // fold (fabs (fneg x)) -> (fabs x) | 
|  | // fold (fabs (fcopysign x, y)) -> (fabs x) | 
|  | if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) | 
|  | return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); | 
|  |  | 
|  | // fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads. | 
|  | if (!TLI.isFAbsFree(VT) && N0.getOpcode() == ISD::BITCAST && N0.hasOneUse()) { | 
|  | SDValue Int = N0.getOperand(0); | 
|  | EVT IntVT = Int.getValueType(); | 
|  | if (IntVT.isInteger() && !IntVT.isVector()) { | 
|  | APInt SignMask; | 
|  | if (N0.getValueType().isVector()) { | 
|  | // For a vector, get a mask such as 0x7f... per scalar element | 
|  | // and splat it. | 
|  | SignMask = ~APInt::getSignMask(N0.getScalarValueSizeInBits()); | 
|  | SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); | 
|  | } else { | 
|  | // For a scalar, just generate 0x7f... | 
|  | SignMask = ~APInt::getSignMask(IntVT.getSizeInBits()); | 
|  | } | 
|  | SDLoc DL(N0); | 
|  | Int = DAG.getNode(ISD::AND, DL, IntVT, Int, | 
|  | DAG.getConstant(SignMask, DL, IntVT)); | 
|  | AddToWorklist(Int.getNode()); | 
|  | return DAG.getBitcast(N->getValueType(0), Int); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBRCOND(SDNode *N) { | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  |  | 
|  | // If N is a constant we could fold this into a fallthrough or unconditional | 
|  | // branch. However that doesn't happen very often in normal code, because | 
|  | // Instcombine/SimplifyCFG should have handled the available opportunities. | 
|  | // If we did this folding here, it would be necessary to update the | 
|  | // MachineBasicBlock CFG, which is awkward. | 
|  |  | 
|  | // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal | 
|  | // on the target. | 
|  | if (N1.getOpcode() == ISD::SETCC && | 
|  | TLI.isOperationLegalOrCustom(ISD::BR_CC, | 
|  | N1.getOperand(0).getValueType())) { | 
|  | return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, | 
|  | Chain, N1.getOperand(2), | 
|  | N1.getOperand(0), N1.getOperand(1), N2); | 
|  | } | 
|  |  | 
|  | if (N1.hasOneUse()) { | 
|  | if (SDValue NewN1 = rebuildSetCC(N1)) | 
|  | return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, NewN1, N2); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::rebuildSetCC(SDValue N) { | 
|  | if (N.getOpcode() == ISD::SRL || | 
|  | (N.getOpcode() == ISD::TRUNCATE && | 
|  | (N.getOperand(0).hasOneUse() && | 
|  | N.getOperand(0).getOpcode() == ISD::SRL))) { | 
|  | // Look pass the truncate. | 
|  | if (N.getOpcode() == ISD::TRUNCATE) | 
|  | N = N.getOperand(0); | 
|  |  | 
|  | // Match this pattern so that we can generate simpler code: | 
|  | // | 
|  | //   %a = ... | 
|  | //   %b = and i32 %a, 2 | 
|  | //   %c = srl i32 %b, 1 | 
|  | //   brcond i32 %c ... | 
|  | // | 
|  | // into | 
|  | // | 
|  | //   %a = ... | 
|  | //   %b = and i32 %a, 2 | 
|  | //   %c = setcc eq %b, 0 | 
|  | //   brcond %c ... | 
|  | // | 
|  | // This applies only when the AND constant value has one bit set and the | 
|  | // SRL constant is equal to the log2 of the AND constant. The back-end is | 
|  | // smart enough to convert the result into a TEST/JMP sequence. | 
|  | SDValue Op0 = N.getOperand(0); | 
|  | SDValue Op1 = N.getOperand(1); | 
|  |  | 
|  | if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { | 
|  | SDValue AndOp1 = Op0.getOperand(1); | 
|  |  | 
|  | if (AndOp1.getOpcode() == ISD::Constant) { | 
|  | const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); | 
|  |  | 
|  | if (AndConst.isPowerOf2() && | 
|  | cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), | 
|  | Op0, DAG.getConstant(0, DL, Op0.getValueType()), | 
|  | ISD::SETNE); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transform br(xor(x, y)) -> br(x != y) | 
|  | // Transform br(xor(xor(x,y), 1)) -> br (x == y) | 
|  | if (N.getOpcode() == ISD::XOR) { | 
|  | // Because we may call this on a speculatively constructed | 
|  | // SimplifiedSetCC Node, we need to simplify this node first. | 
|  | // Ideally this should be folded into SimplifySetCC and not | 
|  | // here. For now, grab a handle to N so we don't lose it from | 
|  | // replacements interal to the visit. | 
|  | HandleSDNode XORHandle(N); | 
|  | while (N.getOpcode() == ISD::XOR) { | 
|  | SDValue Tmp = visitXOR(N.getNode()); | 
|  | // No simplification done. | 
|  | if (!Tmp.getNode()) | 
|  | break; | 
|  | // Returning N is form in-visit replacement that may invalidated | 
|  | // N. Grab value from Handle. | 
|  | if (Tmp.getNode() == N.getNode()) | 
|  | N = XORHandle.getValue(); | 
|  | else // Node simplified. Try simplifying again. | 
|  | N = Tmp; | 
|  | } | 
|  |  | 
|  | if (N.getOpcode() != ISD::XOR) | 
|  | return N; | 
|  |  | 
|  | SDNode *TheXor = N.getNode(); | 
|  |  | 
|  | SDValue Op0 = TheXor->getOperand(0); | 
|  | SDValue Op1 = TheXor->getOperand(1); | 
|  |  | 
|  | if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { | 
|  | bool Equal = false; | 
|  | if (isOneConstant(Op0) && Op0.hasOneUse() && | 
|  | Op0.getOpcode() == ISD::XOR) { | 
|  | TheXor = Op0.getNode(); | 
|  | Equal = true; | 
|  | } | 
|  |  | 
|  | EVT SetCCVT = N.getValueType(); | 
|  | if (LegalTypes) | 
|  | SetCCVT = getSetCCResultType(SetCCVT); | 
|  | // Replace the uses of XOR with SETCC | 
|  | return DAG.getSetCC(SDLoc(TheXor), SetCCVT, Op0, Op1, | 
|  | Equal ? ISD::SETEQ : ISD::SETNE); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. | 
|  | // | 
|  | SDValue DAGCombiner::visitBR_CC(SDNode *N) { | 
|  | CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); | 
|  | SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); | 
|  |  | 
|  | // If N is a constant we could fold this into a fallthrough or unconditional | 
|  | // branch. However that doesn't happen very often in normal code, because | 
|  | // Instcombine/SimplifyCFG should have handled the available opportunities. | 
|  | // If we did this folding here, it would be necessary to update the | 
|  | // MachineBasicBlock CFG, which is awkward. | 
|  |  | 
|  | // Use SimplifySetCC to simplify SETCC's. | 
|  | SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), | 
|  | CondLHS, CondRHS, CC->get(), SDLoc(N), | 
|  | false); | 
|  | if (Simp.getNode()) AddToWorklist(Simp.getNode()); | 
|  |  | 
|  | // fold to a simpler setcc | 
|  | if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) | 
|  | return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, | 
|  | N->getOperand(0), Simp.getOperand(2), | 
|  | Simp.getOperand(0), Simp.getOperand(1), | 
|  | N->getOperand(4)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Return true if 'Use' is a load or a store that uses N as its base pointer | 
|  | /// and that N may be folded in the load / store addressing mode. | 
|  | static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, | 
|  | SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | EVT VT; | 
|  | unsigned AS; | 
|  |  | 
|  | if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) { | 
|  | if (LD->isIndexed() || LD->getBasePtr().getNode() != N) | 
|  | return false; | 
|  | VT = LD->getMemoryVT(); | 
|  | AS = LD->getAddressSpace(); | 
|  | } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) { | 
|  | if (ST->isIndexed() || ST->getBasePtr().getNode() != N) | 
|  | return false; | 
|  | VT = ST->getMemoryVT(); | 
|  | AS = ST->getAddressSpace(); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | TargetLowering::AddrMode AM; | 
|  | if (N->getOpcode() == ISD::ADD) { | 
|  | AM.HasBaseReg = true; | 
|  | ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (Offset) | 
|  | // [reg +/- imm] | 
|  | AM.BaseOffs = Offset->getSExtValue(); | 
|  | else | 
|  | // [reg +/- reg] | 
|  | AM.Scale = 1; | 
|  | } else if (N->getOpcode() == ISD::SUB) { | 
|  | AM.HasBaseReg = true; | 
|  | ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (Offset) | 
|  | // [reg +/- imm] | 
|  | AM.BaseOffs = -Offset->getSExtValue(); | 
|  | else | 
|  | // [reg +/- reg] | 
|  | AM.Scale = 1; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, | 
|  | VT.getTypeForEVT(*DAG.getContext()), AS); | 
|  | } | 
|  |  | 
|  | /// Try turning a load/store into a pre-indexed load/store when the base | 
|  | /// pointer is an add or subtract and it has other uses besides the load/store. | 
|  | /// After the transformation, the new indexed load/store has effectively folded | 
|  | /// the add/subtract in and all of its other uses are redirected to the | 
|  | /// new load/store. | 
|  | bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { | 
|  | if (Level < AfterLegalizeDAG) | 
|  | return false; | 
|  |  | 
|  | bool isLoad = true; | 
|  | SDValue Ptr; | 
|  | EVT VT; | 
|  | if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) { | 
|  | if (LD->isIndexed()) | 
|  | return false; | 
|  | VT = LD->getMemoryVT(); | 
|  | if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && | 
|  | !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) | 
|  | return false; | 
|  | Ptr = LD->getBasePtr(); | 
|  | } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) { | 
|  | if (ST->isIndexed()) | 
|  | return false; | 
|  | VT = ST->getMemoryVT(); | 
|  | if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && | 
|  | !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) | 
|  | return false; | 
|  | Ptr = ST->getBasePtr(); | 
|  | isLoad = false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail | 
|  | // out.  There is no reason to make this a preinc/predec. | 
|  | if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || | 
|  | Ptr.getNode()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Ask the target to do addressing mode selection. | 
|  | SDValue BasePtr; | 
|  | SDValue Offset; | 
|  | ISD::MemIndexedMode AM = ISD::UNINDEXED; | 
|  | if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) | 
|  | return false; | 
|  |  | 
|  | // Backends without true r+i pre-indexed forms may need to pass a | 
|  | // constant base with a variable offset so that constant coercion | 
|  | // will work with the patterns in canonical form. | 
|  | bool Swapped = false; | 
|  | if (isa<ConstantSDNode>(BasePtr)) { | 
|  | std::swap(BasePtr, Offset); | 
|  | Swapped = true; | 
|  | } | 
|  |  | 
|  | // Don't create a indexed load / store with zero offset. | 
|  | if (isNullConstant(Offset)) | 
|  | return false; | 
|  |  | 
|  | // Try turning it into a pre-indexed load / store except when: | 
|  | // 1) The new base ptr is a frame index. | 
|  | // 2) If N is a store and the new base ptr is either the same as or is a | 
|  | //    predecessor of the value being stored. | 
|  | // 3) Another use of old base ptr is a predecessor of N. If ptr is folded | 
|  | //    that would create a cycle. | 
|  | // 4) All uses are load / store ops that use it as old base ptr. | 
|  |  | 
|  | // Check #1.  Preinc'ing a frame index would require copying the stack pointer | 
|  | // (plus the implicit offset) to a register to preinc anyway. | 
|  | if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) | 
|  | return false; | 
|  |  | 
|  | // Check #2. | 
|  | if (!isLoad) { | 
|  | SDValue Val = cast<StoreSDNode>(N)->getValue(); | 
|  |  | 
|  | // Would require a copy. | 
|  | if (Val == BasePtr) | 
|  | return false; | 
|  |  | 
|  | // Would create a cycle. | 
|  | if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Caches for hasPredecessorHelper. | 
|  | SmallPtrSet<const SDNode *, 32> Visited; | 
|  | SmallVector<const SDNode *, 16> Worklist; | 
|  | Worklist.push_back(N); | 
|  |  | 
|  | // If the offset is a constant, there may be other adds of constants that | 
|  | // can be folded with this one. We should do this to avoid having to keep | 
|  | // a copy of the original base pointer. | 
|  | SmallVector<SDNode *, 16> OtherUses; | 
|  | if (isa<ConstantSDNode>(Offset)) | 
|  | for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), | 
|  | UE = BasePtr.getNode()->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDUse &Use = UI.getUse(); | 
|  | // Skip the use that is Ptr and uses of other results from BasePtr's | 
|  | // node (important for nodes that return multiple results). | 
|  | if (Use.getUser() == Ptr.getNode() || Use != BasePtr) | 
|  | continue; | 
|  |  | 
|  | if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) | 
|  | continue; | 
|  |  | 
|  | if (Use.getUser()->getOpcode() != ISD::ADD && | 
|  | Use.getUser()->getOpcode() != ISD::SUB) { | 
|  | OtherUses.clear(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); | 
|  | if (!isa<ConstantSDNode>(Op1)) { | 
|  | OtherUses.clear(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // FIXME: In some cases, we can be smarter about this. | 
|  | if (Op1.getValueType() != Offset.getValueType()) { | 
|  | OtherUses.clear(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | OtherUses.push_back(Use.getUser()); | 
|  | } | 
|  |  | 
|  | if (Swapped) | 
|  | std::swap(BasePtr, Offset); | 
|  |  | 
|  | // Now check for #3 and #4. | 
|  | bool RealUse = false; | 
|  |  | 
|  | for (SDNode *Use : Ptr.getNode()->uses()) { | 
|  | if (Use == N) | 
|  | continue; | 
|  | if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) | 
|  | return false; | 
|  |  | 
|  | // If Ptr may be folded in addressing mode of other use, then it's | 
|  | // not profitable to do this transformation. | 
|  | if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) | 
|  | RealUse = true; | 
|  | } | 
|  |  | 
|  | if (!RealUse) | 
|  | return false; | 
|  |  | 
|  | SDValue Result; | 
|  | if (isLoad) | 
|  | Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), | 
|  | BasePtr, Offset, AM); | 
|  | else | 
|  | Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), | 
|  | BasePtr, Offset, AM); | 
|  | ++PreIndexedNodes; | 
|  | ++NodesCombined; | 
|  | LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; | 
|  | Result.getNode()->dump(&DAG); dbgs() << '\n'); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | if (isLoad) { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); | 
|  | } else { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); | 
|  | } | 
|  |  | 
|  | // Finally, since the node is now dead, remove it from the graph. | 
|  | deleteAndRecombine(N); | 
|  |  | 
|  | if (Swapped) | 
|  | std::swap(BasePtr, Offset); | 
|  |  | 
|  | // Replace other uses of BasePtr that can be updated to use Ptr | 
|  | for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { | 
|  | unsigned OffsetIdx = 1; | 
|  | if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) | 
|  | OffsetIdx = 0; | 
|  | assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == | 
|  | BasePtr.getNode() && "Expected BasePtr operand"); | 
|  |  | 
|  | // We need to replace ptr0 in the following expression: | 
|  | //   x0 * offset0 + y0 * ptr0 = t0 | 
|  | // knowing that | 
|  | //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) | 
|  | // | 
|  | // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the | 
|  | // indexed load/store and the expression that needs to be re-written. | 
|  | // | 
|  | // Therefore, we have: | 
|  | //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 | 
|  |  | 
|  | ConstantSDNode *CN = | 
|  | cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); | 
|  | int X0, X1, Y0, Y1; | 
|  | const APInt &Offset0 = CN->getAPIntValue(); | 
|  | APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); | 
|  |  | 
|  | X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; | 
|  | Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; | 
|  | X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; | 
|  | Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; | 
|  |  | 
|  | unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; | 
|  |  | 
|  | APInt CNV = Offset0; | 
|  | if (X0 < 0) CNV = -CNV; | 
|  | if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; | 
|  | else CNV = CNV - Offset1; | 
|  |  | 
|  | SDLoc DL(OtherUses[i]); | 
|  |  | 
|  | // We can now generate the new expression. | 
|  | SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); | 
|  | SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); | 
|  |  | 
|  | SDValue NewUse = DAG.getNode(Opcode, | 
|  | DL, | 
|  | OtherUses[i]->getValueType(0), NewOp1, NewOp2); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); | 
|  | deleteAndRecombine(OtherUses[i]); | 
|  | } | 
|  |  | 
|  | // Replace the uses of Ptr with uses of the updated base value. | 
|  | DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); | 
|  | deleteAndRecombine(Ptr.getNode()); | 
|  | AddToWorklist(Result.getNode()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Try to combine a load/store with a add/sub of the base pointer node into a | 
|  | /// post-indexed load/store. The transformation folded the add/subtract into the | 
|  | /// new indexed load/store effectively and all of its uses are redirected to the | 
|  | /// new load/store. | 
|  | bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { | 
|  | if (Level < AfterLegalizeDAG) | 
|  | return false; | 
|  |  | 
|  | bool isLoad = true; | 
|  | SDValue Ptr; | 
|  | EVT VT; | 
|  | if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) { | 
|  | if (LD->isIndexed()) | 
|  | return false; | 
|  | VT = LD->getMemoryVT(); | 
|  | if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && | 
|  | !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) | 
|  | return false; | 
|  | Ptr = LD->getBasePtr(); | 
|  | } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) { | 
|  | if (ST->isIndexed()) | 
|  | return false; | 
|  | VT = ST->getMemoryVT(); | 
|  | if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && | 
|  | !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) | 
|  | return false; | 
|  | Ptr = ST->getBasePtr(); | 
|  | isLoad = false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Ptr.getNode()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | for (SDNode *Op : Ptr.getNode()->uses()) { | 
|  | if (Op == N || | 
|  | (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) | 
|  | continue; | 
|  |  | 
|  | SDValue BasePtr; | 
|  | SDValue Offset; | 
|  | ISD::MemIndexedMode AM = ISD::UNINDEXED; | 
|  | if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { | 
|  | // Don't create a indexed load / store with zero offset. | 
|  | if (isNullConstant(Offset)) | 
|  | continue; | 
|  |  | 
|  | // Try turning it into a post-indexed load / store except when | 
|  | // 1) All uses are load / store ops that use it as base ptr (and | 
|  | //    it may be folded as addressing mmode). | 
|  | // 2) Op must be independent of N, i.e. Op is neither a predecessor | 
|  | //    nor a successor of N. Otherwise, if Op is folded that would | 
|  | //    create a cycle. | 
|  |  | 
|  | if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) | 
|  | continue; | 
|  |  | 
|  | // Check for #1. | 
|  | bool TryNext = false; | 
|  | for (SDNode *Use : BasePtr.getNode()->uses()) { | 
|  | if (Use == Ptr.getNode()) | 
|  | continue; | 
|  |  | 
|  | // If all the uses are load / store addresses, then don't do the | 
|  | // transformation. | 
|  | if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ | 
|  | bool RealUse = false; | 
|  | for (SDNode *UseUse : Use->uses()) { | 
|  | if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) | 
|  | RealUse = true; | 
|  | } | 
|  |  | 
|  | if (!RealUse) { | 
|  | TryNext = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TryNext) | 
|  | continue; | 
|  |  | 
|  | // Check for #2. | 
|  | SmallPtrSet<const SDNode *, 32> Visited; | 
|  | SmallVector<const SDNode *, 8> Worklist; | 
|  | // Ptr is predecessor to both N and Op. | 
|  | Visited.insert(Ptr.getNode()); | 
|  | Worklist.push_back(N); | 
|  | Worklist.push_back(Op); | 
|  | if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && | 
|  | !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) { | 
|  | SDValue Result = isLoad | 
|  | ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), | 
|  | BasePtr, Offset, AM) | 
|  | : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), | 
|  | BasePtr, Offset, AM); | 
|  | ++PostIndexedNodes; | 
|  | ++NodesCombined; | 
|  | LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); | 
|  | dbgs() << "\nWith: "; Result.getNode()->dump(&DAG); | 
|  | dbgs() << '\n'); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | if (isLoad) { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); | 
|  | } else { | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); | 
|  | } | 
|  |  | 
|  | // Finally, since the node is now dead, remove it from the graph. | 
|  | deleteAndRecombine(N); | 
|  |  | 
|  | // Replace the uses of Use with uses of the updated base value. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), | 
|  | Result.getValue(isLoad ? 1 : 0)); | 
|  | deleteAndRecombine(Op); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return the base-pointer arithmetic from an indexed \p LD. | 
|  | SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { | 
|  | ISD::MemIndexedMode AM = LD->getAddressingMode(); | 
|  | assert(AM != ISD::UNINDEXED); | 
|  | SDValue BP = LD->getOperand(1); | 
|  | SDValue Inc = LD->getOperand(2); | 
|  |  | 
|  | // Some backends use TargetConstants for load offsets, but don't expect | 
|  | // TargetConstants in general ADD nodes. We can convert these constants into | 
|  | // regular Constants (if the constant is not opaque). | 
|  | assert((Inc.getOpcode() != ISD::TargetConstant || | 
|  | !cast<ConstantSDNode>(Inc)->isOpaque()) && | 
|  | "Cannot split out indexing using opaque target constants"); | 
|  | if (Inc.getOpcode() == ISD::TargetConstant) { | 
|  | ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); | 
|  | Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), | 
|  | ConstInc->getValueType(0)); | 
|  | } | 
|  |  | 
|  | unsigned Opc = | 
|  | (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); | 
|  | return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); | 
|  | } | 
|  |  | 
|  | static inline int numVectorEltsOrZero(EVT T) { | 
|  | return T.isVector() ? T.getVectorNumElements() : 0; | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { | 
|  | Val = ST->getValue(); | 
|  | EVT STType = Val.getValueType(); | 
|  | EVT STMemType = ST->getMemoryVT(); | 
|  | if (STType == STMemType) | 
|  | return true; | 
|  | if (isTypeLegal(STMemType)) | 
|  | return false; // fail. | 
|  | if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && | 
|  | TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { | 
|  | Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); | 
|  | return true; | 
|  | } | 
|  | if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && | 
|  | STType.isInteger() && STMemType.isInteger()) { | 
|  | Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); | 
|  | return true; | 
|  | } | 
|  | if (STType.getSizeInBits() == STMemType.getSizeInBits()) { | 
|  | Val = DAG.getBitcast(STMemType, Val); | 
|  | return true; | 
|  | } | 
|  | return false; // fail. | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { | 
|  | EVT LDMemType = LD->getMemoryVT(); | 
|  | EVT LDType = LD->getValueType(0); | 
|  | assert(Val.getValueType() == LDMemType && | 
|  | "Attempting to extend value of non-matching type"); | 
|  | if (LDType == LDMemType) | 
|  | return true; | 
|  | if (LDMemType.isInteger() && LDType.isInteger()) { | 
|  | switch (LD->getExtensionType()) { | 
|  | case ISD::NON_EXTLOAD: | 
|  | Val = DAG.getBitcast(LDType, Val); | 
|  | return true; | 
|  | case ISD::EXTLOAD: | 
|  | Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); | 
|  | return true; | 
|  | case ISD::SEXTLOAD: | 
|  | Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); | 
|  | return true; | 
|  | case ISD::ZEXTLOAD: | 
|  | Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { | 
|  | if (OptLevel == CodeGenOpt::None || LD->isVolatile()) | 
|  | return SDValue(); | 
|  | SDValue Chain = LD->getOperand(0); | 
|  | StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); | 
|  | if (!ST || ST->isVolatile()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT LDType = LD->getValueType(0); | 
|  | EVT LDMemType = LD->getMemoryVT(); | 
|  | EVT STMemType = ST->getMemoryVT(); | 
|  | EVT STType = ST->getValue().getValueType(); | 
|  |  | 
|  | BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); | 
|  | BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); | 
|  | int64_t Offset; | 
|  | if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Normalize for Endianness. After this Offset=0 will denote that the least | 
|  | // significant bit in the loaded value maps to the least significant bit in | 
|  | // the stored value). With Offset=n (for n > 0) the loaded value starts at the | 
|  | // n:th least significant byte of the stored value. | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | Offset = (STMemType.getStoreSizeInBits() - | 
|  | LDMemType.getStoreSizeInBits()) / 8 - Offset; | 
|  |  | 
|  | // Check that the stored value cover all bits that are loaded. | 
|  | bool STCoversLD = | 
|  | (Offset >= 0) && | 
|  | (Offset * 8 + LDMemType.getSizeInBits() <= STMemType.getSizeInBits()); | 
|  |  | 
|  | auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { | 
|  | if (LD->isIndexed()) { | 
|  | bool IsSub = (LD->getAddressingMode() == ISD::PRE_DEC || | 
|  | LD->getAddressingMode() == ISD::POST_DEC); | 
|  | unsigned Opc = IsSub ? ISD::SUB : ISD::ADD; | 
|  | SDValue Idx = DAG.getNode(Opc, SDLoc(LD), LD->getOperand(1).getValueType(), | 
|  | LD->getOperand(1), LD->getOperand(2)); | 
|  | SDValue Ops[] = {Val, Idx, Chain}; | 
|  | return CombineTo(LD, Ops, 3); | 
|  | } | 
|  | return CombineTo(LD, Val, Chain); | 
|  | }; | 
|  |  | 
|  | if (!STCoversLD) | 
|  | return SDValue(); | 
|  |  | 
|  | // Memory as copy space (potentially masked). | 
|  | if (Offset == 0 && LDType == STType && STMemType == LDMemType) { | 
|  | // Simple case: Direct non-truncating forwarding | 
|  | if (LDType.getSizeInBits() == LDMemType.getSizeInBits()) | 
|  | return ReplaceLd(LD, ST->getValue(), Chain); | 
|  | // Can we model the truncate and extension with an and mask? | 
|  | if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && | 
|  | !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { | 
|  | // Mask to size of LDMemType | 
|  | auto Mask = | 
|  | DAG.getConstant(APInt::getLowBitsSet(STType.getSizeInBits(), | 
|  | STMemType.getSizeInBits()), | 
|  | SDLoc(ST), STType); | 
|  | auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); | 
|  | return ReplaceLd(LD, Val, Chain); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: Deal with nonzero offset. | 
|  | if (LD->getBasePtr().isUndef() || Offset != 0) | 
|  | return SDValue(); | 
|  | // Model necessary truncations / extenstions. | 
|  | SDValue Val; | 
|  | // Truncate Value To Stored Memory Size. | 
|  | do { | 
|  | if (!getTruncatedStoreValue(ST, Val)) | 
|  | continue; | 
|  | if (!isTypeLegal(LDMemType)) | 
|  | continue; | 
|  | if (STMemType != LDMemType) { | 
|  | // TODO: Support vectors? This requires extract_subvector/bitcast. | 
|  | if (!STMemType.isVector() && !LDMemType.isVector() && | 
|  | STMemType.isInteger() && LDMemType.isInteger()) | 
|  | Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); | 
|  | else | 
|  | continue; | 
|  | } | 
|  | if (!extendLoadedValueToExtension(LD, Val)) | 
|  | continue; | 
|  | return ReplaceLd(LD, Val, Chain); | 
|  | } while (false); | 
|  |  | 
|  | // On failure, cleanup dead nodes we may have created. | 
|  | if (Val->use_empty()) | 
|  | deleteAndRecombine(Val.getNode()); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitLOAD(SDNode *N) { | 
|  | LoadSDNode *LD  = cast<LoadSDNode>(N); | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Ptr   = LD->getBasePtr(); | 
|  |  | 
|  | // If load is not volatile and there are no uses of the loaded value (and | 
|  | // the updated indexed value in case of indexed loads), change uses of the | 
|  | // chain value into uses of the chain input (i.e. delete the dead load). | 
|  | if (!LD->isVolatile()) { | 
|  | if (N->getValueType(1) == MVT::Other) { | 
|  | // Unindexed loads. | 
|  | if (!N->hasAnyUseOfValue(0)) { | 
|  | // It's not safe to use the two value CombineTo variant here. e.g. | 
|  | // v1, chain2 = load chain1, loc | 
|  | // v2, chain3 = load chain2, loc | 
|  | // v3         = add v2, c | 
|  | // Now we replace use of chain2 with chain1.  This makes the second load | 
|  | // isomorphic to the one we are deleting, and thus makes this load live. | 
|  | LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); | 
|  | dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG); | 
|  | dbgs() << "\n"); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); | 
|  | AddUsersToWorklist(Chain.getNode()); | 
|  | if (N->use_empty()) | 
|  | deleteAndRecombine(N); | 
|  |  | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } else { | 
|  | // Indexed loads. | 
|  | assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); | 
|  |  | 
|  | // If this load has an opaque TargetConstant offset, then we cannot split | 
|  | // the indexing into an add/sub directly (that TargetConstant may not be | 
|  | // valid for a different type of node, and we cannot convert an opaque | 
|  | // target constant into a regular constant). | 
|  | bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && | 
|  | cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); | 
|  |  | 
|  | if (!N->hasAnyUseOfValue(0) && | 
|  | ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { | 
|  | SDValue Undef = DAG.getUNDEF(N->getValueType(0)); | 
|  | SDValue Index; | 
|  | if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { | 
|  | Index = SplitIndexingFromLoad(LD); | 
|  | // Try to fold the base pointer arithmetic into subsequent loads and | 
|  | // stores. | 
|  | AddUsersToWorklist(N); | 
|  | } else | 
|  | Index = DAG.getUNDEF(N->getValueType(1)); | 
|  | LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); | 
|  | dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG); | 
|  | dbgs() << " and 2 other values\n"); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); | 
|  | deleteAndRecombine(N); | 
|  | return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this load is directly stored, replace the load value with the stored | 
|  | // value. | 
|  | if (auto V = ForwardStoreValueToDirectLoad(LD)) | 
|  | return V; | 
|  |  | 
|  | // Try to infer better alignment information than the load already has. | 
|  | if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { | 
|  | if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { | 
|  | if (Align > LD->getAlignment() && LD->getSrcValueOffset() % Align == 0) { | 
|  | SDValue NewLoad = DAG.getExtLoad( | 
|  | LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, | 
|  | LD->getPointerInfo(), LD->getMemoryVT(), Align, | 
|  | LD->getMemOperand()->getFlags(), LD->getAAInfo()); | 
|  | // NewLoad will always be N as we are only refining the alignment | 
|  | assert(NewLoad.getNode() == N); | 
|  | (void)NewLoad; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LD->isUnindexed()) { | 
|  | // Walk up chain skipping non-aliasing memory nodes. | 
|  | SDValue BetterChain = FindBetterChain(LD, Chain); | 
|  |  | 
|  | // If there is a better chain. | 
|  | if (Chain != BetterChain) { | 
|  | SDValue ReplLoad; | 
|  |  | 
|  | // Replace the chain to void dependency. | 
|  | if (LD->getExtensionType() == ISD::NON_EXTLOAD) { | 
|  | ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), | 
|  | BetterChain, Ptr, LD->getMemOperand()); | 
|  | } else { | 
|  | ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), | 
|  | LD->getValueType(0), | 
|  | BetterChain, Ptr, LD->getMemoryVT(), | 
|  | LD->getMemOperand()); | 
|  | } | 
|  |  | 
|  | // Create token factor to keep old chain connected. | 
|  | SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), | 
|  | MVT::Other, Chain, ReplLoad.getValue(1)); | 
|  |  | 
|  | // Replace uses with load result and token factor | 
|  | return CombineTo(N, ReplLoad.getValue(0), Token); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try transforming N to an indexed load. | 
|  | if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // Try to slice up N to more direct loads if the slices are mapped to | 
|  | // different register banks or pairing can take place. | 
|  | if (SliceUpLoad(N)) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Helper structure used to slice a load in smaller loads. | 
|  | /// Basically a slice is obtained from the following sequence: | 
|  | /// Origin = load Ty1, Base | 
|  | /// Shift = srl Ty1 Origin, CstTy Amount | 
|  | /// Inst = trunc Shift to Ty2 | 
|  | /// | 
|  | /// Then, it will be rewritten into: | 
|  | /// Slice = load SliceTy, Base + SliceOffset | 
|  | /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 | 
|  | /// | 
|  | /// SliceTy is deduced from the number of bits that are actually used to | 
|  | /// build Inst. | 
|  | struct LoadedSlice { | 
|  | /// Helper structure used to compute the cost of a slice. | 
|  | struct Cost { | 
|  | /// Are we optimizing for code size. | 
|  | bool ForCodeSize; | 
|  |  | 
|  | /// Various cost. | 
|  | unsigned Loads = 0; | 
|  | unsigned Truncates = 0; | 
|  | unsigned CrossRegisterBanksCopies = 0; | 
|  | unsigned ZExts = 0; | 
|  | unsigned Shift = 0; | 
|  |  | 
|  | Cost(bool ForCodeSize = false) : ForCodeSize(ForCodeSize) {} | 
|  |  | 
|  | /// Get the cost of one isolated slice. | 
|  | Cost(const LoadedSlice &LS, bool ForCodeSize = false) | 
|  | : ForCodeSize(ForCodeSize), Loads(1) { | 
|  | EVT TruncType = LS.Inst->getValueType(0); | 
|  | EVT LoadedType = LS.getLoadedType(); | 
|  | if (TruncType != LoadedType && | 
|  | !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) | 
|  | ZExts = 1; | 
|  | } | 
|  |  | 
|  | /// Account for slicing gain in the current cost. | 
|  | /// Slicing provide a few gains like removing a shift or a | 
|  | /// truncate. This method allows to grow the cost of the original | 
|  | /// load with the gain from this slice. | 
|  | void addSliceGain(const LoadedSlice &LS) { | 
|  | // Each slice saves a truncate. | 
|  | const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); | 
|  | if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), | 
|  | LS.Inst->getValueType(0))) | 
|  | ++Truncates; | 
|  | // If there is a shift amount, this slice gets rid of it. | 
|  | if (LS.Shift) | 
|  | ++Shift; | 
|  | // If this slice can merge a cross register bank copy, account for it. | 
|  | if (LS.canMergeExpensiveCrossRegisterBankCopy()) | 
|  | ++CrossRegisterBanksCopies; | 
|  | } | 
|  |  | 
|  | Cost &operator+=(const Cost &RHS) { | 
|  | Loads += RHS.Loads; | 
|  | Truncates += RHS.Truncates; | 
|  | CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; | 
|  | ZExts += RHS.ZExts; | 
|  | Shift += RHS.Shift; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | bool operator==(const Cost &RHS) const { | 
|  | return Loads == RHS.Loads && Truncates == RHS.Truncates && | 
|  | CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && | 
|  | ZExts == RHS.ZExts && Shift == RHS.Shift; | 
|  | } | 
|  |  | 
|  | bool operator!=(const Cost &RHS) const { return !(*this == RHS); } | 
|  |  | 
|  | bool operator<(const Cost &RHS) const { | 
|  | // Assume cross register banks copies are as expensive as loads. | 
|  | // FIXME: Do we want some more target hooks? | 
|  | unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; | 
|  | unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; | 
|  | // Unless we are optimizing for code size, consider the | 
|  | // expensive operation first. | 
|  | if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) | 
|  | return ExpensiveOpsLHS < ExpensiveOpsRHS; | 
|  | return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < | 
|  | (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); | 
|  | } | 
|  |  | 
|  | bool operator>(const Cost &RHS) const { return RHS < *this; } | 
|  |  | 
|  | bool operator<=(const Cost &RHS) const { return !(RHS < *this); } | 
|  |  | 
|  | bool operator>=(const Cost &RHS) const { return !(*this < RHS); } | 
|  | }; | 
|  |  | 
|  | // The last instruction that represent the slice. This should be a | 
|  | // truncate instruction. | 
|  | SDNode *Inst; | 
|  |  | 
|  | // The original load instruction. | 
|  | LoadSDNode *Origin; | 
|  |  | 
|  | // The right shift amount in bits from the original load. | 
|  | unsigned Shift; | 
|  |  | 
|  | // The DAG from which Origin came from. | 
|  | // This is used to get some contextual information about legal types, etc. | 
|  | SelectionDAG *DAG; | 
|  |  | 
|  | LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, | 
|  | unsigned Shift = 0, SelectionDAG *DAG = nullptr) | 
|  | : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} | 
|  |  | 
|  | /// Get the bits used in a chunk of bits \p BitWidth large. | 
|  | /// \return Result is \p BitWidth and has used bits set to 1 and | 
|  | ///         not used bits set to 0. | 
|  | APInt getUsedBits() const { | 
|  | // Reproduce the trunc(lshr) sequence: | 
|  | // - Start from the truncated value. | 
|  | // - Zero extend to the desired bit width. | 
|  | // - Shift left. | 
|  | assert(Origin && "No original load to compare against."); | 
|  | unsigned BitWidth = Origin->getValueSizeInBits(0); | 
|  | assert(Inst && "This slice is not bound to an instruction"); | 
|  | assert(Inst->getValueSizeInBits(0) <= BitWidth && | 
|  | "Extracted slice is bigger than the whole type!"); | 
|  | APInt UsedBits(Inst->getValueSizeInBits(0), 0); | 
|  | UsedBits.setAllBits(); | 
|  | UsedBits = UsedBits.zext(BitWidth); | 
|  | UsedBits <<= Shift; | 
|  | return UsedBits; | 
|  | } | 
|  |  | 
|  | /// Get the size of the slice to be loaded in bytes. | 
|  | unsigned getLoadedSize() const { | 
|  | unsigned SliceSize = getUsedBits().countPopulation(); | 
|  | assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); | 
|  | return SliceSize / 8; | 
|  | } | 
|  |  | 
|  | /// Get the type that will be loaded for this slice. | 
|  | /// Note: This may not be the final type for the slice. | 
|  | EVT getLoadedType() const { | 
|  | assert(DAG && "Missing context"); | 
|  | LLVMContext &Ctxt = *DAG->getContext(); | 
|  | return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); | 
|  | } | 
|  |  | 
|  | /// Get the alignment of the load used for this slice. | 
|  | unsigned getAlignment() const { | 
|  | unsigned Alignment = Origin->getAlignment(); | 
|  | uint64_t Offset = getOffsetFromBase(); | 
|  | if (Offset != 0) | 
|  | Alignment = MinAlign(Alignment, Alignment + Offset); | 
|  | return Alignment; | 
|  | } | 
|  |  | 
|  | /// Check if this slice can be rewritten with legal operations. | 
|  | bool isLegal() const { | 
|  | // An invalid slice is not legal. | 
|  | if (!Origin || !Inst || !DAG) | 
|  | return false; | 
|  |  | 
|  | // Offsets are for indexed load only, we do not handle that. | 
|  | if (!Origin->getOffset().isUndef()) | 
|  | return false; | 
|  |  | 
|  | const TargetLowering &TLI = DAG->getTargetLoweringInfo(); | 
|  |  | 
|  | // Check that the type is legal. | 
|  | EVT SliceType = getLoadedType(); | 
|  | if (!TLI.isTypeLegal(SliceType)) | 
|  | return false; | 
|  |  | 
|  | // Check that the load is legal for this type. | 
|  | if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) | 
|  | return false; | 
|  |  | 
|  | // Check that the offset can be computed. | 
|  | // 1. Check its type. | 
|  | EVT PtrType = Origin->getBasePtr().getValueType(); | 
|  | if (PtrType == MVT::Untyped || PtrType.isExtended()) | 
|  | return false; | 
|  |  | 
|  | // 2. Check that it fits in the immediate. | 
|  | if (!TLI.isLegalAddImmediate(getOffsetFromBase())) | 
|  | return false; | 
|  |  | 
|  | // 3. Check that the computation is legal. | 
|  | if (!TLI.isOperationLegal(ISD::ADD, PtrType)) | 
|  | return false; | 
|  |  | 
|  | // Check that the zext is legal if it needs one. | 
|  | EVT TruncateType = Inst->getValueType(0); | 
|  | if (TruncateType != SliceType && | 
|  | !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Get the offset in bytes of this slice in the original chunk of | 
|  | /// bits. | 
|  | /// \pre DAG != nullptr. | 
|  | uint64_t getOffsetFromBase() const { | 
|  | assert(DAG && "Missing context."); | 
|  | bool IsBigEndian = DAG->getDataLayout().isBigEndian(); | 
|  | assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); | 
|  | uint64_t Offset = Shift / 8; | 
|  | unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; | 
|  | assert(!(Origin->getValueSizeInBits(0) & 0x7) && | 
|  | "The size of the original loaded type is not a multiple of a" | 
|  | " byte."); | 
|  | // If Offset is bigger than TySizeInBytes, it means we are loading all | 
|  | // zeros. This should have been optimized before in the process. | 
|  | assert(TySizeInBytes > Offset && | 
|  | "Invalid shift amount for given loaded size"); | 
|  | if (IsBigEndian) | 
|  | Offset = TySizeInBytes - Offset - getLoadedSize(); | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | /// Generate the sequence of instructions to load the slice | 
|  | /// represented by this object and redirect the uses of this slice to | 
|  | /// this new sequence of instructions. | 
|  | /// \pre this->Inst && this->Origin are valid Instructions and this | 
|  | /// object passed the legal check: LoadedSlice::isLegal returned true. | 
|  | /// \return The last instruction of the sequence used to load the slice. | 
|  | SDValue loadSlice() const { | 
|  | assert(Inst && Origin && "Unable to replace a non-existing slice."); | 
|  | const SDValue &OldBaseAddr = Origin->getBasePtr(); | 
|  | SDValue BaseAddr = OldBaseAddr; | 
|  | // Get the offset in that chunk of bytes w.r.t. the endianness. | 
|  | int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); | 
|  | assert(Offset >= 0 && "Offset too big to fit in int64_t!"); | 
|  | if (Offset) { | 
|  | // BaseAddr = BaseAddr + Offset. | 
|  | EVT ArithType = BaseAddr.getValueType(); | 
|  | SDLoc DL(Origin); | 
|  | BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, | 
|  | DAG->getConstant(Offset, DL, ArithType)); | 
|  | } | 
|  |  | 
|  | // Create the type of the loaded slice according to its size. | 
|  | EVT SliceType = getLoadedType(); | 
|  |  | 
|  | // Create the load for the slice. | 
|  | SDValue LastInst = | 
|  | DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, | 
|  | Origin->getPointerInfo().getWithOffset(Offset), | 
|  | getAlignment(), Origin->getMemOperand()->getFlags()); | 
|  | // If the final type is not the same as the loaded type, this means that | 
|  | // we have to pad with zero. Create a zero extend for that. | 
|  | EVT FinalType = Inst->getValueType(0); | 
|  | if (SliceType != FinalType) | 
|  | LastInst = | 
|  | DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); | 
|  | return LastInst; | 
|  | } | 
|  |  | 
|  | /// Check if this slice can be merged with an expensive cross register | 
|  | /// bank copy. E.g., | 
|  | /// i = load i32 | 
|  | /// f = bitcast i32 i to float | 
|  | bool canMergeExpensiveCrossRegisterBankCopy() const { | 
|  | if (!Inst || !Inst->hasOneUse()) | 
|  | return false; | 
|  | SDNode *Use = *Inst->use_begin(); | 
|  | if (Use->getOpcode() != ISD::BITCAST) | 
|  | return false; | 
|  | assert(DAG && "Missing context"); | 
|  | const TargetLowering &TLI = DAG->getTargetLoweringInfo(); | 
|  | EVT ResVT = Use->getValueType(0); | 
|  | const TargetRegisterClass *ResRC = | 
|  | TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent()); | 
|  | const TargetRegisterClass *ArgRC = | 
|  | TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(), | 
|  | Use->getOperand(0)->isDivergent()); | 
|  | if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) | 
|  | return false; | 
|  |  | 
|  | // At this point, we know that we perform a cross-register-bank copy. | 
|  | // Check if it is expensive. | 
|  | const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); | 
|  | // Assume bitcasts are cheap, unless both register classes do not | 
|  | // explicitly share a common sub class. | 
|  | if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) | 
|  | return false; | 
|  |  | 
|  | // Check if it will be merged with the load. | 
|  | // 1. Check the alignment constraint. | 
|  | unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( | 
|  | ResVT.getTypeForEVT(*DAG->getContext())); | 
|  |  | 
|  | if (RequiredAlignment > getAlignment()) | 
|  | return false; | 
|  |  | 
|  | // 2. Check that the load is a legal operation for that type. | 
|  | if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) | 
|  | return false; | 
|  |  | 
|  | // 3. Check that we do not have a zext in the way. | 
|  | if (Inst->getValueType(0) != getLoadedType()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Check that all bits set in \p UsedBits form a dense region, i.e., | 
|  | /// \p UsedBits looks like 0..0 1..1 0..0. | 
|  | static bool areUsedBitsDense(const APInt &UsedBits) { | 
|  | // If all the bits are one, this is dense! | 
|  | if (UsedBits.isAllOnesValue()) | 
|  | return true; | 
|  |  | 
|  | // Get rid of the unused bits on the right. | 
|  | APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); | 
|  | // Get rid of the unused bits on the left. | 
|  | if (NarrowedUsedBits.countLeadingZeros()) | 
|  | NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); | 
|  | // Check that the chunk of bits is completely used. | 
|  | return NarrowedUsedBits.isAllOnesValue(); | 
|  | } | 
|  |  | 
|  | /// Check whether or not \p First and \p Second are next to each other | 
|  | /// in memory. This means that there is no hole between the bits loaded | 
|  | /// by \p First and the bits loaded by \p Second. | 
|  | static bool areSlicesNextToEachOther(const LoadedSlice &First, | 
|  | const LoadedSlice &Second) { | 
|  | assert(First.Origin == Second.Origin && First.Origin && | 
|  | "Unable to match different memory origins."); | 
|  | APInt UsedBits = First.getUsedBits(); | 
|  | assert((UsedBits & Second.getUsedBits()) == 0 && | 
|  | "Slices are not supposed to overlap."); | 
|  | UsedBits |= Second.getUsedBits(); | 
|  | return areUsedBitsDense(UsedBits); | 
|  | } | 
|  |  | 
|  | /// Adjust the \p GlobalLSCost according to the target | 
|  | /// paring capabilities and the layout of the slices. | 
|  | /// \pre \p GlobalLSCost should account for at least as many loads as | 
|  | /// there is in the slices in \p LoadedSlices. | 
|  | static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, | 
|  | LoadedSlice::Cost &GlobalLSCost) { | 
|  | unsigned NumberOfSlices = LoadedSlices.size(); | 
|  | // If there is less than 2 elements, no pairing is possible. | 
|  | if (NumberOfSlices < 2) | 
|  | return; | 
|  |  | 
|  | // Sort the slices so that elements that are likely to be next to each | 
|  | // other in memory are next to each other in the list. | 
|  | llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { | 
|  | assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); | 
|  | return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); | 
|  | }); | 
|  | const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); | 
|  | // First (resp. Second) is the first (resp. Second) potentially candidate | 
|  | // to be placed in a paired load. | 
|  | const LoadedSlice *First = nullptr; | 
|  | const LoadedSlice *Second = nullptr; | 
|  | for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, | 
|  | // Set the beginning of the pair. | 
|  | First = Second) { | 
|  | Second = &LoadedSlices[CurrSlice]; | 
|  |  | 
|  | // If First is NULL, it means we start a new pair. | 
|  | // Get to the next slice. | 
|  | if (!First) | 
|  | continue; | 
|  |  | 
|  | EVT LoadedType = First->getLoadedType(); | 
|  |  | 
|  | // If the types of the slices are different, we cannot pair them. | 
|  | if (LoadedType != Second->getLoadedType()) | 
|  | continue; | 
|  |  | 
|  | // Check if the target supplies paired loads for this type. | 
|  | unsigned RequiredAlignment = 0; | 
|  | if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { | 
|  | // move to the next pair, this type is hopeless. | 
|  | Second = nullptr; | 
|  | continue; | 
|  | } | 
|  | // Check if we meet the alignment requirement. | 
|  | if (RequiredAlignment > First->getAlignment()) | 
|  | continue; | 
|  |  | 
|  | // Check that both loads are next to each other in memory. | 
|  | if (!areSlicesNextToEachOther(*First, *Second)) | 
|  | continue; | 
|  |  | 
|  | assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); | 
|  | --GlobalLSCost.Loads; | 
|  | // Move to the next pair. | 
|  | Second = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check the profitability of all involved LoadedSlice. | 
|  | /// Currently, it is considered profitable if there is exactly two | 
|  | /// involved slices (1) which are (2) next to each other in memory, and | 
|  | /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). | 
|  | /// | 
|  | /// Note: The order of the elements in \p LoadedSlices may be modified, but not | 
|  | /// the elements themselves. | 
|  | /// | 
|  | /// FIXME: When the cost model will be mature enough, we can relax | 
|  | /// constraints (1) and (2). | 
|  | static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, | 
|  | const APInt &UsedBits, bool ForCodeSize) { | 
|  | unsigned NumberOfSlices = LoadedSlices.size(); | 
|  | if (StressLoadSlicing) | 
|  | return NumberOfSlices > 1; | 
|  |  | 
|  | // Check (1). | 
|  | if (NumberOfSlices != 2) | 
|  | return false; | 
|  |  | 
|  | // Check (2). | 
|  | if (!areUsedBitsDense(UsedBits)) | 
|  | return false; | 
|  |  | 
|  | // Check (3). | 
|  | LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); | 
|  | // The original code has one big load. | 
|  | OrigCost.Loads = 1; | 
|  | for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { | 
|  | const LoadedSlice &LS = LoadedSlices[CurrSlice]; | 
|  | // Accumulate the cost of all the slices. | 
|  | LoadedSlice::Cost SliceCost(LS, ForCodeSize); | 
|  | GlobalSlicingCost += SliceCost; | 
|  |  | 
|  | // Account as cost in the original configuration the gain obtained | 
|  | // with the current slices. | 
|  | OrigCost.addSliceGain(LS); | 
|  | } | 
|  |  | 
|  | // If the target supports paired load, adjust the cost accordingly. | 
|  | adjustCostForPairing(LoadedSlices, GlobalSlicingCost); | 
|  | return OrigCost > GlobalSlicingCost; | 
|  | } | 
|  |  | 
|  | /// If the given load, \p LI, is used only by trunc or trunc(lshr) | 
|  | /// operations, split it in the various pieces being extracted. | 
|  | /// | 
|  | /// This sort of thing is introduced by SROA. | 
|  | /// This slicing takes care not to insert overlapping loads. | 
|  | /// \pre LI is a simple load (i.e., not an atomic or volatile load). | 
|  | bool DAGCombiner::SliceUpLoad(SDNode *N) { | 
|  | if (Level < AfterLegalizeDAG) | 
|  | return false; | 
|  |  | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N); | 
|  | if (LD->isVolatile() || !ISD::isNormalLoad(LD) || | 
|  | !LD->getValueType(0).isInteger()) | 
|  | return false; | 
|  |  | 
|  | // Keep track of already used bits to detect overlapping values. | 
|  | // In that case, we will just abort the transformation. | 
|  | APInt UsedBits(LD->getValueSizeInBits(0), 0); | 
|  |  | 
|  | SmallVector<LoadedSlice, 4> LoadedSlices; | 
|  |  | 
|  | // Check if this load is used as several smaller chunks of bits. | 
|  | // Basically, look for uses in trunc or trunc(lshr) and record a new chain | 
|  | // of computation for each trunc. | 
|  | for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); | 
|  | UI != UIEnd; ++UI) { | 
|  | // Skip the uses of the chain. | 
|  | if (UI.getUse().getResNo() != 0) | 
|  | continue; | 
|  |  | 
|  | SDNode *User = *UI; | 
|  | unsigned Shift = 0; | 
|  |  | 
|  | // Check if this is a trunc(lshr). | 
|  | if (User->getOpcode() == ISD::SRL && User->hasOneUse() && | 
|  | isa<ConstantSDNode>(User->getOperand(1))) { | 
|  | Shift = User->getConstantOperandVal(1); | 
|  | User = *User->use_begin(); | 
|  | } | 
|  |  | 
|  | // At this point, User is a Truncate, iff we encountered, trunc or | 
|  | // trunc(lshr). | 
|  | if (User->getOpcode() != ISD::TRUNCATE) | 
|  | return false; | 
|  |  | 
|  | // The width of the type must be a power of 2 and greater than 8-bits. | 
|  | // Otherwise the load cannot be represented in LLVM IR. | 
|  | // Moreover, if we shifted with a non-8-bits multiple, the slice | 
|  | // will be across several bytes. We do not support that. | 
|  | unsigned Width = User->getValueSizeInBits(0); | 
|  | if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) | 
|  | return false; | 
|  |  | 
|  | // Build the slice for this chain of computations. | 
|  | LoadedSlice LS(User, LD, Shift, &DAG); | 
|  | APInt CurrentUsedBits = LS.getUsedBits(); | 
|  |  | 
|  | // Check if this slice overlaps with another. | 
|  | if ((CurrentUsedBits & UsedBits) != 0) | 
|  | return false; | 
|  | // Update the bits used globally. | 
|  | UsedBits |= CurrentUsedBits; | 
|  |  | 
|  | // Check if the new slice would be legal. | 
|  | if (!LS.isLegal()) | 
|  | return false; | 
|  |  | 
|  | // Record the slice. | 
|  | LoadedSlices.push_back(LS); | 
|  | } | 
|  |  | 
|  | // Abort slicing if it does not seem to be profitable. | 
|  | if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) | 
|  | return false; | 
|  |  | 
|  | ++SlicedLoads; | 
|  |  | 
|  | // Rewrite each chain to use an independent load. | 
|  | // By construction, each chain can be represented by a unique load. | 
|  |  | 
|  | // Prepare the argument for the new token factor for all the slices. | 
|  | SmallVector<SDValue, 8> ArgChains; | 
|  | for (SmallVectorImpl<LoadedSlice>::const_iterator | 
|  | LSIt = LoadedSlices.begin(), | 
|  | LSItEnd = LoadedSlices.end(); | 
|  | LSIt != LSItEnd; ++LSIt) { | 
|  | SDValue SliceInst = LSIt->loadSlice(); | 
|  | CombineTo(LSIt->Inst, SliceInst, true); | 
|  | if (SliceInst.getOpcode() != ISD::LOAD) | 
|  | SliceInst = SliceInst.getOperand(0); | 
|  | assert(SliceInst->getOpcode() == ISD::LOAD && | 
|  | "It takes more than a zext to get to the loaded slice!!"); | 
|  | ArgChains.push_back(SliceInst.getValue(1)); | 
|  | } | 
|  |  | 
|  | SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, | 
|  | ArgChains); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); | 
|  | AddToWorklist(Chain.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check to see if V is (and load (ptr), imm), where the load is having | 
|  | /// specific bytes cleared out.  If so, return the byte size being masked out | 
|  | /// and the shift amount. | 
|  | static std::pair<unsigned, unsigned> | 
|  | CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { | 
|  | std::pair<unsigned, unsigned> Result(0, 0); | 
|  |  | 
|  | // Check for the structure we're looking for. | 
|  | if (V->getOpcode() != ISD::AND || | 
|  | !isa<ConstantSDNode>(V->getOperand(1)) || | 
|  | !ISD::isNormalLoad(V->getOperand(0).getNode())) | 
|  | return Result; | 
|  |  | 
|  | // Check the chain and pointer. | 
|  | LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); | 
|  | if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer. | 
|  |  | 
|  | // This only handles simple types. | 
|  | if (V.getValueType() != MVT::i16 && | 
|  | V.getValueType() != MVT::i32 && | 
|  | V.getValueType() != MVT::i64) | 
|  | return Result; | 
|  |  | 
|  | // Check the constant mask.  Invert it so that the bits being masked out are | 
|  | // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits | 
|  | // follow the sign bit for uniformity. | 
|  | uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); | 
|  | unsigned NotMaskLZ = countLeadingZeros(NotMask); | 
|  | if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte. | 
|  | unsigned NotMaskTZ = countTrailingZeros(NotMask); | 
|  | if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte. | 
|  | if (NotMaskLZ == 64) return Result;  // All zero mask. | 
|  |  | 
|  | // See if we have a continuous run of bits.  If so, we have 0*1+0* | 
|  | if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) | 
|  | return Result; | 
|  |  | 
|  | // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. | 
|  | if (V.getValueType() != MVT::i64 && NotMaskLZ) | 
|  | NotMaskLZ -= 64-V.getValueSizeInBits(); | 
|  |  | 
|  | unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; | 
|  | switch (MaskedBytes) { | 
|  | case 1: | 
|  | case 2: | 
|  | case 4: break; | 
|  | default: return Result; // All one mask, or 5-byte mask. | 
|  | } | 
|  |  | 
|  | // Verify that the first bit starts at a multiple of mask so that the access | 
|  | // is aligned the same as the access width. | 
|  | if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; | 
|  |  | 
|  | // For narrowing to be valid, it must be the case that the load the | 
|  | // immediately preceding memory operation before the store. | 
|  | if (LD == Chain.getNode()) | 
|  | ; // ok. | 
|  | else if (Chain->getOpcode() == ISD::TokenFactor && | 
|  | SDValue(LD, 1).hasOneUse()) { | 
|  | // LD has only 1 chain use so they are no indirect dependencies. | 
|  | bool isOk = false; | 
|  | for (const SDValue &ChainOp : Chain->op_values()) | 
|  | if (ChainOp.getNode() == LD) { | 
|  | isOk = true; | 
|  | break; | 
|  | } | 
|  | if (!isOk) | 
|  | return Result; | 
|  | } else | 
|  | return Result; // Fail. | 
|  |  | 
|  | Result.first = MaskedBytes; | 
|  | Result.second = NotMaskTZ/8; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Check to see if IVal is something that provides a value as specified by | 
|  | /// MaskInfo. If so, replace the specified store with a narrower store of | 
|  | /// truncated IVal. | 
|  | static SDNode * | 
|  | ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, | 
|  | SDValue IVal, StoreSDNode *St, | 
|  | DAGCombiner *DC) { | 
|  | unsigned NumBytes = MaskInfo.first; | 
|  | unsigned ByteShift = MaskInfo.second; | 
|  | SelectionDAG &DAG = DC->getDAG(); | 
|  |  | 
|  | // Check to see if IVal is all zeros in the part being masked in by the 'or' | 
|  | // that uses this.  If not, this is not a replacement. | 
|  | APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), | 
|  | ByteShift*8, (ByteShift+NumBytes)*8); | 
|  | if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; | 
|  |  | 
|  | // Check that it is legal on the target to do this.  It is legal if the new | 
|  | // VT we're shrinking to (i8/i16/i32) is legal or we're still before type | 
|  | // legalization. | 
|  | MVT VT = MVT::getIntegerVT(NumBytes*8); | 
|  | if (!DC->isTypeLegal(VT)) | 
|  | return nullptr; | 
|  |  | 
|  | // Okay, we can do this!  Replace the 'St' store with a store of IVal that is | 
|  | // shifted by ByteShift and truncated down to NumBytes. | 
|  | if (ByteShift) { | 
|  | SDLoc DL(IVal); | 
|  | IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, | 
|  | DAG.getConstant(ByteShift*8, DL, | 
|  | DC->getShiftAmountTy(IVal.getValueType()))); | 
|  | } | 
|  |  | 
|  | // Figure out the offset for the store and the alignment of the access. | 
|  | unsigned StOffset; | 
|  | unsigned NewAlign = St->getAlignment(); | 
|  |  | 
|  | if (DAG.getDataLayout().isLittleEndian()) | 
|  | StOffset = ByteShift; | 
|  | else | 
|  | StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; | 
|  |  | 
|  | SDValue Ptr = St->getBasePtr(); | 
|  | if (StOffset) { | 
|  | SDLoc DL(IVal); | 
|  | Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), | 
|  | Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); | 
|  | NewAlign = MinAlign(NewAlign, StOffset); | 
|  | } | 
|  |  | 
|  | // Truncate down to the new size. | 
|  | IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); | 
|  |  | 
|  | ++OpsNarrowed; | 
|  | return DAG | 
|  | .getStore(St->getChain(), SDLoc(St), IVal, Ptr, | 
|  | St->getPointerInfo().getWithOffset(StOffset), NewAlign) | 
|  | .getNode(); | 
|  | } | 
|  |  | 
|  | /// Look for sequence of load / op / store where op is one of 'or', 'xor', and | 
|  | /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try | 
|  | /// narrowing the load and store if it would end up being a win for performance | 
|  | /// or code size. | 
|  | SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { | 
|  | StoreSDNode *ST  = cast<StoreSDNode>(N); | 
|  | if (ST->isVolatile()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Value = ST->getValue(); | 
|  | SDValue Ptr   = ST->getBasePtr(); | 
|  | EVT VT = Value.getValueType(); | 
|  |  | 
|  | if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned Opc = Value.getOpcode(); | 
|  |  | 
|  | // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst | 
|  | // is a byte mask indicating a consecutive number of bytes, check to see if | 
|  | // Y is known to provide just those bytes.  If so, we try to replace the | 
|  | // load + replace + store sequence with a single (narrower) store, which makes | 
|  | // the load dead. | 
|  | if (Opc == ISD::OR) { | 
|  | std::pair<unsigned, unsigned> MaskedLoad; | 
|  | MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); | 
|  | if (MaskedLoad.first) | 
|  | if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, | 
|  | Value.getOperand(1), ST,this)) | 
|  | return SDValue(NewST, 0); | 
|  |  | 
|  | // Or is commutative, so try swapping X and Y. | 
|  | MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); | 
|  | if (MaskedLoad.first) | 
|  | if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, | 
|  | Value.getOperand(0), ST,this)) | 
|  | return SDValue(NewST, 0); | 
|  | } | 
|  |  | 
|  | if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || | 
|  | Value.getOperand(1).getOpcode() != ISD::Constant) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = Value.getOperand(0); | 
|  | if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | 
|  | Chain == SDValue(N0.getNode(), 1)) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N0); | 
|  | if (LD->getBasePtr() != Ptr || | 
|  | LD->getPointerInfo().getAddrSpace() != | 
|  | ST->getPointerInfo().getAddrSpace()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Find the type to narrow it the load / op / store to. | 
|  | SDValue N1 = Value.getOperand(1); | 
|  | unsigned BitWidth = N1.getValueSizeInBits(); | 
|  | APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); | 
|  | if (Opc == ISD::AND) | 
|  | Imm ^= APInt::getAllOnesValue(BitWidth); | 
|  | if (Imm == 0 || Imm.isAllOnesValue()) | 
|  | return SDValue(); | 
|  | unsigned ShAmt = Imm.countTrailingZeros(); | 
|  | unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; | 
|  | unsigned NewBW = NextPowerOf2(MSB - ShAmt); | 
|  | EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); | 
|  | // The narrowing should be profitable, the load/store operation should be | 
|  | // legal (or custom) and the store size should be equal to the NewVT width. | 
|  | while (NewBW < BitWidth && | 
|  | (NewVT.getStoreSizeInBits() != NewBW || | 
|  | !TLI.isOperationLegalOrCustom(Opc, NewVT) || | 
|  | !TLI.isNarrowingProfitable(VT, NewVT))) { | 
|  | NewBW = NextPowerOf2(NewBW); | 
|  | NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); | 
|  | } | 
|  | if (NewBW >= BitWidth) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the lsb changed does not start at the type bitwidth boundary, | 
|  | // start at the previous one. | 
|  | if (ShAmt % NewBW) | 
|  | ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; | 
|  | APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, | 
|  | std::min(BitWidth, ShAmt + NewBW)); | 
|  | if ((Imm & Mask) == Imm) { | 
|  | APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); | 
|  | if (Opc == ISD::AND) | 
|  | NewImm ^= APInt::getAllOnesValue(NewBW); | 
|  | uint64_t PtrOff = ShAmt / 8; | 
|  | // For big endian targets, we need to adjust the offset to the pointer to | 
|  | // load the correct bytes. | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; | 
|  |  | 
|  | unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); | 
|  | Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); | 
|  | if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), | 
|  | Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(PtrOff, SDLoc(LD), | 
|  | Ptr.getValueType())); | 
|  | SDValue NewLD = | 
|  | DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, | 
|  | LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, | 
|  | LD->getMemOperand()->getFlags(), LD->getAAInfo()); | 
|  | SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, | 
|  | DAG.getConstant(NewImm, SDLoc(Value), | 
|  | NewVT)); | 
|  | SDValue NewST = | 
|  | DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, | 
|  | ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); | 
|  |  | 
|  | AddToWorklist(NewPtr.getNode()); | 
|  | AddToWorklist(NewLD.getNode()); | 
|  | AddToWorklist(NewVal.getNode()); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); | 
|  | ++OpsNarrowed; | 
|  | return NewST; | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// For a given floating point load / store pair, if the load value isn't used | 
|  | /// by any other operations, then consider transforming the pair to integer | 
|  | /// load / store operations if the target deems the transformation profitable. | 
|  | SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { | 
|  | StoreSDNode *ST  = cast<StoreSDNode>(N); | 
|  | SDValue Value = ST->getValue(); | 
|  | if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && | 
|  | Value.hasOneUse()) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Value); | 
|  | EVT VT = LD->getMemoryVT(); | 
|  | if (!VT.isFloatingPoint() || | 
|  | VT != ST->getMemoryVT() || | 
|  | LD->isNonTemporal() || | 
|  | ST->isNonTemporal() || | 
|  | LD->getPointerInfo().getAddrSpace() != 0 || | 
|  | ST->getPointerInfo().getAddrSpace() != 0) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); | 
|  | if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || | 
|  | !TLI.isOperationLegal(ISD::STORE, IntVT) || | 
|  | !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || | 
|  | !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned LDAlign = LD->getAlignment(); | 
|  | unsigned STAlign = ST->getAlignment(); | 
|  | Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); | 
|  | unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); | 
|  | if (LDAlign < ABIAlign || STAlign < ABIAlign) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue NewLD = | 
|  | DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), | 
|  | LD->getPointerInfo(), LDAlign); | 
|  |  | 
|  | SDValue NewST = | 
|  | DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(), | 
|  | ST->getPointerInfo(), STAlign); | 
|  |  | 
|  | AddToWorklist(NewLD.getNode()); | 
|  | AddToWorklist(NewST.getNode()); | 
|  | WorklistRemover DeadNodes(*this); | 
|  | DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); | 
|  | ++LdStFP2Int; | 
|  | return NewST; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // This is a helper function for visitMUL to check the profitability | 
|  | // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). | 
|  | // MulNode is the original multiply, AddNode is (add x, c1), | 
|  | // and ConstNode is c2. | 
|  | // | 
|  | // If the (add x, c1) has multiple uses, we could increase | 
|  | // the number of adds if we make this transformation. | 
|  | // It would only be worth doing this if we can remove a | 
|  | // multiply in the process. Check for that here. | 
|  | // To illustrate: | 
|  | //     (A + c1) * c3 | 
|  | //     (A + c2) * c3 | 
|  | // We're checking for cases where we have common "c3 * A" expressions. | 
|  | bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, | 
|  | SDValue &AddNode, | 
|  | SDValue &ConstNode) { | 
|  | APInt Val; | 
|  |  | 
|  | // If the add only has one use, this would be OK to do. | 
|  | if (AddNode.getNode()->hasOneUse()) | 
|  | return true; | 
|  |  | 
|  | // Walk all the users of the constant with which we're multiplying. | 
|  | for (SDNode *Use : ConstNode->uses()) { | 
|  | if (Use == MulNode) // This use is the one we're on right now. Skip it. | 
|  | continue; | 
|  |  | 
|  | if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. | 
|  | SDNode *OtherOp; | 
|  | SDNode *MulVar = AddNode.getOperand(0).getNode(); | 
|  |  | 
|  | // OtherOp is what we're multiplying against the constant. | 
|  | if (Use->getOperand(0) == ConstNode) | 
|  | OtherOp = Use->getOperand(1).getNode(); | 
|  | else | 
|  | OtherOp = Use->getOperand(0).getNode(); | 
|  |  | 
|  | // Check to see if multiply is with the same operand of our "add". | 
|  | // | 
|  | //     ConstNode  = CONST | 
|  | //     Use = ConstNode * A  <-- visiting Use. OtherOp is A. | 
|  | //     ... | 
|  | //     AddNode  = (A + c1)  <-- MulVar is A. | 
|  | //         = AddNode * ConstNode   <-- current visiting instruction. | 
|  | // | 
|  | // If we make this transformation, we will have a common | 
|  | // multiply (ConstNode * A) that we can save. | 
|  | if (OtherOp == MulVar) | 
|  | return true; | 
|  |  | 
|  | // Now check to see if a future expansion will give us a common | 
|  | // multiply. | 
|  | // | 
|  | //     ConstNode  = CONST | 
|  | //     AddNode    = (A + c1) | 
|  | //     ...   = AddNode * ConstNode <-- current visiting instruction. | 
|  | //     ... | 
|  | //     OtherOp = (A + c2) | 
|  | //     Use     = OtherOp * ConstNode <-- visiting Use. | 
|  | // | 
|  | // If we make this transformation, we will have a common | 
|  | // multiply (CONST * A) after we also do the same transformation | 
|  | // to the "t2" instruction. | 
|  | if (OtherOp->getOpcode() == ISD::ADD && | 
|  | DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && | 
|  | OtherOp->getOperand(0).getNode() == MulVar) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Didn't find a case where this would be profitable. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, | 
|  | unsigned NumStores) { | 
|  | SmallVector<SDValue, 8> Chains; | 
|  | SmallPtrSet<const SDNode *, 8> Visited; | 
|  | SDLoc StoreDL(StoreNodes[0].MemNode); | 
|  |  | 
|  | for (unsigned i = 0; i < NumStores; ++i) { | 
|  | Visited.insert(StoreNodes[i].MemNode); | 
|  | } | 
|  |  | 
|  | // don't include nodes that are children or repeated nodes. | 
|  | for (unsigned i = 0; i < NumStores; ++i) { | 
|  | if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) | 
|  | Chains.push_back(StoreNodes[i].MemNode->getChain()); | 
|  | } | 
|  |  | 
|  | assert(Chains.size() > 0 && "Chain should have generated a chain"); | 
|  | return DAG.getTokenFactor(StoreDL, Chains); | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::MergeStoresOfConstantsOrVecElts( | 
|  | SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, | 
|  | bool IsConstantSrc, bool UseVector, bool UseTrunc) { | 
|  | // Make sure we have something to merge. | 
|  | if (NumStores < 2) | 
|  | return false; | 
|  |  | 
|  | // The latest Node in the DAG. | 
|  | SDLoc DL(StoreNodes[0].MemNode); | 
|  |  | 
|  | int64_t ElementSizeBits = MemVT.getStoreSizeInBits(); | 
|  | unsigned SizeInBits = NumStores * ElementSizeBits; | 
|  | unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; | 
|  |  | 
|  | EVT StoreTy; | 
|  | if (UseVector) { | 
|  | unsigned Elts = NumStores * NumMemElts; | 
|  | // Get the type for the merged vector store. | 
|  | StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); | 
|  | } else | 
|  | StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); | 
|  |  | 
|  | SDValue StoredVal; | 
|  | if (UseVector) { | 
|  | if (IsConstantSrc) { | 
|  | SmallVector<SDValue, 8> BuildVector; | 
|  | for (unsigned I = 0; I != NumStores; ++I) { | 
|  | StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); | 
|  | SDValue Val = St->getValue(); | 
|  | // If constant is of the wrong type, convert it now. | 
|  | if (MemVT != Val.getValueType()) { | 
|  | Val = peekThroughBitcasts(Val); | 
|  | // Deal with constants of wrong size. | 
|  | if (ElementSizeBits != Val.getValueSizeInBits()) { | 
|  | EVT IntMemVT = | 
|  | EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); | 
|  | if (isa<ConstantFPSDNode>(Val)) { | 
|  | // Not clear how to truncate FP values. | 
|  | return false; | 
|  | } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) | 
|  | Val = DAG.getConstant(C->getAPIntValue() | 
|  | .zextOrTrunc(Val.getValueSizeInBits()) | 
|  | .zextOrTrunc(ElementSizeBits), | 
|  | SDLoc(C), IntMemVT); | 
|  | } | 
|  | // Make sure correctly size type is the correct type. | 
|  | Val = DAG.getBitcast(MemVT, Val); | 
|  | } | 
|  | BuildVector.push_back(Val); | 
|  | } | 
|  | StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS | 
|  | : ISD::BUILD_VECTOR, | 
|  | DL, StoreTy, BuildVector); | 
|  | } else { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0; i < NumStores; ++i) { | 
|  | StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); | 
|  | SDValue Val = peekThroughBitcasts(St->getValue()); | 
|  | // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of | 
|  | // type MemVT. If the underlying value is not the correct | 
|  | // type, but it is an extraction of an appropriate vector we | 
|  | // can recast Val to be of the correct type. This may require | 
|  | // converting between EXTRACT_VECTOR_ELT and | 
|  | // EXTRACT_SUBVECTOR. | 
|  | if ((MemVT != Val.getValueType()) && | 
|  | (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || | 
|  | Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { | 
|  | EVT MemVTScalarTy = MemVT.getScalarType(); | 
|  | // We may need to add a bitcast here to get types to line up. | 
|  | if (MemVTScalarTy != Val.getValueType().getScalarType()) { | 
|  | Val = DAG.getBitcast(MemVT, Val); | 
|  | } else { | 
|  | unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR | 
|  | : ISD::EXTRACT_VECTOR_ELT; | 
|  | SDValue Vec = Val.getOperand(0); | 
|  | SDValue Idx = Val.getOperand(1); | 
|  | Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); | 
|  | } | 
|  | } | 
|  | Ops.push_back(Val); | 
|  | } | 
|  |  | 
|  | // Build the extracted vector elements back into a vector. | 
|  | StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS | 
|  | : ISD::BUILD_VECTOR, | 
|  | DL, StoreTy, Ops); | 
|  | } | 
|  | } else { | 
|  | // We should always use a vector store when merging extracted vector | 
|  | // elements, so this path implies a store of constants. | 
|  | assert(IsConstantSrc && "Merged vector elements should use vector store"); | 
|  |  | 
|  | APInt StoreInt(SizeInBits, 0); | 
|  |  | 
|  | // Construct a single integer constant which is made of the smaller | 
|  | // constant inputs. | 
|  | bool IsLE = DAG.getDataLayout().isLittleEndian(); | 
|  | for (unsigned i = 0; i < NumStores; ++i) { | 
|  | unsigned Idx = IsLE ? (NumStores - 1 - i) : i; | 
|  | StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode); | 
|  |  | 
|  | SDValue Val = St->getValue(); | 
|  | Val = peekThroughBitcasts(Val); | 
|  | StoreInt <<= ElementSizeBits; | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { | 
|  | StoreInt |= C->getAPIntValue() | 
|  | .zextOrTrunc(ElementSizeBits) | 
|  | .zextOrTrunc(SizeInBits); | 
|  | } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { | 
|  | StoreInt |= C->getValueAPF() | 
|  | .bitcastToAPInt() | 
|  | .zextOrTrunc(ElementSizeBits) | 
|  | .zextOrTrunc(SizeInBits); | 
|  | // If fp truncation is necessary give up for now. | 
|  | if (MemVT.getSizeInBits() != ElementSizeBits) | 
|  | return false; | 
|  | } else { | 
|  | llvm_unreachable("Invalid constant element type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create the new Load and Store operations. | 
|  | StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); | 
|  | } | 
|  |  | 
|  | LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; | 
|  | SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); | 
|  |  | 
|  | // make sure we use trunc store if it's necessary to be legal. | 
|  | SDValue NewStore; | 
|  | if (!UseTrunc) { | 
|  | NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), | 
|  | FirstInChain->getPointerInfo(), | 
|  | FirstInChain->getAlignment()); | 
|  | } else { // Must be realized as a trunc store | 
|  | EVT LegalizedStoredValTy = | 
|  | TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); | 
|  | unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); | 
|  | ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); | 
|  | SDValue ExtendedStoreVal = | 
|  | DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, | 
|  | LegalizedStoredValTy); | 
|  | NewStore = DAG.getTruncStore( | 
|  | NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), | 
|  | FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, | 
|  | FirstInChain->getAlignment(), | 
|  | FirstInChain->getMemOperand()->getFlags()); | 
|  | } | 
|  |  | 
|  | // Replace all merged stores with the new store. | 
|  | for (unsigned i = 0; i < NumStores; ++i) | 
|  | CombineTo(StoreNodes[i].MemNode, NewStore); | 
|  |  | 
|  | AddToWorklist(NewChain.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void DAGCombiner::getStoreMergeCandidates( | 
|  | StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, | 
|  | SDNode *&RootNode) { | 
|  | // This holds the base pointer, index, and the offset in bytes from the base | 
|  | // pointer. | 
|  | BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); | 
|  | EVT MemVT = St->getMemoryVT(); | 
|  |  | 
|  | SDValue Val = peekThroughBitcasts(St->getValue()); | 
|  | // We must have a base and an offset. | 
|  | if (!BasePtr.getBase().getNode()) | 
|  | return; | 
|  |  | 
|  | // Do not handle stores to undef base pointers. | 
|  | if (BasePtr.getBase().isUndef()) | 
|  | return; | 
|  |  | 
|  | bool IsConstantSrc = isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val); | 
|  | bool IsExtractVecSrc = (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || | 
|  | Val.getOpcode() == ISD::EXTRACT_SUBVECTOR); | 
|  | bool IsLoadSrc = isa<LoadSDNode>(Val); | 
|  | BaseIndexOffset LBasePtr; | 
|  | // Match on loadbaseptr if relevant. | 
|  | EVT LoadVT; | 
|  | if (IsLoadSrc) { | 
|  | auto *Ld = cast<LoadSDNode>(Val); | 
|  | LBasePtr = BaseIndexOffset::match(Ld, DAG); | 
|  | LoadVT = Ld->getMemoryVT(); | 
|  | // Load and store should be the same type. | 
|  | if (MemVT != LoadVT) | 
|  | return; | 
|  | // Loads must only have one use. | 
|  | if (!Ld->hasNUsesOfValue(1, 0)) | 
|  | return; | 
|  | // The memory operands must not be volatile/indexed. | 
|  | if (Ld->isVolatile() || Ld->isIndexed()) | 
|  | return; | 
|  | } | 
|  | auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, | 
|  | int64_t &Offset) -> bool { | 
|  | // The memory operands must not be volatile/indexed. | 
|  | if (Other->isVolatile() || Other->isIndexed()) | 
|  | return false; | 
|  | // Don't mix temporal stores with non-temporal stores. | 
|  | if (St->isNonTemporal() != Other->isNonTemporal()) | 
|  | return false; | 
|  | SDValue OtherBC = peekThroughBitcasts(Other->getValue()); | 
|  | // Allow merging constants of different types as integers. | 
|  | bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) | 
|  | : Other->getMemoryVT() != MemVT; | 
|  | if (IsLoadSrc) { | 
|  | if (NoTypeMatch) | 
|  | return false; | 
|  | // The Load's Base Ptr must also match | 
|  | if (LoadSDNode *OtherLd = dyn_cast<LoadSDNode>(OtherBC)) { | 
|  | BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG); | 
|  | if (LoadVT != OtherLd->getMemoryVT()) | 
|  | return false; | 
|  | // Loads must only have one use. | 
|  | if (!OtherLd->hasNUsesOfValue(1, 0)) | 
|  | return false; | 
|  | // The memory operands must not be volatile/indexed. | 
|  | if (OtherLd->isVolatile() || OtherLd->isIndexed()) | 
|  | return false; | 
|  | // Don't mix temporal loads with non-temporal loads. | 
|  | if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal()) | 
|  | return false; | 
|  | if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) | 
|  | return false; | 
|  | } else | 
|  | return false; | 
|  | } | 
|  | if (IsConstantSrc) { | 
|  | if (NoTypeMatch) | 
|  | return false; | 
|  | if (!(isa<ConstantSDNode>(OtherBC) || isa<ConstantFPSDNode>(OtherBC))) | 
|  | return false; | 
|  | } | 
|  | if (IsExtractVecSrc) { | 
|  | // Do not merge truncated stores here. | 
|  | if (Other->isTruncatingStore()) | 
|  | return false; | 
|  | if (!MemVT.bitsEq(OtherBC.getValueType())) | 
|  | return false; | 
|  | if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT && | 
|  | OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR) | 
|  | return false; | 
|  | } | 
|  | Ptr = BaseIndexOffset::match(Other, DAG); | 
|  | return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); | 
|  | }; | 
|  |  | 
|  | // We looking for a root node which is an ancestor to all mergable | 
|  | // stores. We search up through a load, to our root and then down | 
|  | // through all children. For instance we will find Store{1,2,3} if | 
|  | // St is Store1, Store2. or Store3 where the root is not a load | 
|  | // which always true for nonvolatile ops. TODO: Expand | 
|  | // the search to find all valid candidates through multiple layers of loads. | 
|  | // | 
|  | // Root | 
|  | // |-------|-------| | 
|  | // Load    Load    Store3 | 
|  | // |       | | 
|  | // Store1   Store2 | 
|  | // | 
|  | // FIXME: We should be able to climb and | 
|  | // descend TokenFactors to find candidates as well. | 
|  |  | 
|  | RootNode = St->getChain().getNode(); | 
|  |  | 
|  | unsigned NumNodesExplored = 0; | 
|  | if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(RootNode)) { | 
|  | RootNode = Ldn->getChain().getNode(); | 
|  | for (auto I = RootNode->use_begin(), E = RootNode->use_end(); | 
|  | I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored) | 
|  | if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) // walk down chain | 
|  | for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) | 
|  | if (I2.getOperandNo() == 0) | 
|  | if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I2)) { | 
|  | BaseIndexOffset Ptr; | 
|  | int64_t PtrDiff; | 
|  | if (CandidateMatch(OtherST, Ptr, PtrDiff)) | 
|  | StoreNodes.push_back(MemOpLink(OtherST, PtrDiff)); | 
|  | } | 
|  | } else | 
|  | for (auto I = RootNode->use_begin(), E = RootNode->use_end(); | 
|  | I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored) | 
|  | if (I.getOperandNo() == 0) | 
|  | if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { | 
|  | BaseIndexOffset Ptr; | 
|  | int64_t PtrDiff; | 
|  | if (CandidateMatch(OtherST, Ptr, PtrDiff)) | 
|  | StoreNodes.push_back(MemOpLink(OtherST, PtrDiff)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We need to check that merging these stores does not cause a loop in | 
|  | // the DAG. Any store candidate may depend on another candidate | 
|  | // indirectly through its operand (we already consider dependencies | 
|  | // through the chain). Check in parallel by searching up from | 
|  | // non-chain operands of candidates. | 
|  | bool DAGCombiner::checkMergeStoreCandidatesForDependencies( | 
|  | SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, | 
|  | SDNode *RootNode) { | 
|  | // FIXME: We should be able to truncate a full search of | 
|  | // predecessors by doing a BFS and keeping tabs the originating | 
|  | // stores from which worklist nodes come from in a similar way to | 
|  | // TokenFactor simplfication. | 
|  |  | 
|  | SmallPtrSet<const SDNode *, 32> Visited; | 
|  | SmallVector<const SDNode *, 8> Worklist; | 
|  |  | 
|  | // RootNode is a predecessor to all candidates so we need not search | 
|  | // past it. Add RootNode (peeking through TokenFactors). Do not count | 
|  | // these towards size check. | 
|  |  | 
|  | Worklist.push_back(RootNode); | 
|  | while (!Worklist.empty()) { | 
|  | auto N = Worklist.pop_back_val(); | 
|  | if (!Visited.insert(N).second) | 
|  | continue; // Already present in Visited. | 
|  | if (N->getOpcode() == ISD::TokenFactor) { | 
|  | for (SDValue Op : N->ops()) | 
|  | Worklist.push_back(Op.getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't count pruning nodes towards max. | 
|  | unsigned int Max = 1024 + Visited.size(); | 
|  | // Search Ops of store candidates. | 
|  | for (unsigned i = 0; i < NumStores; ++i) { | 
|  | SDNode *N = StoreNodes[i].MemNode; | 
|  | // Of the 4 Store Operands: | 
|  | //   * Chain (Op 0) -> We have already considered these | 
|  | //                    in candidate selection and can be | 
|  | //                    safely ignored | 
|  | //   * Value (Op 1) -> Cycles may happen (e.g. through load chains) | 
|  | //   * Address (Op 2) -> Merged addresses may only vary by a fixed constant, | 
|  | //                       but aren't necessarily fromt the same base node, so | 
|  | //                       cycles possible (e.g. via indexed store). | 
|  | //   * (Op 3) -> Represents the pre or post-indexing offset (or undef for | 
|  | //               non-indexed stores). Not constant on all targets (e.g. ARM) | 
|  | //               and so can participate in a cycle. | 
|  | for (unsigned j = 1; j < N->getNumOperands(); ++j) | 
|  | Worklist.push_back(N->getOperand(j).getNode()); | 
|  | } | 
|  | // Search through DAG. We can stop early if we find a store node. | 
|  | for (unsigned i = 0; i < NumStores; ++i) | 
|  | if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, | 
|  | Max)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::MergeConsecutiveStores(StoreSDNode *St) { | 
|  | if (OptLevel == CodeGenOpt::None) | 
|  | return false; | 
|  |  | 
|  | EVT MemVT = St->getMemoryVT(); | 
|  | int64_t ElementSizeBytes = MemVT.getStoreSize(); | 
|  | unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; | 
|  |  | 
|  | if (MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) | 
|  | return false; | 
|  |  | 
|  | bool NoVectors = DAG.getMachineFunction().getFunction().hasFnAttribute( | 
|  | Attribute::NoImplicitFloat); | 
|  |  | 
|  | // This function cannot currently deal with non-byte-sized memory sizes. | 
|  | if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) | 
|  | return false; | 
|  |  | 
|  | if (!MemVT.isSimple()) | 
|  | return false; | 
|  |  | 
|  | // Perform an early exit check. Do not bother looking at stored values that | 
|  | // are not constants, loads, or extracted vector elements. | 
|  | SDValue StoredVal = peekThroughBitcasts(St->getValue()); | 
|  | bool IsLoadSrc = isa<LoadSDNode>(StoredVal); | 
|  | bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || | 
|  | isa<ConstantFPSDNode>(StoredVal); | 
|  | bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || | 
|  | StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); | 
|  | bool IsNonTemporalStore = St->isNonTemporal(); | 
|  | bool IsNonTemporalLoad = | 
|  | IsLoadSrc && cast<LoadSDNode>(StoredVal)->isNonTemporal(); | 
|  |  | 
|  | if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) | 
|  | return false; | 
|  |  | 
|  | SmallVector<MemOpLink, 8> StoreNodes; | 
|  | SDNode *RootNode; | 
|  | // Find potential store merge candidates by searching through chain sub-DAG | 
|  | getStoreMergeCandidates(St, StoreNodes, RootNode); | 
|  |  | 
|  | // Check if there is anything to merge. | 
|  | if (StoreNodes.size() < 2) | 
|  | return false; | 
|  |  | 
|  | // Sort the memory operands according to their distance from the | 
|  | // base pointer. | 
|  | llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { | 
|  | return LHS.OffsetFromBase < RHS.OffsetFromBase; | 
|  | }); | 
|  |  | 
|  | // Store Merge attempts to merge the lowest stores. This generally | 
|  | // works out as if successful, as the remaining stores are checked | 
|  | // after the first collection of stores is merged. However, in the | 
|  | // case that a non-mergeable store is found first, e.g., {p[-2], | 
|  | // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent | 
|  | // mergeable cases. To prevent this, we prune such stores from the | 
|  | // front of StoreNodes here. | 
|  |  | 
|  | bool RV = false; | 
|  | while (StoreNodes.size() > 1) { | 
|  | unsigned StartIdx = 0; | 
|  | while ((StartIdx + 1 < StoreNodes.size()) && | 
|  | StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != | 
|  | StoreNodes[StartIdx + 1].OffsetFromBase) | 
|  | ++StartIdx; | 
|  |  | 
|  | // Bail if we don't have enough candidates to merge. | 
|  | if (StartIdx + 1 >= StoreNodes.size()) | 
|  | return RV; | 
|  |  | 
|  | if (StartIdx) | 
|  | StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); | 
|  |  | 
|  | // Scan the memory operations on the chain and find the first | 
|  | // non-consecutive store memory address. | 
|  | unsigned NumConsecutiveStores = 1; | 
|  | int64_t StartAddress = StoreNodes[0].OffsetFromBase; | 
|  | // Check that the addresses are consecutive starting from the second | 
|  | // element in the list of stores. | 
|  | for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { | 
|  | int64_t CurrAddress = StoreNodes[i].OffsetFromBase; | 
|  | if (CurrAddress - StartAddress != (ElementSizeBytes * i)) | 
|  | break; | 
|  | NumConsecutiveStores = i + 1; | 
|  | } | 
|  |  | 
|  | if (NumConsecutiveStores < 2) { | 
|  | StoreNodes.erase(StoreNodes.begin(), | 
|  | StoreNodes.begin() + NumConsecutiveStores); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The node with the lowest store address. | 
|  | LLVMContext &Context = *DAG.getContext(); | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  |  | 
|  | // Store the constants into memory as one consecutive store. | 
|  | if (IsConstantSrc) { | 
|  | while (NumConsecutiveStores >= 2) { | 
|  | LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; | 
|  | unsigned FirstStoreAS = FirstInChain->getAddressSpace(); | 
|  | unsigned FirstStoreAlign = FirstInChain->getAlignment(); | 
|  | unsigned LastLegalType = 1; | 
|  | unsigned LastLegalVectorType = 1; | 
|  | bool LastIntegerTrunc = false; | 
|  | bool NonZero = false; | 
|  | unsigned FirstZeroAfterNonZero = NumConsecutiveStores; | 
|  | for (unsigned i = 0; i < NumConsecutiveStores; ++i) { | 
|  | StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); | 
|  | SDValue StoredVal = ST->getValue(); | 
|  | bool IsElementZero = false; | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) | 
|  | IsElementZero = C->isNullValue(); | 
|  | else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) | 
|  | IsElementZero = C->getConstantFPValue()->isNullValue(); | 
|  | if (IsElementZero) { | 
|  | if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) | 
|  | FirstZeroAfterNonZero = i; | 
|  | } | 
|  | NonZero |= !IsElementZero; | 
|  |  | 
|  | // Find a legal type for the constant store. | 
|  | unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; | 
|  | EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); | 
|  | bool IsFast = false; | 
|  |  | 
|  | // Break early when size is too large to be legal. | 
|  | if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) | 
|  | break; | 
|  |  | 
|  | if (TLI.isTypeLegal(StoreTy) && | 
|  | TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && | 
|  | TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
|  | *FirstInChain->getMemOperand(), &IsFast) && | 
|  | IsFast) { | 
|  | LastIntegerTrunc = false; | 
|  | LastLegalType = i + 1; | 
|  | // Or check whether a truncstore is legal. | 
|  | } else if (TLI.getTypeAction(Context, StoreTy) == | 
|  | TargetLowering::TypePromoteInteger) { | 
|  | EVT LegalizedStoredValTy = | 
|  | TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); | 
|  | if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && | 
|  | TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && | 
|  | TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
|  | *FirstInChain->getMemOperand(), | 
|  | &IsFast) && | 
|  | IsFast) { | 
|  | LastIntegerTrunc = true; | 
|  | LastLegalType = i + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We only use vectors if the constant is known to be zero or the | 
|  | // target allows it and the function is not marked with the | 
|  | // noimplicitfloat attribute. | 
|  | if ((!NonZero || | 
|  | TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && | 
|  | !NoVectors) { | 
|  | // Find a legal type for the vector store. | 
|  | unsigned Elts = (i + 1) * NumMemElts; | 
|  | EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); | 
|  | if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && | 
|  | TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && | 
|  | TLI.allowsMemoryAccess( | 
|  | Context, DL, Ty, *FirstInChain->getMemOperand(), &IsFast) && | 
|  | IsFast) | 
|  | LastLegalVectorType = i + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; | 
|  | unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; | 
|  |  | 
|  | // Check if we found a legal integer type that creates a meaningful | 
|  | // merge. | 
|  | if (NumElem < 2) { | 
|  | // We know that candidate stores are in order and of correct | 
|  | // shape. While there is no mergeable sequence from the | 
|  | // beginning one may start later in the sequence. The only | 
|  | // reason a merge of size N could have failed where another of | 
|  | // the same size would not have, is if the alignment has | 
|  | // improved or we've dropped a non-zero value. Drop as many | 
|  | // candidates as we can here. | 
|  | unsigned NumSkip = 1; | 
|  | while ( | 
|  | (NumSkip < NumConsecutiveStores) && | 
|  | (NumSkip < FirstZeroAfterNonZero) && | 
|  | (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) | 
|  | NumSkip++; | 
|  |  | 
|  | StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); | 
|  | NumConsecutiveStores -= NumSkip; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check that we can merge these candidates without causing a cycle. | 
|  | if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, | 
|  | RootNode)) { | 
|  | StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); | 
|  | NumConsecutiveStores -= NumElem; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | RV |= MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, true, | 
|  | UseVector, LastIntegerTrunc); | 
|  |  | 
|  | // Remove merged stores for next iteration. | 
|  | StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); | 
|  | NumConsecutiveStores -= NumElem; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // When extracting multiple vector elements, try to store them | 
|  | // in one vector store rather than a sequence of scalar stores. | 
|  | if (IsExtractVecSrc) { | 
|  | // Loop on Consecutive Stores on success. | 
|  | while (NumConsecutiveStores >= 2) { | 
|  | LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; | 
|  | unsigned FirstStoreAS = FirstInChain->getAddressSpace(); | 
|  | unsigned FirstStoreAlign = FirstInChain->getAlignment(); | 
|  | unsigned NumStoresToMerge = 1; | 
|  | for (unsigned i = 0; i < NumConsecutiveStores; ++i) { | 
|  | // Find a legal type for the vector store. | 
|  | unsigned Elts = (i + 1) * NumMemElts; | 
|  | EVT Ty = | 
|  | EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); | 
|  | bool IsFast; | 
|  |  | 
|  | // Break early when size is too large to be legal. | 
|  | if (Ty.getSizeInBits() > MaximumLegalStoreInBits) | 
|  | break; | 
|  |  | 
|  | if (TLI.isTypeLegal(Ty) && | 
|  | TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && | 
|  | TLI.allowsMemoryAccess(Context, DL, Ty, | 
|  | *FirstInChain->getMemOperand(), &IsFast) && | 
|  | IsFast) | 
|  | NumStoresToMerge = i + 1; | 
|  | } | 
|  |  | 
|  | // Check if we found a legal integer type creating a meaningful | 
|  | // merge. | 
|  | if (NumStoresToMerge < 2) { | 
|  | // We know that candidate stores are in order and of correct | 
|  | // shape. While there is no mergeable sequence from the | 
|  | // beginning one may start later in the sequence. The only | 
|  | // reason a merge of size N could have failed where another of | 
|  | // the same size would not have, is if the alignment has | 
|  | // improved. Drop as many candidates as we can here. | 
|  | unsigned NumSkip = 1; | 
|  | while ( | 
|  | (NumSkip < NumConsecutiveStores) && | 
|  | (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) | 
|  | NumSkip++; | 
|  |  | 
|  | StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); | 
|  | NumConsecutiveStores -= NumSkip; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check that we can merge these candidates without causing a cycle. | 
|  | if (!checkMergeStoreCandidatesForDependencies( | 
|  | StoreNodes, NumStoresToMerge, RootNode)) { | 
|  | StoreNodes.erase(StoreNodes.begin(), | 
|  | StoreNodes.begin() + NumStoresToMerge); | 
|  | NumConsecutiveStores -= NumStoresToMerge; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | RV |= MergeStoresOfConstantsOrVecElts( | 
|  | StoreNodes, MemVT, NumStoresToMerge, false, true, false); | 
|  |  | 
|  | StoreNodes.erase(StoreNodes.begin(), | 
|  | StoreNodes.begin() + NumStoresToMerge); | 
|  | NumConsecutiveStores -= NumStoresToMerge; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Below we handle the case of multiple consecutive stores that | 
|  | // come from multiple consecutive loads. We merge them into a single | 
|  | // wide load and a single wide store. | 
|  |  | 
|  | // Look for load nodes which are used by the stored values. | 
|  | SmallVector<MemOpLink, 8> LoadNodes; | 
|  |  | 
|  | // Find acceptable loads. Loads need to have the same chain (token factor), | 
|  | // must not be zext, volatile, indexed, and they must be consecutive. | 
|  | BaseIndexOffset LdBasePtr; | 
|  |  | 
|  | for (unsigned i = 0; i < NumConsecutiveStores; ++i) { | 
|  | StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); | 
|  | SDValue Val = peekThroughBitcasts(St->getValue()); | 
|  | LoadSDNode *Ld = cast<LoadSDNode>(Val); | 
|  |  | 
|  | BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); | 
|  | // If this is not the first ptr that we check. | 
|  | int64_t LdOffset = 0; | 
|  | if (LdBasePtr.getBase().getNode()) { | 
|  | // The base ptr must be the same. | 
|  | if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) | 
|  | break; | 
|  | } else { | 
|  | // Check that all other base pointers are the same as this one. | 
|  | LdBasePtr = LdPtr; | 
|  | } | 
|  |  | 
|  | // We found a potential memory operand to merge. | 
|  | LoadNodes.push_back(MemOpLink(Ld, LdOffset)); | 
|  | } | 
|  |  | 
|  | while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { | 
|  | // If we have load/store pair instructions and we only have two values, | 
|  | // don't bother merging. | 
|  | unsigned RequiredAlignment; | 
|  | if (LoadNodes.size() == 2 && | 
|  | TLI.hasPairedLoad(MemVT, RequiredAlignment) && | 
|  | StoreNodes[0].MemNode->getAlignment() >= RequiredAlignment) { | 
|  | StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); | 
|  | LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); | 
|  | break; | 
|  | } | 
|  | LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; | 
|  | unsigned FirstStoreAS = FirstInChain->getAddressSpace(); | 
|  | unsigned FirstStoreAlign = FirstInChain->getAlignment(); | 
|  | LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); | 
|  | unsigned FirstLoadAlign = FirstLoad->getAlignment(); | 
|  |  | 
|  | // Scan the memory operations on the chain and find the first | 
|  | // non-consecutive load memory address. These variables hold the index in | 
|  | // the store node array. | 
|  |  | 
|  | unsigned LastConsecutiveLoad = 1; | 
|  |  | 
|  | // This variable refers to the size and not index in the array. | 
|  | unsigned LastLegalVectorType = 1; | 
|  | unsigned LastLegalIntegerType = 1; | 
|  | bool isDereferenceable = true; | 
|  | bool DoIntegerTruncate = false; | 
|  | StartAddress = LoadNodes[0].OffsetFromBase; | 
|  | SDValue FirstChain = FirstLoad->getChain(); | 
|  | for (unsigned i = 1; i < LoadNodes.size(); ++i) { | 
|  | // All loads must share the same chain. | 
|  | if (LoadNodes[i].MemNode->getChain() != FirstChain) | 
|  | break; | 
|  |  | 
|  | int64_t CurrAddress = LoadNodes[i].OffsetFromBase; | 
|  | if (CurrAddress - StartAddress != (ElementSizeBytes * i)) | 
|  | break; | 
|  | LastConsecutiveLoad = i; | 
|  |  | 
|  | if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) | 
|  | isDereferenceable = false; | 
|  |  | 
|  | // Find a legal type for the vector store. | 
|  | unsigned Elts = (i + 1) * NumMemElts; | 
|  | EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); | 
|  |  | 
|  | // Break early when size is too large to be legal. | 
|  | if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) | 
|  | break; | 
|  |  | 
|  | bool IsFastSt, IsFastLd; | 
|  | if (TLI.isTypeLegal(StoreTy) && | 
|  | TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && | 
|  | TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
|  | *FirstInChain->getMemOperand(), &IsFastSt) && | 
|  | IsFastSt && | 
|  | TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
|  | *FirstLoad->getMemOperand(), &IsFastLd) && | 
|  | IsFastLd) { | 
|  | LastLegalVectorType = i + 1; | 
|  | } | 
|  |  | 
|  | // Find a legal type for the integer store. | 
|  | unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; | 
|  | StoreTy = EVT::getIntegerVT(Context, SizeInBits); | 
|  | if (TLI.isTypeLegal(StoreTy) && | 
|  | TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && | 
|  | TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
|  | *FirstInChain->getMemOperand(), &IsFastSt) && | 
|  | IsFastSt && | 
|  | TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
|  | *FirstLoad->getMemOperand(), &IsFastLd) && | 
|  | IsFastLd) { | 
|  | LastLegalIntegerType = i + 1; | 
|  | DoIntegerTruncate = false; | 
|  | // Or check whether a truncstore and extload is legal. | 
|  | } else if (TLI.getTypeAction(Context, StoreTy) == | 
|  | TargetLowering::TypePromoteInteger) { | 
|  | EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); | 
|  | if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && | 
|  | TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && | 
|  | TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, | 
|  | StoreTy) && | 
|  | TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, | 
|  | StoreTy) && | 
|  | TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && | 
|  | TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
|  | *FirstInChain->getMemOperand(), | 
|  | &IsFastSt) && | 
|  | IsFastSt && | 
|  | TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
|  | *FirstLoad->getMemOperand(), &IsFastLd) && | 
|  | IsFastLd) { | 
|  | LastLegalIntegerType = i + 1; | 
|  | DoIntegerTruncate = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only use vector types if the vector type is larger than the integer | 
|  | // type. If they are the same, use integers. | 
|  | bool UseVectorTy = | 
|  | LastLegalVectorType > LastLegalIntegerType && !NoVectors; | 
|  | unsigned LastLegalType = | 
|  | std::max(LastLegalVectorType, LastLegalIntegerType); | 
|  |  | 
|  | // We add +1 here because the LastXXX variables refer to location while | 
|  | // the NumElem refers to array/index size. | 
|  | unsigned NumElem = | 
|  | std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); | 
|  | NumElem = std::min(LastLegalType, NumElem); | 
|  |  | 
|  | if (NumElem < 2) { | 
|  | // We know that candidate stores are in order and of correct | 
|  | // shape. While there is no mergeable sequence from the | 
|  | // beginning one may start later in the sequence. The only | 
|  | // reason a merge of size N could have failed where another of | 
|  | // the same size would not have is if the alignment or either | 
|  | // the load or store has improved. Drop as many candidates as we | 
|  | // can here. | 
|  | unsigned NumSkip = 1; | 
|  | while ((NumSkip < LoadNodes.size()) && | 
|  | (LoadNodes[NumSkip].MemNode->getAlignment() <= FirstLoadAlign) && | 
|  | (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) | 
|  | NumSkip++; | 
|  | StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); | 
|  | LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); | 
|  | NumConsecutiveStores -= NumSkip; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check that we can merge these candidates without causing a cycle. | 
|  | if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, | 
|  | RootNode)) { | 
|  | StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); | 
|  | LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); | 
|  | NumConsecutiveStores -= NumElem; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Find if it is better to use vectors or integers to load and store | 
|  | // to memory. | 
|  | EVT JointMemOpVT; | 
|  | if (UseVectorTy) { | 
|  | // Find a legal type for the vector store. | 
|  | unsigned Elts = NumElem * NumMemElts; | 
|  | JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); | 
|  | } else { | 
|  | unsigned SizeInBits = NumElem * ElementSizeBytes * 8; | 
|  | JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); | 
|  | } | 
|  |  | 
|  | SDLoc LoadDL(LoadNodes[0].MemNode); | 
|  | SDLoc StoreDL(StoreNodes[0].MemNode); | 
|  |  | 
|  | // The merged loads are required to have the same incoming chain, so | 
|  | // using the first's chain is acceptable. | 
|  |  | 
|  | SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); | 
|  | AddToWorklist(NewStoreChain.getNode()); | 
|  |  | 
|  | MachineMemOperand::Flags LdMMOFlags = | 
|  | isDereferenceable ? MachineMemOperand::MODereferenceable | 
|  | : MachineMemOperand::MONone; | 
|  | if (IsNonTemporalLoad) | 
|  | LdMMOFlags |= MachineMemOperand::MONonTemporal; | 
|  |  | 
|  | MachineMemOperand::Flags StMMOFlags = | 
|  | IsNonTemporalStore ? MachineMemOperand::MONonTemporal | 
|  | : MachineMemOperand::MONone; | 
|  |  | 
|  | SDValue NewLoad, NewStore; | 
|  | if (UseVectorTy || !DoIntegerTruncate) { | 
|  | NewLoad = | 
|  | DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(), | 
|  | FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(), | 
|  | FirstLoadAlign, LdMMOFlags); | 
|  | NewStore = DAG.getStore( | 
|  | NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), | 
|  | FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags); | 
|  | } else { // This must be the truncstore/extload case | 
|  | EVT ExtendedTy = | 
|  | TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); | 
|  | NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, | 
|  | FirstLoad->getChain(), FirstLoad->getBasePtr(), | 
|  | FirstLoad->getPointerInfo(), JointMemOpVT, | 
|  | FirstLoadAlign, LdMMOFlags); | 
|  | NewStore = DAG.getTruncStore(NewStoreChain, StoreDL, NewLoad, | 
|  | FirstInChain->getBasePtr(), | 
|  | FirstInChain->getPointerInfo(), | 
|  | JointMemOpVT, FirstInChain->getAlignment(), | 
|  | FirstInChain->getMemOperand()->getFlags()); | 
|  | } | 
|  |  | 
|  | // Transfer chain users from old loads to the new load. | 
|  | for (unsigned i = 0; i < NumElem; ++i) { | 
|  | LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), | 
|  | SDValue(NewLoad.getNode(), 1)); | 
|  | } | 
|  |  | 
|  | // Replace the all stores with the new store. Recursively remove | 
|  | // corresponding value if its no longer used. | 
|  | for (unsigned i = 0; i < NumElem; ++i) { | 
|  | SDValue Val = StoreNodes[i].MemNode->getOperand(1); | 
|  | CombineTo(StoreNodes[i].MemNode, NewStore); | 
|  | if (Val.getNode()->use_empty()) | 
|  | recursivelyDeleteUnusedNodes(Val.getNode()); | 
|  | } | 
|  |  | 
|  | RV = true; | 
|  | StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); | 
|  | LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); | 
|  | NumConsecutiveStores -= NumElem; | 
|  | } | 
|  | } | 
|  | return RV; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { | 
|  | SDLoc SL(ST); | 
|  | SDValue ReplStore; | 
|  |  | 
|  | // Replace the chain to avoid dependency. | 
|  | if (ST->isTruncatingStore()) { | 
|  | ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), | 
|  | ST->getBasePtr(), ST->getMemoryVT(), | 
|  | ST->getMemOperand()); | 
|  | } else { | 
|  | ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), | 
|  | ST->getMemOperand()); | 
|  | } | 
|  |  | 
|  | // Create token to keep both nodes around. | 
|  | SDValue Token = DAG.getNode(ISD::TokenFactor, SL, | 
|  | MVT::Other, ST->getChain(), ReplStore); | 
|  |  | 
|  | // Make sure the new and old chains are cleaned up. | 
|  | AddToWorklist(Token.getNode()); | 
|  |  | 
|  | // Don't add users to work list. | 
|  | return CombineTo(ST, Token, false); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { | 
|  | SDValue Value = ST->getValue(); | 
|  | if (Value.getOpcode() == ISD::TargetConstantFP) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(ST); | 
|  |  | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Ptr = ST->getBasePtr(); | 
|  |  | 
|  | const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); | 
|  |  | 
|  | // NOTE: If the original store is volatile, this transform must not increase | 
|  | // the number of stores.  For example, on x86-32 an f64 can be stored in one | 
|  | // processor operation but an i64 (which is not legal) requires two.  So the | 
|  | // transform should not be done in this case. | 
|  |  | 
|  | SDValue Tmp; | 
|  | switch (CFP->getSimpleValueType(0).SimpleTy) { | 
|  | default: | 
|  | llvm_unreachable("Unknown FP type"); | 
|  | case MVT::f16:    // We don't do this for these yet. | 
|  | case MVT::f80: | 
|  | case MVT::f128: | 
|  | case MVT::ppcf128: | 
|  | return SDValue(); | 
|  | case MVT::f32: | 
|  | if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || | 
|  | TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { | 
|  | ; | 
|  | Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). | 
|  | bitcastToAPInt().getZExtValue(), SDLoc(CFP), | 
|  | MVT::i32); | 
|  | return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | case MVT::f64: | 
|  | if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && | 
|  | !ST->isVolatile()) || | 
|  | TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { | 
|  | ; | 
|  | Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). | 
|  | getZExtValue(), SDLoc(CFP), MVT::i64); | 
|  | return DAG.getStore(Chain, DL, Tmp, | 
|  | Ptr, ST->getMemOperand()); | 
|  | } | 
|  |  | 
|  | if (!ST->isVolatile() && | 
|  | TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { | 
|  | // Many FP stores are not made apparent until after legalize, e.g. for | 
|  | // argument passing.  Since this is so common, custom legalize the | 
|  | // 64-bit integer store into two 32-bit stores. | 
|  | uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); | 
|  | SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); | 
|  | SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  |  | 
|  | unsigned Alignment = ST->getAlignment(); | 
|  | MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); | 
|  | AAMDNodes AAInfo = ST->getAAInfo(); | 
|  |  | 
|  | SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), | 
|  | ST->getAlignment(), MMOFlags, AAInfo); | 
|  | Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(4, DL, Ptr.getValueType())); | 
|  | Alignment = MinAlign(Alignment, 4U); | 
|  | SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(4), | 
|  | Alignment, MMOFlags, AAInfo); | 
|  | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | 
|  | St0, St1); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSTORE(SDNode *N) { | 
|  | StoreSDNode *ST  = cast<StoreSDNode>(N); | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Value = ST->getValue(); | 
|  | SDValue Ptr   = ST->getBasePtr(); | 
|  |  | 
|  | // If this is a store of a bit convert, store the input value if the | 
|  | // resultant store does not need a higher alignment than the original. | 
|  | if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && | 
|  | ST->isUnindexed()) { | 
|  | EVT SVT = Value.getOperand(0).getValueType(); | 
|  | // If the store is volatile, we only want to change the store type if the | 
|  | // resulting store is legal. Otherwise we might increase the number of | 
|  | // memory accesses. We don't care if the original type was legal or not | 
|  | // as we assume software couldn't rely on the number of accesses of an | 
|  | // illegal type. | 
|  | if (((!LegalOperations && !ST->isVolatile()) || | 
|  | TLI.isOperationLegal(ISD::STORE, SVT)) && | 
|  | TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT, | 
|  | DAG, *ST->getMemOperand())) { | 
|  | return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, | 
|  | ST->getPointerInfo(), ST->getAlignment(), | 
|  | ST->getMemOperand()->getFlags(), ST->getAAInfo()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Turn 'store undef, Ptr' -> nothing. | 
|  | if (Value.isUndef() && ST->isUnindexed()) | 
|  | return Chain; | 
|  |  | 
|  | // Try to infer better alignment information than the store already has. | 
|  | if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { | 
|  | if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { | 
|  | if (Align > ST->getAlignment() && ST->getSrcValueOffset() % Align == 0) { | 
|  | SDValue NewStore = | 
|  | DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), | 
|  | ST->getMemoryVT(), Align, | 
|  | ST->getMemOperand()->getFlags(), ST->getAAInfo()); | 
|  | // NewStore will always be N as we are only refining the alignment | 
|  | assert(NewStore.getNode() == N); | 
|  | (void)NewStore; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try transforming a pair floating point load / store ops to integer | 
|  | // load / store ops. | 
|  | if (SDValue NewST = TransformFPLoadStorePair(N)) | 
|  | return NewST; | 
|  |  | 
|  | // Try transforming several stores into STORE (BSWAP). | 
|  | if (SDValue Store = MatchStoreCombine(ST)) | 
|  | return Store; | 
|  |  | 
|  | if (ST->isUnindexed()) { | 
|  | // Walk up chain skipping non-aliasing memory nodes, on this store and any | 
|  | // adjacent stores. | 
|  | if (findBetterNeighborChains(ST)) { | 
|  | // replaceStoreChain uses CombineTo, which handled all of the worklist | 
|  | // manipulation. Return the original node to not do anything else. | 
|  | return SDValue(ST, 0); | 
|  | } | 
|  | Chain = ST->getChain(); | 
|  | } | 
|  |  | 
|  | // FIXME: is there such a thing as a truncating indexed store? | 
|  | if (ST->isTruncatingStore() && ST->isUnindexed() && | 
|  | Value.getValueType().isInteger() && | 
|  | (!isa<ConstantSDNode>(Value) || | 
|  | !cast<ConstantSDNode>(Value)->isOpaque())) { | 
|  | APInt TruncDemandedBits = | 
|  | APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), | 
|  | ST->getMemoryVT().getScalarSizeInBits()); | 
|  |  | 
|  | // See if we can simplify the input to this truncstore with knowledge that | 
|  | // only the low bits are being used.  For example: | 
|  | // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8" | 
|  | SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits); | 
|  | AddToWorklist(Value.getNode()); | 
|  | if (Shorter) | 
|  | return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), | 
|  | ST->getMemOperand()); | 
|  |  | 
|  | // Otherwise, see if we can simplify the operation with | 
|  | // SimplifyDemandedBits, which only works if the value has a single use. | 
|  | if (SimplifyDemandedBits(Value, TruncDemandedBits)) { | 
|  | // Re-visit the store if anything changed and the store hasn't been merged | 
|  | // with another node (N is deleted) SimplifyDemandedBits will add Value's | 
|  | // node back to the worklist if necessary, but we also need to re-visit | 
|  | // the Store node itself. | 
|  | if (N->getOpcode() != ISD::DELETED_NODE) | 
|  | AddToWorklist(N); | 
|  | return SDValue(N, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a load followed by a store to the same location, then the store | 
|  | // is dead/noop. | 
|  | if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { | 
|  | if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && | 
|  | ST->isUnindexed() && !ST->isVolatile() && | 
|  | // There can't be any side effects between the load and store, such as | 
|  | // a call or store. | 
|  | Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { | 
|  | // The store is dead, remove it. | 
|  | return Chain; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { | 
|  | if (ST->isUnindexed() && !ST->isVolatile() && ST1->isUnindexed() && | 
|  | !ST1->isVolatile()) { | 
|  | if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value && | 
|  | ST->getMemoryVT() == ST1->getMemoryVT()) { | 
|  | // If this is a store followed by a store with the same value to the | 
|  | // same location, then the store is dead/noop. | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && | 
|  | !ST1->getBasePtr().isUndef()) { | 
|  | const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); | 
|  | const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); | 
|  | unsigned STBitSize = ST->getMemoryVT().getSizeInBits(); | 
|  | unsigned ChainBitSize = ST1->getMemoryVT().getSizeInBits(); | 
|  | // If this is a store who's preceding store to a subset of the current | 
|  | // location and no one other node is chained to that store we can | 
|  | // effectively drop the store. Do not remove stores to undef as they may | 
|  | // be used as data sinks. | 
|  | if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) { | 
|  | CombineTo(ST1, ST1->getChain()); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // If ST stores to a subset of preceding store's write set, we may be | 
|  | // able to fold ST's value into the preceding stored value. As we know | 
|  | // the other uses of ST1's chain are unconcerned with ST, this folding | 
|  | // will not affect those nodes. | 
|  | int64_t BitOffset; | 
|  | if (ChainBase.contains(DAG, ChainBitSize, STBase, STBitSize, | 
|  | BitOffset)) { | 
|  | SDValue ChainValue = ST1->getValue(); | 
|  | if (auto *C1 = dyn_cast<ConstantSDNode>(ChainValue)) { | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(Value)) { | 
|  | APInt Val = C1->getAPIntValue(); | 
|  | APInt InsertVal = C->getAPIntValue().zextOrTrunc(STBitSize); | 
|  | // FIXME: Handle Big-endian mode. | 
|  | if (!DAG.getDataLayout().isBigEndian()) { | 
|  | Val.insertBits(InsertVal, BitOffset); | 
|  | SDValue NewSDVal = | 
|  | DAG.getConstant(Val, SDLoc(C), ChainValue.getValueType(), | 
|  | C1->isTargetOpcode(), C1->isOpaque()); | 
|  | SDNode *NewST1 = DAG.UpdateNodeOperands( | 
|  | ST1, ST1->getChain(), NewSDVal, ST1->getOperand(2), | 
|  | ST1->getOperand(3)); | 
|  | return CombineTo(ST, SDValue(NewST1, 0)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } // End ST subset of ST1 case. | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is an FP_ROUND or TRUNC followed by a store, fold this into a | 
|  | // truncating store.  We can do this even if this is already a truncstore. | 
|  | if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) | 
|  | && Value.getNode()->hasOneUse() && ST->isUnindexed() && | 
|  | TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), | 
|  | ST->getMemoryVT())) { | 
|  | return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), | 
|  | Ptr, ST->getMemoryVT(), ST->getMemOperand()); | 
|  | } | 
|  |  | 
|  | // Always perform this optimization before types are legal. If the target | 
|  | // prefers, also try this after legalization to catch stores that were created | 
|  | // by intrinsics or other nodes. | 
|  | if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) { | 
|  | while (true) { | 
|  | // There can be multiple store sequences on the same chain. | 
|  | // Keep trying to merge store sequences until we are unable to do so | 
|  | // or until we merge the last store on the chain. | 
|  | bool Changed = MergeConsecutiveStores(ST); | 
|  | if (!Changed) break; | 
|  | // Return N as merge only uses CombineTo and no worklist clean | 
|  | // up is necessary. | 
|  | if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) | 
|  | return SDValue(N, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try transforming N to an indexed store. | 
|  | if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' | 
|  | // | 
|  | // Make sure to do this only after attempting to merge stores in order to | 
|  | //  avoid changing the types of some subset of stores due to visit order, | 
|  | //  preventing their merging. | 
|  | if (isa<ConstantFPSDNode>(ST->getValue())) { | 
|  | if (SDValue NewSt = replaceStoreOfFPConstant(ST)) | 
|  | return NewSt; | 
|  | } | 
|  |  | 
|  | if (SDValue NewSt = splitMergedValStore(ST)) | 
|  | return NewSt; | 
|  |  | 
|  | return ReduceLoadOpStoreWidth(N); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { | 
|  | const auto *LifetimeEnd = cast<LifetimeSDNode>(N); | 
|  | if (!LifetimeEnd->hasOffset()) | 
|  | return SDValue(); | 
|  |  | 
|  | const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), | 
|  | LifetimeEnd->getOffset(), false); | 
|  |  | 
|  | // We walk up the chains to find stores. | 
|  | SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; | 
|  | while (!Chains.empty()) { | 
|  | SDValue Chain = Chains.back(); | 
|  | Chains.pop_back(); | 
|  | if (!Chain.hasOneUse()) | 
|  | continue; | 
|  | switch (Chain.getOpcode()) { | 
|  | case ISD::TokenFactor: | 
|  | for (unsigned Nops = Chain.getNumOperands(); Nops;) | 
|  | Chains.push_back(Chain.getOperand(--Nops)); | 
|  | break; | 
|  | case ISD::LIFETIME_START: | 
|  | case ISD::LIFETIME_END: | 
|  | // We can forward past any lifetime start/end that can be proven not to | 
|  | // alias the node. | 
|  | if (!isAlias(Chain.getNode(), N)) | 
|  | Chains.push_back(Chain.getOperand(0)); | 
|  | break; | 
|  | case ISD::STORE: { | 
|  | StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); | 
|  | if (ST->isVolatile() || ST->isIndexed()) | 
|  | continue; | 
|  | const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); | 
|  | // If we store purely within object bounds just before its lifetime ends, | 
|  | // we can remove the store. | 
|  | if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, | 
|  | ST->getMemoryVT().getStoreSizeInBits())) { | 
|  | LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); | 
|  | dbgs() << "\nwithin LIFETIME_END of : "; | 
|  | LifetimeEndBase.dump(); dbgs() << "\n"); | 
|  | CombineTo(ST, ST->getChain()); | 
|  | return SDValue(N, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// For the instruction sequence of store below, F and I values | 
|  | /// are bundled together as an i64 value before being stored into memory. | 
|  | /// Sometimes it is more efficent to generate separate stores for F and I, | 
|  | /// which can remove the bitwise instructions or sink them to colder places. | 
|  | /// | 
|  | ///   (store (or (zext (bitcast F to i32) to i64), | 
|  | ///              (shl (zext I to i64), 32)), addr)  --> | 
|  | ///   (store F, addr) and (store I, addr+4) | 
|  | /// | 
|  | /// Similarly, splitting for other merged store can also be beneficial, like: | 
|  | /// For pair of {i32, i32}, i64 store --> two i32 stores. | 
|  | /// For pair of {i32, i16}, i64 store --> two i32 stores. | 
|  | /// For pair of {i16, i16}, i32 store --> two i16 stores. | 
|  | /// For pair of {i16, i8},  i32 store --> two i16 stores. | 
|  | /// For pair of {i8, i8},   i16 store --> two i8 stores. | 
|  | /// | 
|  | /// We allow each target to determine specifically which kind of splitting is | 
|  | /// supported. | 
|  | /// | 
|  | /// The store patterns are commonly seen from the simple code snippet below | 
|  | /// if only std::make_pair(...) is sroa transformed before inlined into hoo. | 
|  | ///   void goo(const std::pair<int, float> &); | 
|  | ///   hoo() { | 
|  | ///     ... | 
|  | ///     goo(std::make_pair(tmp, ftmp)); | 
|  | ///     ... | 
|  | ///   } | 
|  | /// | 
|  | SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { | 
|  | if (OptLevel == CodeGenOpt::None) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Val = ST->getValue(); | 
|  | SDLoc DL(ST); | 
|  |  | 
|  | // Match OR operand. | 
|  | if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) | 
|  | return SDValue(); | 
|  |  | 
|  | // Match SHL operand and get Lower and Higher parts of Val. | 
|  | SDValue Op1 = Val.getOperand(0); | 
|  | SDValue Op2 = Val.getOperand(1); | 
|  | SDValue Lo, Hi; | 
|  | if (Op1.getOpcode() != ISD::SHL) { | 
|  | std::swap(Op1, Op2); | 
|  | if (Op1.getOpcode() != ISD::SHL) | 
|  | return SDValue(); | 
|  | } | 
|  | Lo = Op2; | 
|  | Hi = Op1.getOperand(0); | 
|  | if (!Op1.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Match shift amount to HalfValBitSize. | 
|  | unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; | 
|  | ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); | 
|  | if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) | 
|  | return SDValue(); | 
|  |  | 
|  | // Lo and Hi are zero-extended from int with size less equal than 32 | 
|  | // to i64. | 
|  | if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || | 
|  | !Lo.getOperand(0).getValueType().isScalarInteger() || | 
|  | Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || | 
|  | Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || | 
|  | !Hi.getOperand(0).getValueType().isScalarInteger() || | 
|  | Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) | 
|  | return SDValue(); | 
|  |  | 
|  | // Use the EVT of low and high parts before bitcast as the input | 
|  | // of target query. | 
|  | EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) | 
|  | ? Lo.getOperand(0).getValueType() | 
|  | : Lo.getValueType(); | 
|  | EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) | 
|  | ? Hi.getOperand(0).getValueType() | 
|  | : Hi.getValueType(); | 
|  | if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Start to split store. | 
|  | unsigned Alignment = ST->getAlignment(); | 
|  | MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); | 
|  | AAMDNodes AAInfo = ST->getAAInfo(); | 
|  |  | 
|  | // Change the sizes of Lo and Hi's value types to HalfValBitSize. | 
|  | EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); | 
|  | Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); | 
|  | Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); | 
|  |  | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Ptr = ST->getBasePtr(); | 
|  | // Lower value store. | 
|  | SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), | 
|  | ST->getAlignment(), MMOFlags, AAInfo); | 
|  | Ptr = | 
|  | DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType())); | 
|  | // Higher value store. | 
|  | SDValue St1 = | 
|  | DAG.getStore(St0, DL, Hi, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), | 
|  | Alignment / 2, MMOFlags, AAInfo); | 
|  | return St1; | 
|  | } | 
|  |  | 
|  | /// Convert a disguised subvector insertion into a shuffle: | 
|  | /// insert_vector_elt V, (bitcast X from vector type), IdxC --> | 
|  | /// bitcast(shuffle (bitcast V), (extended X), Mask) | 
|  | /// Note: We do not use an insert_subvector node because that requires a legal | 
|  | /// subvector type. | 
|  | SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { | 
|  | SDValue InsertVal = N->getOperand(1); | 
|  | if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || | 
|  | !InsertVal.getOperand(0).getValueType().isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue SubVec = InsertVal.getOperand(0); | 
|  | SDValue DestVec = N->getOperand(0); | 
|  | EVT SubVecVT = SubVec.getValueType(); | 
|  | EVT VT = DestVec.getValueType(); | 
|  | unsigned NumSrcElts = SubVecVT.getVectorNumElements(); | 
|  | unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); | 
|  | unsigned NumMaskVals = ExtendRatio * NumSrcElts; | 
|  |  | 
|  | // Step 1: Create a shuffle mask that implements this insert operation. The | 
|  | // vector that we are inserting into will be operand 0 of the shuffle, so | 
|  | // those elements are just 'i'. The inserted subvector is in the first | 
|  | // positions of operand 1 of the shuffle. Example: | 
|  | // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} | 
|  | SmallVector<int, 16> Mask(NumMaskVals); | 
|  | for (unsigned i = 0; i != NumMaskVals; ++i) { | 
|  | if (i / NumSrcElts == InsIndex) | 
|  | Mask[i] = (i % NumSrcElts) + NumMaskVals; | 
|  | else | 
|  | Mask[i] = i; | 
|  | } | 
|  |  | 
|  | // Bail out if the target can not handle the shuffle we want to create. | 
|  | EVT SubVecEltVT = SubVecVT.getVectorElementType(); | 
|  | EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); | 
|  | if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Step 2: Create a wide vector from the inserted source vector by appending | 
|  | // undefined elements. This is the same size as our destination vector. | 
|  | SDLoc DL(N); | 
|  | SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); | 
|  | ConcatOps[0] = SubVec; | 
|  | SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); | 
|  |  | 
|  | // Step 3: Shuffle in the padded subvector. | 
|  | SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); | 
|  | SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); | 
|  | AddToWorklist(PaddedSubV.getNode()); | 
|  | AddToWorklist(DestVecBC.getNode()); | 
|  | AddToWorklist(Shuf.getNode()); | 
|  | return DAG.getBitcast(VT, Shuf); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { | 
|  | SDValue InVec = N->getOperand(0); | 
|  | SDValue InVal = N->getOperand(1); | 
|  | SDValue EltNo = N->getOperand(2); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the inserted element is an UNDEF, just use the input vector. | 
|  | if (InVal.isUndef()) | 
|  | return InVec; | 
|  |  | 
|  | EVT VT = InVec.getValueType(); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | // Remove redundant insertions: | 
|  | // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x | 
|  | if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) | 
|  | return InVec; | 
|  |  | 
|  | auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); | 
|  | if (!IndexC) { | 
|  | // If this is variable insert to undef vector, it might be better to splat: | 
|  | // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > | 
|  | if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) { | 
|  | SmallVector<SDValue, 8> Ops(NumElts, InVal); | 
|  | return DAG.getBuildVector(VT, DL, Ops); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // We must know which element is being inserted for folds below here. | 
|  | unsigned Elt = IndexC->getZExtValue(); | 
|  | if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) | 
|  | return Shuf; | 
|  |  | 
|  | // Canonicalize insert_vector_elt dag nodes. | 
|  | // Example: | 
|  | // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) | 
|  | // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) | 
|  | // | 
|  | // Do this only if the child insert_vector node has one use; also | 
|  | // do this only if indices are both constants and Idx1 < Idx0. | 
|  | if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() | 
|  | && isa<ConstantSDNode>(InVec.getOperand(2))) { | 
|  | unsigned OtherElt = InVec.getConstantOperandVal(2); | 
|  | if (Elt < OtherElt) { | 
|  | // Swap nodes. | 
|  | SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, | 
|  | InVec.getOperand(0), InVal, EltNo); | 
|  | AddToWorklist(NewOp.getNode()); | 
|  | return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), | 
|  | VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can't generate a legal BUILD_VECTOR, exit | 
|  | if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially | 
|  | // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the | 
|  | // vector elements. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | // Do not combine these two vectors if the output vector will not replace | 
|  | // the input vector. | 
|  | if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { | 
|  | Ops.append(InVec.getNode()->op_begin(), | 
|  | InVec.getNode()->op_end()); | 
|  | } else if (InVec.isUndef()) { | 
|  | Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType())); | 
|  | } else { | 
|  | return SDValue(); | 
|  | } | 
|  | assert(Ops.size() == NumElts && "Unexpected vector size"); | 
|  |  | 
|  | // Insert the element | 
|  | if (Elt < Ops.size()) { | 
|  | // All the operands of BUILD_VECTOR must have the same type; | 
|  | // we enforce that here. | 
|  | EVT OpVT = Ops[0].getValueType(); | 
|  | Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; | 
|  | } | 
|  |  | 
|  | // Return the new vector | 
|  | return DAG.getBuildVector(VT, DL, Ops); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, | 
|  | SDValue EltNo, | 
|  | LoadSDNode *OriginalLoad) { | 
|  | assert(!OriginalLoad->isVolatile()); | 
|  |  | 
|  | EVT ResultVT = EVE->getValueType(0); | 
|  | EVT VecEltVT = InVecVT.getVectorElementType(); | 
|  | unsigned Align = OriginalLoad->getAlignment(); | 
|  | unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( | 
|  | VecEltVT.getTypeForEVT(*DAG.getContext())); | 
|  |  | 
|  | if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ? | 
|  | ISD::NON_EXTLOAD : ISD::EXTLOAD; | 
|  | if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | Align = NewAlign; | 
|  |  | 
|  | SDValue NewPtr = OriginalLoad->getBasePtr(); | 
|  | SDValue Offset; | 
|  | EVT PtrType = NewPtr.getValueType(); | 
|  | MachinePointerInfo MPI; | 
|  | SDLoc DL(EVE); | 
|  | if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { | 
|  | int Elt = ConstEltNo->getZExtValue(); | 
|  | unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; | 
|  | Offset = DAG.getConstant(PtrOff, DL, PtrType); | 
|  | MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); | 
|  | } else { | 
|  | Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); | 
|  | Offset = DAG.getNode( | 
|  | ISD::MUL, DL, PtrType, Offset, | 
|  | DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); | 
|  | // Discard the pointer info except the address space because the memory | 
|  | // operand can't represent this new access since the offset is variable. | 
|  | MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); | 
|  | } | 
|  | NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); | 
|  |  | 
|  | // The replacement we need to do here is a little tricky: we need to | 
|  | // replace an extractelement of a load with a load. | 
|  | // Use ReplaceAllUsesOfValuesWith to do the replacement. | 
|  | // Note that this replacement assumes that the extractvalue is the only | 
|  | // use of the load; that's okay because we don't want to perform this | 
|  | // transformation in other cases anyway. | 
|  | SDValue Load; | 
|  | SDValue Chain; | 
|  | if (ResultVT.bitsGT(VecEltVT)) { | 
|  | // If the result type of vextract is wider than the load, then issue an | 
|  | // extending load instead. | 
|  | ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, | 
|  | VecEltVT) | 
|  | ? ISD::ZEXTLOAD | 
|  | : ISD::EXTLOAD; | 
|  | Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, | 
|  | OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, | 
|  | Align, OriginalLoad->getMemOperand()->getFlags(), | 
|  | OriginalLoad->getAAInfo()); | 
|  | Chain = Load.getValue(1); | 
|  | } else { | 
|  | Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, | 
|  | MPI, Align, OriginalLoad->getMemOperand()->getFlags(), | 
|  | OriginalLoad->getAAInfo()); | 
|  | Chain = Load.getValue(1); | 
|  | if (ResultVT.bitsLT(VecEltVT)) | 
|  | Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); | 
|  | else | 
|  | Load = DAG.getBitcast(ResultVT, Load); | 
|  | } | 
|  | WorklistRemover DeadNodes(*this); | 
|  | SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; | 
|  | SDValue To[] = { Load, Chain }; | 
|  | DAG.ReplaceAllUsesOfValuesWith(From, To, 2); | 
|  | // Since we're explicitly calling ReplaceAllUses, add the new node to the | 
|  | // worklist explicitly as well. | 
|  | AddToWorklist(Load.getNode()); | 
|  | AddUsersToWorklist(Load.getNode()); // Add users too | 
|  | // Make sure to revisit this node to clean it up; it will usually be dead. | 
|  | AddToWorklist(EVE); | 
|  | ++OpsNarrowed; | 
|  | return SDValue(EVE, 0); | 
|  | } | 
|  |  | 
|  | /// Transform a vector binary operation into a scalar binary operation by moving | 
|  | /// the math/logic after an extract element of a vector. | 
|  | static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, | 
|  | bool LegalOperations) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Vec = ExtElt->getOperand(0); | 
|  | SDValue Index = ExtElt->getOperand(1); | 
|  | auto *IndexC = dyn_cast<ConstantSDNode>(Index); | 
|  | if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() || | 
|  | Vec.getNode()->getNumValues() != 1) | 
|  | return SDValue(); | 
|  |  | 
|  | // Targets may want to avoid this to prevent an expensive register transfer. | 
|  | if (!TLI.shouldScalarizeBinop(Vec)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Extracting an element of a vector constant is constant-folded, so this | 
|  | // transform is just replacing a vector op with a scalar op while moving the | 
|  | // extract. | 
|  | SDValue Op0 = Vec.getOperand(0); | 
|  | SDValue Op1 = Vec.getOperand(1); | 
|  | if (isAnyConstantBuildVector(Op0, true) || | 
|  | isAnyConstantBuildVector(Op1, true)) { | 
|  | // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' | 
|  | // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) | 
|  | SDLoc DL(ExtElt); | 
|  | EVT VT = ExtElt->getValueType(0); | 
|  | SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); | 
|  | SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); | 
|  | return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { | 
|  | SDValue VecOp = N->getOperand(0); | 
|  | SDValue Index = N->getOperand(1); | 
|  | EVT ScalarVT = N->getValueType(0); | 
|  | EVT VecVT = VecOp.getValueType(); | 
|  | if (VecOp.isUndef()) | 
|  | return DAG.getUNDEF(ScalarVT); | 
|  |  | 
|  | // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val | 
|  | // | 
|  | // This only really matters if the index is non-constant since other combines | 
|  | // on the constant elements already work. | 
|  | SDLoc DL(N); | 
|  | if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && | 
|  | Index == VecOp.getOperand(2)) { | 
|  | SDValue Elt = VecOp.getOperand(1); | 
|  | return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; | 
|  | } | 
|  |  | 
|  | // (vextract (scalar_to_vector val, 0) -> val | 
|  | if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { | 
|  | // Check if the result type doesn't match the inserted element type. A | 
|  | // SCALAR_TO_VECTOR may truncate the inserted element and the | 
|  | // EXTRACT_VECTOR_ELT may widen the extracted vector. | 
|  | SDValue InOp = VecOp.getOperand(0); | 
|  | if (InOp.getValueType() != ScalarVT) { | 
|  | assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); | 
|  | return DAG.getSExtOrTrunc(InOp, DL, ScalarVT); | 
|  | } | 
|  | return InOp; | 
|  | } | 
|  |  | 
|  | // extract_vector_elt of out-of-bounds element -> UNDEF | 
|  | auto *IndexC = dyn_cast<ConstantSDNode>(Index); | 
|  | unsigned NumElts = VecVT.getVectorNumElements(); | 
|  | if (IndexC && IndexC->getAPIntValue().uge(NumElts)) | 
|  | return DAG.getUNDEF(ScalarVT); | 
|  |  | 
|  | // extract_vector_elt (build_vector x, y), 1 -> y | 
|  | if (IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR && | 
|  | TLI.isTypeLegal(VecVT) && | 
|  | (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { | 
|  | SDValue Elt = VecOp.getOperand(IndexC->getZExtValue()); | 
|  | EVT InEltVT = Elt.getValueType(); | 
|  |  | 
|  | // Sometimes build_vector's scalar input types do not match result type. | 
|  | if (ScalarVT == InEltVT) | 
|  | return Elt; | 
|  |  | 
|  | // TODO: It may be useful to truncate if free if the build_vector implicitly | 
|  | // converts. | 
|  | } | 
|  |  | 
|  | // TODO: These transforms should not require the 'hasOneUse' restriction, but | 
|  | // there are regressions on multiple targets without it. We can end up with a | 
|  | // mess of scalar and vector code if we reduce only part of the DAG to scalar. | 
|  | if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && | 
|  | VecOp.hasOneUse()) { | 
|  | // The vector index of the LSBs of the source depend on the endian-ness. | 
|  | bool IsLE = DAG.getDataLayout().isLittleEndian(); | 
|  | unsigned ExtractIndex = IndexC->getZExtValue(); | 
|  | // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) | 
|  | unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; | 
|  | SDValue BCSrc = VecOp.getOperand(0); | 
|  | if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc); | 
|  |  | 
|  | if (LegalTypes && BCSrc.getValueType().isInteger() && | 
|  | BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { | 
|  | // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> | 
|  | // trunc i64 X to i32 | 
|  | SDValue X = BCSrc.getOperand(0); | 
|  | assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && | 
|  | "Extract element and scalar to vector can't change element type " | 
|  | "from FP to integer."); | 
|  | unsigned XBitWidth = X.getValueSizeInBits(); | 
|  | unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); | 
|  | BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; | 
|  |  | 
|  | // An extract element return value type can be wider than its vector | 
|  | // operand element type. In that case, the high bits are undefined, so | 
|  | // it's possible that we may need to extend rather than truncate. | 
|  | if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { | 
|  | assert(XBitWidth % VecEltBitWidth == 0 && | 
|  | "Scalar bitwidth must be a multiple of vector element bitwidth"); | 
|  | return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) | 
|  | return BO; | 
|  |  | 
|  | // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. | 
|  | // We only perform this optimization before the op legalization phase because | 
|  | // we may introduce new vector instructions which are not backed by TD | 
|  | // patterns. For example on AVX, extracting elements from a wide vector | 
|  | // without using extract_subvector. However, if we can find an underlying | 
|  | // scalar value, then we can always use that. | 
|  | if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { | 
|  | auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); | 
|  | // Find the new index to extract from. | 
|  | int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); | 
|  |  | 
|  | // Extracting an undef index is undef. | 
|  | if (OrigElt == -1) | 
|  | return DAG.getUNDEF(ScalarVT); | 
|  |  | 
|  | // Select the right vector half to extract from. | 
|  | SDValue SVInVec; | 
|  | if (OrigElt < (int)NumElts) { | 
|  | SVInVec = VecOp.getOperand(0); | 
|  | } else { | 
|  | SVInVec = VecOp.getOperand(1); | 
|  | OrigElt -= NumElts; | 
|  | } | 
|  |  | 
|  | if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | SDValue InOp = SVInVec.getOperand(OrigElt); | 
|  | if (InOp.getValueType() != ScalarVT) { | 
|  | assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); | 
|  | InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); | 
|  | } | 
|  |  | 
|  | return InOp; | 
|  | } | 
|  |  | 
|  | // FIXME: We should handle recursing on other vector shuffles and | 
|  | // scalar_to_vector here as well. | 
|  |  | 
|  | if (!LegalOperations || | 
|  | // FIXME: Should really be just isOperationLegalOrCustom. | 
|  | TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || | 
|  | TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { | 
|  | EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, | 
|  | DAG.getConstant(OrigElt, DL, IndexTy)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If only EXTRACT_VECTOR_ELT nodes use the source vector we can | 
|  | // simplify it based on the (valid) extraction indices. | 
|  | if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { | 
|  | return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | Use->getOperand(0) == VecOp && | 
|  | isa<ConstantSDNode>(Use->getOperand(1)); | 
|  | })) { | 
|  | APInt DemandedElts = APInt::getNullValue(NumElts); | 
|  | for (SDNode *Use : VecOp->uses()) { | 
|  | auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); | 
|  | if (CstElt->getAPIntValue().ult(NumElts)) | 
|  | DemandedElts.setBit(CstElt->getZExtValue()); | 
|  | } | 
|  | if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { | 
|  | // We simplified the vector operand of this extract element. If this | 
|  | // extract is not dead, visit it again so it is folded properly. | 
|  | if (N->getOpcode() != ISD::DELETED_NODE) | 
|  | AddToWorklist(N); | 
|  | return SDValue(N, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Everything under here is trying to match an extract of a loaded value. | 
|  | // If the result of load has to be truncated, then it's not necessarily | 
|  | // profitable. | 
|  | bool BCNumEltsChanged = false; | 
|  | EVT ExtVT = VecVT.getVectorElementType(); | 
|  | EVT LVT = ExtVT; | 
|  | if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (VecOp.getOpcode() == ISD::BITCAST) { | 
|  | // Don't duplicate a load with other uses. | 
|  | if (!VecOp.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT BCVT = VecOp.getOperand(0).getValueType(); | 
|  | if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) | 
|  | return SDValue(); | 
|  | if (NumElts != BCVT.getVectorNumElements()) | 
|  | BCNumEltsChanged = true; | 
|  | VecOp = VecOp.getOperand(0); | 
|  | ExtVT = BCVT.getVectorElementType(); | 
|  | } | 
|  |  | 
|  | // extract (vector load $addr), i --> load $addr + i * size | 
|  | if (!LegalOperations && !IndexC && VecOp.hasOneUse() && | 
|  | ISD::isNormalLoad(VecOp.getNode()) && | 
|  | !Index->hasPredecessor(VecOp.getNode())) { | 
|  | auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); | 
|  | if (VecLoad && !VecLoad->isVolatile()) | 
|  | return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); | 
|  | } | 
|  |  | 
|  | // Perform only after legalization to ensure build_vector / vector_shuffle | 
|  | // optimizations have already been done. | 
|  | if (!LegalOperations || !IndexC) | 
|  | return SDValue(); | 
|  |  | 
|  | // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) | 
|  | // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) | 
|  | // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) | 
|  | int Elt = IndexC->getZExtValue(); | 
|  | LoadSDNode *LN0 = nullptr; | 
|  | if (ISD::isNormalLoad(VecOp.getNode())) { | 
|  | LN0 = cast<LoadSDNode>(VecOp); | 
|  | } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | VecOp.getOperand(0).getValueType() == ExtVT && | 
|  | ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { | 
|  | // Don't duplicate a load with other uses. | 
|  | if (!VecOp.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); | 
|  | } | 
|  | if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { | 
|  | // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) | 
|  | // => | 
|  | // (load $addr+1*size) | 
|  |  | 
|  | // Don't duplicate a load with other uses. | 
|  | if (!VecOp.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the bit convert changed the number of elements, it is unsafe | 
|  | // to examine the mask. | 
|  | if (BCNumEltsChanged) | 
|  | return SDValue(); | 
|  |  | 
|  | // Select the input vector, guarding against out of range extract vector. | 
|  | int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); | 
|  | VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); | 
|  |  | 
|  | if (VecOp.getOpcode() == ISD::BITCAST) { | 
|  | // Don't duplicate a load with other uses. | 
|  | if (!VecOp.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | VecOp = VecOp.getOperand(0); | 
|  | } | 
|  | if (ISD::isNormalLoad(VecOp.getNode())) { | 
|  | LN0 = cast<LoadSDNode>(VecOp); | 
|  | Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; | 
|  | Index = DAG.getConstant(Elt, DL, Index.getValueType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure we found a non-volatile load and the extractelement is | 
|  | // the only use. | 
|  | if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If Idx was -1 above, Elt is going to be -1, so just return undef. | 
|  | if (Elt == -1) | 
|  | return DAG.getUNDEF(LVT); | 
|  |  | 
|  | return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); | 
|  | } | 
|  |  | 
|  | // Simplify (build_vec (ext )) to (bitcast (build_vec )) | 
|  | SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { | 
|  | // We perform this optimization post type-legalization because | 
|  | // the type-legalizer often scalarizes integer-promoted vectors. | 
|  | // Performing this optimization before may create bit-casts which | 
|  | // will be type-legalized to complex code sequences. | 
|  | // We perform this optimization only before the operation legalizer because we | 
|  | // may introduce illegal operations. | 
|  | if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned NumInScalars = N->getNumOperands(); | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Check to see if this is a BUILD_VECTOR of a bunch of values | 
|  | // which come from any_extend or zero_extend nodes. If so, we can create | 
|  | // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR | 
|  | // optimizations. We do not handle sign-extend because we can't fill the sign | 
|  | // using shuffles. | 
|  | EVT SourceType = MVT::Other; | 
|  | bool AllAnyExt = true; | 
|  |  | 
|  | for (unsigned i = 0; i != NumInScalars; ++i) { | 
|  | SDValue In = N->getOperand(i); | 
|  | // Ignore undef inputs. | 
|  | if (In.isUndef()) continue; | 
|  |  | 
|  | bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND; | 
|  | bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; | 
|  |  | 
|  | // Abort if the element is not an extension. | 
|  | if (!ZeroExt && !AnyExt) { | 
|  | SourceType = MVT::Other; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The input is a ZeroExt or AnyExt. Check the original type. | 
|  | EVT InTy = In.getOperand(0).getValueType(); | 
|  |  | 
|  | // Check that all of the widened source types are the same. | 
|  | if (SourceType == MVT::Other) | 
|  | // First time. | 
|  | SourceType = InTy; | 
|  | else if (InTy != SourceType) { | 
|  | // Multiple income types. Abort. | 
|  | SourceType = MVT::Other; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check if all of the extends are ANY_EXTENDs. | 
|  | AllAnyExt &= AnyExt; | 
|  | } | 
|  |  | 
|  | // In order to have valid types, all of the inputs must be extended from the | 
|  | // same source type and all of the inputs must be any or zero extend. | 
|  | // Scalar sizes must be a power of two. | 
|  | EVT OutScalarTy = VT.getScalarType(); | 
|  | bool ValidTypes = SourceType != MVT::Other && | 
|  | isPowerOf2_32(OutScalarTy.getSizeInBits()) && | 
|  | isPowerOf2_32(SourceType.getSizeInBits()); | 
|  |  | 
|  | // Create a new simpler BUILD_VECTOR sequence which other optimizations can | 
|  | // turn into a single shuffle instruction. | 
|  | if (!ValidTypes) | 
|  | return SDValue(); | 
|  |  | 
|  | bool isLE = DAG.getDataLayout().isLittleEndian(); | 
|  | unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); | 
|  | assert(ElemRatio > 1 && "Invalid element size ratio"); | 
|  | SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): | 
|  | DAG.getConstant(0, DL, SourceType); | 
|  |  | 
|  | unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); | 
|  | SmallVector<SDValue, 8> Ops(NewBVElems, Filler); | 
|  |  | 
|  | // Populate the new build_vector | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | SDValue Cast = N->getOperand(i); | 
|  | assert((Cast.getOpcode() == ISD::ANY_EXTEND || | 
|  | Cast.getOpcode() == ISD::ZERO_EXTEND || | 
|  | Cast.isUndef()) && "Invalid cast opcode"); | 
|  | SDValue In; | 
|  | if (Cast.isUndef()) | 
|  | In = DAG.getUNDEF(SourceType); | 
|  | else | 
|  | In = Cast->getOperand(0); | 
|  | unsigned Index = isLE ? (i * ElemRatio) : | 
|  | (i * ElemRatio + (ElemRatio - 1)); | 
|  |  | 
|  | assert(Index < Ops.size() && "Invalid index"); | 
|  | Ops[Index] = In; | 
|  | } | 
|  |  | 
|  | // The type of the new BUILD_VECTOR node. | 
|  | EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); | 
|  | assert(VecVT.getSizeInBits() == VT.getSizeInBits() && | 
|  | "Invalid vector size"); | 
|  | // Check if the new vector type is legal. | 
|  | if (!isTypeLegal(VecVT) || | 
|  | (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && | 
|  | TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make the new BUILD_VECTOR. | 
|  | SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); | 
|  |  | 
|  | // The new BUILD_VECTOR node has the potential to be further optimized. | 
|  | AddToWorklist(BV.getNode()); | 
|  | // Bitcast to the desired type. | 
|  | return DAG.getBitcast(VT, BV); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, | 
|  | ArrayRef<int> VectorMask, | 
|  | SDValue VecIn1, SDValue VecIn2, | 
|  | unsigned LeftIdx, bool DidSplitVec) { | 
|  | MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); | 
|  | SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT InVT1 = VecIn1.getValueType(); | 
|  | EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | unsigned ShuffleNumElems = NumElems; | 
|  |  | 
|  | // If we artificially split a vector in two already, then the offsets in the | 
|  | // operands will all be based off of VecIn1, even those in VecIn2. | 
|  | unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); | 
|  |  | 
|  | // We can't generate a shuffle node with mismatched input and output types. | 
|  | // Try to make the types match the type of the output. | 
|  | if (InVT1 != VT || InVT2 != VT) { | 
|  | if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) { | 
|  | // If the output vector length is a multiple of both input lengths, | 
|  | // we can concatenate them and pad the rest with undefs. | 
|  | unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits(); | 
|  | assert(NumConcats >= 2 && "Concat needs at least two inputs!"); | 
|  | SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); | 
|  | ConcatOps[0] = VecIn1; | 
|  | ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); | 
|  | VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); | 
|  | VecIn2 = SDValue(); | 
|  | } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) { | 
|  | if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!VecIn2.getNode()) { | 
|  | // If we only have one input vector, and it's twice the size of the | 
|  | // output, split it in two. | 
|  | VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, | 
|  | DAG.getConstant(NumElems, DL, IdxTy)); | 
|  | VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); | 
|  | // Since we now have shorter input vectors, adjust the offset of the | 
|  | // second vector's start. | 
|  | Vec2Offset = NumElems; | 
|  | } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) { | 
|  | // VecIn1 is wider than the output, and we have another, possibly | 
|  | // smaller input. Pad the smaller input with undefs, shuffle at the | 
|  | // input vector width, and extract the output. | 
|  | // The shuffle type is different than VT, so check legality again. | 
|  | if (LegalOperations && | 
|  | !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Legalizing INSERT_SUBVECTOR is tricky - you basically have to | 
|  | // lower it back into a BUILD_VECTOR. So if the inserted type is | 
|  | // illegal, don't even try. | 
|  | if (InVT1 != InVT2) { | 
|  | if (!TLI.isTypeLegal(InVT2)) | 
|  | return SDValue(); | 
|  | VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, | 
|  | DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); | 
|  | } | 
|  | ShuffleNumElems = NumElems * 2; | 
|  | } else { | 
|  | // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider | 
|  | // than VecIn1. We can't handle this for now - this case will disappear | 
|  | // when we start sorting the vectors by type. | 
|  | return SDValue(); | 
|  | } | 
|  | } else if (InVT2.getSizeInBits() * 2 == VT.getSizeInBits() && | 
|  | InVT1.getSizeInBits() == VT.getSizeInBits()) { | 
|  | SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); | 
|  | ConcatOps[0] = VecIn2; | 
|  | VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); | 
|  | } else { | 
|  | // TODO: Support cases where the length mismatch isn't exactly by a | 
|  | // factor of 2. | 
|  | // TODO: Move this check upwards, so that if we have bad type | 
|  | // mismatches, we don't create any DAG nodes. | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Initialize mask to undef. | 
|  | SmallVector<int, 8> Mask(ShuffleNumElems, -1); | 
|  |  | 
|  | // Only need to run up to the number of elements actually used, not the | 
|  | // total number of elements in the shuffle - if we are shuffling a wider | 
|  | // vector, the high lanes should be set to undef. | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | if (VectorMask[i] <= 0) | 
|  | continue; | 
|  |  | 
|  | unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); | 
|  | if (VectorMask[i] == (int)LeftIdx) { | 
|  | Mask[i] = ExtIndex; | 
|  | } else if (VectorMask[i] == (int)LeftIdx + 1) { | 
|  | Mask[i] = Vec2Offset + ExtIndex; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The type the input vectors may have changed above. | 
|  | InVT1 = VecIn1.getValueType(); | 
|  |  | 
|  | // If we already have a VecIn2, it should have the same type as VecIn1. | 
|  | // If we don't, get an undef/zero vector of the appropriate type. | 
|  | VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); | 
|  | assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); | 
|  |  | 
|  | SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); | 
|  | if (ShuffleNumElems > NumElems) | 
|  | Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); | 
|  |  | 
|  | return Shuffle; | 
|  | } | 
|  |  | 
|  | static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { | 
|  | assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); | 
|  |  | 
|  | // First, determine where the build vector is not undef. | 
|  | // TODO: We could extend this to handle zero elements as well as undefs. | 
|  | int NumBVOps = BV->getNumOperands(); | 
|  | int ZextElt = -1; | 
|  | for (int i = 0; i != NumBVOps; ++i) { | 
|  | SDValue Op = BV->getOperand(i); | 
|  | if (Op.isUndef()) | 
|  | continue; | 
|  | if (ZextElt == -1) | 
|  | ZextElt = i; | 
|  | else | 
|  | return SDValue(); | 
|  | } | 
|  | // Bail out if there's no non-undef element. | 
|  | if (ZextElt == -1) | 
|  | return SDValue(); | 
|  |  | 
|  | // The build vector contains some number of undef elements and exactly | 
|  | // one other element. That other element must be a zero-extended scalar | 
|  | // extracted from a vector at a constant index to turn this into a shuffle. | 
|  | // Also, require that the build vector does not implicitly truncate/extend | 
|  | // its elements. | 
|  | // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. | 
|  | EVT VT = BV->getValueType(0); | 
|  | SDValue Zext = BV->getOperand(ZextElt); | 
|  | if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || | 
|  | Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
|  | !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || | 
|  | Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | // The zero-extend must be a multiple of the source size, and we must be | 
|  | // building a vector of the same size as the source of the extract element. | 
|  | SDValue Extract = Zext.getOperand(0); | 
|  | unsigned DestSize = Zext.getValueSizeInBits(); | 
|  | unsigned SrcSize = Extract.getValueSizeInBits(); | 
|  | if (DestSize % SrcSize != 0 || | 
|  | Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Create a shuffle mask that will combine the extracted element with zeros | 
|  | // and undefs. | 
|  | int ZextRatio = DestSize / SrcSize; | 
|  | int NumMaskElts = NumBVOps * ZextRatio; | 
|  | SmallVector<int, 32> ShufMask(NumMaskElts, -1); | 
|  | for (int i = 0; i != NumMaskElts; ++i) { | 
|  | if (i / ZextRatio == ZextElt) { | 
|  | // The low bits of the (potentially translated) extracted element map to | 
|  | // the source vector. The high bits map to zero. We will use a zero vector | 
|  | // as the 2nd source operand of the shuffle, so use the 1st element of | 
|  | // that vector (mask value is number-of-elements) for the high bits. | 
|  | if (i % ZextRatio == 0) | 
|  | ShufMask[i] = Extract.getConstantOperandVal(1); | 
|  | else | 
|  | ShufMask[i] = NumMaskElts; | 
|  | } | 
|  |  | 
|  | // Undef elements of the build vector remain undef because we initialize | 
|  | // the shuffle mask with -1. | 
|  | } | 
|  |  | 
|  | // Turn this into a shuffle with zero if that's legal. | 
|  | EVT VecVT = Extract.getOperand(0).getValueType(); | 
|  | if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(ShufMask, VecVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> | 
|  | // bitcast (shuffle V, ZeroVec, VectorMask) | 
|  | SDLoc DL(BV); | 
|  | SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); | 
|  | SDValue Shuf = DAG.getVectorShuffle(VecVT, DL, Extract.getOperand(0), ZeroVec, | 
|  | ShufMask); | 
|  | return DAG.getBitcast(VT, Shuf); | 
|  | } | 
|  |  | 
|  | // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT | 
|  | // operations. If the types of the vectors we're extracting from allow it, | 
|  | // turn this into a vector_shuffle node. | 
|  | SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. | 
|  | if (!isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) | 
|  | return V; | 
|  |  | 
|  | // May only combine to shuffle after legalize if shuffle is legal. | 
|  | if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | bool UsesZeroVector = false; | 
|  | unsigned NumElems = N->getNumOperands(); | 
|  |  | 
|  | // Record, for each element of the newly built vector, which input vector | 
|  | // that element comes from. -1 stands for undef, 0 for the zero vector, | 
|  | // and positive values for the input vectors. | 
|  | // VectorMask maps each element to its vector number, and VecIn maps vector | 
|  | // numbers to their initial SDValues. | 
|  |  | 
|  | SmallVector<int, 8> VectorMask(NumElems, -1); | 
|  | SmallVector<SDValue, 8> VecIn; | 
|  | VecIn.push_back(SDValue()); | 
|  |  | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | SDValue Op = N->getOperand(i); | 
|  |  | 
|  | if (Op.isUndef()) | 
|  | continue; | 
|  |  | 
|  | // See if we can use a blend with a zero vector. | 
|  | // TODO: Should we generalize this to a blend with an arbitrary constant | 
|  | // vector? | 
|  | if (isNullConstant(Op) || isNullFPConstant(Op)) { | 
|  | UsesZeroVector = true; | 
|  | VectorMask[i] = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Not an undef or zero. If the input is something other than an | 
|  | // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. | 
|  | if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
|  | !isa<ConstantSDNode>(Op.getOperand(1))) | 
|  | return SDValue(); | 
|  | SDValue ExtractedFromVec = Op.getOperand(0); | 
|  |  | 
|  | const APInt &ExtractIdx = Op.getConstantOperandAPInt(1); | 
|  | if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) | 
|  | return SDValue(); | 
|  |  | 
|  | // All inputs must have the same element type as the output. | 
|  | if (VT.getVectorElementType() != | 
|  | ExtractedFromVec.getValueType().getVectorElementType()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Have we seen this input vector before? | 
|  | // The vectors are expected to be tiny (usually 1 or 2 elements), so using | 
|  | // a map back from SDValues to numbers isn't worth it. | 
|  | unsigned Idx = std::distance( | 
|  | VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec)); | 
|  | if (Idx == VecIn.size()) | 
|  | VecIn.push_back(ExtractedFromVec); | 
|  |  | 
|  | VectorMask[i] = Idx; | 
|  | } | 
|  |  | 
|  | // If we didn't find at least one input vector, bail out. | 
|  | if (VecIn.size() < 2) | 
|  | return SDValue(); | 
|  |  | 
|  | // If all the Operands of BUILD_VECTOR extract from same | 
|  | // vector, then split the vector efficiently based on the maximum | 
|  | // vector access index and adjust the VectorMask and | 
|  | // VecIn accordingly. | 
|  | bool DidSplitVec = false; | 
|  | if (VecIn.size() == 2) { | 
|  | unsigned MaxIndex = 0; | 
|  | unsigned NearestPow2 = 0; | 
|  | SDValue Vec = VecIn.back(); | 
|  | EVT InVT = Vec.getValueType(); | 
|  | MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); | 
|  | SmallVector<unsigned, 8> IndexVec(NumElems, 0); | 
|  |  | 
|  | for (unsigned i = 0; i < NumElems; i++) { | 
|  | if (VectorMask[i] <= 0) | 
|  | continue; | 
|  | unsigned Index = N->getOperand(i).getConstantOperandVal(1); | 
|  | IndexVec[i] = Index; | 
|  | MaxIndex = std::max(MaxIndex, Index); | 
|  | } | 
|  |  | 
|  | NearestPow2 = PowerOf2Ceil(MaxIndex); | 
|  | if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && | 
|  | NumElems * 2 < NearestPow2) { | 
|  | unsigned SplitSize = NearestPow2 / 2; | 
|  | EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | InVT.getVectorElementType(), SplitSize); | 
|  | if (TLI.isTypeLegal(SplitVT)) { | 
|  | SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, | 
|  | DAG.getConstant(SplitSize, DL, IdxTy)); | 
|  | SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, | 
|  | DAG.getConstant(0, DL, IdxTy)); | 
|  | VecIn.pop_back(); | 
|  | VecIn.push_back(VecIn1); | 
|  | VecIn.push_back(VecIn2); | 
|  | DidSplitVec = true; | 
|  |  | 
|  | for (unsigned i = 0; i < NumElems; i++) { | 
|  | if (VectorMask[i] <= 0) | 
|  | continue; | 
|  | VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: We want to sort the vectors by descending length, so that adjacent | 
|  | // pairs have similar length, and the longer vector is always first in the | 
|  | // pair. | 
|  |  | 
|  | // TODO: Should this fire if some of the input vectors has illegal type (like | 
|  | // it does now), or should we let legalization run its course first? | 
|  |  | 
|  | // Shuffle phase: | 
|  | // Take pairs of vectors, and shuffle them so that the result has elements | 
|  | // from these vectors in the correct places. | 
|  | // For example, given: | 
|  | // t10: i32 = extract_vector_elt t1, Constant:i64<0> | 
|  | // t11: i32 = extract_vector_elt t2, Constant:i64<0> | 
|  | // t12: i32 = extract_vector_elt t3, Constant:i64<0> | 
|  | // t13: i32 = extract_vector_elt t1, Constant:i64<1> | 
|  | // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 | 
|  | // We will generate: | 
|  | // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 | 
|  | // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef | 
|  | SmallVector<SDValue, 4> Shuffles; | 
|  | for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { | 
|  | unsigned LeftIdx = 2 * In + 1; | 
|  | SDValue VecLeft = VecIn[LeftIdx]; | 
|  | SDValue VecRight = | 
|  | (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); | 
|  |  | 
|  | if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, | 
|  | VecRight, LeftIdx, DidSplitVec)) | 
|  | Shuffles.push_back(Shuffle); | 
|  | else | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // If we need the zero vector as an "ingredient" in the blend tree, add it | 
|  | // to the list of shuffles. | 
|  | if (UsesZeroVector) | 
|  | Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) | 
|  | : DAG.getConstantFP(0.0, DL, VT)); | 
|  |  | 
|  | // If we only have one shuffle, we're done. | 
|  | if (Shuffles.size() == 1) | 
|  | return Shuffles[0]; | 
|  |  | 
|  | // Update the vector mask to point to the post-shuffle vectors. | 
|  | for (int &Vec : VectorMask) | 
|  | if (Vec == 0) | 
|  | Vec = Shuffles.size() - 1; | 
|  | else | 
|  | Vec = (Vec - 1) / 2; | 
|  |  | 
|  | // More than one shuffle. Generate a binary tree of blends, e.g. if from | 
|  | // the previous step we got the set of shuffles t10, t11, t12, t13, we will | 
|  | // generate: | 
|  | // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 | 
|  | // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 | 
|  | // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 | 
|  | // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 | 
|  | // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 | 
|  | // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 | 
|  | // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 | 
|  |  | 
|  | // Make sure the initial size of the shuffle list is even. | 
|  | if (Shuffles.size() % 2) | 
|  | Shuffles.push_back(DAG.getUNDEF(VT)); | 
|  |  | 
|  | for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { | 
|  | if (CurSize % 2) { | 
|  | Shuffles[CurSize] = DAG.getUNDEF(VT); | 
|  | CurSize++; | 
|  | } | 
|  | for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { | 
|  | int Left = 2 * In; | 
|  | int Right = 2 * In + 1; | 
|  | SmallVector<int, 8> Mask(NumElems, -1); | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | if (VectorMask[i] == Left) { | 
|  | Mask[i] = i; | 
|  | VectorMask[i] = In; | 
|  | } else if (VectorMask[i] == Right) { | 
|  | Mask[i] = i + NumElems; | 
|  | VectorMask[i] = In; | 
|  | } | 
|  | } | 
|  |  | 
|  | Shuffles[In] = | 
|  | DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); | 
|  | } | 
|  | } | 
|  | return Shuffles[0]; | 
|  | } | 
|  |  | 
|  | // Try to turn a build vector of zero extends of extract vector elts into a | 
|  | // a vector zero extend and possibly an extract subvector. | 
|  | // TODO: Support sign extend? | 
|  | // TODO: Allow undef elements? | 
|  | SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { | 
|  | if (LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | bool FoundZeroExtend = false; | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | auto checkElem = [&](SDValue Op) -> int64_t { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); | 
|  | if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && | 
|  | Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) | 
|  | return C->getZExtValue(); | 
|  | return -1; | 
|  | }; | 
|  |  | 
|  | // Make sure the first element matches | 
|  | // (zext (extract_vector_elt X, C)) | 
|  | int64_t Offset = checkElem(Op0); | 
|  | if (Offset < 0) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned NumElems = N->getNumOperands(); | 
|  | SDValue In = Op0.getOperand(0).getOperand(0); | 
|  | EVT InSVT = In.getValueType().getScalarType(); | 
|  | EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); | 
|  |  | 
|  | // Don't create an illegal input type after type legalization. | 
|  | if (LegalTypes && !TLI.isTypeLegal(InVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Ensure all the elements come from the same vector and are adjacent. | 
|  | for (unsigned i = 1; i != NumElems; ++i) { | 
|  | if ((Offset + i) != checkElem(N->getOperand(i))) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDLoc DL(N); | 
|  | In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, | 
|  | Op0.getOperand(0).getOperand(1)); | 
|  | return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, | 
|  | VT, In); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // A vector built entirely of undefs is undef. | 
|  | if (ISD::allOperandsUndef(N)) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // If this is a splat of a bitcast from another vector, change to a | 
|  | // concat_vector. | 
|  | // For example: | 
|  | //   (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> | 
|  | //     (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) | 
|  | // | 
|  | // If X is a build_vector itself, the concat can become a larger build_vector. | 
|  | // TODO: Maybe this is useful for non-splat too? | 
|  | if (!LegalOperations) { | 
|  | if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { | 
|  | Splat = peekThroughBitcasts(Splat); | 
|  | EVT SrcVT = Splat.getValueType(); | 
|  | if (SrcVT.isVector()) { | 
|  | unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); | 
|  | EVT NewVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | SrcVT.getVectorElementType(), NumElts); | 
|  | if (!LegalTypes || TLI.isTypeLegal(NewVT)) { | 
|  | SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); | 
|  | SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), | 
|  | NewVT, Ops); | 
|  | return DAG.getBitcast(VT, Concat); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if we can express BUILD VECTOR via subvector extract. | 
|  | if (!LegalTypes && (N->getNumOperands() > 1)) { | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | auto checkElem = [&](SDValue Op) -> uint64_t { | 
|  | if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && | 
|  | (Op0.getOperand(0) == Op.getOperand(0))) | 
|  | if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) | 
|  | return CNode->getZExtValue(); | 
|  | return -1; | 
|  | }; | 
|  |  | 
|  | int Offset = checkElem(Op0); | 
|  | for (unsigned i = 0; i < N->getNumOperands(); ++i) { | 
|  | if (Offset + i != checkElem(N->getOperand(i))) { | 
|  | Offset = -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((Offset == 0) && | 
|  | (Op0.getOperand(0).getValueType() == N->getValueType(0))) | 
|  | return Op0.getOperand(0); | 
|  | if ((Offset != -1) && | 
|  | ((Offset % N->getValueType(0).getVectorNumElements()) == | 
|  | 0)) // IDX must be multiple of output size. | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), | 
|  | Op0.getOperand(0), Op0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | if (SDValue V = convertBuildVecZextToZext(N)) | 
|  | return V; | 
|  |  | 
|  | if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) | 
|  | return V; | 
|  |  | 
|  | if (SDValue V = reduceBuildVecToShuffle(N)) | 
|  | return V; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT OpVT = N->getOperand(0).getValueType(); | 
|  |  | 
|  | // If the operands are legal vectors, leave them alone. | 
|  | if (TLI.isTypeLegal(OpVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  |  | 
|  | EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); | 
|  | SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); | 
|  |  | 
|  | // Keep track of what we encounter. | 
|  | bool AnyInteger = false; | 
|  | bool AnyFP = false; | 
|  | for (const SDValue &Op : N->ops()) { | 
|  | if (ISD::BITCAST == Op.getOpcode() && | 
|  | !Op.getOperand(0).getValueType().isVector()) | 
|  | Ops.push_back(Op.getOperand(0)); | 
|  | else if (ISD::UNDEF == Op.getOpcode()) | 
|  | Ops.push_back(ScalarUndef); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | // Note whether we encounter an integer or floating point scalar. | 
|  | // If it's neither, bail out, it could be something weird like x86mmx. | 
|  | EVT LastOpVT = Ops.back().getValueType(); | 
|  | if (LastOpVT.isFloatingPoint()) | 
|  | AnyFP = true; | 
|  | else if (LastOpVT.isInteger()) | 
|  | AnyInteger = true; | 
|  | else | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // If any of the operands is a floating point scalar bitcast to a vector, | 
|  | // use floating point types throughout, and bitcast everything. | 
|  | // Replace UNDEFs by another scalar UNDEF node, of the final desired type. | 
|  | if (AnyFP) { | 
|  | SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); | 
|  | ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); | 
|  | if (AnyInteger) { | 
|  | for (SDValue &Op : Ops) { | 
|  | if (Op.getValueType() == SVT) | 
|  | continue; | 
|  | if (Op.isUndef()) | 
|  | Op = ScalarUndef; | 
|  | else | 
|  | Op = DAG.getBitcast(SVT, Op); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, | 
|  | VT.getSizeInBits() / SVT.getSizeInBits()); | 
|  | return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); | 
|  | } | 
|  |  | 
|  | // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR | 
|  | // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at | 
|  | // most two distinct vectors the same size as the result, attempt to turn this | 
|  | // into a legal shuffle. | 
|  | static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT OpVT = N->getOperand(0).getValueType(); | 
|  | int NumElts = VT.getVectorNumElements(); | 
|  | int NumOpElts = OpVT.getVectorNumElements(); | 
|  |  | 
|  | SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); | 
|  | SmallVector<int, 8> Mask; | 
|  |  | 
|  | for (SDValue Op : N->ops()) { | 
|  | Op = peekThroughBitcasts(Op); | 
|  |  | 
|  | // UNDEF nodes convert to UNDEF shuffle mask values. | 
|  | if (Op.isUndef()) { | 
|  | Mask.append((unsigned)NumOpElts, -1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) | 
|  | return SDValue(); | 
|  |  | 
|  | // What vector are we extracting the subvector from and at what index? | 
|  | SDValue ExtVec = Op.getOperand(0); | 
|  |  | 
|  | // We want the EVT of the original extraction to correctly scale the | 
|  | // extraction index. | 
|  | EVT ExtVT = ExtVec.getValueType(); | 
|  | ExtVec = peekThroughBitcasts(ExtVec); | 
|  |  | 
|  | // UNDEF nodes convert to UNDEF shuffle mask values. | 
|  | if (ExtVec.isUndef()) { | 
|  | Mask.append((unsigned)NumOpElts, -1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!isa<ConstantSDNode>(Op.getOperand(1))) | 
|  | return SDValue(); | 
|  | int ExtIdx = Op.getConstantOperandVal(1); | 
|  |  | 
|  | // Ensure that we are extracting a subvector from a vector the same | 
|  | // size as the result. | 
|  | if (ExtVT.getSizeInBits() != VT.getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Scale the subvector index to account for any bitcast. | 
|  | int NumExtElts = ExtVT.getVectorNumElements(); | 
|  | if (0 == (NumExtElts % NumElts)) | 
|  | ExtIdx /= (NumExtElts / NumElts); | 
|  | else if (0 == (NumElts % NumExtElts)) | 
|  | ExtIdx *= (NumElts / NumExtElts); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | // At most we can reference 2 inputs in the final shuffle. | 
|  | if (SV0.isUndef() || SV0 == ExtVec) { | 
|  | SV0 = ExtVec; | 
|  | for (int i = 0; i != NumOpElts; ++i) | 
|  | Mask.push_back(i + ExtIdx); | 
|  | } else if (SV1.isUndef() || SV1 == ExtVec) { | 
|  | SV1 = ExtVec; | 
|  | for (int i = 0; i != NumOpElts; ++i) | 
|  | Mask.push_back(i + ExtIdx + NumElts); | 
|  | } else { | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), | 
|  | DAG.getBitcast(VT, SV1), Mask); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { | 
|  | // If we only have one input vector, we don't need to do any concatenation. | 
|  | if (N->getNumOperands() == 1) | 
|  | return N->getOperand(0); | 
|  |  | 
|  | // Check if all of the operands are undefs. | 
|  | EVT VT = N->getValueType(0); | 
|  | if (ISD::allOperandsUndef(N)) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // Optimize concat_vectors where all but the first of the vectors are undef. | 
|  | if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { | 
|  | return Op.isUndef(); | 
|  | })) { | 
|  | SDValue In = N->getOperand(0); | 
|  | assert(In.getValueType().isVector() && "Must concat vectors"); | 
|  |  | 
|  | SDValue Scalar = peekThroughOneUseBitcasts(In); | 
|  |  | 
|  | // concat_vectors(scalar_to_vector(scalar), undef) -> | 
|  | //     scalar_to_vector(scalar) | 
|  | if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | Scalar.hasOneUse()) { | 
|  | EVT SVT = Scalar.getValueType().getVectorElementType(); | 
|  | if (SVT == Scalar.getOperand(0).getValueType()) | 
|  | Scalar = Scalar.getOperand(0); | 
|  | } | 
|  |  | 
|  | // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) | 
|  | if (!Scalar.getValueType().isVector()) { | 
|  | // If the bitcast type isn't legal, it might be a trunc of a legal type; | 
|  | // look through the trunc so we can still do the transform: | 
|  | //   concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) | 
|  | if (Scalar->getOpcode() == ISD::TRUNCATE && | 
|  | !TLI.isTypeLegal(Scalar.getValueType()) && | 
|  | TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) | 
|  | Scalar = Scalar->getOperand(0); | 
|  |  | 
|  | EVT SclTy = Scalar.getValueType(); | 
|  |  | 
|  | if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Bail out if the vector size is not a multiple of the scalar size. | 
|  | if (VT.getSizeInBits() % SclTy.getSizeInBits()) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); | 
|  | if (VNTNumElms < 2) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); | 
|  | if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); | 
|  | return DAG.getBitcast(VT, Res); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. | 
|  | // We have already tested above for an UNDEF only concatenation. | 
|  | // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) | 
|  | // -> (BUILD_VECTOR A, B, ..., C, D, ...) | 
|  | auto IsBuildVectorOrUndef = [](const SDValue &Op) { | 
|  | return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); | 
|  | }; | 
|  | if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { | 
|  | SmallVector<SDValue, 8> Opnds; | 
|  | EVT SVT = VT.getScalarType(); | 
|  |  | 
|  | EVT MinVT = SVT; | 
|  | if (!SVT.isFloatingPoint()) { | 
|  | // If BUILD_VECTOR are from built from integer, they may have different | 
|  | // operand types. Get the smallest type and truncate all operands to it. | 
|  | bool FoundMinVT = false; | 
|  | for (const SDValue &Op : N->ops()) | 
|  | if (ISD::BUILD_VECTOR == Op.getOpcode()) { | 
|  | EVT OpSVT = Op.getOperand(0).getValueType(); | 
|  | MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; | 
|  | FoundMinVT = true; | 
|  | } | 
|  | assert(FoundMinVT && "Concat vector type mismatch"); | 
|  | } | 
|  |  | 
|  | for (const SDValue &Op : N->ops()) { | 
|  | EVT OpVT = Op.getValueType(); | 
|  | unsigned NumElts = OpVT.getVectorNumElements(); | 
|  |  | 
|  | if (ISD::UNDEF == Op.getOpcode()) | 
|  | Opnds.append(NumElts, DAG.getUNDEF(MinVT)); | 
|  |  | 
|  | if (ISD::BUILD_VECTOR == Op.getOpcode()) { | 
|  | if (SVT.isFloatingPoint()) { | 
|  | assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); | 
|  | Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); | 
|  | } else { | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | Opnds.push_back( | 
|  | DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(VT.getVectorNumElements() == Opnds.size() && | 
|  | "Concat vector type mismatch"); | 
|  | return DAG.getBuildVector(VT, SDLoc(N), Opnds); | 
|  | } | 
|  |  | 
|  | // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. | 
|  | if (SDValue V = combineConcatVectorOfScalars(N, DAG)) | 
|  | return V; | 
|  |  | 
|  | // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. | 
|  | if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) | 
|  | if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) | 
|  | return V; | 
|  |  | 
|  | // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR | 
|  | // nodes often generate nop CONCAT_VECTOR nodes. | 
|  | // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that | 
|  | // place the incoming vectors at the exact same location. | 
|  | SDValue SingleSource = SDValue(); | 
|  | unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); | 
|  |  | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | SDValue Op = N->getOperand(i); | 
|  |  | 
|  | if (Op.isUndef()) | 
|  | continue; | 
|  |  | 
|  | // Check if this is the identity extract: | 
|  | if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) | 
|  | return SDValue(); | 
|  |  | 
|  | // Find the single incoming vector for the extract_subvector. | 
|  | if (SingleSource.getNode()) { | 
|  | if (Op.getOperand(0) != SingleSource) | 
|  | return SDValue(); | 
|  | } else { | 
|  | SingleSource = Op.getOperand(0); | 
|  |  | 
|  | // Check the source type is the same as the type of the result. | 
|  | // If not, this concat may extend the vector, so we can not | 
|  | // optimize it away. | 
|  | if (SingleSource.getValueType() != N->getValueType(0)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | auto *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | // The extract index must be constant. | 
|  | if (!CS) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check that we are reading from the identity index. | 
|  | unsigned IdentityIndex = i * PartNumElem; | 
|  | if (CS->getAPIntValue() != IdentityIndex) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (SingleSource.getNode()) | 
|  | return SingleSource; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, | 
|  | SelectionDAG &DAG) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue BinOp = Extract->getOperand(0); | 
|  | unsigned BinOpcode = BinOp.getOpcode(); | 
|  | if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); | 
|  | SDValue Index = Extract->getOperand(1); | 
|  | EVT VT = Extract->getValueType(0); | 
|  |  | 
|  | auto GetSubVector = [VT, Index](SDValue V) { | 
|  | if (V.getOpcode() != ISD::INSERT_SUBVECTOR || | 
|  | V.getOperand(1).getValueType() != VT || V.getOperand(2) != Index) | 
|  | return SDValue(); | 
|  | return V.getOperand(1); | 
|  | }; | 
|  | SDValue Sub0 = GetSubVector(Bop0); | 
|  | SDValue Sub1 = GetSubVector(Bop1); | 
|  |  | 
|  | // TODO: We could handle the case where only 1 operand is being inserted by | 
|  | //       creating an extract of the other operand, but that requires checking | 
|  | //       number of uses and/or costs. | 
|  | if (!Sub0 || !Sub1 || !TLI.isOperationLegalOrCustom(BinOpcode, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // We are inserting both operands of the wide binop only to extract back | 
|  | // to the narrow vector size. Eliminate all of the insert/extract: | 
|  | // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y | 
|  | return DAG.getNode(BinOpcode, SDLoc(Extract), VT, Sub0, Sub1, | 
|  | BinOp->getFlags()); | 
|  | } | 
|  |  | 
|  | /// If we are extracting a subvector produced by a wide binary operator try | 
|  | /// to use a narrow binary operator and/or avoid concatenation and extraction. | 
|  | static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG) { | 
|  | // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share | 
|  | // some of these bailouts with other transforms. | 
|  |  | 
|  | if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG)) | 
|  | return V; | 
|  |  | 
|  | // The extract index must be a constant, so we can map it to a concat operand. | 
|  | auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); | 
|  | if (!ExtractIndexC) | 
|  | return SDValue(); | 
|  |  | 
|  | // We are looking for an optionally bitcasted wide vector binary operator | 
|  | // feeding an extract subvector. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); | 
|  | unsigned BOpcode = BinOp.getOpcode(); | 
|  | if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1) | 
|  | return SDValue(); | 
|  |  | 
|  | // The binop must be a vector type, so we can extract some fraction of it. | 
|  | EVT WideBVT = BinOp.getValueType(); | 
|  | if (!WideBVT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = Extract->getValueType(0); | 
|  | unsigned ExtractIndex = ExtractIndexC->getZExtValue(); | 
|  | assert(ExtractIndex % VT.getVectorNumElements() == 0 && | 
|  | "Extract index is not a multiple of the vector length."); | 
|  |  | 
|  | // Bail out if this is not a proper multiple width extraction. | 
|  | unsigned WideWidth = WideBVT.getSizeInBits(); | 
|  | unsigned NarrowWidth = VT.getSizeInBits(); | 
|  | if (WideWidth % NarrowWidth != 0) | 
|  | return SDValue(); | 
|  |  | 
|  | // Bail out if we are extracting a fraction of a single operation. This can | 
|  | // occur because we potentially looked through a bitcast of the binop. | 
|  | unsigned NarrowingRatio = WideWidth / NarrowWidth; | 
|  | unsigned WideNumElts = WideBVT.getVectorNumElements(); | 
|  | if (WideNumElts % NarrowingRatio != 0) | 
|  | return SDValue(); | 
|  |  | 
|  | // Bail out if the target does not support a narrower version of the binop. | 
|  | EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), | 
|  | WideNumElts / NarrowingRatio); | 
|  | if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If extraction is cheap, we don't need to look at the binop operands | 
|  | // for concat ops. The narrow binop alone makes this transform profitable. | 
|  | // We can't just reuse the original extract index operand because we may have | 
|  | // bitcasted. | 
|  | unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); | 
|  | unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); | 
|  | EVT ExtBOIdxVT = Extract->getOperand(1).getValueType(); | 
|  | if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && | 
|  | BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { | 
|  | // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) | 
|  | SDLoc DL(Extract); | 
|  | SDValue NewExtIndex = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT); | 
|  | SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, | 
|  | BinOp.getOperand(0), NewExtIndex); | 
|  | SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, | 
|  | BinOp.getOperand(1), NewExtIndex); | 
|  | SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, | 
|  | BinOp.getNode()->getFlags()); | 
|  | return DAG.getBitcast(VT, NarrowBinOp); | 
|  | } | 
|  |  | 
|  | // Only handle the case where we are doubling and then halving. A larger ratio | 
|  | // may require more than two narrow binops to replace the wide binop. | 
|  | if (NarrowingRatio != 2) | 
|  | return SDValue(); | 
|  |  | 
|  | // TODO: The motivating case for this transform is an x86 AVX1 target. That | 
|  | // target has temptingly almost legal versions of bitwise logic ops in 256-bit | 
|  | // flavors, but no other 256-bit integer support. This could be extended to | 
|  | // handle any binop, but that may require fixing/adding other folds to avoid | 
|  | // codegen regressions. | 
|  | if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) | 
|  | return SDValue(); | 
|  |  | 
|  | // We need at least one concatenation operation of a binop operand to make | 
|  | // this transform worthwhile. The concat must double the input vector sizes. | 
|  | SDValue LHS = peekThroughBitcasts(BinOp.getOperand(0)); | 
|  | SDValue RHS = peekThroughBitcasts(BinOp.getOperand(1)); | 
|  | bool ConcatL = | 
|  | LHS.getOpcode() == ISD::CONCAT_VECTORS && LHS.getNumOperands() == 2; | 
|  | bool ConcatR = | 
|  | RHS.getOpcode() == ISD::CONCAT_VECTORS && RHS.getNumOperands() == 2; | 
|  | if (ConcatL || ConcatR) { | 
|  | // If a binop operand was not the result of a concat, we must extract a | 
|  | // half-sized operand for our new narrow binop: | 
|  | // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN | 
|  | // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) | 
|  | // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN | 
|  | SDLoc DL(Extract); | 
|  | SDValue IndexC = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT); | 
|  | SDValue X = ConcatL ? DAG.getBitcast(NarrowBVT, LHS.getOperand(ConcatOpNum)) | 
|  | : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, | 
|  | BinOp.getOperand(0), IndexC); | 
|  |  | 
|  | SDValue Y = ConcatR ? DAG.getBitcast(NarrowBVT, RHS.getOperand(ConcatOpNum)) | 
|  | : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, | 
|  | BinOp.getOperand(1), IndexC); | 
|  |  | 
|  | SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); | 
|  | return DAG.getBitcast(VT, NarrowBinOp); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// If we are extracting a subvector from a wide vector load, convert to a | 
|  | /// narrow load to eliminate the extraction: | 
|  | /// (extract_subvector (load wide vector)) --> (load narrow vector) | 
|  | static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { | 
|  | // TODO: Add support for big-endian. The offset calculation must be adjusted. | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | return SDValue(); | 
|  |  | 
|  | auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); | 
|  | auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); | 
|  | if (!Ld || Ld->getExtensionType() || Ld->isVolatile() || !ExtIdx) | 
|  | return SDValue(); | 
|  |  | 
|  | // Allow targets to opt-out. | 
|  | EVT VT = Extract->getValueType(0); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // The narrow load will be offset from the base address of the old load if | 
|  | // we are extracting from something besides index 0 (little-endian). | 
|  | SDLoc DL(Extract); | 
|  | SDValue BaseAddr = Ld->getOperand(1); | 
|  | unsigned Offset = ExtIdx->getZExtValue() * VT.getScalarType().getStoreSize(); | 
|  |  | 
|  | // TODO: Use "BaseIndexOffset" to make this more effective. | 
|  | SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset, | 
|  | VT.getStoreSize()); | 
|  | SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); | 
|  | DAG.makeEquivalentMemoryOrdering(Ld, NewLd); | 
|  | return NewLd; | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { | 
|  | EVT NVT = N->getValueType(0); | 
|  | SDValue V = N->getOperand(0); | 
|  |  | 
|  | // Extract from UNDEF is UNDEF. | 
|  | if (V.isUndef()) | 
|  | return DAG.getUNDEF(NVT); | 
|  |  | 
|  | if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) | 
|  | if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) | 
|  | return NarrowLoad; | 
|  |  | 
|  | // Combine an extract of an extract into a single extract_subvector. | 
|  | // ext (ext X, C), 0 --> ext X, C | 
|  | SDValue Index = N->getOperand(1); | 
|  | if (isNullConstant(Index) && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && | 
|  | V.hasOneUse() && isa<ConstantSDNode>(V.getOperand(1))) { | 
|  | if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), | 
|  | V.getConstantOperandVal(1)) && | 
|  | TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0), | 
|  | V.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to move vector bitcast after extract_subv by scaling extraction index: | 
|  | // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') | 
|  | if (isa<ConstantSDNode>(Index) && V.getOpcode() == ISD::BITCAST && | 
|  | V.getOperand(0).getValueType().isVector()) { | 
|  | SDValue SrcOp = V.getOperand(0); | 
|  | EVT SrcVT = SrcOp.getValueType(); | 
|  | unsigned SrcNumElts = SrcVT.getVectorNumElements(); | 
|  | unsigned DestNumElts = V.getValueType().getVectorNumElements(); | 
|  | if ((SrcNumElts % DestNumElts) == 0) { | 
|  | unsigned SrcDestRatio = SrcNumElts / DestNumElts; | 
|  | unsigned NewExtNumElts = NVT.getVectorNumElements() * SrcDestRatio; | 
|  | EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), | 
|  | NewExtNumElts); | 
|  | if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { | 
|  | unsigned IndexValScaled = N->getConstantOperandVal(1) * SrcDestRatio; | 
|  | SDLoc DL(N); | 
|  | SDValue NewIndex = DAG.getIntPtrConstant(IndexValScaled, DL); | 
|  | SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, | 
|  | V.getOperand(0), NewIndex); | 
|  | return DAG.getBitcast(NVT, NewExtract); | 
|  | } | 
|  | } | 
|  | // TODO - handle (DestNumElts % SrcNumElts) == 0 | 
|  | } | 
|  |  | 
|  | // Combine: | 
|  | //    (extract_subvec (concat V1, V2, ...), i) | 
|  | // Into: | 
|  | //    Vi if possible | 
|  | // Only operand 0 is checked as 'concat' assumes all inputs of the same | 
|  | // type. | 
|  | if (V.getOpcode() == ISD::CONCAT_VECTORS && isa<ConstantSDNode>(Index) && | 
|  | V.getOperand(0).getValueType() == NVT) { | 
|  | unsigned Idx = N->getConstantOperandVal(1); | 
|  | unsigned NumElems = NVT.getVectorNumElements(); | 
|  | assert((Idx % NumElems) == 0 && | 
|  | "IDX in concat is not a multiple of the result vector length."); | 
|  | return V->getOperand(Idx / NumElems); | 
|  | } | 
|  |  | 
|  | V = peekThroughBitcasts(V); | 
|  |  | 
|  | // If the input is a build vector. Try to make a smaller build vector. | 
|  | if (V.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | if (auto *IdxC = dyn_cast<ConstantSDNode>(Index)) { | 
|  | EVT InVT = V.getValueType(); | 
|  | unsigned ExtractSize = NVT.getSizeInBits(); | 
|  | unsigned EltSize = InVT.getScalarSizeInBits(); | 
|  | // Only do this if we won't split any elements. | 
|  | if (ExtractSize % EltSize == 0) { | 
|  | unsigned NumElems = ExtractSize / EltSize; | 
|  | EVT EltVT = InVT.getVectorElementType(); | 
|  | EVT ExtractVT = NumElems == 1 ? EltVT | 
|  | : EVT::getVectorVT(*DAG.getContext(), | 
|  | EltVT, NumElems); | 
|  | if ((Level < AfterLegalizeDAG || | 
|  | (NumElems == 1 || | 
|  | TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && | 
|  | (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { | 
|  | unsigned IdxVal = IdxC->getZExtValue(); | 
|  | IdxVal *= NVT.getScalarSizeInBits(); | 
|  | IdxVal /= EltSize; | 
|  |  | 
|  | if (NumElems == 1) { | 
|  | SDValue Src = V->getOperand(IdxVal); | 
|  | if (EltVT != Src.getValueType()) | 
|  | Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); | 
|  | return DAG.getBitcast(NVT, Src); | 
|  | } | 
|  |  | 
|  | // Extract the pieces from the original build_vector. | 
|  | SDValue BuildVec = DAG.getBuildVector( | 
|  | ExtractVT, SDLoc(N), V->ops().slice(IdxVal, NumElems)); | 
|  | return DAG.getBitcast(NVT, BuildVec); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { | 
|  | // Handle only simple case where vector being inserted and vector | 
|  | // being extracted are of same size. | 
|  | EVT SmallVT = V.getOperand(1).getValueType(); | 
|  | if (!NVT.bitsEq(SmallVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Only handle cases where both indexes are constants. | 
|  | auto *ExtIdx = dyn_cast<ConstantSDNode>(Index); | 
|  | auto *InsIdx = dyn_cast<ConstantSDNode>(V.getOperand(2)); | 
|  | if (InsIdx && ExtIdx) { | 
|  | // Combine: | 
|  | //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) | 
|  | // Into: | 
|  | //    indices are equal or bit offsets are equal => V1 | 
|  | //    otherwise => (extract_subvec V1, ExtIdx) | 
|  | if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() == | 
|  | ExtIdx->getZExtValue() * NVT.getScalarSizeInBits()) | 
|  | return DAG.getBitcast(NVT, V.getOperand(1)); | 
|  | return DAG.getNode( | 
|  | ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, | 
|  | DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), | 
|  | Index); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG)) | 
|  | return NarrowBOp; | 
|  |  | 
|  | if (SimplifyDemandedVectorElts(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles | 
|  | /// followed by concatenation. Narrow vector ops may have better performance | 
|  | /// than wide ops, and this can unlock further narrowing of other vector ops. | 
|  | /// Targets can invert this transform later if it is not profitable. | 
|  | static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, | 
|  | SelectionDAG &DAG) { | 
|  | SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); | 
|  | if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || | 
|  | N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || | 
|  | !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Split the wide shuffle mask into halves. Any mask element that is accessing | 
|  | // operand 1 is offset down to account for narrowing of the vectors. | 
|  | ArrayRef<int> Mask = Shuf->getMask(); | 
|  | EVT VT = Shuf->getValueType(0); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned HalfNumElts = NumElts / 2; | 
|  | SmallVector<int, 16> Mask0(HalfNumElts, -1); | 
|  | SmallVector<int, 16> Mask1(HalfNumElts, -1); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (Mask[i] == -1) | 
|  | continue; | 
|  | int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; | 
|  | if (i < HalfNumElts) | 
|  | Mask0[i] = M; | 
|  | else | 
|  | Mask1[i - HalfNumElts] = M; | 
|  | } | 
|  |  | 
|  | // Ask the target if this is a valid transform. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), | 
|  | HalfNumElts); | 
|  | if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || | 
|  | !TLI.isShuffleMaskLegal(Mask1, HalfVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // shuffle (concat X, undef), (concat Y, undef), Mask --> | 
|  | // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) | 
|  | SDValue X = N0.getOperand(0), Y = N1.getOperand(0); | 
|  | SDLoc DL(Shuf); | 
|  | SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); | 
|  | SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); | 
|  | } | 
|  |  | 
|  | // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, | 
|  | // or turn a shuffle of a single concat into simpler shuffle then concat. | 
|  | static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { | 
|  | EVT VT = N->getValueType(0); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); | 
|  | ArrayRef<int> Mask = SVN->getMask(); | 
|  |  | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | EVT ConcatVT = N0.getOperand(0).getValueType(); | 
|  | unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); | 
|  | unsigned NumConcats = NumElts / NumElemsPerConcat; | 
|  |  | 
|  | auto IsUndefMaskElt = [](int i) { return i == -1; }; | 
|  |  | 
|  | // Special case: shuffle(concat(A,B)) can be more efficiently represented | 
|  | // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high | 
|  | // half vector elements. | 
|  | if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && | 
|  | llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), | 
|  | IsUndefMaskElt)) { | 
|  | N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), | 
|  | N0.getOperand(1), | 
|  | Mask.slice(0, NumElemsPerConcat)); | 
|  | N1 = DAG.getUNDEF(ConcatVT); | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); | 
|  | } | 
|  |  | 
|  | // Look at every vector that's inserted. We're looking for exact | 
|  | // subvector-sized copies from a concatenated vector | 
|  | for (unsigned I = 0; I != NumConcats; ++I) { | 
|  | unsigned Begin = I * NumElemsPerConcat; | 
|  | ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); | 
|  |  | 
|  | // Make sure we're dealing with a copy. | 
|  | if (llvm::all_of(SubMask, IsUndefMaskElt)) { | 
|  | Ops.push_back(DAG.getUNDEF(ConcatVT)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | int OpIdx = -1; | 
|  | for (int i = 0; i != (int)NumElemsPerConcat; ++i) { | 
|  | if (IsUndefMaskElt(SubMask[i])) | 
|  | continue; | 
|  | if ((SubMask[i] % (int)NumElemsPerConcat) != i) | 
|  | return SDValue(); | 
|  | int EltOpIdx = SubMask[i] / NumElemsPerConcat; | 
|  | if (0 <= OpIdx && EltOpIdx != OpIdx) | 
|  | return SDValue(); | 
|  | OpIdx = EltOpIdx; | 
|  | } | 
|  | assert(0 <= OpIdx && "Unknown concat_vectors op"); | 
|  |  | 
|  | if (OpIdx < (int)N0.getNumOperands()) | 
|  | Ops.push_back(N0.getOperand(OpIdx)); | 
|  | else | 
|  | Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); | 
|  | } | 
|  |  | 
|  | // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - | 
|  | // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. | 
|  | // | 
|  | // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always | 
|  | // a simplification in some sense, but it isn't appropriate in general: some | 
|  | // BUILD_VECTORs are substantially cheaper than others. The general case | 
|  | // of a BUILD_VECTOR requires inserting each element individually (or | 
|  | // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of | 
|  | // all constants is a single constant pool load.  A BUILD_VECTOR where each | 
|  | // element is identical is a splat.  A BUILD_VECTOR where most of the operands | 
|  | // are undef lowers to a small number of element insertions. | 
|  | // | 
|  | // To deal with this, we currently use a bunch of mostly arbitrary heuristics. | 
|  | // We don't fold shuffles where one side is a non-zero constant, and we don't | 
|  | // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate | 
|  | // non-constant operands. This seems to work out reasonably well in practice. | 
|  | static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, | 
|  | SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | EVT VT = SVN->getValueType(0); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | SDValue N0 = SVN->getOperand(0); | 
|  | SDValue N1 = SVN->getOperand(1); | 
|  |  | 
|  | if (!N0->hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as | 
|  | // discussed above. | 
|  | if (!N1.isUndef()) { | 
|  | if (!N1->hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | bool N0AnyConst = isAnyConstantBuildVector(N0); | 
|  | bool N1AnyConst = isAnyConstantBuildVector(N1); | 
|  | if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) | 
|  | return SDValue(); | 
|  | if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // If both inputs are splats of the same value then we can safely merge this | 
|  | // to a single BUILD_VECTOR with undef elements based on the shuffle mask. | 
|  | bool IsSplat = false; | 
|  | auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); | 
|  | auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); | 
|  | if (BV0 && BV1) | 
|  | if (SDValue Splat0 = BV0->getSplatValue()) | 
|  | IsSplat = (Splat0 == BV1->getSplatValue()); | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | SmallSet<SDValue, 16> DuplicateOps; | 
|  | for (int M : SVN->getMask()) { | 
|  | SDValue Op = DAG.getUNDEF(VT.getScalarType()); | 
|  | if (M >= 0) { | 
|  | int Idx = M < (int)NumElts ? M : M - NumElts; | 
|  | SDValue &S = (M < (int)NumElts ? N0 : N1); | 
|  | if (S.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | Op = S.getOperand(Idx); | 
|  | } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { | 
|  | SDValue Op0 = S.getOperand(0); | 
|  | Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); | 
|  | } else { | 
|  | // Operand can't be combined - bail out. | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't duplicate a non-constant BUILD_VECTOR operand unless we're | 
|  | // generating a splat; semantically, this is fine, but it's likely to | 
|  | // generate low-quality code if the target can't reconstruct an appropriate | 
|  | // shuffle. | 
|  | if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op)) | 
|  | if (!IsSplat && !DuplicateOps.insert(Op).second) | 
|  | return SDValue(); | 
|  |  | 
|  | Ops.push_back(Op); | 
|  | } | 
|  |  | 
|  | // BUILD_VECTOR requires all inputs to be of the same type, find the | 
|  | // maximum type and extend them all. | 
|  | EVT SVT = VT.getScalarType(); | 
|  | if (SVT.isInteger()) | 
|  | for (SDValue &Op : Ops) | 
|  | SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); | 
|  | if (SVT != VT.getScalarType()) | 
|  | for (SDValue &Op : Ops) | 
|  | Op = TLI.isZExtFree(Op.getValueType(), SVT) | 
|  | ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) | 
|  | : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); | 
|  | return DAG.getBuildVector(VT, SDLoc(SVN), Ops); | 
|  | } | 
|  |  | 
|  | // Match shuffles that can be converted to any_vector_extend_in_reg. | 
|  | // This is often generated during legalization. | 
|  | // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) | 
|  | // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. | 
|  | static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, | 
|  | SelectionDAG &DAG, | 
|  | const TargetLowering &TLI, | 
|  | bool LegalOperations) { | 
|  | EVT VT = SVN->getValueType(0); | 
|  | bool IsBigEndian = DAG.getDataLayout().isBigEndian(); | 
|  |  | 
|  | // TODO Add support for big-endian when we have a test case. | 
|  | if (!VT.isInteger() || IsBigEndian) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned EltSizeInBits = VT.getScalarSizeInBits(); | 
|  | ArrayRef<int> Mask = SVN->getMask(); | 
|  | SDValue N0 = SVN->getOperand(0); | 
|  |  | 
|  | // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) | 
|  | auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (Mask[i] < 0) | 
|  | continue; | 
|  | if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for | 
|  | // power-of-2 extensions as they are the most likely. | 
|  | for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { | 
|  | // Check for non power of 2 vector sizes | 
|  | if (NumElts % Scale != 0) | 
|  | continue; | 
|  | if (!isAnyExtend(Scale)) | 
|  | continue; | 
|  |  | 
|  | EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); | 
|  | EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); | 
|  | // Never create an illegal type. Only create unsupported operations if we | 
|  | // are pre-legalization. | 
|  | if (TLI.isTypeLegal(OutVT)) | 
|  | if (!LegalOperations || | 
|  | TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) | 
|  | return DAG.getBitcast(VT, | 
|  | DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, | 
|  | SDLoc(SVN), OutVT, N0)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of | 
|  | // each source element of a large type into the lowest elements of a smaller | 
|  | // destination type. This is often generated during legalization. | 
|  | // If the source node itself was a '*_extend_vector_inreg' node then we should | 
|  | // then be able to remove it. | 
|  | static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, | 
|  | SelectionDAG &DAG) { | 
|  | EVT VT = SVN->getValueType(0); | 
|  | bool IsBigEndian = DAG.getDataLayout().isBigEndian(); | 
|  |  | 
|  | // TODO Add support for big-endian when we have a test case. | 
|  | if (!VT.isInteger() || IsBigEndian) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); | 
|  |  | 
|  | unsigned Opcode = N0.getOpcode(); | 
|  | if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && | 
|  | Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && | 
|  | Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | ArrayRef<int> Mask = SVN->getMask(); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned EltSizeInBits = VT.getScalarSizeInBits(); | 
|  | unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); | 
|  | unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); | 
|  |  | 
|  | if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) | 
|  | return SDValue(); | 
|  | unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; | 
|  |  | 
|  | // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> | 
|  | // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> | 
|  | // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> | 
|  | auto isTruncate = [&Mask, &NumElts](unsigned Scale) { | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (Mask[i] < 0) | 
|  | continue; | 
|  | if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // At the moment we just handle the case where we've truncated back to the | 
|  | // same size as before the extension. | 
|  | // TODO: handle more extension/truncation cases as cases arise. | 
|  | if (EltSizeInBits != ExtSrcSizeInBits) | 
|  | return SDValue(); | 
|  |  | 
|  | // We can remove *extend_vector_inreg only if the truncation happens at | 
|  | // the same scale as the extension. | 
|  | if (isTruncate(ExtScale)) | 
|  | return DAG.getBitcast(VT, N00); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Combine shuffles of splat-shuffles of the form: | 
|  | // shuffle (shuffle V, undef, splat-mask), undef, M | 
|  | // If splat-mask contains undef elements, we need to be careful about | 
|  | // introducing undef's in the folded mask which are not the result of composing | 
|  | // the masks of the shuffles. | 
|  | static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, | 
|  | SelectionDAG &DAG) { | 
|  | if (!Shuf->getOperand(1).isUndef()) | 
|  | return SDValue(); | 
|  | auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); | 
|  | if (!Splat || !Splat->isSplat()) | 
|  | return SDValue(); | 
|  |  | 
|  | ArrayRef<int> ShufMask = Shuf->getMask(); | 
|  | ArrayRef<int> SplatMask = Splat->getMask(); | 
|  | assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); | 
|  |  | 
|  | // Prefer simplifying to the splat-shuffle, if possible. This is legal if | 
|  | // every undef mask element in the splat-shuffle has a corresponding undef | 
|  | // element in the user-shuffle's mask or if the composition of mask elements | 
|  | // would result in undef. | 
|  | // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): | 
|  | // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] | 
|  | //   In this case it is not legal to simplify to the splat-shuffle because we | 
|  | //   may be exposing the users of the shuffle an undef element at index 1 | 
|  | //   which was not there before the combine. | 
|  | // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] | 
|  | //   In this case the composition of masks yields SplatMask, so it's ok to | 
|  | //   simplify to the splat-shuffle. | 
|  | // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] | 
|  | //   In this case the composed mask includes all undef elements of SplatMask | 
|  | //   and in addition sets element zero to undef. It is safe to simplify to | 
|  | //   the splat-shuffle. | 
|  | auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, | 
|  | ArrayRef<int> SplatMask) { | 
|  | for (unsigned i = 0, e = UserMask.size(); i != e; ++i) | 
|  | if (UserMask[i] != -1 && SplatMask[i] == -1 && | 
|  | SplatMask[UserMask[i]] != -1) | 
|  | return false; | 
|  | return true; | 
|  | }; | 
|  | if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) | 
|  | return Shuf->getOperand(0); | 
|  |  | 
|  | // Create a new shuffle with a mask that is composed of the two shuffles' | 
|  | // masks. | 
|  | SmallVector<int, 32> NewMask; | 
|  | for (int Idx : ShufMask) | 
|  | NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); | 
|  |  | 
|  | return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), | 
|  | Splat->getOperand(0), Splat->getOperand(1), | 
|  | NewMask); | 
|  | } | 
|  |  | 
|  | /// If the shuffle mask is taking exactly one element from the first vector | 
|  | /// operand and passing through all other elements from the second vector | 
|  | /// operand, return the index of the mask element that is choosing an element | 
|  | /// from the first operand. Otherwise, return -1. | 
|  | static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { | 
|  | int MaskSize = Mask.size(); | 
|  | int EltFromOp0 = -1; | 
|  | // TODO: This does not match if there are undef elements in the shuffle mask. | 
|  | // Should we ignore undefs in the shuffle mask instead? The trade-off is | 
|  | // removing an instruction (a shuffle), but losing the knowledge that some | 
|  | // vector lanes are not needed. | 
|  | for (int i = 0; i != MaskSize; ++i) { | 
|  | if (Mask[i] >= 0 && Mask[i] < MaskSize) { | 
|  | // We're looking for a shuffle of exactly one element from operand 0. | 
|  | if (EltFromOp0 != -1) | 
|  | return -1; | 
|  | EltFromOp0 = i; | 
|  | } else if (Mask[i] != i + MaskSize) { | 
|  | // Nothing from operand 1 can change lanes. | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return EltFromOp0; | 
|  | } | 
|  |  | 
|  | /// If a shuffle inserts exactly one element from a source vector operand into | 
|  | /// another vector operand and we can access the specified element as a scalar, | 
|  | /// then we can eliminate the shuffle. | 
|  | static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, | 
|  | SelectionDAG &DAG) { | 
|  | // First, check if we are taking one element of a vector and shuffling that | 
|  | // element into another vector. | 
|  | ArrayRef<int> Mask = Shuf->getMask(); | 
|  | SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); | 
|  | SDValue Op0 = Shuf->getOperand(0); | 
|  | SDValue Op1 = Shuf->getOperand(1); | 
|  | int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); | 
|  | if (ShufOp0Index == -1) { | 
|  | // Commute mask and check again. | 
|  | ShuffleVectorSDNode::commuteMask(CommutedMask); | 
|  | ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); | 
|  | if (ShufOp0Index == -1) | 
|  | return SDValue(); | 
|  | // Commute operands to match the commuted shuffle mask. | 
|  | std::swap(Op0, Op1); | 
|  | Mask = CommutedMask; | 
|  | } | 
|  |  | 
|  | // The shuffle inserts exactly one element from operand 0 into operand 1. | 
|  | // Now see if we can access that element as a scalar via a real insert element | 
|  | // instruction. | 
|  | // TODO: We can try harder to locate the element as a scalar. Examples: it | 
|  | // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. | 
|  | assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && | 
|  | "Shuffle mask value must be from operand 0"); | 
|  | if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) | 
|  | return SDValue(); | 
|  |  | 
|  | auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); | 
|  | if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) | 
|  | return SDValue(); | 
|  |  | 
|  | // There's an existing insertelement with constant insertion index, so we | 
|  | // don't need to check the legality/profitability of a replacement operation | 
|  | // that differs at most in the constant value. The target should be able to | 
|  | // lower any of those in a similar way. If not, legalization will expand this | 
|  | // to a scalar-to-vector plus shuffle. | 
|  | // | 
|  | // Note that the shuffle may move the scalar from the position that the insert | 
|  | // element used. Therefore, our new insert element occurs at the shuffle's | 
|  | // mask index value, not the insert's index value. | 
|  | // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' | 
|  | SDValue NewInsIndex = DAG.getConstant(ShufOp0Index, SDLoc(Shuf), | 
|  | Op0.getOperand(2).getValueType()); | 
|  | return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), | 
|  | Op1, Op0.getOperand(1), NewInsIndex); | 
|  | } | 
|  |  | 
|  | /// If we have a unary shuffle of a shuffle, see if it can be folded away | 
|  | /// completely. This has the potential to lose undef knowledge because the first | 
|  | /// shuffle may not have an undef mask element where the second one does. So | 
|  | /// only call this after doing simplifications based on demanded elements. | 
|  | static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { | 
|  | // shuf (shuf0 X, Y, Mask0), undef, Mask | 
|  | auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); | 
|  | if (!Shuf0 || !Shuf->getOperand(1).isUndef()) | 
|  | return SDValue(); | 
|  |  | 
|  | ArrayRef<int> Mask = Shuf->getMask(); | 
|  | ArrayRef<int> Mask0 = Shuf0->getMask(); | 
|  | for (int i = 0, e = (int)Mask.size(); i != e; ++i) { | 
|  | // Ignore undef elements. | 
|  | if (Mask[i] == -1) | 
|  | continue; | 
|  | assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); | 
|  |  | 
|  | // Is the element of the shuffle operand chosen by this shuffle the same as | 
|  | // the element chosen by the shuffle operand itself? | 
|  | if (Mask0[Mask[i]] != Mask0[i]) | 
|  | return SDValue(); | 
|  | } | 
|  | // Every element of this shuffle is identical to the result of the previous | 
|  | // shuffle, so we can replace this value. | 
|  | return Shuf->getOperand(0); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); | 
|  |  | 
|  | // Canonicalize shuffle undef, undef -> undef | 
|  | if (N0.isUndef() && N1.isUndef()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); | 
|  |  | 
|  | // Canonicalize shuffle v, v -> v, undef | 
|  | if (N0 == N1) { | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | int Idx = SVN->getMaskElt(i); | 
|  | if (Idx >= (int)NumElts) Idx -= NumElts; | 
|  | NewMask.push_back(Idx); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); | 
|  | } | 
|  |  | 
|  | // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask. | 
|  | if (N0.isUndef()) | 
|  | return DAG.getCommutedVectorShuffle(*SVN); | 
|  |  | 
|  | // Remove references to rhs if it is undef | 
|  | if (N1.isUndef()) { | 
|  | bool Changed = false; | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | int Idx = SVN->getMaskElt(i); | 
|  | if (Idx >= (int)NumElts) { | 
|  | Idx = -1; | 
|  | Changed = true; | 
|  | } | 
|  | NewMask.push_back(Idx); | 
|  | } | 
|  | if (Changed) | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); | 
|  | } | 
|  |  | 
|  | if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) | 
|  | return InsElt; | 
|  |  | 
|  | // A shuffle of a single vector that is a splatted value can always be folded. | 
|  | if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) | 
|  | return V; | 
|  |  | 
|  | // If it is a splat, check if the argument vector is another splat or a | 
|  | // build_vector. | 
|  | if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { | 
|  | int SplatIndex = SVN->getSplatIndex(); | 
|  | if (TLI.isExtractVecEltCheap(VT, SplatIndex) && | 
|  | TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) { | 
|  | // splat (vector_bo L, R), Index --> | 
|  | // splat (scalar_bo (extelt L, Index), (extelt R, Index)) | 
|  | SDValue L = N0.getOperand(0), R = N0.getOperand(1); | 
|  | SDLoc DL(N); | 
|  | EVT EltVT = VT.getScalarType(); | 
|  | SDValue Index = DAG.getIntPtrConstant(SplatIndex, DL); | 
|  | SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); | 
|  | SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); | 
|  | SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, | 
|  | N0.getNode()->getFlags()); | 
|  | SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); | 
|  | SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); | 
|  | return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); | 
|  | } | 
|  |  | 
|  | // If this is a bit convert that changes the element type of the vector but | 
|  | // not the number of vector elements, look through it.  Be careful not to | 
|  | // look though conversions that change things like v4f32 to v2f64. | 
|  | SDNode *V = N0.getNode(); | 
|  | if (V->getOpcode() == ISD::BITCAST) { | 
|  | SDValue ConvInput = V->getOperand(0); | 
|  | if (ConvInput.getValueType().isVector() && | 
|  | ConvInput.getValueType().getVectorNumElements() == NumElts) | 
|  | V = ConvInput.getNode(); | 
|  | } | 
|  |  | 
|  | if (V->getOpcode() == ISD::BUILD_VECTOR) { | 
|  | assert(V->getNumOperands() == NumElts && | 
|  | "BUILD_VECTOR has wrong number of operands"); | 
|  | SDValue Base; | 
|  | bool AllSame = true; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (!V->getOperand(i).isUndef()) { | 
|  | Base = V->getOperand(i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Splat of <u, u, u, u>, return <u, u, u, u> | 
|  | if (!Base.getNode()) | 
|  | return N0; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (V->getOperand(i) != Base) { | 
|  | AllSame = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Splat of <x, x, x, x>, return <x, x, x, x> | 
|  | if (AllSame) | 
|  | return N0; | 
|  |  | 
|  | // Canonicalize any other splat as a build_vector. | 
|  | SDValue Splatted = V->getOperand(SplatIndex); | 
|  | SmallVector<SDValue, 8> Ops(NumElts, Splatted); | 
|  | SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); | 
|  |  | 
|  | // We may have jumped through bitcasts, so the type of the | 
|  | // BUILD_VECTOR may not match the type of the shuffle. | 
|  | if (V->getValueType(0) != VT) | 
|  | NewBV = DAG.getBitcast(VT, NewBV); | 
|  | return NewBV; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify source operands based on shuffle mask. | 
|  | if (SimplifyDemandedVectorElts(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | // This is intentionally placed after demanded elements simplification because | 
|  | // it could eliminate knowledge of undef elements created by this shuffle. | 
|  | if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) | 
|  | return ShufOp; | 
|  |  | 
|  | // Match shuffles that can be converted to any_vector_extend_in_reg. | 
|  | if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) | 
|  | return V; | 
|  |  | 
|  | // Combine "truncate_vector_in_reg" style shuffles. | 
|  | if (SDValue V = combineTruncationShuffle(SVN, DAG)) | 
|  | return V; | 
|  |  | 
|  | if (N0.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | Level < AfterLegalizeVectorOps && | 
|  | (N1.isUndef() || | 
|  | (N1.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { | 
|  | if (SDValue V = partitionShuffleOfConcats(N, DAG)) | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - | 
|  | // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. | 
|  | if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) | 
|  | if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) | 
|  | return Res; | 
|  |  | 
|  | // If this shuffle only has a single input that is a bitcasted shuffle, | 
|  | // attempt to merge the 2 shuffles and suitably bitcast the inputs/output | 
|  | // back to their original types. | 
|  | if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && | 
|  | N1.isUndef() && Level < AfterLegalizeVectorOps && | 
|  | TLI.isTypeLegal(VT)) { | 
|  | auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { | 
|  | if (Scale == 1) | 
|  | return SmallVector<int, 8>(Mask.begin(), Mask.end()); | 
|  |  | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (int M : Mask) | 
|  | for (int s = 0; s != Scale; ++s) | 
|  | NewMask.push_back(M < 0 ? -1 : Scale * M + s); | 
|  | return NewMask; | 
|  | }; | 
|  |  | 
|  | SDValue BC0 = peekThroughOneUseBitcasts(N0); | 
|  | if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { | 
|  | EVT SVT = VT.getScalarType(); | 
|  | EVT InnerVT = BC0->getValueType(0); | 
|  | EVT InnerSVT = InnerVT.getScalarType(); | 
|  |  | 
|  | // Determine which shuffle works with the smaller scalar type. | 
|  | EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; | 
|  | EVT ScaleSVT = ScaleVT.getScalarType(); | 
|  |  | 
|  | if (TLI.isTypeLegal(ScaleVT) && | 
|  | 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && | 
|  | 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { | 
|  | int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); | 
|  | int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); | 
|  |  | 
|  | // Scale the shuffle masks to the smaller scalar type. | 
|  | ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); | 
|  | SmallVector<int, 8> InnerMask = | 
|  | ScaleShuffleMask(InnerSVN->getMask(), InnerScale); | 
|  | SmallVector<int, 8> OuterMask = | 
|  | ScaleShuffleMask(SVN->getMask(), OuterScale); | 
|  |  | 
|  | // Merge the shuffle masks. | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (int M : OuterMask) | 
|  | NewMask.push_back(M < 0 ? -1 : InnerMask[M]); | 
|  |  | 
|  | // Test for shuffle mask legality over both commutations. | 
|  | SDValue SV0 = BC0->getOperand(0); | 
|  | SDValue SV1 = BC0->getOperand(1); | 
|  | bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); | 
|  | if (!LegalMask) { | 
|  | std::swap(SV0, SV1); | 
|  | ShuffleVectorSDNode::commuteMask(NewMask); | 
|  | LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); | 
|  | } | 
|  |  | 
|  | if (LegalMask) { | 
|  | SV0 = DAG.getBitcast(ScaleVT, SV0); | 
|  | SV1 = DAG.getBitcast(ScaleVT, SV1); | 
|  | return DAG.getBitcast( | 
|  | VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Canonicalize shuffles according to rules: | 
|  | //  shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) | 
|  | //  shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) | 
|  | //  shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) | 
|  | if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && | 
|  | N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && | 
|  | TLI.isTypeLegal(VT)) { | 
|  | // The incoming shuffle must be of the same type as the result of the | 
|  | // current shuffle. | 
|  | assert(N1->getOperand(0).getValueType() == VT && | 
|  | "Shuffle types don't match"); | 
|  |  | 
|  | SDValue SV0 = N1->getOperand(0); | 
|  | SDValue SV1 = N1->getOperand(1); | 
|  | bool HasSameOp0 = N0 == SV0; | 
|  | bool IsSV1Undef = SV1.isUndef(); | 
|  | if (HasSameOp0 || IsSV1Undef || N0 == SV1) | 
|  | // Commute the operands of this shuffle so that next rule | 
|  | // will trigger. | 
|  | return DAG.getCommutedVectorShuffle(*SVN); | 
|  | } | 
|  |  | 
|  | // Try to fold according to rules: | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) | 
|  | // Don't try to fold shuffles with illegal type. | 
|  | // Only fold if this shuffle is the only user of the other shuffle. | 
|  | if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && | 
|  | Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { | 
|  | ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); | 
|  |  | 
|  | // Don't try to fold splats; they're likely to simplify somehow, or they | 
|  | // might be free. | 
|  | if (OtherSV->isSplat()) | 
|  | return SDValue(); | 
|  |  | 
|  | // The incoming shuffle must be of the same type as the result of the | 
|  | // current shuffle. | 
|  | assert(OtherSV->getOperand(0).getValueType() == VT && | 
|  | "Shuffle types don't match"); | 
|  |  | 
|  | SDValue SV0, SV1; | 
|  | SmallVector<int, 4> Mask; | 
|  | // Compute the combined shuffle mask for a shuffle with SV0 as the first | 
|  | // operand, and SV1 as the second operand. | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | int Idx = SVN->getMaskElt(i); | 
|  | if (Idx < 0) { | 
|  | // Propagate Undef. | 
|  | Mask.push_back(Idx); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDValue CurrentVec; | 
|  | if (Idx < (int)NumElts) { | 
|  | // This shuffle index refers to the inner shuffle N0. Lookup the inner | 
|  | // shuffle mask to identify which vector is actually referenced. | 
|  | Idx = OtherSV->getMaskElt(Idx); | 
|  | if (Idx < 0) { | 
|  | // Propagate Undef. | 
|  | Mask.push_back(Idx); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) | 
|  | : OtherSV->getOperand(1); | 
|  | } else { | 
|  | // This shuffle index references an element within N1. | 
|  | CurrentVec = N1; | 
|  | } | 
|  |  | 
|  | // Simple case where 'CurrentVec' is UNDEF. | 
|  | if (CurrentVec.isUndef()) { | 
|  | Mask.push_back(-1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Canonicalize the shuffle index. We don't know yet if CurrentVec | 
|  | // will be the first or second operand of the combined shuffle. | 
|  | Idx = Idx % NumElts; | 
|  | if (!SV0.getNode() || SV0 == CurrentVec) { | 
|  | // Ok. CurrentVec is the left hand side. | 
|  | // Update the mask accordingly. | 
|  | SV0 = CurrentVec; | 
|  | Mask.push_back(Idx); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Bail out if we cannot convert the shuffle pair into a single shuffle. | 
|  | if (SV1.getNode() && SV1 != CurrentVec) | 
|  | return SDValue(); | 
|  |  | 
|  | // Ok. CurrentVec is the right hand side. | 
|  | // Update the mask accordingly. | 
|  | SV1 = CurrentVec; | 
|  | Mask.push_back(Idx + NumElts); | 
|  | } | 
|  |  | 
|  | // Check if all indices in Mask are Undef. In case, propagate Undef. | 
|  | bool isUndefMask = true; | 
|  | for (unsigned i = 0; i != NumElts && isUndefMask; ++i) | 
|  | isUndefMask &= Mask[i] < 0; | 
|  |  | 
|  | if (isUndefMask) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (!SV0.getNode()) | 
|  | SV0 = DAG.getUNDEF(VT); | 
|  | if (!SV1.getNode()) | 
|  | SV1 = DAG.getUNDEF(VT); | 
|  |  | 
|  | // Avoid introducing shuffles with illegal mask. | 
|  | if (!TLI.isShuffleMaskLegal(Mask, VT)) { | 
|  | ShuffleVectorSDNode::commuteMask(Mask); | 
|  |  | 
|  | if (!TLI.isShuffleMaskLegal(Mask, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) | 
|  | std::swap(SV0, SV1); | 
|  | } | 
|  |  | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) | 
|  | //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) | 
|  | return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask); | 
|  | } | 
|  |  | 
|  | if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) | 
|  | return V; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { | 
|  | SDValue InVal = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern | 
|  | // with a VECTOR_SHUFFLE and possible truncate. | 
|  | if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { | 
|  | SDValue InVec = InVal->getOperand(0); | 
|  | SDValue EltNo = InVal->getOperand(1); | 
|  | auto InVecT = InVec.getValueType(); | 
|  | if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { | 
|  | SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); | 
|  | int Elt = C0->getZExtValue(); | 
|  | NewMask[0] = Elt; | 
|  | SDValue Val; | 
|  | // If we have an implict truncate do truncate here as long as it's legal. | 
|  | // if it's not legal, this should | 
|  | if (VT.getScalarType() != InVal.getValueType() && | 
|  | InVal.getValueType().isScalarInteger() && | 
|  | isTypeLegal(VT.getScalarType())) { | 
|  | Val = | 
|  | DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); | 
|  | } | 
|  | if (VT.getScalarType() == InVecT.getScalarType() && | 
|  | VT.getVectorNumElements() <= InVecT.getVectorNumElements() && | 
|  | TLI.isShuffleMaskLegal(NewMask, VT)) { | 
|  | Val = DAG.getVectorShuffle(InVecT, SDLoc(N), InVec, | 
|  | DAG.getUNDEF(InVecT), NewMask); | 
|  | // If the initial vector is the correct size this shuffle is a | 
|  | // valid result. | 
|  | if (VT == InVecT) | 
|  | return Val; | 
|  | // If not we must truncate the vector. | 
|  | if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { | 
|  | MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); | 
|  | SDValue ZeroIdx = DAG.getConstant(0, SDLoc(N), IdxTy); | 
|  | EVT SubVT = | 
|  | EVT::getVectorVT(*DAG.getContext(), InVecT.getVectorElementType(), | 
|  | VT.getVectorNumElements()); | 
|  | Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, Val, | 
|  | ZeroIdx); | 
|  | return Val; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue N2 = N->getOperand(2); | 
|  |  | 
|  | // If inserting an UNDEF, just return the original vector. | 
|  | if (N1.isUndef()) | 
|  | return N0; | 
|  |  | 
|  | // If this is an insert of an extracted vector into an undef vector, we can | 
|  | // just use the input to the extract. | 
|  | if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && | 
|  | N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) | 
|  | return N1.getOperand(0); | 
|  |  | 
|  | // If we are inserting a bitcast value into an undef, with the same | 
|  | // number of elements, just use the bitcast input of the extract. | 
|  | // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> | 
|  | //        BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) | 
|  | if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && | 
|  | N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && | 
|  | N1.getOperand(0).getOperand(1) == N2 && | 
|  | N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() == | 
|  | VT.getVectorNumElements() && | 
|  | N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == | 
|  | VT.getSizeInBits()) { | 
|  | return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); | 
|  | } | 
|  |  | 
|  | // If both N1 and N2 are bitcast values on which insert_subvector | 
|  | // would makes sense, pull the bitcast through. | 
|  | // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> | 
|  | //        BITCAST (INSERT_SUBVECTOR N0 N1 N2) | 
|  | if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { | 
|  | SDValue CN0 = N0.getOperand(0); | 
|  | SDValue CN1 = N1.getOperand(0); | 
|  | EVT CN0VT = CN0.getValueType(); | 
|  | EVT CN1VT = CN1.getValueType(); | 
|  | if (CN0VT.isVector() && CN1VT.isVector() && | 
|  | CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && | 
|  | CN0VT.getVectorNumElements() == VT.getVectorNumElements()) { | 
|  | SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), | 
|  | CN0.getValueType(), CN0, CN1, N2); | 
|  | return DAG.getBitcast(VT, NewINSERT); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Combine INSERT_SUBVECTORs where we are inserting to the same index. | 
|  | // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) | 
|  | // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) | 
|  | if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && | 
|  | N0.getOperand(1).getValueType() == N1.getValueType() && | 
|  | N0.getOperand(2) == N2) | 
|  | return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), | 
|  | N1, N2); | 
|  |  | 
|  | // Eliminate an intermediate insert into an undef vector: | 
|  | // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> | 
|  | // insert_subvector undef, X, N2 | 
|  | if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && | 
|  | N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) | 
|  | return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, | 
|  | N1.getOperand(1), N2); | 
|  |  | 
|  | if (!isa<ConstantSDNode>(N2)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned InsIdx = cast<ConstantSDNode>(N2)->getZExtValue(); | 
|  |  | 
|  | // Push subvector bitcasts to the output, adjusting the index as we go. | 
|  | // insert_subvector(bitcast(v), bitcast(s), c1) | 
|  | // -> bitcast(insert_subvector(v, s, c2)) | 
|  | if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && | 
|  | N1.getOpcode() == ISD::BITCAST) { | 
|  | SDValue N0Src = peekThroughBitcasts(N0); | 
|  | SDValue N1Src = peekThroughBitcasts(N1); | 
|  | EVT N0SrcSVT = N0Src.getValueType().getScalarType(); | 
|  | EVT N1SrcSVT = N1Src.getValueType().getScalarType(); | 
|  | if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && | 
|  | N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { | 
|  | EVT NewVT; | 
|  | SDLoc DL(N); | 
|  | SDValue NewIdx; | 
|  | MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned EltSizeInBits = VT.getScalarSizeInBits(); | 
|  | if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { | 
|  | unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); | 
|  | NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); | 
|  | NewIdx = DAG.getConstant(InsIdx * Scale, DL, IdxVT); | 
|  | } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { | 
|  | unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; | 
|  | if ((NumElts % Scale) == 0 && (InsIdx % Scale) == 0) { | 
|  | NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts / Scale); | 
|  | NewIdx = DAG.getConstant(InsIdx / Scale, DL, IdxVT); | 
|  | } | 
|  | } | 
|  | if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { | 
|  | SDValue Res = DAG.getBitcast(NewVT, N0Src); | 
|  | Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); | 
|  | return DAG.getBitcast(VT, Res); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Canonicalize insert_subvector dag nodes. | 
|  | // Example: | 
|  | // (insert_subvector (insert_subvector A, Idx0), Idx1) | 
|  | // -> (insert_subvector (insert_subvector A, Idx1), Idx0) | 
|  | if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && | 
|  | N1.getValueType() == N0.getOperand(1).getValueType() && | 
|  | isa<ConstantSDNode>(N0.getOperand(2))) { | 
|  | unsigned OtherIdx = N0.getConstantOperandVal(2); | 
|  | if (InsIdx < OtherIdx) { | 
|  | // Swap nodes. | 
|  | SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, | 
|  | N0.getOperand(0), N1, N2); | 
|  | AddToWorklist(NewOp.getNode()); | 
|  | return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), | 
|  | VT, NewOp, N0.getOperand(1), N0.getOperand(2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the input vector is a concatenation, and the insert replaces | 
|  | // one of the pieces, we can optimize into a single concat_vectors. | 
|  | if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && | 
|  | N0.getOperand(0).getValueType() == N1.getValueType()) { | 
|  | unsigned Factor = N1.getValueType().getVectorNumElements(); | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); | 
|  | Ops[cast<ConstantSDNode>(N2)->getZExtValue() / Factor] = N1; | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); | 
|  | } | 
|  |  | 
|  | // Simplify source operands based on insertion. | 
|  | if (SimplifyDemandedVectorElts(SDValue(N, 0))) | 
|  | return SDValue(N, 0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  |  | 
|  | // fold (fp_to_fp16 (fp16_to_fp op)) -> op | 
|  | if (N0->getOpcode() == ISD::FP16_TO_FP) | 
|  | return N0->getOperand(0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  |  | 
|  | // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) | 
|  | if (N0->getOpcode() == ISD::AND) { | 
|  | ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); | 
|  | if (AndConst && AndConst->getAPIntValue() == 0xffff) { | 
|  | return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), | 
|  | N0.getOperand(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N0.getValueType(); | 
|  | unsigned Opcode = N->getOpcode(); | 
|  |  | 
|  | // VECREDUCE over 1-element vector is just an extract. | 
|  | if (VT.getVectorNumElements() == 1) { | 
|  | SDLoc dl(N); | 
|  | SDValue Res = DAG.getNode( | 
|  | ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, | 
|  | DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | if (Res.getValueType() != N->getValueType(0)) | 
|  | Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // On an boolean vector an and/or reduction is the same as a umin/umax | 
|  | // reduction. Convert them if the latter is legal while the former isn't. | 
|  | if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { | 
|  | unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND | 
|  | ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; | 
|  | if (!TLI.isOperationLegalOrCustom(Opcode, VT) && | 
|  | TLI.isOperationLegalOrCustom(NewOpcode, VT) && | 
|  | DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) | 
|  | return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle | 
|  | /// with the destination vector and a zero vector. | 
|  | /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> | 
|  | ///      vector_shuffle V, Zero, <0, 4, 2, 4> | 
|  | SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = peekThroughBitcasts(N->getOperand(1)); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Make sure we're not running after operation legalization where it | 
|  | // may have custom lowered the vector shuffles. | 
|  | if (LegalOperations) | 
|  | return SDValue(); | 
|  |  | 
|  | if (RHS.getOpcode() != ISD::BUILD_VECTOR) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT RVT = RHS.getValueType(); | 
|  | unsigned NumElts = RHS.getNumOperands(); | 
|  |  | 
|  | // Attempt to create a valid clear mask, splitting the mask into | 
|  | // sub elements and checking to see if each is | 
|  | // all zeros or all ones - suitable for shuffle masking. | 
|  | auto BuildClearMask = [&](int Split) { | 
|  | int NumSubElts = NumElts * Split; | 
|  | int NumSubBits = RVT.getScalarSizeInBits() / Split; | 
|  |  | 
|  | SmallVector<int, 8> Indices; | 
|  | for (int i = 0; i != NumSubElts; ++i) { | 
|  | int EltIdx = i / Split; | 
|  | int SubIdx = i % Split; | 
|  | SDValue Elt = RHS.getOperand(EltIdx); | 
|  | if (Elt.isUndef()) { | 
|  | Indices.push_back(-1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | APInt Bits; | 
|  | if (isa<ConstantSDNode>(Elt)) | 
|  | Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); | 
|  | else if (isa<ConstantFPSDNode>(Elt)) | 
|  | Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | // Extract the sub element from the constant bit mask. | 
|  | if (DAG.getDataLayout().isBigEndian()) { | 
|  | Bits.lshrInPlace((Split - SubIdx - 1) * NumSubBits); | 
|  | } else { | 
|  | Bits.lshrInPlace(SubIdx * NumSubBits); | 
|  | } | 
|  |  | 
|  | if (Split > 1) | 
|  | Bits = Bits.trunc(NumSubBits); | 
|  |  | 
|  | if (Bits.isAllOnesValue()) | 
|  | Indices.push_back(i); | 
|  | else if (Bits == 0) | 
|  | Indices.push_back(i + NumSubElts); | 
|  | else | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Let's see if the target supports this vector_shuffle. | 
|  | EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); | 
|  | EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); | 
|  | if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Zero = DAG.getConstant(0, DL, ClearVT); | 
|  | return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, | 
|  | DAG.getBitcast(ClearVT, LHS), | 
|  | Zero, Indices)); | 
|  | }; | 
|  |  | 
|  | // Determine maximum split level (byte level masking). | 
|  | int MaxSplit = 1; | 
|  | if (RVT.getScalarSizeInBits() % 8 == 0) | 
|  | MaxSplit = RVT.getScalarSizeInBits() / 8; | 
|  |  | 
|  | for (int Split = 1; Split <= MaxSplit; ++Split) | 
|  | if (RVT.getScalarSizeInBits() % Split == 0) | 
|  | if (SDValue S = BuildClearMask(Split)) | 
|  | return S; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// If a vector binop is performed on splat values, it may be profitable to | 
|  | /// extract, scalarize, and insert/splat. | 
|  | static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // TODO: Remove/replace the extract cost check? If the elements are available | 
|  | //       as scalars, then there may be no extract cost. Should we ask if | 
|  | //       inserting a scalar back into a vector is cheap instead? | 
|  | int Index0, Index1; | 
|  | SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); | 
|  | SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); | 
|  | if (!Src0 || !Src1 || Index0 != Index1 || | 
|  | Src0.getValueType().getVectorElementType() != EltVT || | 
|  | Src1.getValueType().getVectorElementType() != EltVT || | 
|  | !TLI.isExtractVecEltCheap(VT, Index0) || | 
|  | !TLI.isOperationLegalOrCustom(Opcode, EltVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | SDValue IndexC = | 
|  | DAG.getConstant(Index0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())); | 
|  | SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N0, IndexC); | 
|  | SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N1, IndexC); | 
|  | SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); | 
|  |  | 
|  | // If all lanes but 1 are undefined, no need to splat the scalar result. | 
|  | // TODO: Keep track of undefs and use that info in the general case. | 
|  | if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() && | 
|  | count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 && | 
|  | count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) { | 
|  | // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> | 
|  | // build_vec ..undef, (bo X, Y), undef... | 
|  | SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT)); | 
|  | Ops[Index0] = ScalarBO; | 
|  | return DAG.getBuildVector(VT, DL, Ops); | 
|  | } | 
|  |  | 
|  | // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index | 
|  | SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); | 
|  | return DAG.getBuildVector(VT, DL, Ops); | 
|  | } | 
|  |  | 
|  | /// Visit a binary vector operation, like ADD. | 
|  | SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { | 
|  | assert(N->getValueType(0).isVector() && | 
|  | "SimplifyVBinOp only works on vectors!"); | 
|  |  | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | SDValue Ops[] = {LHS, RHS}; | 
|  | EVT VT = N->getValueType(0); | 
|  | unsigned Opcode = N->getOpcode(); | 
|  |  | 
|  | // See if we can constant fold the vector operation. | 
|  | if (SDValue Fold = DAG.FoldConstantVectorArithmetic( | 
|  | Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) | 
|  | return Fold; | 
|  |  | 
|  | // Move unary shuffles with identical masks after a vector binop: | 
|  | // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) | 
|  | //   --> shuffle (VBinOp A, B), Undef, Mask | 
|  | // This does not require type legality checks because we are creating the | 
|  | // same types of operations that are in the original sequence. We do have to | 
|  | // restrict ops like integer div that have immediate UB (eg, div-by-zero) | 
|  | // though. This code is adapted from the identical transform in instcombine. | 
|  | if (Opcode != ISD::UDIV && Opcode != ISD::SDIV && | 
|  | Opcode != ISD::UREM && Opcode != ISD::SREM && | 
|  | Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) { | 
|  | auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); | 
|  | auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); | 
|  | if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && | 
|  | LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && | 
|  | (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { | 
|  | SDLoc DL(N); | 
|  | SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), | 
|  | RHS.getOperand(0), N->getFlags()); | 
|  | SDValue UndefV = LHS.getOperand(1); | 
|  | return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The following pattern is likely to emerge with vector reduction ops. Moving | 
|  | // the binary operation ahead of insertion may allow using a narrower vector | 
|  | // instruction that has better performance than the wide version of the op: | 
|  | // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z | 
|  | if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && | 
|  | RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && | 
|  | LHS.getOperand(2) == RHS.getOperand(2) && | 
|  | (LHS.hasOneUse() || RHS.hasOneUse())) { | 
|  | SDValue X = LHS.getOperand(1); | 
|  | SDValue Y = RHS.getOperand(1); | 
|  | SDValue Z = LHS.getOperand(2); | 
|  | EVT NarrowVT = X.getValueType(); | 
|  | if (NarrowVT == Y.getValueType() && | 
|  | TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { | 
|  | // (binop undef, undef) may not return undef, so compute that result. | 
|  | SDLoc DL(N); | 
|  | SDValue VecC = | 
|  | DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); | 
|  | SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); | 
|  | return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue V = scalarizeBinOpOfSplats(N, DAG)) | 
|  | return V; | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, | 
|  | SDValue N2) { | 
|  | assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); | 
|  |  | 
|  | SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, | 
|  | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
|  |  | 
|  | // If we got a simplified select_cc node back from SimplifySelectCC, then | 
|  | // break it down into a new SETCC node, and a new SELECT node, and then return | 
|  | // the SELECT node, since we were called with a SELECT node. | 
|  | if (SCC.getNode()) { | 
|  | // Check to see if we got a select_cc back (to turn into setcc/select). | 
|  | // Otherwise, just return whatever node we got back, like fabs. | 
|  | if (SCC.getOpcode() == ISD::SELECT_CC) { | 
|  | const SDNodeFlags Flags = N0.getNode()->getFlags(); | 
|  | SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), | 
|  | N0.getValueType(), | 
|  | SCC.getOperand(0), SCC.getOperand(1), | 
|  | SCC.getOperand(4), Flags); | 
|  | AddToWorklist(SETCC.getNode()); | 
|  | SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, | 
|  | SCC.getOperand(2), SCC.getOperand(3)); | 
|  | SelectNode->setFlags(Flags); | 
|  | return SelectNode; | 
|  | } | 
|  |  | 
|  | return SCC; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values | 
|  | /// being selected between, see if we can simplify the select.  Callers of this | 
|  | /// should assume that TheSelect is deleted if this returns true.  As such, they | 
|  | /// should return the appropriate thing (e.g. the node) back to the top-level of | 
|  | /// the DAG combiner loop to avoid it being looked at. | 
|  | bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, | 
|  | SDValue RHS) { | 
|  | // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) | 
|  | // The select + setcc is redundant, because fsqrt returns NaN for X < 0. | 
|  | if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { | 
|  | if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { | 
|  | // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) | 
|  | SDValue Sqrt = RHS; | 
|  | ISD::CondCode CC; | 
|  | SDValue CmpLHS; | 
|  | const ConstantFPSDNode *Zero = nullptr; | 
|  |  | 
|  | if (TheSelect->getOpcode() == ISD::SELECT_CC) { | 
|  | CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); | 
|  | CmpLHS = TheSelect->getOperand(0); | 
|  | Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); | 
|  | } else { | 
|  | // SELECT or VSELECT | 
|  | SDValue Cmp = TheSelect->getOperand(0); | 
|  | if (Cmp.getOpcode() == ISD::SETCC) { | 
|  | CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); | 
|  | CmpLHS = Cmp.getOperand(0); | 
|  | Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); | 
|  | } | 
|  | } | 
|  | if (Zero && Zero->isZero() && | 
|  | Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || | 
|  | CC == ISD::SETULT || CC == ISD::SETLT)) { | 
|  | // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) | 
|  | CombineTo(TheSelect, Sqrt); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Cannot simplify select with vector condition | 
|  | if (TheSelect->getOperand(0).getValueType().isVector()) return false; | 
|  |  | 
|  | // If this is a select from two identical things, try to pull the operation | 
|  | // through the select. | 
|  | if (LHS.getOpcode() != RHS.getOpcode() || | 
|  | !LHS.hasOneUse() || !RHS.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // If this is a load and the token chain is identical, replace the select | 
|  | // of two loads with a load through a select of the address to load from. | 
|  | // This triggers in things like "select bool X, 10.0, 123.0" after the FP | 
|  | // constants have been dropped into the constant pool. | 
|  | if (LHS.getOpcode() == ISD::LOAD) { | 
|  | LoadSDNode *LLD = cast<LoadSDNode>(LHS); | 
|  | LoadSDNode *RLD = cast<LoadSDNode>(RHS); | 
|  |  | 
|  | // Token chains must be identical. | 
|  | if (LHS.getOperand(0) != RHS.getOperand(0) || | 
|  | // Do not let this transformation reduce the number of volatile loads. | 
|  | LLD->isVolatile() || RLD->isVolatile() || | 
|  | // FIXME: If either is a pre/post inc/dec load, | 
|  | // we'd need to split out the address adjustment. | 
|  | LLD->isIndexed() || RLD->isIndexed() || | 
|  | // If this is an EXTLOAD, the VT's must match. | 
|  | LLD->getMemoryVT() != RLD->getMemoryVT() || | 
|  | // If this is an EXTLOAD, the kind of extension must match. | 
|  | (LLD->getExtensionType() != RLD->getExtensionType() && | 
|  | // The only exception is if one of the extensions is anyext. | 
|  | LLD->getExtensionType() != ISD::EXTLOAD && | 
|  | RLD->getExtensionType() != ISD::EXTLOAD) || | 
|  | // FIXME: this discards src value information.  This is | 
|  | // over-conservative. It would be beneficial to be able to remember | 
|  | // both potential memory locations.  Since we are discarding | 
|  | // src value info, don't do the transformation if the memory | 
|  | // locations are not in the default address space. | 
|  | LLD->getPointerInfo().getAddrSpace() != 0 || | 
|  | RLD->getPointerInfo().getAddrSpace() != 0 || | 
|  | // We can't produce a CMOV of a TargetFrameIndex since we won't | 
|  | // generate the address generation required. | 
|  | LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || | 
|  | RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || | 
|  | !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), | 
|  | LLD->getBasePtr().getValueType())) | 
|  | return false; | 
|  |  | 
|  | // The loads must not depend on one another. | 
|  | if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) | 
|  | return false; | 
|  |  | 
|  | // Check that the select condition doesn't reach either load.  If so, | 
|  | // folding this will induce a cycle into the DAG.  If not, this is safe to | 
|  | // xform, so create a select of the addresses. | 
|  |  | 
|  | SmallPtrSet<const SDNode *, 32> Visited; | 
|  | SmallVector<const SDNode *, 16> Worklist; | 
|  |  | 
|  | // Always fail if LLD and RLD are not independent. TheSelect is a | 
|  | // predecessor to all Nodes in question so we need not search past it. | 
|  |  | 
|  | Visited.insert(TheSelect); | 
|  | Worklist.push_back(LLD); | 
|  | Worklist.push_back(RLD); | 
|  |  | 
|  | if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || | 
|  | SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) | 
|  | return false; | 
|  |  | 
|  | SDValue Addr; | 
|  | if (TheSelect->getOpcode() == ISD::SELECT) { | 
|  | // We cannot do this optimization if any pair of {RLD, LLD} is a | 
|  | // predecessor to {RLD, LLD, CondNode}. As we've already compared the | 
|  | // Loads, we only need to check if CondNode is a successor to one of the | 
|  | // loads. We can further avoid this if there's no use of their chain | 
|  | // value. | 
|  | SDNode *CondNode = TheSelect->getOperand(0).getNode(); | 
|  | Worklist.push_back(CondNode); | 
|  |  | 
|  | if ((LLD->hasAnyUseOfValue(1) && | 
|  | SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || | 
|  | (RLD->hasAnyUseOfValue(1) && | 
|  | SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) | 
|  | return false; | 
|  |  | 
|  | Addr = DAG.getSelect(SDLoc(TheSelect), | 
|  | LLD->getBasePtr().getValueType(), | 
|  | TheSelect->getOperand(0), LLD->getBasePtr(), | 
|  | RLD->getBasePtr()); | 
|  | } else {  // Otherwise SELECT_CC | 
|  | // We cannot do this optimization if any pair of {RLD, LLD} is a | 
|  | // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared | 
|  | // the Loads, we only need to check if CondLHS/CondRHS is a successor to | 
|  | // one of the loads. We can further avoid this if there's no use of their | 
|  | // chain value. | 
|  |  | 
|  | SDNode *CondLHS = TheSelect->getOperand(0).getNode(); | 
|  | SDNode *CondRHS = TheSelect->getOperand(1).getNode(); | 
|  | Worklist.push_back(CondLHS); | 
|  | Worklist.push_back(CondRHS); | 
|  |  | 
|  | if ((LLD->hasAnyUseOfValue(1) && | 
|  | SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || | 
|  | (RLD->hasAnyUseOfValue(1) && | 
|  | SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) | 
|  | return false; | 
|  |  | 
|  | Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), | 
|  | LLD->getBasePtr().getValueType(), | 
|  | TheSelect->getOperand(0), | 
|  | TheSelect->getOperand(1), | 
|  | LLD->getBasePtr(), RLD->getBasePtr(), | 
|  | TheSelect->getOperand(4)); | 
|  | } | 
|  |  | 
|  | SDValue Load; | 
|  | // It is safe to replace the two loads if they have different alignments, | 
|  | // but the new load must be the minimum (most restrictive) alignment of the | 
|  | // inputs. | 
|  | unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); | 
|  | MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); | 
|  | if (!RLD->isInvariant()) | 
|  | MMOFlags &= ~MachineMemOperand::MOInvariant; | 
|  | if (!RLD->isDereferenceable()) | 
|  | MMOFlags &= ~MachineMemOperand::MODereferenceable; | 
|  | if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { | 
|  | // FIXME: Discards pointer and AA info. | 
|  | Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), | 
|  | LLD->getChain(), Addr, MachinePointerInfo(), Alignment, | 
|  | MMOFlags); | 
|  | } else { | 
|  | // FIXME: Discards pointer and AA info. | 
|  | Load = DAG.getExtLoad( | 
|  | LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() | 
|  | : LLD->getExtensionType(), | 
|  | SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, | 
|  | MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); | 
|  | } | 
|  |  | 
|  | // Users of the select now use the result of the load. | 
|  | CombineTo(TheSelect, Load); | 
|  |  | 
|  | // Users of the old loads now use the new load's chain.  We know the | 
|  | // old-load value is dead now. | 
|  | CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); | 
|  | CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and | 
|  | /// bitwise 'and'. | 
|  | SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, | 
|  | SDValue N1, SDValue N2, SDValue N3, | 
|  | ISD::CondCode CC) { | 
|  | // If this is a select where the false operand is zero and the compare is a | 
|  | // check of the sign bit, see if we can perform the "gzip trick": | 
|  | // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A | 
|  | // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A | 
|  | EVT XType = N0.getValueType(); | 
|  | EVT AType = N2.getValueType(); | 
|  | if (!isNullConstant(N3) || !XType.bitsGE(AType)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the comparison is testing for a positive value, we have to invert | 
|  | // the sign bit mask, so only do that transform if the target has a bitwise | 
|  | // 'and not' instruction (the invert is free). | 
|  | if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { | 
|  | // (X > -1) ? A : 0 | 
|  | // (X >  0) ? X : 0 <-- This is canonical signed max. | 
|  | if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) | 
|  | return SDValue(); | 
|  | } else if (CC == ISD::SETLT) { | 
|  | // (X <  0) ? A : 0 | 
|  | // (X <  1) ? X : 0 <-- This is un-canonicalized signed min. | 
|  | if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) | 
|  | return SDValue(); | 
|  | } else { | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit | 
|  | // constant. | 
|  | EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); | 
|  | auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); | 
|  | if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { | 
|  | unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; | 
|  | SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); | 
|  | SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); | 
|  | AddToWorklist(Shift.getNode()); | 
|  |  | 
|  | if (XType.bitsGT(AType)) { | 
|  | Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); | 
|  | AddToWorklist(Shift.getNode()); | 
|  | } | 
|  |  | 
|  | if (CC == ISD::SETGT) | 
|  | Shift = DAG.getNOT(DL, Shift, AType); | 
|  |  | 
|  | return DAG.getNode(ISD::AND, DL, AType, Shift, N2); | 
|  | } | 
|  |  | 
|  | SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy); | 
|  | SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); | 
|  | AddToWorklist(Shift.getNode()); | 
|  |  | 
|  | if (XType.bitsGT(AType)) { | 
|  | Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); | 
|  | AddToWorklist(Shift.getNode()); | 
|  | } | 
|  |  | 
|  | if (CC == ISD::SETGT) | 
|  | Shift = DAG.getNOT(DL, Shift, AType); | 
|  |  | 
|  | return DAG.getNode(ISD::AND, DL, AType, Shift, N2); | 
|  | } | 
|  |  | 
|  | /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" | 
|  | /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 | 
|  | /// in it. This may be a win when the constant is not otherwise available | 
|  | /// because it replaces two constant pool loads with one. | 
|  | SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( | 
|  | const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, | 
|  | ISD::CondCode CC) { | 
|  | if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType().isFloatingPoint())) | 
|  | return SDValue(); | 
|  |  | 
|  | // If we are before legalize types, we want the other legalization to happen | 
|  | // first (for example, to avoid messing with soft float). | 
|  | auto *TV = dyn_cast<ConstantFPSDNode>(N2); | 
|  | auto *FV = dyn_cast<ConstantFPSDNode>(N3); | 
|  | EVT VT = N2.getValueType(); | 
|  | if (!TV || !FV || !TLI.isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If a constant can be materialized without loads, this does not make sense. | 
|  | if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || | 
|  | TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || | 
|  | TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If both constants have multiple uses, then we won't need to do an extra | 
|  | // load. The values are likely around in registers for other users. | 
|  | if (!TV->hasOneUse() && !FV->hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), | 
|  | const_cast<ConstantFP*>(TV->getConstantFPValue()) }; | 
|  | Type *FPTy = Elts[0]->getType(); | 
|  | const DataLayout &TD = DAG.getDataLayout(); | 
|  |  | 
|  | // Create a ConstantArray of the two constants. | 
|  | Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); | 
|  | SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), | 
|  | TD.getPrefTypeAlignment(FPTy)); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  |  | 
|  | // Get offsets to the 0 and 1 elements of the array, so we can select between | 
|  | // them. | 
|  | SDValue Zero = DAG.getIntPtrConstant(0, DL); | 
|  | unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); | 
|  | SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); | 
|  | SDValue Cond = | 
|  | DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); | 
|  | AddToWorklist(Cond.getNode()); | 
|  | SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); | 
|  | AddToWorklist(CstOffset.getNode()); | 
|  | CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); | 
|  | AddToWorklist(CPIdx.getNode()); | 
|  | return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool( | 
|  | DAG.getMachineFunction()), Alignment); | 
|  | } | 
|  |  | 
|  | /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 | 
|  | /// where 'cond' is the comparison specified by CC. | 
|  | SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, | 
|  | SDValue N2, SDValue N3, ISD::CondCode CC, | 
|  | bool NotExtCompare) { | 
|  | // (x ? y : y) -> y. | 
|  | if (N2 == N3) return N2; | 
|  |  | 
|  | EVT CmpOpVT = N0.getValueType(); | 
|  | EVT CmpResVT = getSetCCResultType(CmpOpVT); | 
|  | EVT VT = N2.getValueType(); | 
|  | auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); | 
|  | auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); | 
|  | auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); | 
|  |  | 
|  | // Determine if the condition we're dealing with is constant. | 
|  | if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { | 
|  | AddToWorklist(SCC.getNode()); | 
|  | if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { | 
|  | // fold select_cc true, x, y -> x | 
|  | // fold select_cc false, x, y -> y | 
|  | return !(SCCC->isNullValue()) ? N2 : N3; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue V = | 
|  | convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) | 
|  | return V; | 
|  |  | 
|  | if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) | 
|  | return V; | 
|  |  | 
|  | // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) | 
|  | // where y is has a single bit set. | 
|  | // A plaintext description would be, we can turn the SELECT_CC into an AND | 
|  | // when the condition can be materialized as an all-ones register.  Any | 
|  | // single bit-test can be materialized as an all-ones register with | 
|  | // shift-left and shift-right-arith. | 
|  | if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && | 
|  | N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { | 
|  | SDValue AndLHS = N0->getOperand(0); | 
|  | auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); | 
|  | if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { | 
|  | // Shift the tested bit over the sign bit. | 
|  | const APInt &AndMask = ConstAndRHS->getAPIntValue(); | 
|  | SDValue ShlAmt = | 
|  | DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), | 
|  | getShiftAmountTy(AndLHS.getValueType())); | 
|  | SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); | 
|  |  | 
|  | // Now arithmetic right shift it all the way over, so the result is either | 
|  | // all-ones, or zero. | 
|  | SDValue ShrAmt = | 
|  | DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), | 
|  | getShiftAmountTy(Shl.getValueType())); | 
|  | SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); | 
|  |  | 
|  | return DAG.getNode(ISD::AND, DL, VT, Shr, N3); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold select C, 16, 0 -> shl C, 4 | 
|  | bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); | 
|  | bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); | 
|  |  | 
|  | if ((Fold || Swap) && | 
|  | TLI.getBooleanContents(CmpOpVT) == | 
|  | TargetLowering::ZeroOrOneBooleanContent && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { | 
|  |  | 
|  | if (Swap) { | 
|  | CC = ISD::getSetCCInverse(CC, CmpOpVT.isInteger()); | 
|  | std::swap(N2C, N3C); | 
|  | } | 
|  |  | 
|  | // If the caller doesn't want us to simplify this into a zext of a compare, | 
|  | // don't do it. | 
|  | if (NotExtCompare && N2C->isOne()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Temp, SCC; | 
|  | // zext (setcc n0, n1) | 
|  | if (LegalTypes) { | 
|  | SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); | 
|  | if (VT.bitsLT(SCC.getValueType())) | 
|  | Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); | 
|  | else | 
|  | Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); | 
|  | } else { | 
|  | SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); | 
|  | Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); | 
|  | } | 
|  |  | 
|  | AddToWorklist(SCC.getNode()); | 
|  | AddToWorklist(Temp.getNode()); | 
|  |  | 
|  | if (N2C->isOne()) | 
|  | return Temp; | 
|  |  | 
|  | // shl setcc result by log2 n2c | 
|  | return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, | 
|  | DAG.getConstant(N2C->getAPIntValue().logBase2(), | 
|  | SDLoc(Temp), | 
|  | getShiftAmountTy(Temp.getValueType()))); | 
|  | } | 
|  |  | 
|  | // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) | 
|  | // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) | 
|  | // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) | 
|  | // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) | 
|  | // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) | 
|  | // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) | 
|  | // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) | 
|  | // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) | 
|  | if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  | SDValue ValueOnZero = N2; | 
|  | SDValue Count = N3; | 
|  | // If the condition is NE instead of E, swap the operands. | 
|  | if (CC == ISD::SETNE) | 
|  | std::swap(ValueOnZero, Count); | 
|  | // Check if the value on zero is a constant equal to the bits in the type. | 
|  | if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { | 
|  | if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { | 
|  | // If the other operand is cttz/cttz_zero_undef of N0, and cttz is | 
|  | // legal, combine to just cttz. | 
|  | if ((Count.getOpcode() == ISD::CTTZ || | 
|  | Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && | 
|  | N0 == Count.getOperand(0) && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) | 
|  | return DAG.getNode(ISD::CTTZ, DL, VT, N0); | 
|  | // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is | 
|  | // legal, combine to just ctlz. | 
|  | if ((Count.getOpcode() == ISD::CTLZ || | 
|  | Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && | 
|  | N0 == Count.getOperand(0) && | 
|  | (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) | 
|  | return DAG.getNode(ISD::CTLZ, DL, VT, N0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// This is a stub for TargetLowering::SimplifySetCC. | 
|  | SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, | 
|  | ISD::CondCode Cond, const SDLoc &DL, | 
|  | bool foldBooleans) { | 
|  | TargetLowering::DAGCombinerInfo | 
|  | DagCombineInfo(DAG, Level, false, this); | 
|  | return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); | 
|  | } | 
|  |  | 
|  | /// Given an ISD::SDIV node expressing a divide by constant, return | 
|  | /// a DAG expression to select that will generate the same value by multiplying | 
|  | /// by a magic number. | 
|  | /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". | 
|  | SDValue DAGCombiner::BuildSDIV(SDNode *N) { | 
|  | // when optimising for minimum size, we don't want to expand a div to a mul | 
|  | // and a shift. | 
|  | if (DAG.getMachineFunction().getFunction().hasMinSize()) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<SDNode *, 8> Built; | 
|  | if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { | 
|  | for (SDNode *N : Built) | 
|  | AddToWorklist(N); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a | 
|  | /// DAG expression that will generate the same value by right shifting. | 
|  | SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { | 
|  | ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); | 
|  | if (!C) | 
|  | return SDValue(); | 
|  |  | 
|  | // Avoid division by zero. | 
|  | if (C->isNullValue()) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<SDNode *, 8> Built; | 
|  | if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { | 
|  | for (SDNode *N : Built) | 
|  | AddToWorklist(N); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Given an ISD::UDIV node expressing a divide by constant, return a DAG | 
|  | /// expression that will generate the same value by multiplying by a magic | 
|  | /// number. | 
|  | /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". | 
|  | SDValue DAGCombiner::BuildUDIV(SDNode *N) { | 
|  | // when optimising for minimum size, we don't want to expand a div to a mul | 
|  | // and a shift. | 
|  | if (DAG.getMachineFunction().getFunction().hasMinSize()) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<SDNode *, 8> Built; | 
|  | if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { | 
|  | for (SDNode *N : Built) | 
|  | AddToWorklist(N); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Determines the LogBase2 value for a non-null input value using the | 
|  | /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). | 
|  | SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { | 
|  | EVT VT = V.getValueType(); | 
|  | unsigned EltBits = VT.getScalarSizeInBits(); | 
|  | SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); | 
|  | SDValue Base = DAG.getConstant(EltBits - 1, DL, VT); | 
|  | SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); | 
|  | return LogBase2; | 
|  | } | 
|  |  | 
|  | /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) | 
|  | /// For the reciprocal, we need to find the zero of the function: | 
|  | ///   F(X) = A X - 1 [which has a zero at X = 1/A] | 
|  | ///     => | 
|  | ///   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form | 
|  | ///     does not require additional intermediate precision] | 
|  | SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags) { | 
|  | if (Level >= AfterLegalizeDAG) | 
|  | return SDValue(); | 
|  |  | 
|  | // TODO: Handle half and/or extended types? | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) | 
|  | return SDValue(); | 
|  |  | 
|  | // If estimates are explicitly disabled for this function, we're done. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); | 
|  | if (Enabled == TLI.ReciprocalEstimate::Disabled) | 
|  | return SDValue(); | 
|  |  | 
|  | // Estimates may be explicitly enabled for this type with a custom number of | 
|  | // refinement steps. | 
|  | int Iterations = TLI.getDivRefinementSteps(VT, MF); | 
|  | if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { | 
|  | AddToWorklist(Est.getNode()); | 
|  |  | 
|  | if (Iterations) { | 
|  | SDLoc DL(Op); | 
|  | SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); | 
|  |  | 
|  | // Newton iterations: Est = Est + Est (1 - Arg * Est) | 
|  | for (int i = 0; i < Iterations; ++i) { | 
|  | SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); | 
|  | AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); | 
|  | AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); | 
|  | AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); | 
|  | AddToWorklist(Est.getNode()); | 
|  | } | 
|  | } | 
|  | return Est; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) | 
|  | /// For the reciprocal sqrt, we need to find the zero of the function: | 
|  | ///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] | 
|  | ///     => | 
|  | ///   X_{i+1} = X_i (1.5 - A X_i^2 / 2) | 
|  | /// As a result, we precompute A/2 prior to the iteration loop. | 
|  | SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, | 
|  | unsigned Iterations, | 
|  | SDNodeFlags Flags, bool Reciprocal) { | 
|  | EVT VT = Arg.getValueType(); | 
|  | SDLoc DL(Arg); | 
|  | SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); | 
|  |  | 
|  | // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that | 
|  | // this entire sequence requires only one FP constant. | 
|  | SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); | 
|  | AddToWorklist(HalfArg.getNode()); | 
|  |  | 
|  | HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); | 
|  | AddToWorklist(HalfArg.getNode()); | 
|  |  | 
|  | // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) | 
|  | for (unsigned i = 0; i < Iterations; ++i) { | 
|  | SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); | 
|  | AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); | 
|  | AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); | 
|  | AddToWorklist(NewEst.getNode()); | 
|  |  | 
|  | Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); | 
|  | AddToWorklist(Est.getNode()); | 
|  | } | 
|  |  | 
|  | // If non-reciprocal square root is requested, multiply the result by Arg. | 
|  | if (!Reciprocal) { | 
|  | Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); | 
|  | AddToWorklist(Est.getNode()); | 
|  | } | 
|  |  | 
|  | return Est; | 
|  | } | 
|  |  | 
|  | /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) | 
|  | /// For the reciprocal sqrt, we need to find the zero of the function: | 
|  | ///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] | 
|  | ///     => | 
|  | ///   X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) | 
|  | SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, | 
|  | unsigned Iterations, | 
|  | SDNodeFlags Flags, bool Reciprocal) { | 
|  | EVT VT = Arg.getValueType(); | 
|  | SDLoc DL(Arg); | 
|  | SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); | 
|  | SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); | 
|  |  | 
|  | // This routine must enter the loop below to work correctly | 
|  | // when (Reciprocal == false). | 
|  | assert(Iterations > 0); | 
|  |  | 
|  | // Newton iterations for reciprocal square root: | 
|  | // E = (E * -0.5) * ((A * E) * E + -3.0) | 
|  | for (unsigned i = 0; i < Iterations; ++i) { | 
|  | SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); | 
|  | AddToWorklist(AE.getNode()); | 
|  |  | 
|  | SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); | 
|  | AddToWorklist(AEE.getNode()); | 
|  |  | 
|  | SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); | 
|  | AddToWorklist(RHS.getNode()); | 
|  |  | 
|  | // When calculating a square root at the last iteration build: | 
|  | // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) | 
|  | // (notice a common subexpression) | 
|  | SDValue LHS; | 
|  | if (Reciprocal || (i + 1) < Iterations) { | 
|  | // RSQRT: LHS = (E * -0.5) | 
|  | LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); | 
|  | } else { | 
|  | // SQRT: LHS = (A * E) * -0.5 | 
|  | LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); | 
|  | } | 
|  | AddToWorklist(LHS.getNode()); | 
|  |  | 
|  | Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); | 
|  | AddToWorklist(Est.getNode()); | 
|  | } | 
|  |  | 
|  | return Est; | 
|  | } | 
|  |  | 
|  | /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case | 
|  | /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if | 
|  | /// Op can be zero. | 
|  | SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, | 
|  | bool Reciprocal) { | 
|  | if (Level >= AfterLegalizeDAG) | 
|  | return SDValue(); | 
|  |  | 
|  | // TODO: Handle half and/or extended types? | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) | 
|  | return SDValue(); | 
|  |  | 
|  | // If estimates are explicitly disabled for this function, we're done. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); | 
|  | if (Enabled == TLI.ReciprocalEstimate::Disabled) | 
|  | return SDValue(); | 
|  |  | 
|  | // Estimates may be explicitly enabled for this type with a custom number of | 
|  | // refinement steps. | 
|  | int Iterations = TLI.getSqrtRefinementSteps(VT, MF); | 
|  |  | 
|  | bool UseOneConstNR = false; | 
|  | if (SDValue Est = | 
|  | TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, | 
|  | Reciprocal)) { | 
|  | AddToWorklist(Est.getNode()); | 
|  |  | 
|  | if (Iterations) { | 
|  | Est = UseOneConstNR | 
|  | ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) | 
|  | : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); | 
|  |  | 
|  | if (!Reciprocal) { | 
|  | // The estimate is now completely wrong if the input was exactly 0.0 or | 
|  | // possibly a denormal. Force the answer to 0.0 for those cases. | 
|  | SDLoc DL(Op); | 
|  | EVT CCVT = getSetCCResultType(VT); | 
|  | ISD::NodeType SelOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT; | 
|  | const Function &F = DAG.getMachineFunction().getFunction(); | 
|  | Attribute Denorms = F.getFnAttribute("denormal-fp-math"); | 
|  | if (Denorms.getValueAsString().equals("ieee")) { | 
|  | // fabs(X) < SmallestNormal ? 0.0 : Est | 
|  | const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); | 
|  | APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); | 
|  | SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); | 
|  | SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); | 
|  | SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); | 
|  | SDValue IsDenorm = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); | 
|  | Est = DAG.getNode(SelOpcode, DL, VT, IsDenorm, FPZero, Est); | 
|  | AddToWorklist(Fabs.getNode()); | 
|  | AddToWorklist(IsDenorm.getNode()); | 
|  | AddToWorklist(Est.getNode()); | 
|  | } else { | 
|  | // X == 0.0 ? 0.0 : Est | 
|  | SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); | 
|  | SDValue IsZero = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); | 
|  | Est = DAG.getNode(SelOpcode, DL, VT, IsZero, FPZero, Est); | 
|  | AddToWorklist(IsZero.getNode()); | 
|  | AddToWorklist(Est.getNode()); | 
|  | } | 
|  | } | 
|  | } | 
|  | return Est; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { | 
|  | return buildSqrtEstimateImpl(Op, Flags, true); | 
|  | } | 
|  |  | 
|  | SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { | 
|  | return buildSqrtEstimateImpl(Op, Flags, false); | 
|  | } | 
|  |  | 
|  | /// Return true if there is any possibility that the two addresses overlap. | 
|  | bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const { | 
|  |  | 
|  | struct MemUseCharacteristics { | 
|  | bool IsVolatile; | 
|  | SDValue BasePtr; | 
|  | int64_t Offset; | 
|  | Optional<int64_t> NumBytes; | 
|  | MachineMemOperand *MMO; | 
|  | }; | 
|  |  | 
|  | auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { | 
|  | if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { | 
|  | int64_t Offset = 0; | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) | 
|  | Offset = (LSN->getAddressingMode() == ISD::PRE_INC) | 
|  | ? C->getSExtValue() | 
|  | : (LSN->getAddressingMode() == ISD::PRE_DEC) | 
|  | ? -1 * C->getSExtValue() | 
|  | : 0; | 
|  | return {LSN->isVolatile(), LSN->getBasePtr(), Offset /*base offset*/, | 
|  | Optional<int64_t>(LSN->getMemoryVT().getStoreSize()), | 
|  | LSN->getMemOperand()}; | 
|  | } | 
|  | if (const auto *LN = cast<LifetimeSDNode>(N)) | 
|  | return {false /*isVolatile*/, LN->getOperand(1), | 
|  | (LN->hasOffset()) ? LN->getOffset() : 0, | 
|  | (LN->hasOffset()) ? Optional<int64_t>(LN->getSize()) | 
|  | : Optional<int64_t>(), | 
|  | (MachineMemOperand *)nullptr}; | 
|  | // Default. | 
|  | return {false /*isvolatile*/, SDValue(), (int64_t)0 /*offset*/, | 
|  | Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr}; | 
|  | }; | 
|  |  | 
|  | MemUseCharacteristics MUC0 = getCharacteristics(Op0), | 
|  | MUC1 = getCharacteristics(Op1); | 
|  |  | 
|  | // If they are to the same address, then they must be aliases. | 
|  | if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && | 
|  | MUC0.Offset == MUC1.Offset) | 
|  | return true; | 
|  |  | 
|  | // If they are both volatile then they cannot be reordered. | 
|  | if (MUC0.IsVolatile && MUC1.IsVolatile) | 
|  | return true; | 
|  |  | 
|  | if (MUC0.MMO && MUC1.MMO) { | 
|  | if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || | 
|  | (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Try to prove that there is aliasing, or that there is no aliasing. Either | 
|  | // way, we can return now. If nothing can be proved, proceed with more tests. | 
|  | bool IsAlias; | 
|  | if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, | 
|  | DAG, IsAlias)) | 
|  | return IsAlias; | 
|  |  | 
|  | // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if | 
|  | // either are not known. | 
|  | if (!MUC0.MMO || !MUC1.MMO) | 
|  | return true; | 
|  |  | 
|  | // If one operation reads from invariant memory, and the other may store, they | 
|  | // cannot alias. These should really be checking the equivalent of mayWrite, | 
|  | // but it only matters for memory nodes other than load /store. | 
|  | if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || | 
|  | (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) | 
|  | return false; | 
|  |  | 
|  | // If we know required SrcValue1 and SrcValue2 have relatively large | 
|  | // alignment compared to the size and offset of the access, we may be able | 
|  | // to prove they do not alias. This check is conservative for now to catch | 
|  | // cases created by splitting vector types. | 
|  | int64_t SrcValOffset0 = MUC0.MMO->getOffset(); | 
|  | int64_t SrcValOffset1 = MUC1.MMO->getOffset(); | 
|  | unsigned OrigAlignment0 = MUC0.MMO->getBaseAlignment(); | 
|  | unsigned OrigAlignment1 = MUC1.MMO->getBaseAlignment(); | 
|  | if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && | 
|  | MUC0.NumBytes.hasValue() && MUC1.NumBytes.hasValue() && | 
|  | *MUC0.NumBytes == *MUC1.NumBytes && OrigAlignment0 > *MUC0.NumBytes) { | 
|  | int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0; | 
|  | int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1; | 
|  |  | 
|  | // There is no overlap between these relatively aligned accesses of | 
|  | // similar size. Return no alias. | 
|  | if ((OffAlign0 + *MUC0.NumBytes) <= OffAlign1 || | 
|  | (OffAlign1 + *MUC1.NumBytes) <= OffAlign0) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 | 
|  | ? CombinerGlobalAA | 
|  | : DAG.getSubtarget().useAA(); | 
|  | #ifndef NDEBUG | 
|  | if (CombinerAAOnlyFunc.getNumOccurrences() && | 
|  | CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) | 
|  | UseAA = false; | 
|  | #endif | 
|  |  | 
|  | if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue()) { | 
|  | // Use alias analysis information. | 
|  | int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); | 
|  | int64_t Overlap0 = *MUC0.NumBytes + SrcValOffset0 - MinOffset; | 
|  | int64_t Overlap1 = *MUC1.NumBytes + SrcValOffset1 - MinOffset; | 
|  | AliasResult AAResult = AA->alias( | 
|  | MemoryLocation(MUC0.MMO->getValue(), Overlap0, | 
|  | UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), | 
|  | MemoryLocation(MUC1.MMO->getValue(), Overlap1, | 
|  | UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes())); | 
|  | if (AAResult == NoAlias) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise we have to assume they alias. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Walk up chain skipping non-aliasing memory nodes, | 
|  | /// looking for aliasing nodes and adding them to the Aliases vector. | 
|  | void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, | 
|  | SmallVectorImpl<SDValue> &Aliases) { | 
|  | SmallVector<SDValue, 8> Chains;     // List of chains to visit. | 
|  | SmallPtrSet<SDNode *, 16> Visited;  // Visited node set. | 
|  |  | 
|  | // Get alias information for node. | 
|  | const bool IsLoad = isa<LoadSDNode>(N) && !cast<LoadSDNode>(N)->isVolatile(); | 
|  |  | 
|  | // Starting off. | 
|  | Chains.push_back(OriginalChain); | 
|  | unsigned Depth = 0; | 
|  |  | 
|  | // Attempt to improve chain by a single step | 
|  | std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool { | 
|  | switch (C.getOpcode()) { | 
|  | case ISD::EntryToken: | 
|  | // No need to mark EntryToken. | 
|  | C = SDValue(); | 
|  | return true; | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: { | 
|  | // Get alias information for C. | 
|  | bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && | 
|  | !cast<LSBaseSDNode>(C.getNode())->isVolatile(); | 
|  | if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) { | 
|  | // Look further up the chain. | 
|  | C = C.getOperand(0); | 
|  | return true; | 
|  | } | 
|  | // Alias, so stop here. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case ISD::CopyFromReg: | 
|  | // Always forward past past CopyFromReg. | 
|  | C = C.getOperand(0); | 
|  | return true; | 
|  |  | 
|  | case ISD::LIFETIME_START: | 
|  | case ISD::LIFETIME_END: { | 
|  | // We can forward past any lifetime start/end that can be proven not to | 
|  | // alias the memory access. | 
|  | if (!isAlias(N, C.getNode())) { | 
|  | // Look further up the chain. | 
|  | C = C.getOperand(0); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Look at each chain and determine if it is an alias.  If so, add it to the | 
|  | // aliases list.  If not, then continue up the chain looking for the next | 
|  | // candidate. | 
|  | while (!Chains.empty()) { | 
|  | SDValue Chain = Chains.pop_back_val(); | 
|  |  | 
|  | // Don't bother if we've seen Chain before. | 
|  | if (!Visited.insert(Chain.getNode()).second) | 
|  | continue; | 
|  |  | 
|  | // For TokenFactor nodes, look at each operand and only continue up the | 
|  | // chain until we reach the depth limit. | 
|  | // | 
|  | // FIXME: The depth check could be made to return the last non-aliasing | 
|  | // chain we found before we hit a tokenfactor rather than the original | 
|  | // chain. | 
|  | if (Depth > TLI.getGatherAllAliasesMaxDepth()) { | 
|  | Aliases.clear(); | 
|  | Aliases.push_back(OriginalChain); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Chain.getOpcode() == ISD::TokenFactor) { | 
|  | // We have to check each of the operands of the token factor for "small" | 
|  | // token factors, so we queue them up.  Adding the operands to the queue | 
|  | // (stack) in reverse order maintains the original order and increases the | 
|  | // likelihood that getNode will find a matching token factor (CSE.) | 
|  | if (Chain.getNumOperands() > 16) { | 
|  | Aliases.push_back(Chain); | 
|  | continue; | 
|  | } | 
|  | for (unsigned n = Chain.getNumOperands(); n;) | 
|  | Chains.push_back(Chain.getOperand(--n)); | 
|  | ++Depth; | 
|  | continue; | 
|  | } | 
|  | // Everything else | 
|  | if (ImproveChain(Chain)) { | 
|  | // Updated Chain Found, Consider new chain if one exists. | 
|  | if (Chain.getNode()) | 
|  | Chains.push_back(Chain); | 
|  | ++Depth; | 
|  | continue; | 
|  | } | 
|  | // No Improved Chain Possible, treat as Alias. | 
|  | Aliases.push_back(Chain); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain | 
|  | /// (aliasing node.) | 
|  | SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { | 
|  | if (OptLevel == CodeGenOpt::None) | 
|  | return OldChain; | 
|  |  | 
|  | // Ops for replacing token factor. | 
|  | SmallVector<SDValue, 8> Aliases; | 
|  |  | 
|  | // Accumulate all the aliases to this node. | 
|  | GatherAllAliases(N, OldChain, Aliases); | 
|  |  | 
|  | // If no operands then chain to entry token. | 
|  | if (Aliases.size() == 0) | 
|  | return DAG.getEntryNode(); | 
|  |  | 
|  | // If a single operand then chain to it.  We don't need to revisit it. | 
|  | if (Aliases.size() == 1) | 
|  | return Aliases[0]; | 
|  |  | 
|  | // Construct a custom tailored token factor. | 
|  | return DAG.getTokenFactor(SDLoc(N), Aliases); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // TODO: Replace with with std::monostate when we move to C++17. | 
|  | struct UnitT { } Unit; | 
|  | bool operator==(const UnitT &, const UnitT &) { return true; } | 
|  | bool operator!=(const UnitT &, const UnitT &) { return false; } | 
|  | } // namespace | 
|  |  | 
|  | // This function tries to collect a bunch of potentially interesting | 
|  | // nodes to improve the chains of, all at once. This might seem | 
|  | // redundant, as this function gets called when visiting every store | 
|  | // node, so why not let the work be done on each store as it's visited? | 
|  | // | 
|  | // I believe this is mainly important because MergeConsecutiveStores | 
|  | // is unable to deal with merging stores of different sizes, so unless | 
|  | // we improve the chains of all the potential candidates up-front | 
|  | // before running MergeConsecutiveStores, it might only see some of | 
|  | // the nodes that will eventually be candidates, and then not be able | 
|  | // to go from a partially-merged state to the desired final | 
|  | // fully-merged state. | 
|  |  | 
|  | bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { | 
|  | SmallVector<StoreSDNode *, 8> ChainedStores; | 
|  | StoreSDNode *STChain = St; | 
|  | // Intervals records which offsets from BaseIndex have been covered. In | 
|  | // the common case, every store writes to the immediately previous address | 
|  | // space and thus merged with the previous interval at insertion time. | 
|  |  | 
|  | using IMap = | 
|  | llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>; | 
|  | IMap::Allocator A; | 
|  | IMap Intervals(A); | 
|  |  | 
|  | // This holds the base pointer, index, and the offset in bytes from the base | 
|  | // pointer. | 
|  | const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); | 
|  |  | 
|  | // We must have a base and an offset. | 
|  | if (!BasePtr.getBase().getNode()) | 
|  | return false; | 
|  |  | 
|  | // Do not handle stores to undef base pointers. | 
|  | if (BasePtr.getBase().isUndef()) | 
|  | return false; | 
|  |  | 
|  | // Add ST's interval. | 
|  | Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit); | 
|  |  | 
|  | while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { | 
|  | // If the chain has more than one use, then we can't reorder the mem ops. | 
|  | if (!SDValue(Chain, 0)->hasOneUse()) | 
|  | break; | 
|  | if (Chain->isVolatile() || Chain->isIndexed()) | 
|  | break; | 
|  |  | 
|  | // Find the base pointer and offset for this memory node. | 
|  | const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); | 
|  | // Check that the base pointer is the same as the original one. | 
|  | int64_t Offset; | 
|  | if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) | 
|  | break; | 
|  | int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; | 
|  | // Make sure we don't overlap with other intervals by checking the ones to | 
|  | // the left or right before inserting. | 
|  | auto I = Intervals.find(Offset); | 
|  | // If there's a next interval, we should end before it. | 
|  | if (I != Intervals.end() && I.start() < (Offset + Length)) | 
|  | break; | 
|  | // If there's a previous interval, we should start after it. | 
|  | if (I != Intervals.begin() && (--I).stop() <= Offset) | 
|  | break; | 
|  | Intervals.insert(Offset, Offset + Length, Unit); | 
|  |  | 
|  | ChainedStores.push_back(Chain); | 
|  | STChain = Chain; | 
|  | } | 
|  |  | 
|  | // If we didn't find a chained store, exit. | 
|  | if (ChainedStores.size() == 0) | 
|  | return false; | 
|  |  | 
|  | // Improve all chained stores (St and ChainedStores members) starting from | 
|  | // where the store chain ended and return single TokenFactor. | 
|  | SDValue NewChain = STChain->getChain(); | 
|  | SmallVector<SDValue, 8> TFOps; | 
|  | for (unsigned I = ChainedStores.size(); I;) { | 
|  | StoreSDNode *S = ChainedStores[--I]; | 
|  | SDValue BetterChain = FindBetterChain(S, NewChain); | 
|  | S = cast<StoreSDNode>(DAG.UpdateNodeOperands( | 
|  | S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); | 
|  | TFOps.push_back(SDValue(S, 0)); | 
|  | ChainedStores[I] = S; | 
|  | } | 
|  |  | 
|  | // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. | 
|  | SDValue BetterChain = FindBetterChain(St, NewChain); | 
|  | SDValue NewST; | 
|  | if (St->isTruncatingStore()) | 
|  | NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), | 
|  | St->getBasePtr(), St->getMemoryVT(), | 
|  | St->getMemOperand()); | 
|  | else | 
|  | NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), | 
|  | St->getBasePtr(), St->getMemOperand()); | 
|  |  | 
|  | TFOps.push_back(NewST); | 
|  |  | 
|  | // If we improved every element of TFOps, then we've lost the dependence on | 
|  | // NewChain to successors of St and we need to add it back to TFOps. Do so at | 
|  | // the beginning to keep relative order consistent with FindBetterChains. | 
|  | auto hasImprovedChain = [&](SDValue ST) -> bool { | 
|  | return ST->getOperand(0) != NewChain; | 
|  | }; | 
|  | bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); | 
|  | if (AddNewChain) | 
|  | TFOps.insert(TFOps.begin(), NewChain); | 
|  |  | 
|  | SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); | 
|  | CombineTo(St, TF); | 
|  |  | 
|  | AddToWorklist(STChain); | 
|  | // Add TF operands worklist in reverse order. | 
|  | for (auto I = TF->getNumOperands(); I;) | 
|  | AddToWorklist(TF->getOperand(--I).getNode()); | 
|  | AddToWorklist(TF.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { | 
|  | if (OptLevel == CodeGenOpt::None) | 
|  | return false; | 
|  |  | 
|  | const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); | 
|  |  | 
|  | // We must have a base and an offset. | 
|  | if (!BasePtr.getBase().getNode()) | 
|  | return false; | 
|  |  | 
|  | // Do not handle stores to undef base pointers. | 
|  | if (BasePtr.getBase().isUndef()) | 
|  | return false; | 
|  |  | 
|  | // Directly improve a chain of disjoint stores starting at St. | 
|  | if (parallelizeChainedStores(St)) | 
|  | return true; | 
|  |  | 
|  | // Improve St's Chain.. | 
|  | SDValue BetterChain = FindBetterChain(St, St->getChain()); | 
|  | if (St->getChain() != BetterChain) { | 
|  | replaceStoreChain(St, BetterChain); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// This is the entry point for the file. | 
|  | void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | /// This is the main entry point to this class. | 
|  | DAGCombiner(*this, AA, OptLevel).Run(Level); | 
|  | } |