|  | //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // These classes implement wrappers around llvm::Value in order to | 
|  | // fully represent the range of values for C L- and R- values. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H | 
|  | #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H | 
|  |  | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "Address.h" | 
|  | #include "CodeGenTBAA.h" | 
|  |  | 
|  | namespace llvm { | 
|  | class Constant; | 
|  | class MDNode; | 
|  | } | 
|  |  | 
|  | namespace clang { | 
|  | namespace CodeGen { | 
|  | class AggValueSlot; | 
|  | struct CGBitFieldInfo; | 
|  |  | 
|  | /// RValue - This trivial value class is used to represent the result of an | 
|  | /// expression that is evaluated.  It can be one of three things: either a | 
|  | /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the | 
|  | /// address of an aggregate value in memory. | 
|  | class RValue { | 
|  | enum Flavor { Scalar, Complex, Aggregate }; | 
|  |  | 
|  | // The shift to make to an aggregate's alignment to make it look | 
|  | // like a pointer. | 
|  | enum { AggAlignShift = 4 }; | 
|  |  | 
|  | // Stores first value and flavor. | 
|  | llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1; | 
|  | // Stores second value and volatility. | 
|  | llvm::PointerIntPair<llvm::Value *, 1, bool> V2; | 
|  |  | 
|  | public: | 
|  | bool isScalar() const { return V1.getInt() == Scalar; } | 
|  | bool isComplex() const { return V1.getInt() == Complex; } | 
|  | bool isAggregate() const { return V1.getInt() == Aggregate; } | 
|  |  | 
|  | bool isVolatileQualified() const { return V2.getInt(); } | 
|  |  | 
|  | /// getScalarVal() - Return the Value* of this scalar value. | 
|  | llvm::Value *getScalarVal() const { | 
|  | assert(isScalar() && "Not a scalar!"); | 
|  | return V1.getPointer(); | 
|  | } | 
|  |  | 
|  | /// getComplexVal - Return the real/imag components of this complex value. | 
|  | /// | 
|  | std::pair<llvm::Value *, llvm::Value *> getComplexVal() const { | 
|  | return std::make_pair(V1.getPointer(), V2.getPointer()); | 
|  | } | 
|  |  | 
|  | /// getAggregateAddr() - Return the Value* of the address of the aggregate. | 
|  | Address getAggregateAddress() const { | 
|  | assert(isAggregate() && "Not an aggregate!"); | 
|  | auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift; | 
|  | return Address(V1.getPointer(), CharUnits::fromQuantity(align)); | 
|  | } | 
|  | llvm::Value *getAggregatePointer() const { | 
|  | assert(isAggregate() && "Not an aggregate!"); | 
|  | return V1.getPointer(); | 
|  | } | 
|  |  | 
|  | static RValue getIgnored() { | 
|  | // FIXME: should we make this a more explicit state? | 
|  | return get(nullptr); | 
|  | } | 
|  |  | 
|  | static RValue get(llvm::Value *V) { | 
|  | RValue ER; | 
|  | ER.V1.setPointer(V); | 
|  | ER.V1.setInt(Scalar); | 
|  | ER.V2.setInt(false); | 
|  | return ER; | 
|  | } | 
|  | static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { | 
|  | RValue ER; | 
|  | ER.V1.setPointer(V1); | 
|  | ER.V2.setPointer(V2); | 
|  | ER.V1.setInt(Complex); | 
|  | ER.V2.setInt(false); | 
|  | return ER; | 
|  | } | 
|  | static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) { | 
|  | return getComplex(C.first, C.second); | 
|  | } | 
|  | // FIXME: Aggregate rvalues need to retain information about whether they are | 
|  | // volatile or not.  Remove default to find all places that probably get this | 
|  | // wrong. | 
|  | static RValue getAggregate(Address addr, bool isVolatile = false) { | 
|  | RValue ER; | 
|  | ER.V1.setPointer(addr.getPointer()); | 
|  | ER.V1.setInt(Aggregate); | 
|  |  | 
|  | auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity()); | 
|  | ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift)); | 
|  | ER.V2.setInt(isVolatile); | 
|  | return ER; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Does an ARC strong l-value have precise lifetime? | 
|  | enum ARCPreciseLifetime_t { | 
|  | ARCImpreciseLifetime, ARCPreciseLifetime | 
|  | }; | 
|  |  | 
|  | /// The source of the alignment of an l-value; an expression of | 
|  | /// confidence in the alignment actually matching the estimate. | 
|  | enum class AlignmentSource { | 
|  | /// The l-value was an access to a declared entity or something | 
|  | /// equivalently strong, like the address of an array allocated by a | 
|  | /// language runtime. | 
|  | Decl, | 
|  |  | 
|  | /// The l-value was considered opaque, so the alignment was | 
|  | /// determined from a type, but that type was an explicitly-aligned | 
|  | /// typedef. | 
|  | AttributedType, | 
|  |  | 
|  | /// The l-value was considered opaque, so the alignment was | 
|  | /// determined from a type. | 
|  | Type | 
|  | }; | 
|  |  | 
|  | /// Given that the base address has the given alignment source, what's | 
|  | /// our confidence in the alignment of the field? | 
|  | static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) { | 
|  | // For now, we don't distinguish fields of opaque pointers from | 
|  | // top-level declarations, but maybe we should. | 
|  | return AlignmentSource::Decl; | 
|  | } | 
|  |  | 
|  | class LValueBaseInfo { | 
|  | AlignmentSource AlignSource; | 
|  |  | 
|  | public: | 
|  | explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type) | 
|  | : AlignSource(Source) {} | 
|  | AlignmentSource getAlignmentSource() const { return AlignSource; } | 
|  | void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; } | 
|  |  | 
|  | void mergeForCast(const LValueBaseInfo &Info) { | 
|  | setAlignmentSource(Info.getAlignmentSource()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// LValue - This represents an lvalue references.  Because C/C++ allow | 
|  | /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a | 
|  | /// bitrange. | 
|  | class LValue { | 
|  | enum { | 
|  | Simple,       // This is a normal l-value, use getAddress(). | 
|  | VectorElt,    // This is a vector element l-value (V[i]), use getVector* | 
|  | BitField,     // This is a bitfield l-value, use getBitfield*. | 
|  | ExtVectorElt, // This is an extended vector subset, use getExtVectorComp | 
|  | GlobalReg     // This is a register l-value, use getGlobalReg() | 
|  | } LVType; | 
|  |  | 
|  | llvm::Value *V; | 
|  |  | 
|  | union { | 
|  | // Index into a vector subscript: V[i] | 
|  | llvm::Value *VectorIdx; | 
|  |  | 
|  | // ExtVector element subset: V.xyx | 
|  | llvm::Constant *VectorElts; | 
|  |  | 
|  | // BitField start bit and size | 
|  | const CGBitFieldInfo *BitFieldInfo; | 
|  | }; | 
|  |  | 
|  | QualType Type; | 
|  |  | 
|  | // 'const' is unused here | 
|  | Qualifiers Quals; | 
|  |  | 
|  | // The alignment to use when accessing this lvalue.  (For vector elements, | 
|  | // this is the alignment of the whole vector.) | 
|  | unsigned Alignment; | 
|  |  | 
|  | // objective-c's ivar | 
|  | bool Ivar:1; | 
|  |  | 
|  | // objective-c's ivar is an array | 
|  | bool ObjIsArray:1; | 
|  |  | 
|  | // LValue is non-gc'able for any reason, including being a parameter or local | 
|  | // variable. | 
|  | bool NonGC: 1; | 
|  |  | 
|  | // Lvalue is a global reference of an objective-c object | 
|  | bool GlobalObjCRef : 1; | 
|  |  | 
|  | // Lvalue is a thread local reference | 
|  | bool ThreadLocalRef : 1; | 
|  |  | 
|  | // Lvalue has ARC imprecise lifetime.  We store this inverted to try | 
|  | // to make the default bitfield pattern all-zeroes. | 
|  | bool ImpreciseLifetime : 1; | 
|  |  | 
|  | // This flag shows if a nontemporal load/stores should be used when accessing | 
|  | // this lvalue. | 
|  | bool Nontemporal : 1; | 
|  |  | 
|  | LValueBaseInfo BaseInfo; | 
|  | TBAAAccessInfo TBAAInfo; | 
|  |  | 
|  | Expr *BaseIvarExp; | 
|  |  | 
|  | private: | 
|  | void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment, | 
|  | LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { | 
|  | assert((!Alignment.isZero() || Type->isIncompleteType()) && | 
|  | "initializing l-value with zero alignment!"); | 
|  | this->Type = Type; | 
|  | this->Quals = Quals; | 
|  | const unsigned MaxAlign = 1U << 31; | 
|  | this->Alignment = Alignment.getQuantity() <= MaxAlign | 
|  | ? Alignment.getQuantity() | 
|  | : MaxAlign; | 
|  | assert(this->Alignment == Alignment.getQuantity() && | 
|  | "Alignment exceeds allowed max!"); | 
|  | this->BaseInfo = BaseInfo; | 
|  | this->TBAAInfo = TBAAInfo; | 
|  |  | 
|  | // Initialize Objective-C flags. | 
|  | this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; | 
|  | this->ImpreciseLifetime = false; | 
|  | this->Nontemporal = false; | 
|  | this->ThreadLocalRef = false; | 
|  | this->BaseIvarExp = nullptr; | 
|  | } | 
|  |  | 
|  | public: | 
|  | bool isSimple() const { return LVType == Simple; } | 
|  | bool isVectorElt() const { return LVType == VectorElt; } | 
|  | bool isBitField() const { return LVType == BitField; } | 
|  | bool isExtVectorElt() const { return LVType == ExtVectorElt; } | 
|  | bool isGlobalReg() const { return LVType == GlobalReg; } | 
|  |  | 
|  | bool isVolatileQualified() const { return Quals.hasVolatile(); } | 
|  | bool isRestrictQualified() const { return Quals.hasRestrict(); } | 
|  | unsigned getVRQualifiers() const { | 
|  | return Quals.getCVRQualifiers() & ~Qualifiers::Const; | 
|  | } | 
|  |  | 
|  | QualType getType() const { return Type; } | 
|  |  | 
|  | Qualifiers::ObjCLifetime getObjCLifetime() const { | 
|  | return Quals.getObjCLifetime(); | 
|  | } | 
|  |  | 
|  | bool isObjCIvar() const { return Ivar; } | 
|  | void setObjCIvar(bool Value) { Ivar = Value; } | 
|  |  | 
|  | bool isObjCArray() const { return ObjIsArray; } | 
|  | void setObjCArray(bool Value) { ObjIsArray = Value; } | 
|  |  | 
|  | bool isNonGC () const { return NonGC; } | 
|  | void setNonGC(bool Value) { NonGC = Value; } | 
|  |  | 
|  | bool isGlobalObjCRef() const { return GlobalObjCRef; } | 
|  | void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } | 
|  |  | 
|  | bool isThreadLocalRef() const { return ThreadLocalRef; } | 
|  | void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} | 
|  |  | 
|  | ARCPreciseLifetime_t isARCPreciseLifetime() const { | 
|  | return ARCPreciseLifetime_t(!ImpreciseLifetime); | 
|  | } | 
|  | void setARCPreciseLifetime(ARCPreciseLifetime_t value) { | 
|  | ImpreciseLifetime = (value == ARCImpreciseLifetime); | 
|  | } | 
|  | bool isNontemporal() const { return Nontemporal; } | 
|  | void setNontemporal(bool Value) { Nontemporal = Value; } | 
|  |  | 
|  | bool isObjCWeak() const { | 
|  | return Quals.getObjCGCAttr() == Qualifiers::Weak; | 
|  | } | 
|  | bool isObjCStrong() const { | 
|  | return Quals.getObjCGCAttr() == Qualifiers::Strong; | 
|  | } | 
|  |  | 
|  | bool isVolatile() const { | 
|  | return Quals.hasVolatile(); | 
|  | } | 
|  |  | 
|  | Expr *getBaseIvarExp() const { return BaseIvarExp; } | 
|  | void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } | 
|  |  | 
|  | TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; } | 
|  | void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; } | 
|  |  | 
|  | const Qualifiers &getQuals() const { return Quals; } | 
|  | Qualifiers &getQuals() { return Quals; } | 
|  |  | 
|  | LangAS getAddressSpace() const { return Quals.getAddressSpace(); } | 
|  |  | 
|  | CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); } | 
|  | void setAlignment(CharUnits A) { Alignment = A.getQuantity(); } | 
|  |  | 
|  | LValueBaseInfo getBaseInfo() const { return BaseInfo; } | 
|  | void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; } | 
|  |  | 
|  | // simple lvalue | 
|  | llvm::Value *getPointer() const { | 
|  | assert(isSimple()); | 
|  | return V; | 
|  | } | 
|  | Address getAddress() const { return Address(getPointer(), getAlignment()); } | 
|  | void setAddress(Address address) { | 
|  | assert(isSimple()); | 
|  | V = address.getPointer(); | 
|  | Alignment = address.getAlignment().getQuantity(); | 
|  | } | 
|  |  | 
|  | // vector elt lvalue | 
|  | Address getVectorAddress() const { | 
|  | return Address(getVectorPointer(), getAlignment()); | 
|  | } | 
|  | llvm::Value *getVectorPointer() const { assert(isVectorElt()); return V; } | 
|  | llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } | 
|  |  | 
|  | // extended vector elements. | 
|  | Address getExtVectorAddress() const { | 
|  | return Address(getExtVectorPointer(), getAlignment()); | 
|  | } | 
|  | llvm::Value *getExtVectorPointer() const { | 
|  | assert(isExtVectorElt()); | 
|  | return V; | 
|  | } | 
|  | llvm::Constant *getExtVectorElts() const { | 
|  | assert(isExtVectorElt()); | 
|  | return VectorElts; | 
|  | } | 
|  |  | 
|  | // bitfield lvalue | 
|  | Address getBitFieldAddress() const { | 
|  | return Address(getBitFieldPointer(), getAlignment()); | 
|  | } | 
|  | llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; } | 
|  | const CGBitFieldInfo &getBitFieldInfo() const { | 
|  | assert(isBitField()); | 
|  | return *BitFieldInfo; | 
|  | } | 
|  |  | 
|  | // global register lvalue | 
|  | llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; } | 
|  |  | 
|  | static LValue MakeAddr(Address address, QualType type, ASTContext &Context, | 
|  | LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { | 
|  | Qualifiers qs = type.getQualifiers(); | 
|  | qs.setObjCGCAttr(Context.getObjCGCAttrKind(type)); | 
|  |  | 
|  | LValue R; | 
|  | R.LVType = Simple; | 
|  | assert(address.getPointer()->getType()->isPointerTy()); | 
|  | R.V = address.getPointer(); | 
|  | R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx, | 
|  | QualType type, LValueBaseInfo BaseInfo, | 
|  | TBAAAccessInfo TBAAInfo) { | 
|  | LValue R; | 
|  | R.LVType = VectorElt; | 
|  | R.V = vecAddress.getPointer(); | 
|  | R.VectorIdx = Idx; | 
|  | R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(), | 
|  | BaseInfo, TBAAInfo); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts, | 
|  | QualType type, LValueBaseInfo BaseInfo, | 
|  | TBAAAccessInfo TBAAInfo) { | 
|  | LValue R; | 
|  | R.LVType = ExtVectorElt; | 
|  | R.V = vecAddress.getPointer(); | 
|  | R.VectorElts = Elts; | 
|  | R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(), | 
|  | BaseInfo, TBAAInfo); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | /// Create a new object to represent a bit-field access. | 
|  | /// | 
|  | /// \param Addr - The base address of the bit-field sequence this | 
|  | /// bit-field refers to. | 
|  | /// \param Info - The information describing how to perform the bit-field | 
|  | /// access. | 
|  | static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info, | 
|  | QualType type, LValueBaseInfo BaseInfo, | 
|  | TBAAAccessInfo TBAAInfo) { | 
|  | LValue R; | 
|  | R.LVType = BitField; | 
|  | R.V = Addr.getPointer(); | 
|  | R.BitFieldInfo = &Info; | 
|  | R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo, | 
|  | TBAAInfo); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | static LValue MakeGlobalReg(Address Reg, QualType type) { | 
|  | LValue R; | 
|  | R.LVType = GlobalReg; | 
|  | R.V = Reg.getPointer(); | 
|  | R.Initialize(type, type.getQualifiers(), Reg.getAlignment(), | 
|  | LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo()); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | RValue asAggregateRValue() const { | 
|  | return RValue::getAggregate(getAddress(), isVolatileQualified()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// An aggregate value slot. | 
|  | class AggValueSlot { | 
|  | /// The address. | 
|  | llvm::Value *Addr; | 
|  |  | 
|  | // Qualifiers | 
|  | Qualifiers Quals; | 
|  |  | 
|  | unsigned Alignment; | 
|  |  | 
|  | /// DestructedFlag - This is set to true if some external code is | 
|  | /// responsible for setting up a destructor for the slot.  Otherwise | 
|  | /// the code which constructs it should push the appropriate cleanup. | 
|  | bool DestructedFlag : 1; | 
|  |  | 
|  | /// ObjCGCFlag - This is set to true if writing to the memory in the | 
|  | /// slot might require calling an appropriate Objective-C GC | 
|  | /// barrier.  The exact interaction here is unnecessarily mysterious. | 
|  | bool ObjCGCFlag : 1; | 
|  |  | 
|  | /// ZeroedFlag - This is set to true if the memory in the slot is | 
|  | /// known to be zero before the assignment into it.  This means that | 
|  | /// zero fields don't need to be set. | 
|  | bool ZeroedFlag : 1; | 
|  |  | 
|  | /// AliasedFlag - This is set to true if the slot might be aliased | 
|  | /// and it's not undefined behavior to access it through such an | 
|  | /// alias.  Note that it's always undefined behavior to access a C++ | 
|  | /// object that's under construction through an alias derived from | 
|  | /// outside the construction process. | 
|  | /// | 
|  | /// This flag controls whether calls that produce the aggregate | 
|  | /// value may be evaluated directly into the slot, or whether they | 
|  | /// must be evaluated into an unaliased temporary and then memcpy'ed | 
|  | /// over.  Since it's invalid in general to memcpy a non-POD C++ | 
|  | /// object, it's important that this flag never be set when | 
|  | /// evaluating an expression which constructs such an object. | 
|  | bool AliasedFlag : 1; | 
|  |  | 
|  | /// This is set to true if the tail padding of this slot might overlap | 
|  | /// another object that may have already been initialized (and whose | 
|  | /// value must be preserved by this initialization). If so, we may only | 
|  | /// store up to the dsize of the type. Otherwise we can widen stores to | 
|  | /// the size of the type. | 
|  | bool OverlapFlag : 1; | 
|  |  | 
|  | public: | 
|  | enum IsAliased_t { IsNotAliased, IsAliased }; | 
|  | enum IsDestructed_t { IsNotDestructed, IsDestructed }; | 
|  | enum IsZeroed_t { IsNotZeroed, IsZeroed }; | 
|  | enum Overlap_t { DoesNotOverlap, MayOverlap }; | 
|  | enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers }; | 
|  |  | 
|  | /// ignored - Returns an aggregate value slot indicating that the | 
|  | /// aggregate value is being ignored. | 
|  | static AggValueSlot ignored() { | 
|  | return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed, | 
|  | DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap); | 
|  | } | 
|  |  | 
|  | /// forAddr - Make a slot for an aggregate value. | 
|  | /// | 
|  | /// \param quals - The qualifiers that dictate how the slot should | 
|  | /// be initialied. Only 'volatile' and the Objective-C lifetime | 
|  | /// qualifiers matter. | 
|  | /// | 
|  | /// \param isDestructed - true if something else is responsible | 
|  | ///   for calling destructors on this object | 
|  | /// \param needsGC - true if the slot is potentially located | 
|  | ///   somewhere that ObjC GC calls should be emitted for | 
|  | static AggValueSlot forAddr(Address addr, | 
|  | Qualifiers quals, | 
|  | IsDestructed_t isDestructed, | 
|  | NeedsGCBarriers_t needsGC, | 
|  | IsAliased_t isAliased, | 
|  | Overlap_t mayOverlap, | 
|  | IsZeroed_t isZeroed = IsNotZeroed) { | 
|  | AggValueSlot AV; | 
|  | if (addr.isValid()) { | 
|  | AV.Addr = addr.getPointer(); | 
|  | AV.Alignment = addr.getAlignment().getQuantity(); | 
|  | } else { | 
|  | AV.Addr = nullptr; | 
|  | AV.Alignment = 0; | 
|  | } | 
|  | AV.Quals = quals; | 
|  | AV.DestructedFlag = isDestructed; | 
|  | AV.ObjCGCFlag = needsGC; | 
|  | AV.ZeroedFlag = isZeroed; | 
|  | AV.AliasedFlag = isAliased; | 
|  | AV.OverlapFlag = mayOverlap; | 
|  | return AV; | 
|  | } | 
|  |  | 
|  | static AggValueSlot forLValue(const LValue &LV, | 
|  | IsDestructed_t isDestructed, | 
|  | NeedsGCBarriers_t needsGC, | 
|  | IsAliased_t isAliased, | 
|  | Overlap_t mayOverlap, | 
|  | IsZeroed_t isZeroed = IsNotZeroed) { | 
|  | return forAddr(LV.getAddress(), LV.getQuals(), isDestructed, needsGC, | 
|  | isAliased, mayOverlap, isZeroed); | 
|  | } | 
|  |  | 
|  | IsDestructed_t isExternallyDestructed() const { | 
|  | return IsDestructed_t(DestructedFlag); | 
|  | } | 
|  | void setExternallyDestructed(bool destructed = true) { | 
|  | DestructedFlag = destructed; | 
|  | } | 
|  |  | 
|  | Qualifiers getQualifiers() const { return Quals; } | 
|  |  | 
|  | bool isVolatile() const { | 
|  | return Quals.hasVolatile(); | 
|  | } | 
|  |  | 
|  | void setVolatile(bool flag) { | 
|  | Quals.setVolatile(flag); | 
|  | } | 
|  |  | 
|  | Qualifiers::ObjCLifetime getObjCLifetime() const { | 
|  | return Quals.getObjCLifetime(); | 
|  | } | 
|  |  | 
|  | NeedsGCBarriers_t requiresGCollection() const { | 
|  | return NeedsGCBarriers_t(ObjCGCFlag); | 
|  | } | 
|  |  | 
|  | llvm::Value *getPointer() const { | 
|  | return Addr; | 
|  | } | 
|  |  | 
|  | Address getAddress() const { | 
|  | return Address(Addr, getAlignment()); | 
|  | } | 
|  |  | 
|  | bool isIgnored() const { | 
|  | return Addr == nullptr; | 
|  | } | 
|  |  | 
|  | CharUnits getAlignment() const { | 
|  | return CharUnits::fromQuantity(Alignment); | 
|  | } | 
|  |  | 
|  | IsAliased_t isPotentiallyAliased() const { | 
|  | return IsAliased_t(AliasedFlag); | 
|  | } | 
|  |  | 
|  | Overlap_t mayOverlap() const { | 
|  | return Overlap_t(OverlapFlag); | 
|  | } | 
|  |  | 
|  | RValue asRValue() const { | 
|  | if (isIgnored()) { | 
|  | return RValue::getIgnored(); | 
|  | } else { | 
|  | return RValue::getAggregate(getAddress(), isVolatile()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void setZeroed(bool V = true) { ZeroedFlag = V; } | 
|  | IsZeroed_t isZeroed() const { | 
|  | return IsZeroed_t(ZeroedFlag); | 
|  | } | 
|  |  | 
|  | /// Get the preferred size to use when storing a value to this slot. This | 
|  | /// is the type size unless that might overlap another object, in which | 
|  | /// case it's the dsize. | 
|  | CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const { | 
|  | return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).first | 
|  | : Ctx.getTypeSizeInChars(Type); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace CodeGen | 
|  | }  // end namespace clang | 
|  |  | 
|  | #endif |