| //===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Evan Cheng and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements bottom-up and top-down list schedulers, using standard |
| // algorithms. The basic approach uses a priority queue of available nodes to |
| // schedule. One at a time, nodes are taken from the priority queue (thus in |
| // priority order), checked for legality to schedule, and emitted if legal. |
| // |
| // Nodes may not be legal to schedule either due to structural hazards (e.g. |
| // pipeline or resource constraints) or because an input to the instruction has |
| // not completed execution. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "sched" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <climits> |
| #include <iostream> |
| #include <queue> |
| #include <set> |
| #include <vector> |
| #include "llvm/Support/CommandLine.h" |
| using namespace llvm; |
| |
| namespace { |
| cl::opt<bool> SchedVertically("sched-vertically", cl::Hidden); |
| cl::opt<bool> SchedLowerDefNUse("sched-lower-defnuse", cl::Hidden); |
| } |
| |
| namespace { |
| Statistic<> NumNoops ("scheduler", "Number of noops inserted"); |
| Statistic<> NumStalls("scheduler", "Number of pipeline stalls"); |
| |
| /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or |
| /// a group of nodes flagged together. |
| struct SUnit { |
| SDNode *Node; // Representative node. |
| std::vector<SDNode*> FlaggedNodes; // All nodes flagged to Node. |
| |
| // Preds/Succs - The SUnits before/after us in the graph. The boolean value |
| // is true if the edge is a token chain edge, false if it is a value edge. |
| std::set<std::pair<SUnit*,bool> > Preds; // All sunit predecessors. |
| std::set<std::pair<SUnit*,bool> > Succs; // All sunit successors. |
| |
| short NumPredsLeft; // # of preds not scheduled. |
| short NumSuccsLeft; // # of succs not scheduled. |
| short NumChainPredsLeft; // # of chain preds not scheduled. |
| short NumChainSuccsLeft; // # of chain succs not scheduled. |
| bool isTwoAddress : 1; // Is a two-address instruction. |
| bool isDefNUseOperand : 1; // Is a def&use operand. |
| bool isPending : 1; // True once pending. |
| bool isAvailable : 1; // True once available. |
| bool isScheduled : 1; // True once scheduled. |
| unsigned short Latency; // Node latency. |
| unsigned CycleBound; // Upper/lower cycle to be scheduled at. |
| unsigned Cycle; // Once scheduled, the cycle of the op. |
| unsigned NodeNum; // Entry # of node in the node vector. |
| |
| SUnit(SDNode *node, unsigned nodenum) |
| : Node(node), NumPredsLeft(0), NumSuccsLeft(0), |
| NumChainPredsLeft(0), NumChainSuccsLeft(0), |
| isTwoAddress(false), isDefNUseOperand(false), |
| isPending(false), isAvailable(false), isScheduled(false), |
| Latency(0), CycleBound(0), Cycle(0), NodeNum(nodenum) {} |
| |
| void dump(const SelectionDAG *G) const; |
| void dumpAll(const SelectionDAG *G) const; |
| }; |
| } |
| |
| void SUnit::dump(const SelectionDAG *G) const { |
| std::cerr << "SU(" << NodeNum << "): "; |
| Node->dump(G); |
| std::cerr << "\n"; |
| if (FlaggedNodes.size() != 0) { |
| for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) { |
| std::cerr << " "; |
| FlaggedNodes[i]->dump(G); |
| std::cerr << "\n"; |
| } |
| } |
| } |
| |
| void SUnit::dumpAll(const SelectionDAG *G) const { |
| dump(G); |
| |
| std::cerr << " # preds left : " << NumPredsLeft << "\n"; |
| std::cerr << " # succs left : " << NumSuccsLeft << "\n"; |
| std::cerr << " # chain preds left : " << NumChainPredsLeft << "\n"; |
| std::cerr << " # chain succs left : " << NumChainSuccsLeft << "\n"; |
| std::cerr << " Latency : " << Latency << "\n"; |
| |
| if (Preds.size() != 0) { |
| std::cerr << " Predecessors:\n"; |
| for (std::set<std::pair<SUnit*,bool> >::const_iterator I = Preds.begin(), |
| E = Preds.end(); I != E; ++I) { |
| if (I->second) |
| std::cerr << " ch "; |
| else |
| std::cerr << " val "; |
| I->first->dump(G); |
| } |
| } |
| if (Succs.size() != 0) { |
| std::cerr << " Successors:\n"; |
| for (std::set<std::pair<SUnit*, bool> >::const_iterator I = Succs.begin(), |
| E = Succs.end(); I != E; ++I) { |
| if (I->second) |
| std::cerr << " ch "; |
| else |
| std::cerr << " val "; |
| I->first->dump(G); |
| } |
| } |
| std::cerr << "\n"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| /// SchedulingPriorityQueue - This interface is used to plug different |
| /// priorities computation algorithms into the list scheduler. It implements the |
| /// interface of a standard priority queue, where nodes are inserted in |
| /// arbitrary order and returned in priority order. The computation of the |
| /// priority and the representation of the queue are totally up to the |
| /// implementation to decide. |
| /// |
| namespace { |
| class SchedulingPriorityQueue { |
| public: |
| virtual ~SchedulingPriorityQueue() {} |
| |
| virtual void initNodes(const std::vector<SUnit> &SUnits) = 0; |
| virtual void releaseState() = 0; |
| |
| virtual bool empty() const = 0; |
| virtual void push(SUnit *U) = 0; |
| |
| virtual void push_all(const std::vector<SUnit *> &Nodes) = 0; |
| virtual SUnit *pop() = 0; |
| |
| virtual void RemoveFromPriorityQueue(SUnit *SU) = 0; |
| |
| /// ScheduledNode - As each node is scheduled, this method is invoked. This |
| /// allows the priority function to adjust the priority of node that have |
| /// already been emitted. |
| virtual void ScheduledNode(SUnit *Node) {} |
| }; |
| } |
| |
| |
| |
| namespace { |
| //===----------------------------------------------------------------------===// |
| /// ScheduleDAGList - The actual list scheduler implementation. This supports |
| /// both top-down and bottom-up scheduling. |
| /// |
| class ScheduleDAGList : public ScheduleDAG { |
| private: |
| // SDNode to SUnit mapping (many to one). |
| std::map<SDNode*, SUnit*> SUnitMap; |
| |
| // The schedule. Null SUnit*'s represent noop instructions. |
| std::vector<SUnit*> Sequence; |
| |
| // The scheduling units. |
| std::vector<SUnit> SUnits; |
| |
| /// isBottomUp - This is true if the scheduling problem is bottom-up, false if |
| /// it is top-down. |
| bool isBottomUp; |
| |
| /// AvailableQueue - The priority queue to use for the available SUnits. |
| /// |
| SchedulingPriorityQueue *AvailableQueue; |
| |
| /// PendingQueue - This contains all of the instructions whose operands have |
| /// been issued, but their results are not ready yet (due to the latency of |
| /// the operation). Once the operands becomes available, the instruction is |
| /// added to the AvailableQueue. This keeps track of each SUnit and the |
| /// number of cycles left to execute before the operation is available. |
| std::vector<std::pair<unsigned, SUnit*> > PendingQueue; |
| |
| /// HazardRec - The hazard recognizer to use. |
| HazardRecognizer *HazardRec; |
| |
| /// OpenNodes - Nodes with open live ranges, i.e. predecessors or successors |
| /// of scheduled nodes which are not themselves scheduled. |
| std::map<const TargetRegisterClass*, std::set<SUnit*> > OpenNodes; |
| |
| /// RegPressureLimits - Keep track of upper limit of register pressure for |
| /// each register class that allows the scheduler to go into vertical mode. |
| std::map<const TargetRegisterClass*, unsigned> RegPressureLimits; |
| |
| public: |
| ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb, |
| const TargetMachine &tm, bool isbottomup, |
| SchedulingPriorityQueue *availqueue, |
| HazardRecognizer *HR) |
| : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup), |
| AvailableQueue(availqueue), HazardRec(HR) { |
| } |
| |
| ~ScheduleDAGList() { |
| delete HazardRec; |
| delete AvailableQueue; |
| } |
| |
| void Schedule(); |
| |
| void dumpSchedule() const; |
| |
| private: |
| SUnit *NewSUnit(SDNode *N); |
| void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle); |
| void ReleaseSucc(SUnit *SuccSU, bool isChain); |
| void ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle, bool Veritical=true); |
| void ScheduleVertically(SUnit *SU, unsigned& CurCycle); |
| void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); |
| void ListScheduleTopDown(); |
| void ListScheduleBottomUp(); |
| void BuildSchedUnits(); |
| void EmitSchedule(); |
| }; |
| } // end anonymous namespace |
| |
| HazardRecognizer::~HazardRecognizer() {} |
| |
| |
| /// NewSUnit - Creates a new SUnit and return a ptr to it. |
| SUnit *ScheduleDAGList::NewSUnit(SDNode *N) { |
| SUnits.push_back(SUnit(N, SUnits.size())); |
| return &SUnits.back(); |
| } |
| |
| /// BuildSchedUnits - Build SUnits from the selection dag that we are input. |
| /// This SUnit graph is similar to the SelectionDAG, but represents flagged |
| /// together nodes with a single SUnit. |
| void ScheduleDAGList::BuildSchedUnits() { |
| // Reserve entries in the vector for each of the SUnits we are creating. This |
| // ensure that reallocation of the vector won't happen, so SUnit*'s won't get |
| // invalidated. |
| SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end())); |
| |
| const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); |
| |
| for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(), |
| E = DAG.allnodes_end(); NI != E; ++NI) { |
| if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. |
| continue; |
| |
| // If this node has already been processed, stop now. |
| if (SUnitMap[NI]) continue; |
| |
| SUnit *NodeSUnit = NewSUnit(NI); |
| |
| // See if anything is flagged to this node, if so, add them to flagged |
| // nodes. Nodes can have at most one flag input and one flag output. Flags |
| // are required the be the last operand and result of a node. |
| |
| // Scan up, adding flagged preds to FlaggedNodes. |
| SDNode *N = NI; |
| while (N->getNumOperands() && |
| N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) { |
| N = N->getOperand(N->getNumOperands()-1).Val; |
| NodeSUnit->FlaggedNodes.push_back(N); |
| SUnitMap[N] = NodeSUnit; |
| } |
| |
| // Scan down, adding this node and any flagged succs to FlaggedNodes if they |
| // have a user of the flag operand. |
| N = NI; |
| while (N->getValueType(N->getNumValues()-1) == MVT::Flag) { |
| SDOperand FlagVal(N, N->getNumValues()-1); |
| |
| // There are either zero or one users of the Flag result. |
| bool HasFlagUse = false; |
| for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); |
| UI != E; ++UI) |
| if (FlagVal.isOperand(*UI)) { |
| HasFlagUse = true; |
| NodeSUnit->FlaggedNodes.push_back(N); |
| SUnitMap[N] = NodeSUnit; |
| N = *UI; |
| break; |
| } |
| if (!HasFlagUse) break; |
| } |
| |
| // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node. |
| // Update the SUnit |
| NodeSUnit->Node = N; |
| SUnitMap[N] = NodeSUnit; |
| |
| // Compute the latency for the node. We use the sum of the latencies for |
| // all nodes flagged together into this SUnit. |
| if (InstrItins.isEmpty()) { |
| // No latency information. |
| NodeSUnit->Latency = 1; |
| } else { |
| NodeSUnit->Latency = 0; |
| if (N->isTargetOpcode()) { |
| unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode()); |
| InstrStage *S = InstrItins.begin(SchedClass); |
| InstrStage *E = InstrItins.end(SchedClass); |
| for (; S != E; ++S) |
| NodeSUnit->Latency += S->Cycles; |
| } |
| for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) { |
| SDNode *FNode = NodeSUnit->FlaggedNodes[i]; |
| if (FNode->isTargetOpcode()) { |
| unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode()); |
| InstrStage *S = InstrItins.begin(SchedClass); |
| InstrStage *E = InstrItins.end(SchedClass); |
| for (; S != E; ++S) |
| NodeSUnit->Latency += S->Cycles; |
| } |
| } |
| } |
| } |
| |
| // Pass 2: add the preds, succs, etc. |
| for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { |
| SUnit *SU = &SUnits[su]; |
| SDNode *MainNode = SU->Node; |
| |
| if (MainNode->isTargetOpcode()) { |
| unsigned Opc = MainNode->getTargetOpcode(); |
| if (TII->isTwoAddrInstr(Opc)) { |
| SU->isTwoAddress = true; |
| SDNode *OpN = MainNode->getOperand(0).Val; |
| SUnit *OpSU = SUnitMap[OpN]; |
| if (OpSU) |
| OpSU->isDefNUseOperand = true; |
| } |
| } |
| |
| // Find all predecessors and successors of the group. |
| // Temporarily add N to make code simpler. |
| SU->FlaggedNodes.push_back(MainNode); |
| |
| for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) { |
| SDNode *N = SU->FlaggedNodes[n]; |
| |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDNode *OpN = N->getOperand(i).Val; |
| if (isPassiveNode(OpN)) continue; // Not scheduled. |
| SUnit *OpSU = SUnitMap[OpN]; |
| assert(OpSU && "Node has no SUnit!"); |
| if (OpSU == SU) continue; // In the same group. |
| |
| MVT::ValueType OpVT = N->getOperand(i).getValueType(); |
| assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!"); |
| bool isChain = OpVT == MVT::Other; |
| |
| if (SU->Preds.insert(std::make_pair(OpSU, isChain)).second) { |
| if (!isChain) { |
| SU->NumPredsLeft++; |
| } else { |
| SU->NumChainPredsLeft++; |
| } |
| } |
| if (OpSU->Succs.insert(std::make_pair(SU, isChain)).second) { |
| if (!isChain) { |
| OpSU->NumSuccsLeft++; |
| } else { |
| OpSU->NumChainSuccsLeft++; |
| } |
| } |
| } |
| } |
| |
| // Remove MainNode from FlaggedNodes again. |
| SU->FlaggedNodes.pop_back(); |
| } |
| |
| DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) |
| SUnits[su].dumpAll(&DAG)); |
| return; |
| } |
| |
| /// EmitSchedule - Emit the machine code in scheduled order. |
| void ScheduleDAGList::EmitSchedule() { |
| std::map<SDNode*, unsigned> VRBaseMap; |
| for (unsigned i = 0, e = Sequence.size(); i != e; i++) { |
| if (SUnit *SU = Sequence[i]) { |
| for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++) |
| EmitNode(SU->FlaggedNodes[j], VRBaseMap); |
| EmitNode(SU->Node, VRBaseMap); |
| } else { |
| // Null SUnit* is a noop. |
| EmitNoop(); |
| } |
| } |
| } |
| |
| /// dump - dump the schedule. |
| void ScheduleDAGList::dumpSchedule() const { |
| for (unsigned i = 0, e = Sequence.size(); i != e; i++) { |
| if (SUnit *SU = Sequence[i]) |
| SU->dump(&DAG); |
| else |
| std::cerr << "**** NOOP ****\n"; |
| } |
| } |
| |
| /// Schedule - Schedule the DAG using list scheduling. |
| void ScheduleDAGList::Schedule() { |
| DEBUG(std::cerr << "********** List Scheduling **********\n"); |
| |
| // Build scheduling units. |
| BuildSchedUnits(); |
| |
| AvailableQueue->initNodes(SUnits); |
| |
| // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate. |
| if (isBottomUp) |
| ListScheduleBottomUp(); |
| else |
| ListScheduleTopDown(); |
| |
| AvailableQueue->releaseState(); |
| |
| DEBUG(std::cerr << "*** Final schedule ***\n"); |
| DEBUG(dumpSchedule()); |
| DEBUG(std::cerr << "\n"); |
| |
| // Emit in scheduled order |
| EmitSchedule(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Bottom-Up Scheduling |
| //===----------------------------------------------------------------------===// |
| |
| static const TargetRegisterClass *getRegClass(SUnit *SU, |
| const TargetInstrInfo *TII, |
| const MRegisterInfo *MRI, |
| SSARegMap *RegMap) { |
| if (SU->Node->isTargetOpcode()) { |
| unsigned Opc = SU->Node->getTargetOpcode(); |
| const TargetInstrDescriptor &II = TII->get(Opc); |
| return II.OpInfo->RegClass; |
| } else { |
| assert(SU->Node->getOpcode() == ISD::CopyFromReg); |
| unsigned SrcReg = cast<RegisterSDNode>(SU->Node->getOperand(1))->getReg(); |
| if (MRegisterInfo::isVirtualRegister(SrcReg)) |
| return RegMap->getRegClass(SrcReg); |
| else { |
| for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(), |
| E = MRI->regclass_end(); I != E; ++I) |
| if ((*I)->hasType(SU->Node->getValueType(0)) && |
| (*I)->contains(SrcReg)) |
| return *I; |
| assert(false && "Couldn't find register class for reg copy!"); |
| } |
| return NULL; |
| } |
| } |
| |
| static unsigned getNumResults(SUnit *SU) { |
| unsigned NumResults = 0; |
| for (unsigned i = 0, e = SU->Node->getNumValues(); i != e; ++i) { |
| MVT::ValueType VT = SU->Node->getValueType(i); |
| if (VT != MVT::Other && VT != MVT::Flag) |
| NumResults++; |
| } |
| return NumResults; |
| } |
| |
| /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to |
| /// the Available queue is the count reaches zero. Also update its cycle bound. |
| void ScheduleDAGList::ReleasePred(SUnit *PredSU, bool isChain, |
| unsigned CurCycle) { |
| // FIXME: the distance between two nodes is not always == the predecessor's |
| // latency. For example, the reader can very well read the register written |
| // by the predecessor later than the issue cycle. It also depends on the |
| // interrupt model (drain vs. freeze). |
| PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency); |
| |
| if (!isChain) |
| PredSU->NumSuccsLeft--; |
| else |
| PredSU->NumChainSuccsLeft--; |
| |
| #ifndef NDEBUG |
| if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) { |
| std::cerr << "*** List scheduling failed! ***\n"; |
| PredSU->dump(&DAG); |
| std::cerr << " has been released too many times!\n"; |
| assert(0); |
| } |
| #endif |
| |
| if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) { |
| // EntryToken has to go last! Special case it here. |
| if (PredSU->Node->getOpcode() != ISD::EntryToken) { |
| PredSU->isAvailable = true; |
| AvailableQueue->push(PredSU); |
| } |
| } |
| |
| if (getNumResults(PredSU) > 0) { |
| const TargetRegisterClass *RegClass = getRegClass(PredSU, TII, MRI, RegMap); |
| OpenNodes[RegClass].insert(PredSU); |
| } |
| } |
| |
| /// SharesOperandWithTwoAddr - Check if there is a unscheduled two-address node |
| /// with which SU shares an operand. If so, returns the node. |
| static SUnit *SharesOperandWithTwoAddr(SUnit *SU) { |
| assert(!SU->isTwoAddress && "Node cannot be two-address op"); |
| for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(), |
| E = SU->Preds.end(); I != E; ++I) { |
| if (I->second) continue; |
| SUnit *PredSU = I->first; |
| for (std::set<std::pair<SUnit*, bool> >::iterator II = |
| PredSU->Succs.begin(), EE = PredSU->Succs.end(); II != EE; ++II) { |
| if (II->second) continue; |
| SUnit *SSU = II->first; |
| if (SSU->isTwoAddress && !SSU->isScheduled) { |
| return SSU; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| static bool isFloater(const SUnit *SU) { |
| unsigned Opc = SU->Node->getOpcode(); |
| return (Opc != ISD::CopyFromReg && SU->NumPredsLeft == 0); |
| } |
| |
| static bool isSimpleFloaterUse(const SUnit *SU) { |
| unsigned NumOps = 0; |
| for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Preds.begin(), |
| E = SU->Preds.end(); I != E; ++I) { |
| if (I->second) continue; |
| if (++NumOps > 1) |
| return false; |
| if (!isFloater(I->first)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// ScheduleVertically - Schedule vertically. That is, follow up the D&U chain |
| /// (of two-address code) and schedule floaters aggressively. |
| void ScheduleDAGList::ScheduleVertically(SUnit *SU, unsigned& CurCycle) { |
| // Try scheduling Def&Use operand if register pressure is low. |
| const TargetRegisterClass *RegClass = getRegClass(SU, TII, MRI, RegMap); |
| unsigned Pressure = OpenNodes[RegClass].size(); |
| unsigned Limit = RegPressureLimits[RegClass]; |
| |
| // See if we can schedule any predecessor that takes no registers. |
| for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(), |
| E = SU->Preds.end(); I != E; ++I) { |
| if (I->second) continue; |
| |
| SUnit *PredSU = I->first; |
| if (!PredSU->isAvailable || PredSU->isScheduled) |
| continue; |
| |
| if (isFloater(PredSU)) { |
| DEBUG(std::cerr<<"*** Scheduling floater\n"); |
| AvailableQueue->RemoveFromPriorityQueue(PredSU); |
| ScheduleNodeBottomUp(PredSU, CurCycle, false); |
| } |
| } |
| |
| SUnit *DUSU = NULL; |
| if (SU->isTwoAddress && Pressure < Limit) { |
| DUSU = SUnitMap[SU->Node->getOperand(0).Val]; |
| if (!DUSU->isAvailable || DUSU->isScheduled) |
| DUSU = NULL; |
| else if (!DUSU->isTwoAddress) { |
| SUnit *SSU = SharesOperandWithTwoAddr(DUSU); |
| if (SSU && SSU->isAvailable) { |
| AvailableQueue->RemoveFromPriorityQueue(SSU); |
| ScheduleNodeBottomUp(SSU, CurCycle, false); |
| Pressure = OpenNodes[RegClass].size(); |
| if (Pressure >= Limit) |
| DUSU = NULL; |
| } |
| } |
| } |
| |
| if (DUSU) { |
| DEBUG(std::cerr<<"*** Low register pressure: scheduling D&U operand\n"); |
| AvailableQueue->RemoveFromPriorityQueue(DUSU); |
| ScheduleNodeBottomUp(DUSU, CurCycle, false); |
| Pressure = OpenNodes[RegClass].size(); |
| ScheduleVertically(DUSU, CurCycle); |
| } |
| } |
| |
| /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending |
| /// count of its predecessors. If a predecessor pending count is zero, add it to |
| /// the Available queue. |
| void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle, |
| bool Vertical) { |
| DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: "); |
| DEBUG(SU->dump(&DAG)); |
| SU->Cycle = CurCycle; |
| |
| AvailableQueue->ScheduledNode(SU); |
| Sequence.push_back(SU); |
| |
| // Bottom up: release predecessors |
| for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(), |
| E = SU->Preds.end(); I != E; ++I) |
| ReleasePred(I->first, I->second, CurCycle); |
| SU->isScheduled = true; |
| CurCycle++; |
| |
| if (getNumResults(SU) != 0) { |
| const TargetRegisterClass *RegClass = getRegClass(SU, TII, MRI, RegMap); |
| OpenNodes[RegClass].erase(SU); |
| |
| if (SchedVertically && Vertical) |
| ScheduleVertically(SU, CurCycle); |
| } |
| } |
| |
| /// isReady - True if node's lower cycle bound is less or equal to the current |
| /// scheduling cycle. Always true if all nodes have uniform latency 1. |
| static inline bool isReady(SUnit *SU, unsigned CurCycle) { |
| return SU->CycleBound <= CurCycle; |
| } |
| |
| /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up |
| /// schedulers. |
| void ScheduleDAGList::ListScheduleBottomUp() { |
| // Determine rough register pressure limit. |
| for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(), |
| E = MRI->regclass_end(); RCI != E; ++RCI) { |
| const TargetRegisterClass *RC = *RCI; |
| unsigned Limit = RC->getNumRegs(); |
| Limit = (Limit > 2) ? Limit - 2 : 0; |
| std::map<const TargetRegisterClass*, unsigned>::iterator RPI = |
| RegPressureLimits.find(RC); |
| if (RPI == RegPressureLimits.end()) |
| RegPressureLimits[RC] = Limit; |
| else { |
| unsigned &OldLimit = RegPressureLimits[RC]; |
| if (Limit < OldLimit) |
| OldLimit = Limit; |
| } |
| } |
| |
| unsigned CurCycle = 0; |
| // Add root to Available queue. |
| AvailableQueue->push(SUnitMap[DAG.getRoot().Val]); |
| |
| // While Available queue is not empty, grab the node with the highest |
| // priority. If it is not ready put it back. Schedule the node. |
| std::vector<SUnit*> NotReady; |
| SUnit *CurNode = NULL; |
| while (!AvailableQueue->empty()) { |
| SUnit *CurNode = AvailableQueue->pop(); |
| while (!isReady(CurNode, CurCycle)) { |
| NotReady.push_back(CurNode); |
| CurNode = AvailableQueue->pop(); |
| } |
| |
| // Add the nodes that aren't ready back onto the available list. |
| AvailableQueue->push_all(NotReady); |
| NotReady.clear(); |
| |
| ScheduleNodeBottomUp(CurNode, CurCycle); |
| } |
| |
| // Add entry node last |
| if (DAG.getEntryNode().Val != DAG.getRoot().Val) { |
| SUnit *Entry = SUnitMap[DAG.getEntryNode().Val]; |
| Sequence.push_back(Entry); |
| } |
| |
| // Reverse the order if it is bottom up. |
| std::reverse(Sequence.begin(), Sequence.end()); |
| |
| |
| #ifndef NDEBUG |
| // Verify that all SUnits were scheduled. |
| bool AnyNotSched = false; |
| for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) { |
| if (!AnyNotSched) |
| std::cerr << "*** List scheduling failed! ***\n"; |
| SUnits[i].dump(&DAG); |
| std::cerr << "has not been scheduled!\n"; |
| AnyNotSched = true; |
| } |
| } |
| assert(!AnyNotSched); |
| #endif |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-Down Scheduling |
| //===----------------------------------------------------------------------===// |
| |
| /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to |
| /// the PendingQueue if the count reaches zero. |
| void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) { |
| if (!isChain) |
| SuccSU->NumPredsLeft--; |
| else |
| SuccSU->NumChainPredsLeft--; |
| |
| assert(SuccSU->NumPredsLeft >= 0 && SuccSU->NumChainPredsLeft >= 0 && |
| "List scheduling internal error"); |
| |
| if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) { |
| // Compute how many cycles it will be before this actually becomes |
| // available. This is the max of the start time of all predecessors plus |
| // their latencies. |
| unsigned AvailableCycle = 0; |
| for (std::set<std::pair<SUnit*, bool> >::iterator I = SuccSU->Preds.begin(), |
| E = SuccSU->Preds.end(); I != E; ++I) { |
| // If this is a token edge, we don't need to wait for the latency of the |
| // preceeding instruction (e.g. a long-latency load) unless there is also |
| // some other data dependence. |
| unsigned PredDoneCycle = I->first->Cycle; |
| if (!I->second) |
| PredDoneCycle += I->first->Latency; |
| else if (I->first->Latency) |
| PredDoneCycle += 1; |
| |
| AvailableCycle = std::max(AvailableCycle, PredDoneCycle); |
| } |
| |
| PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU)); |
| } |
| } |
| |
| /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending |
| /// count of its successors. If a successor pending count is zero, add it to |
| /// the Available queue. |
| void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { |
| DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: "); |
| DEBUG(SU->dump(&DAG)); |
| |
| Sequence.push_back(SU); |
| SU->Cycle = CurCycle; |
| |
| // Bottom up: release successors. |
| for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(), |
| E = SU->Succs.end(); I != E; ++I) |
| ReleaseSucc(I->first, I->second); |
| } |
| |
| /// ListScheduleTopDown - The main loop of list scheduling for top-down |
| /// schedulers. |
| void ScheduleDAGList::ListScheduleTopDown() { |
| unsigned CurCycle = 0; |
| SUnit *Entry = SUnitMap[DAG.getEntryNode().Val]; |
| |
| // All leaves to Available queue. |
| for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| // It is available if it has no predecessors. |
| if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) { |
| AvailableQueue->push(&SUnits[i]); |
| SUnits[i].isAvailable = SUnits[i].isPending = true; |
| } |
| } |
| |
| // Emit the entry node first. |
| ScheduleNodeTopDown(Entry, CurCycle); |
| HazardRec->EmitInstruction(Entry->Node); |
| |
| // While Available queue is not empty, grab the node with the highest |
| // priority. If it is not ready put it back. Schedule the node. |
| std::vector<SUnit*> NotReady; |
| while (!AvailableQueue->empty() || !PendingQueue.empty()) { |
| // Check to see if any of the pending instructions are ready to issue. If |
| // so, add them to the available queue. |
| for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { |
| if (PendingQueue[i].first == CurCycle) { |
| AvailableQueue->push(PendingQueue[i].second); |
| PendingQueue[i].second->isAvailable = true; |
| PendingQueue[i] = PendingQueue.back(); |
| PendingQueue.pop_back(); |
| --i; --e; |
| } else { |
| assert(PendingQueue[i].first > CurCycle && "Negative latency?"); |
| } |
| } |
| |
| // If there are no instructions available, don't try to issue anything, and |
| // don't advance the hazard recognizer. |
| if (AvailableQueue->empty()) { |
| ++CurCycle; |
| continue; |
| } |
| |
| SUnit *FoundSUnit = 0; |
| SDNode *FoundNode = 0; |
| |
| bool HasNoopHazards = false; |
| while (!AvailableQueue->empty()) { |
| SUnit *CurSUnit = AvailableQueue->pop(); |
| |
| // Get the node represented by this SUnit. |
| FoundNode = CurSUnit->Node; |
| |
| // If this is a pseudo op, like copyfromreg, look to see if there is a |
| // real target node flagged to it. If so, use the target node. |
| for (unsigned i = 0, e = CurSUnit->FlaggedNodes.size(); |
| FoundNode->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i) |
| FoundNode = CurSUnit->FlaggedNodes[i]; |
| |
| HazardRecognizer::HazardType HT = HazardRec->getHazardType(FoundNode); |
| if (HT == HazardRecognizer::NoHazard) { |
| FoundSUnit = CurSUnit; |
| break; |
| } |
| |
| // Remember if this is a noop hazard. |
| HasNoopHazards |= HT == HazardRecognizer::NoopHazard; |
| |
| NotReady.push_back(CurSUnit); |
| } |
| |
| // Add the nodes that aren't ready back onto the available list. |
| if (!NotReady.empty()) { |
| AvailableQueue->push_all(NotReady); |
| NotReady.clear(); |
| } |
| |
| // If we found a node to schedule, do it now. |
| if (FoundSUnit) { |
| ScheduleNodeTopDown(FoundSUnit, CurCycle); |
| HazardRec->EmitInstruction(FoundNode); |
| FoundSUnit->isScheduled = true; |
| AvailableQueue->ScheduledNode(FoundSUnit); |
| |
| // If this is a pseudo-op node, we don't want to increment the current |
| // cycle. |
| if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops! |
| ++CurCycle; |
| } else if (!HasNoopHazards) { |
| // Otherwise, we have a pipeline stall, but no other problem, just advance |
| // the current cycle and try again. |
| DEBUG(std::cerr << "*** Advancing cycle, no work to do\n"); |
| HazardRec->AdvanceCycle(); |
| ++NumStalls; |
| ++CurCycle; |
| } else { |
| // Otherwise, we have no instructions to issue and we have instructions |
| // that will fault if we don't do this right. This is the case for |
| // processors without pipeline interlocks and other cases. |
| DEBUG(std::cerr << "*** Emitting noop\n"); |
| HazardRec->EmitNoop(); |
| Sequence.push_back(0); // NULL SUnit* -> noop |
| ++NumNoops; |
| ++CurCycle; |
| } |
| } |
| |
| #ifndef NDEBUG |
| // Verify that all SUnits were scheduled. |
| bool AnyNotSched = false; |
| for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| if (SUnits[i].NumPredsLeft != 0 || SUnits[i].NumChainPredsLeft != 0) { |
| if (!AnyNotSched) |
| std::cerr << "*** List scheduling failed! ***\n"; |
| SUnits[i].dump(&DAG); |
| std::cerr << "has not been scheduled!\n"; |
| AnyNotSched = true; |
| } |
| } |
| assert(!AnyNotSched); |
| #endif |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RegReductionPriorityQueue Implementation |
| //===----------------------------------------------------------------------===// |
| // |
| // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers |
| // to reduce register pressure. |
| // |
| namespace { |
| template<class SF> |
| class RegReductionPriorityQueue; |
| |
| /// Sorting functions for the Available queue. |
| struct ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> { |
| RegReductionPriorityQueue<ls_rr_sort> *SPQ; |
| ls_rr_sort(RegReductionPriorityQueue<ls_rr_sort> *spq) : SPQ(spq) {} |
| ls_rr_sort(const ls_rr_sort &RHS) : SPQ(RHS.SPQ) {} |
| |
| bool operator()(const SUnit* left, const SUnit* right) const; |
| }; |
| } // end anonymous namespace |
| |
| namespace { |
| template<class SF> |
| class RegReductionPriorityQueue : public SchedulingPriorityQueue { |
| // SUnits - The SUnits for the current graph. |
| const std::vector<SUnit> *SUnits; |
| |
| // SethiUllmanNumbers - The SethiUllman number for each node. |
| std::vector<int> SethiUllmanNumbers; |
| |
| std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue; |
| public: |
| RegReductionPriorityQueue() : |
| Queue(ls_rr_sort(this)) {} |
| |
| void initNodes(const std::vector<SUnit> &sunits) { |
| SUnits = &sunits; |
| // Add pseudo dependency edges for two-address nodes. |
| if (SchedLowerDefNUse) |
| AddPseudoTwoAddrDeps(); |
| // Calculate node priorities. |
| CalculatePriorities(); |
| } |
| void releaseState() { |
| SUnits = 0; |
| SethiUllmanNumbers.clear(); |
| } |
| |
| int getSethiUllmanNumber(unsigned NodeNum) const { |
| assert(NodeNum < SethiUllmanNumbers.size()); |
| return SethiUllmanNumbers[NodeNum]; |
| } |
| |
| bool empty() const { return Queue.empty(); } |
| |
| void push(SUnit *U) { |
| Queue.push(U); |
| } |
| void push_all(const std::vector<SUnit *> &Nodes) { |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| Queue.push(Nodes[i]); |
| } |
| |
| SUnit *pop() { |
| SUnit *V = Queue.top(); |
| Queue.pop(); |
| return V; |
| } |
| |
| /// RemoveFromPriorityQueue - This is a really inefficient way to remove a |
| /// node from a priority queue. We should roll our own heap to make this |
| /// better or something. |
| void RemoveFromPriorityQueue(SUnit *SU) { |
| std::vector<SUnit*> Temp; |
| |
| assert(!Queue.empty() && "Not in queue!"); |
| while (Queue.top() != SU) { |
| Temp.push_back(Queue.top()); |
| Queue.pop(); |
| assert(!Queue.empty() && "Not in queue!"); |
| } |
| |
| // Remove the node from the PQ. |
| Queue.pop(); |
| |
| // Add all the other nodes back. |
| for (unsigned i = 0, e = Temp.size(); i != e; ++i) |
| Queue.push(Temp[i]); |
| } |
| |
| private: |
| void AddPseudoTwoAddrDeps(); |
| void CalculatePriorities(); |
| int CalcNodePriority(const SUnit *SU); |
| }; |
| } |
| |
| bool ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const { |
| unsigned LeftNum = left->NodeNum; |
| unsigned RightNum = right->NodeNum; |
| bool LIsTarget = left->Node->isTargetOpcode(); |
| bool RIsTarget = right->Node->isTargetOpcode(); |
| int LPriority = SPQ->getSethiUllmanNumber(LeftNum); |
| int RPriority = SPQ->getSethiUllmanNumber(RightNum); |
| bool LIsFloater = LIsTarget && (LPriority == 1 || LPriority == 0); |
| bool RIsFloater = RIsTarget && (RPriority == 1 || RPriority == 0); |
| int LBonus = 0; |
| int RBonus = 0; |
| |
| // Schedule floaters (e.g. load from some constant address) and those nodes |
| // with a single predecessor each first. They maintain / reduce register |
| // pressure. |
| if (LIsFloater) |
| LBonus += 2; |
| if (RIsFloater) |
| RBonus += 2; |
| |
| if (!SchedLowerDefNUse) { |
| // Special tie breaker: if two nodes share a operand, the one that use it |
| // as a def&use operand is preferred. |
| if (LIsTarget && RIsTarget) { |
| if (left->isTwoAddress && !right->isTwoAddress) { |
| SDNode *DUNode = left->Node->getOperand(0).Val; |
| if (DUNode->isOperand(right->Node)) |
| LBonus += 2; |
| } |
| if (!left->isTwoAddress && right->isTwoAddress) { |
| SDNode *DUNode = right->Node->getOperand(0).Val; |
| if (DUNode->isOperand(left->Node)) |
| RBonus += 2; |
| } |
| } |
| } |
| |
| if (LPriority+LBonus < RPriority+RBonus) |
| return true; |
| else if (LPriority+LBonus == RPriority+RBonus) |
| if (left->NumPredsLeft > right->NumPredsLeft) |
| return true; |
| else if (left->NumPredsLeft+LBonus == right->NumPredsLeft+RBonus) |
| if (left->CycleBound > right->CycleBound) |
| return true; |
| return false; |
| } |
| |
| static inline bool isCopyFromLiveIn(const SUnit *SU) { |
| SDNode *N = SU->Node; |
| return N->getOpcode() == ISD::CopyFromReg && |
| N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag; |
| } |
| |
| // FIXME: This is probably too slow! |
| static void isReachable(SUnit *SU, SUnit *TargetSU, |
| std::set<SUnit *> &Visited, bool &Reached) { |
| if (Reached) return; |
| if (SU == TargetSU) { |
| Reached = true; |
| return; |
| } |
| if (!Visited.insert(SU).second) return; |
| |
| for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(), |
| E = SU->Preds.end(); I != E; ++I) |
| isReachable(I->first, TargetSU, Visited, Reached); |
| } |
| |
| static bool isReachable(SUnit *SU, SUnit *TargetSU) { |
| std::set<SUnit *> Visited; |
| bool Reached = false; |
| isReachable(SU, TargetSU, Visited, Reached); |
| return Reached; |
| } |
| |
| static SUnit *getDefUsePredecessor(SUnit *SU) { |
| SDNode *DU = SU->Node->getOperand(0).Val; |
| for (std::set<std::pair<SUnit*, bool> >::iterator |
| I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { |
| if (I->second) continue; // ignore chain preds |
| SUnit *PredSU = I->first; |
| if (PredSU->Node == DU) |
| return PredSU; |
| } |
| |
| // Must be flagged. |
| return NULL; |
| } |
| |
| static bool canClobber(SUnit *SU, SUnit *Op) { |
| if (SU->isTwoAddress) |
| return Op == getDefUsePredecessor(SU); |
| return false; |
| } |
| |
| /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses |
| /// it as a def&use operand. Add a pseudo control edge from it to the other |
| /// node (if it won't create a cycle) so the two-address one will be scheduled |
| /// first (lower in the schedule). |
| template<class SF> |
| void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() { |
| for (unsigned i = 0, e = SUnits->size(); i != e; ++i) { |
| SUnit *SU = (SUnit *)&((*SUnits)[i]); |
| SDNode *Node = SU->Node; |
| if (!Node->isTargetOpcode()) |
| continue; |
| |
| if (SU->isTwoAddress) { |
| unsigned Depth = SU->Node->getNodeDepth(); |
| SUnit *DUSU = getDefUsePredecessor(SU); |
| if (!DUSU) continue; |
| |
| for (std::set<std::pair<SUnit*, bool> >::iterator I = DUSU->Succs.begin(), |
| E = DUSU->Succs.end(); I != E; ++I) { |
| SUnit *SuccSU = I->first; |
| if (SuccSU != SU && !canClobber(SuccSU, DUSU)) { |
| if (SuccSU->Node->getNodeDepth() <= Depth+2 && |
| !isReachable(SuccSU, SU)) { |
| DEBUG(std::cerr << "Adding an edge from SU # " << SU->NodeNum |
| << " to SU #" << SuccSU->NodeNum << "\n"); |
| if (SU->Preds.insert(std::make_pair(SuccSU, true)).second) |
| SU->NumChainPredsLeft++; |
| if (SuccSU->Succs.insert(std::make_pair(SU, true)).second) |
| SuccSU->NumChainSuccsLeft++; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| /// CalcNodePriority - Priority is the Sethi Ullman number. |
| /// Smaller number is the higher priority. |
| template<class SF> |
| int RegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) { |
| int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum]; |
| if (SethiUllmanNumber != 0) |
| return SethiUllmanNumber; |
| |
| unsigned Opc = SU->Node->getOpcode(); |
| if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg) |
| SethiUllmanNumber = INT_MAX - 10; |
| else if (SU->NumSuccsLeft == 0) |
| // If SU does not have a use, i.e. it doesn't produce a value that would |
| // be consumed (e.g. store), then it terminates a chain of computation. |
| // Give it a small SethiUllman number so it will be scheduled right before its |
| // predecessors that it doesn't lengthen their live ranges. |
| SethiUllmanNumber = INT_MIN + 10; |
| else if (SU->NumPredsLeft == 0 && |
| (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU))) |
| SethiUllmanNumber = 1; |
| else { |
| int Extra = 0; |
| for (std::set<std::pair<SUnit*, bool> >::const_iterator |
| I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { |
| if (I->second) continue; // ignore chain preds |
| SUnit *PredSU = I->first; |
| int PredSethiUllman = CalcNodePriority(PredSU); |
| if (PredSethiUllman > SethiUllmanNumber) { |
| SethiUllmanNumber = PredSethiUllman; |
| Extra = 0; |
| } else if (PredSethiUllman == SethiUllmanNumber && !I->second) |
| Extra++; |
| } |
| |
| SethiUllmanNumber += Extra; |
| } |
| |
| return SethiUllmanNumber; |
| } |
| |
| /// CalculatePriorities - Calculate priorities of all scheduling units. |
| template<class SF> |
| void RegReductionPriorityQueue<SF>::CalculatePriorities() { |
| SethiUllmanNumbers.assign(SUnits->size(), 0); |
| |
| for (unsigned i = 0, e = SUnits->size(); i != e; ++i) |
| CalcNodePriority(&(*SUnits)[i]); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LatencyPriorityQueue Implementation |
| //===----------------------------------------------------------------------===// |
| // |
| // This is a SchedulingPriorityQueue that schedules using latency information to |
| // reduce the length of the critical path through the basic block. |
| // |
| namespace { |
| class LatencyPriorityQueue; |
| |
| /// Sorting functions for the Available queue. |
| struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> { |
| LatencyPriorityQueue *PQ; |
| latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {} |
| latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {} |
| |
| bool operator()(const SUnit* left, const SUnit* right) const; |
| }; |
| } // end anonymous namespace |
| |
| namespace { |
| class LatencyPriorityQueue : public SchedulingPriorityQueue { |
| // SUnits - The SUnits for the current graph. |
| const std::vector<SUnit> *SUnits; |
| |
| // Latencies - The latency (max of latency from this node to the bb exit) |
| // for each node. |
| std::vector<int> Latencies; |
| |
| /// NumNodesSolelyBlocking - This vector contains, for every node in the |
| /// Queue, the number of nodes that the node is the sole unscheduled |
| /// predecessor for. This is used as a tie-breaker heuristic for better |
| /// mobility. |
| std::vector<unsigned> NumNodesSolelyBlocking; |
| |
| std::priority_queue<SUnit*, std::vector<SUnit*>, latency_sort> Queue; |
| public: |
| LatencyPriorityQueue() : Queue(latency_sort(this)) { |
| } |
| |
| void initNodes(const std::vector<SUnit> &sunits) { |
| SUnits = &sunits; |
| // Calculate node priorities. |
| CalculatePriorities(); |
| } |
| void releaseState() { |
| SUnits = 0; |
| Latencies.clear(); |
| } |
| |
| unsigned getLatency(unsigned NodeNum) const { |
| assert(NodeNum < Latencies.size()); |
| return Latencies[NodeNum]; |
| } |
| |
| unsigned getNumSolelyBlockNodes(unsigned NodeNum) const { |
| assert(NodeNum < NumNodesSolelyBlocking.size()); |
| return NumNodesSolelyBlocking[NodeNum]; |
| } |
| |
| bool empty() const { return Queue.empty(); } |
| |
| virtual void push(SUnit *U) { |
| push_impl(U); |
| } |
| void push_impl(SUnit *U); |
| |
| void push_all(const std::vector<SUnit *> &Nodes) { |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| push_impl(Nodes[i]); |
| } |
| |
| SUnit *pop() { |
| SUnit *V = Queue.top(); |
| Queue.pop(); |
| return V; |
| } |
| |
| /// RemoveFromPriorityQueue - This is a really inefficient way to remove a |
| /// node from a priority queue. We should roll our own heap to make this |
| /// better or something. |
| void RemoveFromPriorityQueue(SUnit *SU) { |
| std::vector<SUnit*> Temp; |
| |
| assert(!Queue.empty() && "Not in queue!"); |
| while (Queue.top() != SU) { |
| Temp.push_back(Queue.top()); |
| Queue.pop(); |
| assert(!Queue.empty() && "Not in queue!"); |
| } |
| |
| // Remove the node from the PQ. |
| Queue.pop(); |
| |
| // Add all the other nodes back. |
| for (unsigned i = 0, e = Temp.size(); i != e; ++i) |
| Queue.push(Temp[i]); |
| } |
| |
| // ScheduledNode - As nodes are scheduled, we look to see if there are any |
| // successor nodes that have a single unscheduled predecessor. If so, that |
| // single predecessor has a higher priority, since scheduling it will make |
| // the node available. |
| void ScheduledNode(SUnit *Node); |
| |
| private: |
| void CalculatePriorities(); |
| int CalcLatency(const SUnit &SU); |
| void AdjustPriorityOfUnscheduledPreds(SUnit *SU); |
| }; |
| } |
| |
| bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const { |
| unsigned LHSNum = LHS->NodeNum; |
| unsigned RHSNum = RHS->NodeNum; |
| |
| // The most important heuristic is scheduling the critical path. |
| unsigned LHSLatency = PQ->getLatency(LHSNum); |
| unsigned RHSLatency = PQ->getLatency(RHSNum); |
| if (LHSLatency < RHSLatency) return true; |
| if (LHSLatency > RHSLatency) return false; |
| |
| // After that, if two nodes have identical latencies, look to see if one will |
| // unblock more other nodes than the other. |
| unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum); |
| unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum); |
| if (LHSBlocked < RHSBlocked) return true; |
| if (LHSBlocked > RHSBlocked) return false; |
| |
| // Finally, just to provide a stable ordering, use the node number as a |
| // deciding factor. |
| return LHSNum < RHSNum; |
| } |
| |
| |
| /// CalcNodePriority - Calculate the maximal path from the node to the exit. |
| /// |
| int LatencyPriorityQueue::CalcLatency(const SUnit &SU) { |
| int &Latency = Latencies[SU.NodeNum]; |
| if (Latency != -1) |
| return Latency; |
| |
| int MaxSuccLatency = 0; |
| for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU.Succs.begin(), |
| E = SU.Succs.end(); I != E; ++I) |
| MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(*I->first)); |
| |
| return Latency = MaxSuccLatency + SU.Latency; |
| } |
| |
| /// CalculatePriorities - Calculate priorities of all scheduling units. |
| void LatencyPriorityQueue::CalculatePriorities() { |
| Latencies.assign(SUnits->size(), -1); |
| NumNodesSolelyBlocking.assign(SUnits->size(), 0); |
| |
| for (unsigned i = 0, e = SUnits->size(); i != e; ++i) |
| CalcLatency((*SUnits)[i]); |
| } |
| |
| /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor |
| /// of SU, return it, otherwise return null. |
| static SUnit *getSingleUnscheduledPred(SUnit *SU) { |
| SUnit *OnlyAvailablePred = 0; |
| for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Preds.begin(), |
| E = SU->Preds.end(); I != E; ++I) |
| if (!I->first->isScheduled) { |
| // We found an available, but not scheduled, predecessor. If it's the |
| // only one we have found, keep track of it... otherwise give up. |
| if (OnlyAvailablePred && OnlyAvailablePred != I->first) |
| return 0; |
| OnlyAvailablePred = I->first; |
| } |
| |
| return OnlyAvailablePred; |
| } |
| |
| void LatencyPriorityQueue::push_impl(SUnit *SU) { |
| // Look at all of the successors of this node. Count the number of nodes that |
| // this node is the sole unscheduled node for. |
| unsigned NumNodesBlocking = 0; |
| for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Succs.begin(), |
| E = SU->Succs.end(); I != E; ++I) |
| if (getSingleUnscheduledPred(I->first) == SU) |
| ++NumNodesBlocking; |
| NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking; |
| |
| Queue.push(SU); |
| } |
| |
| |
| // ScheduledNode - As nodes are scheduled, we look to see if there are any |
| // successor nodes that have a single unscheduled predecessor. If so, that |
| // single predecessor has a higher priority, since scheduling it will make |
| // the node available. |
| void LatencyPriorityQueue::ScheduledNode(SUnit *SU) { |
| for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Succs.begin(), |
| E = SU->Succs.end(); I != E; ++I) |
| AdjustPriorityOfUnscheduledPreds(I->first); |
| } |
| |
| /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just |
| /// scheduled. If SU is not itself available, then there is at least one |
| /// predecessor node that has not been scheduled yet. If SU has exactly ONE |
| /// unscheduled predecessor, we want to increase its priority: it getting |
| /// scheduled will make this node available, so it is better than some other |
| /// node of the same priority that will not make a node available. |
| void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) { |
| if (SU->isPending) return; // All preds scheduled. |
| |
| SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU); |
| if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return; |
| |
| // Okay, we found a single predecessor that is available, but not scheduled. |
| // Since it is available, it must be in the priority queue. First remove it. |
| RemoveFromPriorityQueue(OnlyAvailablePred); |
| |
| // Reinsert the node into the priority queue, which recomputes its |
| // NumNodesSolelyBlocking value. |
| push(OnlyAvailablePred); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Public Constructor Functions |
| //===----------------------------------------------------------------------===// |
| |
| llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG, |
| MachineBasicBlock *BB) { |
| return new ScheduleDAGList(DAG, BB, DAG.getTarget(), true, |
| new RegReductionPriorityQueue<ls_rr_sort>(), |
| new HazardRecognizer()); |
| } |
| |
| /// createTDListDAGScheduler - This creates a top-down list scheduler with the |
| /// specified hazard recognizer. |
| ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAG &DAG, |
| MachineBasicBlock *BB, |
| HazardRecognizer *HR) { |
| return new ScheduleDAGList(DAG, BB, DAG.getTarget(), false, |
| new LatencyPriorityQueue(), |
| HR); |
| } |