| //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This transformation implements the well known scalar replacement of |
| /// aggregates transformation. It tries to identify promotable elements of an |
| /// aggregate alloca, and promote them to registers. It will also try to |
| /// convert uses of an element (or set of elements) of an alloca into a vector |
| /// or bitfield-style integer scalar if appropriate. |
| /// |
| /// It works to do this with minimal slicing of the alloca so that regions |
| /// which are merely transferred in and out of external memory remain unchanged |
| /// and are not decomposed to scalar code. |
| /// |
| /// Because this also performs alloca promotion, it can be thought of as also |
| /// serving the purpose of SSA formation. The algorithm iterates on the |
| /// function until all opportunities for promotion have been realized. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AssumptionTracker.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/PtrUseVisitor.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DIBuilder.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/TimeValue.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| #include "llvm/Transforms/Utils/SSAUpdater.h" |
| |
| #if __cplusplus >= 201103L && !defined(NDEBUG) |
| // We only use this for a debug check in C++11 |
| #include <random> |
| #endif |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "sroa" |
| |
| STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); |
| STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); |
| STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); |
| STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); |
| STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); |
| STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); |
| STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); |
| STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); |
| STATISTIC(NumDeleted, "Number of instructions deleted"); |
| STATISTIC(NumVectorized, "Number of vectorized aggregates"); |
| |
| /// Hidden option to force the pass to not use DomTree and mem2reg, instead |
| /// forming SSA values through the SSAUpdater infrastructure. |
| static cl::opt<bool> |
| ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden); |
| |
| /// Hidden option to enable randomly shuffling the slices to help uncover |
| /// instability in their order. |
| static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices", |
| cl::init(false), cl::Hidden); |
| |
| /// Hidden option to experiment with completely strict handling of inbounds |
| /// GEPs. |
| static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", |
| cl::init(false), cl::Hidden); |
| |
| namespace { |
| /// \brief A custom IRBuilder inserter which prefixes all names if they are |
| /// preserved. |
| template <bool preserveNames = true> |
| class IRBuilderPrefixedInserter : |
| public IRBuilderDefaultInserter<preserveNames> { |
| std::string Prefix; |
| |
| public: |
| void SetNamePrefix(const Twine &P) { Prefix = P.str(); } |
| |
| protected: |
| void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, |
| BasicBlock::iterator InsertPt) const { |
| IRBuilderDefaultInserter<preserveNames>::InsertHelper( |
| I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt); |
| } |
| }; |
| |
| // Specialization for not preserving the name is trivial. |
| template <> |
| class IRBuilderPrefixedInserter<false> : |
| public IRBuilderDefaultInserter<false> { |
| public: |
| void SetNamePrefix(const Twine &P) {} |
| }; |
| |
| /// \brief Provide a typedef for IRBuilder that drops names in release builds. |
| #ifndef NDEBUG |
| typedef llvm::IRBuilder<true, ConstantFolder, |
| IRBuilderPrefixedInserter<true> > IRBuilderTy; |
| #else |
| typedef llvm::IRBuilder<false, ConstantFolder, |
| IRBuilderPrefixedInserter<false> > IRBuilderTy; |
| #endif |
| } |
| |
| namespace { |
| /// \brief A used slice of an alloca. |
| /// |
| /// This structure represents a slice of an alloca used by some instruction. It |
| /// stores both the begin and end offsets of this use, a pointer to the use |
| /// itself, and a flag indicating whether we can classify the use as splittable |
| /// or not when forming partitions of the alloca. |
| class Slice { |
| /// \brief The beginning offset of the range. |
| uint64_t BeginOffset; |
| |
| /// \brief The ending offset, not included in the range. |
| uint64_t EndOffset; |
| |
| /// \brief Storage for both the use of this slice and whether it can be |
| /// split. |
| PointerIntPair<Use *, 1, bool> UseAndIsSplittable; |
| |
| public: |
| Slice() : BeginOffset(), EndOffset() {} |
| Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) |
| : BeginOffset(BeginOffset), EndOffset(EndOffset), |
| UseAndIsSplittable(U, IsSplittable) {} |
| |
| uint64_t beginOffset() const { return BeginOffset; } |
| uint64_t endOffset() const { return EndOffset; } |
| |
| bool isSplittable() const { return UseAndIsSplittable.getInt(); } |
| void makeUnsplittable() { UseAndIsSplittable.setInt(false); } |
| |
| Use *getUse() const { return UseAndIsSplittable.getPointer(); } |
| |
| bool isDead() const { return getUse() == nullptr; } |
| void kill() { UseAndIsSplittable.setPointer(nullptr); } |
| |
| /// \brief Support for ordering ranges. |
| /// |
| /// This provides an ordering over ranges such that start offsets are |
| /// always increasing, and within equal start offsets, the end offsets are |
| /// decreasing. Thus the spanning range comes first in a cluster with the |
| /// same start position. |
| bool operator<(const Slice &RHS) const { |
| if (beginOffset() < RHS.beginOffset()) return true; |
| if (beginOffset() > RHS.beginOffset()) return false; |
| if (isSplittable() != RHS.isSplittable()) return !isSplittable(); |
| if (endOffset() > RHS.endOffset()) return true; |
| return false; |
| } |
| |
| /// \brief Support comparison with a single offset to allow binary searches. |
| friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, |
| uint64_t RHSOffset) { |
| return LHS.beginOffset() < RHSOffset; |
| } |
| friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, |
| const Slice &RHS) { |
| return LHSOffset < RHS.beginOffset(); |
| } |
| |
| bool operator==(const Slice &RHS) const { |
| return isSplittable() == RHS.isSplittable() && |
| beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); |
| } |
| bool operator!=(const Slice &RHS) const { return !operator==(RHS); } |
| }; |
| } // end anonymous namespace |
| |
| namespace llvm { |
| template <typename T> struct isPodLike; |
| template <> struct isPodLike<Slice> { |
| static const bool value = true; |
| }; |
| } |
| |
| namespace { |
| /// \brief Representation of the alloca slices. |
| /// |
| /// This class represents the slices of an alloca which are formed by its |
| /// various uses. If a pointer escapes, we can't fully build a representation |
| /// for the slices used and we reflect that in this structure. The uses are |
| /// stored, sorted by increasing beginning offset and with unsplittable slices |
| /// starting at a particular offset before splittable slices. |
| class AllocaSlices { |
| public: |
| /// \brief Construct the slices of a particular alloca. |
| AllocaSlices(const DataLayout &DL, AllocaInst &AI); |
| |
| /// \brief Test whether a pointer to the allocation escapes our analysis. |
| /// |
| /// If this is true, the slices are never fully built and should be |
| /// ignored. |
| bool isEscaped() const { return PointerEscapingInstr; } |
| |
| /// \brief Support for iterating over the slices. |
| /// @{ |
| typedef SmallVectorImpl<Slice>::iterator iterator; |
| iterator begin() { return Slices.begin(); } |
| iterator end() { return Slices.end(); } |
| |
| typedef SmallVectorImpl<Slice>::const_iterator const_iterator; |
| const_iterator begin() const { return Slices.begin(); } |
| const_iterator end() const { return Slices.end(); } |
| /// @} |
| |
| /// \brief Allow iterating the dead users for this alloca. |
| /// |
| /// These are instructions which will never actually use the alloca as they |
| /// are outside the allocated range. They are safe to replace with undef and |
| /// delete. |
| /// @{ |
| typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator; |
| dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); } |
| dead_user_iterator dead_user_end() const { return DeadUsers.end(); } |
| /// @} |
| |
| /// \brief Allow iterating the dead expressions referring to this alloca. |
| /// |
| /// These are operands which have cannot actually be used to refer to the |
| /// alloca as they are outside its range and the user doesn't correct for |
| /// that. These mostly consist of PHI node inputs and the like which we just |
| /// need to replace with undef. |
| /// @{ |
| typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator; |
| dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); } |
| dead_op_iterator dead_op_end() const { return DeadOperands.end(); } |
| /// @} |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; |
| void printSlice(raw_ostream &OS, const_iterator I, |
| StringRef Indent = " ") const; |
| void printUse(raw_ostream &OS, const_iterator I, |
| StringRef Indent = " ") const; |
| void print(raw_ostream &OS) const; |
| void dump(const_iterator I) const; |
| void dump() const; |
| #endif |
| |
| private: |
| template <typename DerivedT, typename RetT = void> class BuilderBase; |
| class SliceBuilder; |
| friend class AllocaSlices::SliceBuilder; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// \brief Handle to alloca instruction to simplify method interfaces. |
| AllocaInst &AI; |
| #endif |
| |
| /// \brief The instruction responsible for this alloca not having a known set |
| /// of slices. |
| /// |
| /// When an instruction (potentially) escapes the pointer to the alloca, we |
| /// store a pointer to that here and abort trying to form slices of the |
| /// alloca. This will be null if the alloca slices are analyzed successfully. |
| Instruction *PointerEscapingInstr; |
| |
| /// \brief The slices of the alloca. |
| /// |
| /// We store a vector of the slices formed by uses of the alloca here. This |
| /// vector is sorted by increasing begin offset, and then the unsplittable |
| /// slices before the splittable ones. See the Slice inner class for more |
| /// details. |
| SmallVector<Slice, 8> Slices; |
| |
| /// \brief Instructions which will become dead if we rewrite the alloca. |
| /// |
| /// Note that these are not separated by slice. This is because we expect an |
| /// alloca to be completely rewritten or not rewritten at all. If rewritten, |
| /// all these instructions can simply be removed and replaced with undef as |
| /// they come from outside of the allocated space. |
| SmallVector<Instruction *, 8> DeadUsers; |
| |
| /// \brief Operands which will become dead if we rewrite the alloca. |
| /// |
| /// These are operands that in their particular use can be replaced with |
| /// undef when we rewrite the alloca. These show up in out-of-bounds inputs |
| /// to PHI nodes and the like. They aren't entirely dead (there might be |
| /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we |
| /// want to swap this particular input for undef to simplify the use lists of |
| /// the alloca. |
| SmallVector<Use *, 8> DeadOperands; |
| }; |
| } |
| |
| static Value *foldSelectInst(SelectInst &SI) { |
| // If the condition being selected on is a constant or the same value is |
| // being selected between, fold the select. Yes this does (rarely) happen |
| // early on. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) |
| return SI.getOperand(1+CI->isZero()); |
| if (SI.getOperand(1) == SI.getOperand(2)) |
| return SI.getOperand(1); |
| |
| return nullptr; |
| } |
| |
| /// \brief A helper that folds a PHI node or a select. |
| static Value *foldPHINodeOrSelectInst(Instruction &I) { |
| if (PHINode *PN = dyn_cast<PHINode>(&I)) { |
| // If PN merges together the same value, return that value. |
| return PN->hasConstantValue(); |
| } |
| return foldSelectInst(cast<SelectInst>(I)); |
| } |
| |
| /// \brief Builder for the alloca slices. |
| /// |
| /// This class builds a set of alloca slices by recursively visiting the uses |
| /// of an alloca and making a slice for each load and store at each offset. |
| class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { |
| friend class PtrUseVisitor<SliceBuilder>; |
| friend class InstVisitor<SliceBuilder>; |
| typedef PtrUseVisitor<SliceBuilder> Base; |
| |
| const uint64_t AllocSize; |
| AllocaSlices &S; |
| |
| SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; |
| SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; |
| |
| /// \brief Set to de-duplicate dead instructions found in the use walk. |
| SmallPtrSet<Instruction *, 4> VisitedDeadInsts; |
| |
| public: |
| SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S) |
| : PtrUseVisitor<SliceBuilder>(DL), |
| AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {} |
| |
| private: |
| void markAsDead(Instruction &I) { |
| if (VisitedDeadInsts.insert(&I)) |
| S.DeadUsers.push_back(&I); |
| } |
| |
| void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, |
| bool IsSplittable = false) { |
| // Completely skip uses which have a zero size or start either before or |
| // past the end of the allocation. |
| if (Size == 0 || Offset.uge(AllocSize)) { |
| DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset |
| << " which has zero size or starts outside of the " |
| << AllocSize << " byte alloca:\n" |
| << " alloca: " << S.AI << "\n" |
| << " use: " << I << "\n"); |
| return markAsDead(I); |
| } |
| |
| uint64_t BeginOffset = Offset.getZExtValue(); |
| uint64_t EndOffset = BeginOffset + Size; |
| |
| // Clamp the end offset to the end of the allocation. Note that this is |
| // formulated to handle even the case where "BeginOffset + Size" overflows. |
| // This may appear superficially to be something we could ignore entirely, |
| // but that is not so! There may be widened loads or PHI-node uses where |
| // some instructions are dead but not others. We can't completely ignore |
| // them, and so have to record at least the information here. |
| assert(AllocSize >= BeginOffset); // Established above. |
| if (Size > AllocSize - BeginOffset) { |
| DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset |
| << " to remain within the " << AllocSize << " byte alloca:\n" |
| << " alloca: " << S.AI << "\n" |
| << " use: " << I << "\n"); |
| EndOffset = AllocSize; |
| } |
| |
| S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); |
| } |
| |
| void visitBitCastInst(BitCastInst &BC) { |
| if (BC.use_empty()) |
| return markAsDead(BC); |
| |
| return Base::visitBitCastInst(BC); |
| } |
| |
| void visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| if (GEPI.use_empty()) |
| return markAsDead(GEPI); |
| |
| if (SROAStrictInbounds && GEPI.isInBounds()) { |
| // FIXME: This is a manually un-factored variant of the basic code inside |
| // of GEPs with checking of the inbounds invariant specified in the |
| // langref in a very strict sense. If we ever want to enable |
| // SROAStrictInbounds, this code should be factored cleanly into |
| // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds |
| // by writing out the code here where we have tho underlying allocation |
| // size readily available. |
| APInt GEPOffset = Offset; |
| for (gep_type_iterator GTI = gep_type_begin(GEPI), |
| GTE = gep_type_end(GEPI); |
| GTI != GTE; ++GTI) { |
| ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); |
| if (!OpC) |
| break; |
| |
| // Handle a struct index, which adds its field offset to the pointer. |
| if (StructType *STy = dyn_cast<StructType>(*GTI)) { |
| unsigned ElementIdx = OpC->getZExtValue(); |
| const StructLayout *SL = DL.getStructLayout(STy); |
| GEPOffset += |
| APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); |
| } else { |
| // For array or vector indices, scale the index by the size of the type. |
| APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); |
| GEPOffset += Index * APInt(Offset.getBitWidth(), |
| DL.getTypeAllocSize(GTI.getIndexedType())); |
| } |
| |
| // If this index has computed an intermediate pointer which is not |
| // inbounds, then the result of the GEP is a poison value and we can |
| // delete it and all uses. |
| if (GEPOffset.ugt(AllocSize)) |
| return markAsDead(GEPI); |
| } |
| } |
| |
| return Base::visitGetElementPtrInst(GEPI); |
| } |
| |
| void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, |
| uint64_t Size, bool IsVolatile) { |
| // We allow splitting of loads and stores where the type is an integer type |
| // and cover the entire alloca. This prevents us from splitting over |
| // eagerly. |
| // FIXME: In the great blue eventually, we should eagerly split all integer |
| // loads and stores, and then have a separate step that merges adjacent |
| // alloca partitions into a single partition suitable for integer widening. |
| // Or we should skip the merge step and rely on GVN and other passes to |
| // merge adjacent loads and stores that survive mem2reg. |
| bool IsSplittable = |
| Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize; |
| |
| insertUse(I, Offset, Size, IsSplittable); |
| } |
| |
| void visitLoadInst(LoadInst &LI) { |
| assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && |
| "All simple FCA loads should have been pre-split"); |
| |
| if (!IsOffsetKnown) |
| return PI.setAborted(&LI); |
| |
| uint64_t Size = DL.getTypeStoreSize(LI.getType()); |
| return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); |
| } |
| |
| void visitStoreInst(StoreInst &SI) { |
| Value *ValOp = SI.getValueOperand(); |
| if (ValOp == *U) |
| return PI.setEscapedAndAborted(&SI); |
| if (!IsOffsetKnown) |
| return PI.setAborted(&SI); |
| |
| uint64_t Size = DL.getTypeStoreSize(ValOp->getType()); |
| |
| // If this memory access can be shown to *statically* extend outside the |
| // bounds of of the allocation, it's behavior is undefined, so simply |
| // ignore it. Note that this is more strict than the generic clamping |
| // behavior of insertUse. We also try to handle cases which might run the |
| // risk of overflow. |
| // FIXME: We should instead consider the pointer to have escaped if this |
| // function is being instrumented for addressing bugs or race conditions. |
| if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { |
| DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset |
| << " which extends past the end of the " << AllocSize |
| << " byte alloca:\n" |
| << " alloca: " << S.AI << "\n" |
| << " use: " << SI << "\n"); |
| return markAsDead(SI); |
| } |
| |
| assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && |
| "All simple FCA stores should have been pre-split"); |
| handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); |
| } |
| |
| |
| void visitMemSetInst(MemSetInst &II) { |
| assert(II.getRawDest() == *U && "Pointer use is not the destination?"); |
| ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
| if ((Length && Length->getValue() == 0) || |
| (IsOffsetKnown && Offset.uge(AllocSize))) |
| // Zero-length mem transfer intrinsics can be ignored entirely. |
| return markAsDead(II); |
| |
| if (!IsOffsetKnown) |
| return PI.setAborted(&II); |
| |
| insertUse(II, Offset, |
| Length ? Length->getLimitedValue() |
| : AllocSize - Offset.getLimitedValue(), |
| (bool)Length); |
| } |
| |
| void visitMemTransferInst(MemTransferInst &II) { |
| ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
| if (Length && Length->getValue() == 0) |
| // Zero-length mem transfer intrinsics can be ignored entirely. |
| return markAsDead(II); |
| |
| // Because we can visit these intrinsics twice, also check to see if the |
| // first time marked this instruction as dead. If so, skip it. |
| if (VisitedDeadInsts.count(&II)) |
| return; |
| |
| if (!IsOffsetKnown) |
| return PI.setAborted(&II); |
| |
| // This side of the transfer is completely out-of-bounds, and so we can |
| // nuke the entire transfer. However, we also need to nuke the other side |
| // if already added to our partitions. |
| // FIXME: Yet another place we really should bypass this when |
| // instrumenting for ASan. |
| if (Offset.uge(AllocSize)) { |
| SmallDenseMap<Instruction *, unsigned>::iterator MTPI = MemTransferSliceMap.find(&II); |
| if (MTPI != MemTransferSliceMap.end()) |
| S.Slices[MTPI->second].kill(); |
| return markAsDead(II); |
| } |
| |
| uint64_t RawOffset = Offset.getLimitedValue(); |
| uint64_t Size = Length ? Length->getLimitedValue() |
| : AllocSize - RawOffset; |
| |
| // Check for the special case where the same exact value is used for both |
| // source and dest. |
| if (*U == II.getRawDest() && *U == II.getRawSource()) { |
| // For non-volatile transfers this is a no-op. |
| if (!II.isVolatile()) |
| return markAsDead(II); |
| |
| return insertUse(II, Offset, Size, /*IsSplittable=*/false); |
| } |
| |
| // If we have seen both source and destination for a mem transfer, then |
| // they both point to the same alloca. |
| bool Inserted; |
| SmallDenseMap<Instruction *, unsigned>::iterator MTPI; |
| std::tie(MTPI, Inserted) = |
| MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size())); |
| unsigned PrevIdx = MTPI->second; |
| if (!Inserted) { |
| Slice &PrevP = S.Slices[PrevIdx]; |
| |
| // Check if the begin offsets match and this is a non-volatile transfer. |
| // In that case, we can completely elide the transfer. |
| if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { |
| PrevP.kill(); |
| return markAsDead(II); |
| } |
| |
| // Otherwise we have an offset transfer within the same alloca. We can't |
| // split those. |
| PrevP.makeUnsplittable(); |
| } |
| |
| // Insert the use now that we've fixed up the splittable nature. |
| insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); |
| |
| // Check that we ended up with a valid index in the map. |
| assert(S.Slices[PrevIdx].getUse()->getUser() == &II && |
| "Map index doesn't point back to a slice with this user."); |
| } |
| |
| // Disable SRoA for any intrinsics except for lifetime invariants. |
| // FIXME: What about debug intrinsics? This matches old behavior, but |
| // doesn't make sense. |
| void visitIntrinsicInst(IntrinsicInst &II) { |
| if (!IsOffsetKnown) |
| return PI.setAborted(&II); |
| |
| if (II.getIntrinsicID() == Intrinsic::lifetime_start || |
| II.getIntrinsicID() == Intrinsic::lifetime_end) { |
| ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); |
| uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), |
| Length->getLimitedValue()); |
| insertUse(II, Offset, Size, true); |
| return; |
| } |
| |
| Base::visitIntrinsicInst(II); |
| } |
| |
| Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { |
| // We consider any PHI or select that results in a direct load or store of |
| // the same offset to be a viable use for slicing purposes. These uses |
| // are considered unsplittable and the size is the maximum loaded or stored |
| // size. |
| SmallPtrSet<Instruction *, 4> Visited; |
| SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; |
| Visited.insert(Root); |
| Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); |
| // If there are no loads or stores, the access is dead. We mark that as |
| // a size zero access. |
| Size = 0; |
| do { |
| Instruction *I, *UsedI; |
| std::tie(UsedI, I) = Uses.pop_back_val(); |
| |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| Size = std::max(Size, DL.getTypeStoreSize(LI->getType())); |
| continue; |
| } |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| Value *Op = SI->getOperand(0); |
| if (Op == UsedI) |
| return SI; |
| Size = std::max(Size, DL.getTypeStoreSize(Op->getType())); |
| continue; |
| } |
| |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { |
| if (!GEP->hasAllZeroIndices()) |
| return GEP; |
| } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && |
| !isa<SelectInst>(I)) { |
| return I; |
| } |
| |
| for (User *U : I->users()) |
| if (Visited.insert(cast<Instruction>(U))) |
| Uses.push_back(std::make_pair(I, cast<Instruction>(U))); |
| } while (!Uses.empty()); |
| |
| return nullptr; |
| } |
| |
| void visitPHINodeOrSelectInst(Instruction &I) { |
| assert(isa<PHINode>(I) || isa<SelectInst>(I)); |
| if (I.use_empty()) |
| return markAsDead(I); |
| |
| // TODO: We could use SimplifyInstruction here to fold PHINodes and |
| // SelectInsts. However, doing so requires to change the current |
| // dead-operand-tracking mechanism. For instance, suppose neither loading |
| // from %U nor %other traps. Then "load (select undef, %U, %other)" does not |
| // trap either. However, if we simply replace %U with undef using the |
| // current dead-operand-tracking mechanism, "load (select undef, undef, |
| // %other)" may trap because the select may return the first operand |
| // "undef". |
| if (Value *Result = foldPHINodeOrSelectInst(I)) { |
| if (Result == *U) |
| // If the result of the constant fold will be the pointer, recurse |
| // through the PHI/select as if we had RAUW'ed it. |
| enqueueUsers(I); |
| else |
| // Otherwise the operand to the PHI/select is dead, and we can replace |
| // it with undef. |
| S.DeadOperands.push_back(U); |
| |
| return; |
| } |
| |
| if (!IsOffsetKnown) |
| return PI.setAborted(&I); |
| |
| // See if we already have computed info on this node. |
| uint64_t &Size = PHIOrSelectSizes[&I]; |
| if (!Size) { |
| // This is a new PHI/Select, check for an unsafe use of it. |
| if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) |
| return PI.setAborted(UnsafeI); |
| } |
| |
| // For PHI and select operands outside the alloca, we can't nuke the entire |
| // phi or select -- the other side might still be relevant, so we special |
| // case them here and use a separate structure to track the operands |
| // themselves which should be replaced with undef. |
| // FIXME: This should instead be escaped in the event we're instrumenting |
| // for address sanitization. |
| if (Offset.uge(AllocSize)) { |
| S.DeadOperands.push_back(U); |
| return; |
| } |
| |
| insertUse(I, Offset, Size); |
| } |
| |
| void visitPHINode(PHINode &PN) { |
| visitPHINodeOrSelectInst(PN); |
| } |
| |
| void visitSelectInst(SelectInst &SI) { |
| visitPHINodeOrSelectInst(SI); |
| } |
| |
| /// \brief Disable SROA entirely if there are unhandled users of the alloca. |
| void visitInstruction(Instruction &I) { |
| PI.setAborted(&I); |
| } |
| }; |
| |
| AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) |
| : |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| AI(AI), |
| #endif |
| PointerEscapingInstr(nullptr) { |
| SliceBuilder PB(DL, AI, *this); |
| SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); |
| if (PtrI.isEscaped() || PtrI.isAborted()) { |
| // FIXME: We should sink the escape vs. abort info into the caller nicely, |
| // possibly by just storing the PtrInfo in the AllocaSlices. |
| PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() |
| : PtrI.getAbortingInst(); |
| assert(PointerEscapingInstr && "Did not track a bad instruction"); |
| return; |
| } |
| |
| Slices.erase(std::remove_if(Slices.begin(), Slices.end(), |
| std::mem_fun_ref(&Slice::isDead)), |
| Slices.end()); |
| |
| #if __cplusplus >= 201103L && !defined(NDEBUG) |
| if (SROARandomShuffleSlices) { |
| std::mt19937 MT(static_cast<unsigned>(sys::TimeValue::now().msec())); |
| std::shuffle(Slices.begin(), Slices.end(), MT); |
| } |
| #endif |
| |
| // Sort the uses. This arranges for the offsets to be in ascending order, |
| // and the sizes to be in descending order. |
| std::sort(Slices.begin(), Slices.end()); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| |
| void AllocaSlices::print(raw_ostream &OS, const_iterator I, |
| StringRef Indent) const { |
| printSlice(OS, I, Indent); |
| printUse(OS, I, Indent); |
| } |
| |
| void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, |
| StringRef Indent) const { |
| OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" |
| << " slice #" << (I - begin()) |
| << (I->isSplittable() ? " (splittable)" : "") << "\n"; |
| } |
| |
| void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, |
| StringRef Indent) const { |
| OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; |
| } |
| |
| void AllocaSlices::print(raw_ostream &OS) const { |
| if (PointerEscapingInstr) { |
| OS << "Can't analyze slices for alloca: " << AI << "\n" |
| << " A pointer to this alloca escaped by:\n" |
| << " " << *PointerEscapingInstr << "\n"; |
| return; |
| } |
| |
| OS << "Slices of alloca: " << AI << "\n"; |
| for (const_iterator I = begin(), E = end(); I != E; ++I) |
| print(OS, I); |
| } |
| |
| LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { |
| print(dbgs(), I); |
| } |
| LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } |
| |
| #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| |
| namespace { |
| /// \brief Implementation of LoadAndStorePromoter for promoting allocas. |
| /// |
| /// This subclass of LoadAndStorePromoter adds overrides to handle promoting |
| /// the loads and stores of an alloca instruction, as well as updating its |
| /// debug information. This is used when a domtree is unavailable and thus |
| /// mem2reg in its full form can't be used to handle promotion of allocas to |
| /// scalar values. |
| class AllocaPromoter : public LoadAndStorePromoter { |
| AllocaInst &AI; |
| DIBuilder &DIB; |
| |
| SmallVector<DbgDeclareInst *, 4> DDIs; |
| SmallVector<DbgValueInst *, 4> DVIs; |
| |
| public: |
| AllocaPromoter(const SmallVectorImpl<Instruction *> &Insts, SSAUpdater &S, |
| AllocaInst &AI, DIBuilder &DIB) |
| : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {} |
| |
| void run(const SmallVectorImpl<Instruction*> &Insts) { |
| // Retain the debug information attached to the alloca for use when |
| // rewriting loads and stores. |
| if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) { |
| for (User *U : DebugNode->users()) |
| if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) |
| DDIs.push_back(DDI); |
| else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) |
| DVIs.push_back(DVI); |
| } |
| |
| LoadAndStorePromoter::run(Insts); |
| |
| // While we have the debug information, clear it off of the alloca. The |
| // caller takes care of deleting the alloca. |
| while (!DDIs.empty()) |
| DDIs.pop_back_val()->eraseFromParent(); |
| while (!DVIs.empty()) |
| DVIs.pop_back_val()->eraseFromParent(); |
| } |
| |
| bool isInstInList(Instruction *I, |
| const SmallVectorImpl<Instruction*> &Insts) const override { |
| Value *Ptr; |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) |
| Ptr = LI->getOperand(0); |
| else |
| Ptr = cast<StoreInst>(I)->getPointerOperand(); |
| |
| // Only used to detect cycles, which will be rare and quickly found as |
| // we're walking up a chain of defs rather than down through uses. |
| SmallPtrSet<Value *, 4> Visited; |
| |
| do { |
| if (Ptr == &AI) |
| return true; |
| |
| if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr)) |
| Ptr = BCI->getOperand(0); |
| else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) |
| Ptr = GEPI->getPointerOperand(); |
| else |
| return false; |
| |
| } while (Visited.insert(Ptr)); |
| |
| return false; |
| } |
| |
| void updateDebugInfo(Instruction *Inst) const override { |
| for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(), |
| E = DDIs.end(); I != E; ++I) { |
| DbgDeclareInst *DDI = *I; |
| if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) |
| ConvertDebugDeclareToDebugValue(DDI, SI, DIB); |
| else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) |
| ConvertDebugDeclareToDebugValue(DDI, LI, DIB); |
| } |
| for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(), |
| E = DVIs.end(); I != E; ++I) { |
| DbgValueInst *DVI = *I; |
| Value *Arg = nullptr; |
| if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { |
| // If an argument is zero extended then use argument directly. The ZExt |
| // may be zapped by an optimization pass in future. |
| if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) |
| Arg = dyn_cast<Argument>(ZExt->getOperand(0)); |
| else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) |
| Arg = dyn_cast<Argument>(SExt->getOperand(0)); |
| if (!Arg) |
| Arg = SI->getValueOperand(); |
| } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { |
| Arg = LI->getPointerOperand(); |
| } else { |
| continue; |
| } |
| Instruction *DbgVal = |
| DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()), |
| DIExpression(DVI->getExpression()), Inst); |
| DbgVal->setDebugLoc(DVI->getDebugLoc()); |
| } |
| } |
| }; |
| } // end anon namespace |
| |
| |
| namespace { |
| /// \brief An optimization pass providing Scalar Replacement of Aggregates. |
| /// |
| /// This pass takes allocations which can be completely analyzed (that is, they |
| /// don't escape) and tries to turn them into scalar SSA values. There are |
| /// a few steps to this process. |
| /// |
| /// 1) It takes allocations of aggregates and analyzes the ways in which they |
| /// are used to try to split them into smaller allocations, ideally of |
| /// a single scalar data type. It will split up memcpy and memset accesses |
| /// as necessary and try to isolate individual scalar accesses. |
| /// 2) It will transform accesses into forms which are suitable for SSA value |
| /// promotion. This can be replacing a memset with a scalar store of an |
| /// integer value, or it can involve speculating operations on a PHI or |
| /// select to be a PHI or select of the results. |
| /// 3) Finally, this will try to detect a pattern of accesses which map cleanly |
| /// onto insert and extract operations on a vector value, and convert them to |
| /// this form. By doing so, it will enable promotion of vector aggregates to |
| /// SSA vector values. |
| class SROA : public FunctionPass { |
| const bool RequiresDomTree; |
| |
| LLVMContext *C; |
| const DataLayout *DL; |
| DominatorTree *DT; |
| AssumptionTracker *AT; |
| |
| /// \brief Worklist of alloca instructions to simplify. |
| /// |
| /// Each alloca in the function is added to this. Each new alloca formed gets |
| /// added to it as well to recursively simplify unless that alloca can be |
| /// directly promoted. Finally, each time we rewrite a use of an alloca other |
| /// the one being actively rewritten, we add it back onto the list if not |
| /// already present to ensure it is re-visited. |
| SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist; |
| |
| /// \brief A collection of instructions to delete. |
| /// We try to batch deletions to simplify code and make things a bit more |
| /// efficient. |
| SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts; |
| |
| /// \brief Post-promotion worklist. |
| /// |
| /// Sometimes we discover an alloca which has a high probability of becoming |
| /// viable for SROA after a round of promotion takes place. In those cases, |
| /// the alloca is enqueued here for re-processing. |
| /// |
| /// Note that we have to be very careful to clear allocas out of this list in |
| /// the event they are deleted. |
| SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist; |
| |
| /// \brief A collection of alloca instructions we can directly promote. |
| std::vector<AllocaInst *> PromotableAllocas; |
| |
| /// \brief A worklist of PHIs to speculate prior to promoting allocas. |
| /// |
| /// All of these PHIs have been checked for the safety of speculation and by |
| /// being speculated will allow promoting allocas currently in the promotable |
| /// queue. |
| SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs; |
| |
| /// \brief A worklist of select instructions to speculate prior to promoting |
| /// allocas. |
| /// |
| /// All of these select instructions have been checked for the safety of |
| /// speculation and by being speculated will allow promoting allocas |
| /// currently in the promotable queue. |
| SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects; |
| |
| public: |
| SROA(bool RequiresDomTree = true) |
| : FunctionPass(ID), RequiresDomTree(RequiresDomTree), |
| C(nullptr), DL(nullptr), DT(nullptr) { |
| initializeSROAPass(*PassRegistry::getPassRegistry()); |
| } |
| bool runOnFunction(Function &F) override; |
| void getAnalysisUsage(AnalysisUsage &AU) const override; |
| |
| const char *getPassName() const override { return "SROA"; } |
| static char ID; |
| |
| private: |
| friend class PHIOrSelectSpeculator; |
| friend class AllocaSliceRewriter; |
| |
| bool rewritePartition(AllocaInst &AI, AllocaSlices &S, |
| AllocaSlices::iterator B, AllocaSlices::iterator E, |
| int64_t BeginOffset, int64_t EndOffset, |
| ArrayRef<AllocaSlices::iterator> SplitUses); |
| bool splitAlloca(AllocaInst &AI, AllocaSlices &S); |
| bool runOnAlloca(AllocaInst &AI); |
| void clobberUse(Use &U); |
| void deleteDeadInstructions(SmallPtrSetImpl<AllocaInst *> &DeletedAllocas); |
| bool promoteAllocas(Function &F); |
| }; |
| } |
| |
| char SROA::ID = 0; |
| |
| FunctionPass *llvm::createSROAPass(bool RequiresDomTree) { |
| return new SROA(RequiresDomTree); |
| } |
| |
| INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", |
| false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionTracker) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", |
| false, false) |
| |
| /// Walk the range of a partitioning looking for a common type to cover this |
| /// sequence of slices. |
| static Type *findCommonType(AllocaSlices::const_iterator B, |
| AllocaSlices::const_iterator E, |
| uint64_t EndOffset) { |
| Type *Ty = nullptr; |
| bool TyIsCommon = true; |
| IntegerType *ITy = nullptr; |
| |
| // Note that we need to look at *every* alloca slice's Use to ensure we |
| // always get consistent results regardless of the order of slices. |
| for (AllocaSlices::const_iterator I = B; I != E; ++I) { |
| Use *U = I->getUse(); |
| if (isa<IntrinsicInst>(*U->getUser())) |
| continue; |
| if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) |
| continue; |
| |
| Type *UserTy = nullptr; |
| if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { |
| UserTy = LI->getType(); |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { |
| UserTy = SI->getValueOperand()->getType(); |
| } |
| |
| if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { |
| // If the type is larger than the partition, skip it. We only encounter |
| // this for split integer operations where we want to use the type of the |
| // entity causing the split. Also skip if the type is not a byte width |
| // multiple. |
| if (UserITy->getBitWidth() % 8 != 0 || |
| UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) |
| continue; |
| |
| // Track the largest bitwidth integer type used in this way in case there |
| // is no common type. |
| if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) |
| ITy = UserITy; |
| } |
| |
| // To avoid depending on the order of slices, Ty and TyIsCommon must not |
| // depend on types skipped above. |
| if (!UserTy || (Ty && Ty != UserTy)) |
| TyIsCommon = false; // Give up on anything but an iN type. |
| else |
| Ty = UserTy; |
| } |
| |
| return TyIsCommon ? Ty : ITy; |
| } |
| |
| /// PHI instructions that use an alloca and are subsequently loaded can be |
| /// rewritten to load both input pointers in the pred blocks and then PHI the |
| /// results, allowing the load of the alloca to be promoted. |
| /// From this: |
| /// %P2 = phi [i32* %Alloca, i32* %Other] |
| /// %V = load i32* %P2 |
| /// to: |
| /// %V1 = load i32* %Alloca -> will be mem2reg'd |
| /// ... |
| /// %V2 = load i32* %Other |
| /// ... |
| /// %V = phi [i32 %V1, i32 %V2] |
| /// |
| /// We can do this to a select if its only uses are loads and if the operands |
| /// to the select can be loaded unconditionally. |
| /// |
| /// FIXME: This should be hoisted into a generic utility, likely in |
| /// Transforms/Util/Local.h |
| static bool isSafePHIToSpeculate(PHINode &PN, |
| const DataLayout *DL = nullptr) { |
| // For now, we can only do this promotion if the load is in the same block |
| // as the PHI, and if there are no stores between the phi and load. |
| // TODO: Allow recursive phi users. |
| // TODO: Allow stores. |
| BasicBlock *BB = PN.getParent(); |
| unsigned MaxAlign = 0; |
| bool HaveLoad = false; |
| for (User *U : PN.users()) { |
| LoadInst *LI = dyn_cast<LoadInst>(U); |
| if (!LI || !LI->isSimple()) |
| return false; |
| |
| // For now we only allow loads in the same block as the PHI. This is |
| // a common case that happens when instcombine merges two loads through |
| // a PHI. |
| if (LI->getParent() != BB) |
| return false; |
| |
| // Ensure that there are no instructions between the PHI and the load that |
| // could store. |
| for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI) |
| if (BBI->mayWriteToMemory()) |
| return false; |
| |
| MaxAlign = std::max(MaxAlign, LI->getAlignment()); |
| HaveLoad = true; |
| } |
| |
| if (!HaveLoad) |
| return false; |
| |
| // We can only transform this if it is safe to push the loads into the |
| // predecessor blocks. The only thing to watch out for is that we can't put |
| // a possibly trapping load in the predecessor if it is a critical edge. |
| for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { |
| TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator(); |
| Value *InVal = PN.getIncomingValue(Idx); |
| |
| // If the value is produced by the terminator of the predecessor (an |
| // invoke) or it has side-effects, there is no valid place to put a load |
| // in the predecessor. |
| if (TI == InVal || TI->mayHaveSideEffects()) |
| return false; |
| |
| // If the predecessor has a single successor, then the edge isn't |
| // critical. |
| if (TI->getNumSuccessors() == 1) |
| continue; |
| |
| // If this pointer is always safe to load, or if we can prove that there |
| // is already a load in the block, then we can move the load to the pred |
| // block. |
| if (InVal->isDereferenceablePointer(DL) || |
| isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL)) |
| continue; |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void speculatePHINodeLoads(PHINode &PN) { |
| DEBUG(dbgs() << " original: " << PN << "\n"); |
| |
| Type *LoadTy = cast<PointerType>(PN.getType())->getElementType(); |
| IRBuilderTy PHIBuilder(&PN); |
| PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), |
| PN.getName() + ".sroa.speculated"); |
| |
| // Get the AA tags and alignment to use from one of the loads. It doesn't |
| // matter which one we get and if any differ. |
| LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); |
| |
| AAMDNodes AATags; |
| SomeLoad->getAAMetadata(AATags); |
| unsigned Align = SomeLoad->getAlignment(); |
| |
| // Rewrite all loads of the PN to use the new PHI. |
| while (!PN.use_empty()) { |
| LoadInst *LI = cast<LoadInst>(PN.user_back()); |
| LI->replaceAllUsesWith(NewPN); |
| LI->eraseFromParent(); |
| } |
| |
| // Inject loads into all of the pred blocks. |
| for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { |
| BasicBlock *Pred = PN.getIncomingBlock(Idx); |
| TerminatorInst *TI = Pred->getTerminator(); |
| Value *InVal = PN.getIncomingValue(Idx); |
| IRBuilderTy PredBuilder(TI); |
| |
| LoadInst *Load = PredBuilder.CreateLoad( |
| InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName())); |
| ++NumLoadsSpeculated; |
| Load->setAlignment(Align); |
| if (AATags) |
| Load->setAAMetadata(AATags); |
| NewPN->addIncoming(Load, Pred); |
| } |
| |
| DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); |
| PN.eraseFromParent(); |
| } |
| |
| /// Select instructions that use an alloca and are subsequently loaded can be |
| /// rewritten to load both input pointers and then select between the result, |
| /// allowing the load of the alloca to be promoted. |
| /// From this: |
| /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other |
| /// %V = load i32* %P2 |
| /// to: |
| /// %V1 = load i32* %Alloca -> will be mem2reg'd |
| /// %V2 = load i32* %Other |
| /// %V = select i1 %cond, i32 %V1, i32 %V2 |
| /// |
| /// We can do this to a select if its only uses are loads and if the operand |
| /// to the select can be loaded unconditionally. |
| static bool isSafeSelectToSpeculate(SelectInst &SI, |
| const DataLayout *DL = nullptr) { |
| Value *TValue = SI.getTrueValue(); |
| Value *FValue = SI.getFalseValue(); |
| bool TDerefable = TValue->isDereferenceablePointer(DL); |
| bool FDerefable = FValue->isDereferenceablePointer(DL); |
| |
| for (User *U : SI.users()) { |
| LoadInst *LI = dyn_cast<LoadInst>(U); |
| if (!LI || !LI->isSimple()) |
| return false; |
| |
| // Both operands to the select need to be dereferencable, either |
| // absolutely (e.g. allocas) or at this point because we can see other |
| // accesses to it. |
| if (!TDerefable && |
| !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL)) |
| return false; |
| if (!FDerefable && |
| !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void speculateSelectInstLoads(SelectInst &SI) { |
| DEBUG(dbgs() << " original: " << SI << "\n"); |
| |
| IRBuilderTy IRB(&SI); |
| Value *TV = SI.getTrueValue(); |
| Value *FV = SI.getFalseValue(); |
| // Replace the loads of the select with a select of two loads. |
| while (!SI.use_empty()) { |
| LoadInst *LI = cast<LoadInst>(SI.user_back()); |
| assert(LI->isSimple() && "We only speculate simple loads"); |
| |
| IRB.SetInsertPoint(LI); |
| LoadInst *TL = |
| IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true"); |
| LoadInst *FL = |
| IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false"); |
| NumLoadsSpeculated += 2; |
| |
| // Transfer alignment and AA info if present. |
| TL->setAlignment(LI->getAlignment()); |
| FL->setAlignment(LI->getAlignment()); |
| |
| AAMDNodes Tags; |
| LI->getAAMetadata(Tags); |
| if (Tags) { |
| TL->setAAMetadata(Tags); |
| FL->setAAMetadata(Tags); |
| } |
| |
| Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, |
| LI->getName() + ".sroa.speculated"); |
| |
| DEBUG(dbgs() << " speculated to: " << *V << "\n"); |
| LI->replaceAllUsesWith(V); |
| LI->eraseFromParent(); |
| } |
| SI.eraseFromParent(); |
| } |
| |
| /// \brief Build a GEP out of a base pointer and indices. |
| /// |
| /// This will return the BasePtr if that is valid, or build a new GEP |
| /// instruction using the IRBuilder if GEP-ing is needed. |
| static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, |
| SmallVectorImpl<Value *> &Indices, Twine NamePrefix) { |
| if (Indices.empty()) |
| return BasePtr; |
| |
| // A single zero index is a no-op, so check for this and avoid building a GEP |
| // in that case. |
| if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) |
| return BasePtr; |
| |
| return IRB.CreateInBoundsGEP(BasePtr, Indices, NamePrefix + "sroa_idx"); |
| } |
| |
| /// \brief Get a natural GEP off of the BasePtr walking through Ty toward |
| /// TargetTy without changing the offset of the pointer. |
| /// |
| /// This routine assumes we've already established a properly offset GEP with |
| /// Indices, and arrived at the Ty type. The goal is to continue to GEP with |
| /// zero-indices down through type layers until we find one the same as |
| /// TargetTy. If we can't find one with the same type, we at least try to use |
| /// one with the same size. If none of that works, we just produce the GEP as |
| /// indicated by Indices to have the correct offset. |
| static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, |
| Value *BasePtr, Type *Ty, Type *TargetTy, |
| SmallVectorImpl<Value *> &Indices, |
| Twine NamePrefix) { |
| if (Ty == TargetTy) |
| return buildGEP(IRB, BasePtr, Indices, NamePrefix); |
| |
| // Pointer size to use for the indices. |
| unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType()); |
| |
| // See if we can descend into a struct and locate a field with the correct |
| // type. |
| unsigned NumLayers = 0; |
| Type *ElementTy = Ty; |
| do { |
| if (ElementTy->isPointerTy()) |
| break; |
| |
| if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) { |
| ElementTy = ArrayTy->getElementType(); |
| Indices.push_back(IRB.getIntN(PtrSize, 0)); |
| } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) { |
| ElementTy = VectorTy->getElementType(); |
| Indices.push_back(IRB.getInt32(0)); |
| } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { |
| if (STy->element_begin() == STy->element_end()) |
| break; // Nothing left to descend into. |
| ElementTy = *STy->element_begin(); |
| Indices.push_back(IRB.getInt32(0)); |
| } else { |
| break; |
| } |
| ++NumLayers; |
| } while (ElementTy != TargetTy); |
| if (ElementTy != TargetTy) |
| Indices.erase(Indices.end() - NumLayers, Indices.end()); |
| |
| return buildGEP(IRB, BasePtr, Indices, NamePrefix); |
| } |
| |
| /// \brief Recursively compute indices for a natural GEP. |
| /// |
| /// This is the recursive step for getNaturalGEPWithOffset that walks down the |
| /// element types adding appropriate indices for the GEP. |
| static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, |
| Value *Ptr, Type *Ty, APInt &Offset, |
| Type *TargetTy, |
| SmallVectorImpl<Value *> &Indices, |
| Twine NamePrefix) { |
| if (Offset == 0) |
| return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, NamePrefix); |
| |
| // We can't recurse through pointer types. |
| if (Ty->isPointerTy()) |
| return nullptr; |
| |
| // We try to analyze GEPs over vectors here, but note that these GEPs are |
| // extremely poorly defined currently. The long-term goal is to remove GEPing |
| // over a vector from the IR completely. |
| if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { |
| unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType()); |
| if (ElementSizeInBits % 8 != 0) { |
| // GEPs over non-multiple of 8 size vector elements are invalid. |
| return nullptr; |
| } |
| APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); |
| APInt NumSkippedElements = Offset.sdiv(ElementSize); |
| if (NumSkippedElements.ugt(VecTy->getNumElements())) |
| return nullptr; |
| Offset -= NumSkippedElements * ElementSize; |
| Indices.push_back(IRB.getInt(NumSkippedElements)); |
| return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(), |
| Offset, TargetTy, Indices, NamePrefix); |
| } |
| |
| if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { |
| Type *ElementTy = ArrTy->getElementType(); |
| APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); |
| APInt NumSkippedElements = Offset.sdiv(ElementSize); |
| if (NumSkippedElements.ugt(ArrTy->getNumElements())) |
| return nullptr; |
| |
| Offset -= NumSkippedElements * ElementSize; |
| Indices.push_back(IRB.getInt(NumSkippedElements)); |
| return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, |
| Indices, NamePrefix); |
| } |
| |
| StructType *STy = dyn_cast<StructType>(Ty); |
| if (!STy) |
| return nullptr; |
| |
| const StructLayout *SL = DL.getStructLayout(STy); |
| uint64_t StructOffset = Offset.getZExtValue(); |
| if (StructOffset >= SL->getSizeInBytes()) |
| return nullptr; |
| unsigned Index = SL->getElementContainingOffset(StructOffset); |
| Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); |
| Type *ElementTy = STy->getElementType(Index); |
| if (Offset.uge(DL.getTypeAllocSize(ElementTy))) |
| return nullptr; // The offset points into alignment padding. |
| |
| Indices.push_back(IRB.getInt32(Index)); |
| return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, |
| Indices, NamePrefix); |
| } |
| |
| /// \brief Get a natural GEP from a base pointer to a particular offset and |
| /// resulting in a particular type. |
| /// |
| /// The goal is to produce a "natural" looking GEP that works with the existing |
| /// composite types to arrive at the appropriate offset and element type for |
| /// a pointer. TargetTy is the element type the returned GEP should point-to if |
| /// possible. We recurse by decreasing Offset, adding the appropriate index to |
| /// Indices, and setting Ty to the result subtype. |
| /// |
| /// If no natural GEP can be constructed, this function returns null. |
| static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, |
| Value *Ptr, APInt Offset, Type *TargetTy, |
| SmallVectorImpl<Value *> &Indices, |
| Twine NamePrefix) { |
| PointerType *Ty = cast<PointerType>(Ptr->getType()); |
| |
| // Don't consider any GEPs through an i8* as natural unless the TargetTy is |
| // an i8. |
| if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) |
| return nullptr; |
| |
| Type *ElementTy = Ty->getElementType(); |
| if (!ElementTy->isSized()) |
| return nullptr; // We can't GEP through an unsized element. |
| APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); |
| if (ElementSize == 0) |
| return nullptr; // Zero-length arrays can't help us build a natural GEP. |
| APInt NumSkippedElements = Offset.sdiv(ElementSize); |
| |
| Offset -= NumSkippedElements * ElementSize; |
| Indices.push_back(IRB.getInt(NumSkippedElements)); |
| return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, |
| Indices, NamePrefix); |
| } |
| |
| /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the |
| /// resulting pointer has PointerTy. |
| /// |
| /// This tries very hard to compute a "natural" GEP which arrives at the offset |
| /// and produces the pointer type desired. Where it cannot, it will try to use |
| /// the natural GEP to arrive at the offset and bitcast to the type. Where that |
| /// fails, it will try to use an existing i8* and GEP to the byte offset and |
| /// bitcast to the type. |
| /// |
| /// The strategy for finding the more natural GEPs is to peel off layers of the |
| /// pointer, walking back through bit casts and GEPs, searching for a base |
| /// pointer from which we can compute a natural GEP with the desired |
| /// properties. The algorithm tries to fold as many constant indices into |
| /// a single GEP as possible, thus making each GEP more independent of the |
| /// surrounding code. |
| static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, |
| APInt Offset, Type *PointerTy, |
| Twine NamePrefix) { |
| // Even though we don't look through PHI nodes, we could be called on an |
| // instruction in an unreachable block, which may be on a cycle. |
| SmallPtrSet<Value *, 4> Visited; |
| Visited.insert(Ptr); |
| SmallVector<Value *, 4> Indices; |
| |
| // We may end up computing an offset pointer that has the wrong type. If we |
| // never are able to compute one directly that has the correct type, we'll |
| // fall back to it, so keep it around here. |
| Value *OffsetPtr = nullptr; |
| |
| // Remember any i8 pointer we come across to re-use if we need to do a raw |
| // byte offset. |
| Value *Int8Ptr = nullptr; |
| APInt Int8PtrOffset(Offset.getBitWidth(), 0); |
| |
| Type *TargetTy = PointerTy->getPointerElementType(); |
| |
| do { |
| // First fold any existing GEPs into the offset. |
| while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { |
| APInt GEPOffset(Offset.getBitWidth(), 0); |
| if (!GEP->accumulateConstantOffset(DL, GEPOffset)) |
| break; |
| Offset += GEPOffset; |
| Ptr = GEP->getPointerOperand(); |
| if (!Visited.insert(Ptr)) |
| break; |
| } |
| |
| // See if we can perform a natural GEP here. |
| Indices.clear(); |
| if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, |
| Indices, NamePrefix)) { |
| if (P->getType() == PointerTy) { |
| // Zap any offset pointer that we ended up computing in previous rounds. |
| if (OffsetPtr && OffsetPtr->use_empty()) |
| if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) |
| I->eraseFromParent(); |
| return P; |
| } |
| if (!OffsetPtr) { |
| OffsetPtr = P; |
| } |
| } |
| |
| // Stash this pointer if we've found an i8*. |
| if (Ptr->getType()->isIntegerTy(8)) { |
| Int8Ptr = Ptr; |
| Int8PtrOffset = Offset; |
| } |
| |
| // Peel off a layer of the pointer and update the offset appropriately. |
| if (Operator::getOpcode(Ptr) == Instruction::BitCast) { |
| Ptr = cast<Operator>(Ptr)->getOperand(0); |
| } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { |
| if (GA->mayBeOverridden()) |
| break; |
| Ptr = GA->getAliasee(); |
| } else { |
| break; |
| } |
| assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); |
| } while (Visited.insert(Ptr)); |
| |
| if (!OffsetPtr) { |
| if (!Int8Ptr) { |
| Int8Ptr = IRB.CreateBitCast( |
| Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), |
| NamePrefix + "sroa_raw_cast"); |
| Int8PtrOffset = Offset; |
| } |
| |
| OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr : |
| IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset), |
| NamePrefix + "sroa_raw_idx"); |
| } |
| Ptr = OffsetPtr; |
| |
| // On the off chance we were targeting i8*, guard the bitcast here. |
| if (Ptr->getType() != PointerTy) |
| Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast"); |
| |
| return Ptr; |
| } |
| |
| /// \brief Test whether we can convert a value from the old to the new type. |
| /// |
| /// This predicate should be used to guard calls to convertValue in order to |
| /// ensure that we only try to convert viable values. The strategy is that we |
| /// will peel off single element struct and array wrappings to get to an |
| /// underlying value, and convert that value. |
| static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { |
| if (OldTy == NewTy) |
| return true; |
| if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy)) |
| if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy)) |
| if (NewITy->getBitWidth() >= OldITy->getBitWidth()) |
| return true; |
| if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy)) |
| return false; |
| if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) |
| return false; |
| |
| // We can convert pointers to integers and vice-versa. Same for vectors |
| // of pointers and integers. |
| OldTy = OldTy->getScalarType(); |
| NewTy = NewTy->getScalarType(); |
| if (NewTy->isPointerTy() || OldTy->isPointerTy()) { |
| if (NewTy->isPointerTy() && OldTy->isPointerTy()) |
| return true; |
| if (NewTy->isIntegerTy() || OldTy->isIntegerTy()) |
| return true; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// \brief Generic routine to convert an SSA value to a value of a different |
| /// type. |
| /// |
| /// This will try various different casting techniques, such as bitcasts, |
| /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test |
| /// two types for viability with this routine. |
| static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, |
| Type *NewTy) { |
| Type *OldTy = V->getType(); |
| assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); |
| |
| if (OldTy == NewTy) |
| return V; |
| |
| if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy)) |
| if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy)) |
| if (NewITy->getBitWidth() > OldITy->getBitWidth()) |
| return IRB.CreateZExt(V, NewITy); |
| |
| // See if we need inttoptr for this type pair. A cast involving both scalars |
| // and vectors requires and additional bitcast. |
| if (OldTy->getScalarType()->isIntegerTy() && |
| NewTy->getScalarType()->isPointerTy()) { |
| // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* |
| if (OldTy->isVectorTy() && !NewTy->isVectorTy()) |
| return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), |
| NewTy); |
| |
| // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> |
| if (!OldTy->isVectorTy() && NewTy->isVectorTy()) |
| return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), |
| NewTy); |
| |
| return IRB.CreateIntToPtr(V, NewTy); |
| } |
| |
| // See if we need ptrtoint for this type pair. A cast involving both scalars |
| // and vectors requires and additional bitcast. |
| if (OldTy->getScalarType()->isPointerTy() && |
| NewTy->getScalarType()->isIntegerTy()) { |
| // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 |
| if (OldTy->isVectorTy() && !NewTy->isVectorTy()) |
| return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), |
| NewTy); |
| |
| // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> |
| if (!OldTy->isVectorTy() && NewTy->isVectorTy()) |
| return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), |
| NewTy); |
| |
| return IRB.CreatePtrToInt(V, NewTy); |
| } |
| |
| return IRB.CreateBitCast(V, NewTy); |
| } |
| |
| /// \brief Test whether the given slice use can be promoted to a vector. |
| /// |
| /// This function is called to test each entry in a partioning which is slated |
| /// for a single slice. |
| static bool isVectorPromotionViableForSlice( |
| const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset, |
| uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize, |
| AllocaSlices::const_iterator I) { |
| // First validate the slice offsets. |
| uint64_t BeginOffset = |
| std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset; |
| uint64_t BeginIndex = BeginOffset / ElementSize; |
| if (BeginIndex * ElementSize != BeginOffset || |
| BeginIndex >= Ty->getNumElements()) |
| return false; |
| uint64_t EndOffset = |
| std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset; |
| uint64_t EndIndex = EndOffset / ElementSize; |
| if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements()) |
| return false; |
| |
| assert(EndIndex > BeginIndex && "Empty vector!"); |
| uint64_t NumElements = EndIndex - BeginIndex; |
| Type *SliceTy = |
| (NumElements == 1) ? Ty->getElementType() |
| : VectorType::get(Ty->getElementType(), NumElements); |
| |
| Type *SplitIntTy = |
| Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); |
| |
| Use *U = I->getUse(); |
| |
| if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { |
| if (MI->isVolatile()) |
| return false; |
| if (!I->isSplittable()) |
| return false; // Skip any unsplittable intrinsics. |
| } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { |
| if (II->getIntrinsicID() != Intrinsic::lifetime_start && |
| II->getIntrinsicID() != Intrinsic::lifetime_end) |
| return false; |
| } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { |
| // Disable vector promotion when there are loads or stores of an FCA. |
| return false; |
| } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { |
| if (LI->isVolatile()) |
| return false; |
| Type *LTy = LI->getType(); |
| if (SliceBeginOffset > I->beginOffset() || |
| SliceEndOffset < I->endOffset()) { |
| assert(LTy->isIntegerTy()); |
| LTy = SplitIntTy; |
| } |
| if (!canConvertValue(DL, SliceTy, LTy)) |
| return false; |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { |
| if (SI->isVolatile()) |
| return false; |
| Type *STy = SI->getValueOperand()->getType(); |
| if (SliceBeginOffset > I->beginOffset() || |
| SliceEndOffset < I->endOffset()) { |
| assert(STy->isIntegerTy()); |
| STy = SplitIntTy; |
| } |
| if (!canConvertValue(DL, STy, SliceTy)) |
| return false; |
| } else { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// \brief Test whether the given alloca partitioning and range of slices can be |
| /// promoted to a vector. |
| /// |
| /// This is a quick test to check whether we can rewrite a particular alloca |
| /// partition (and its newly formed alloca) into a vector alloca with only |
| /// whole-vector loads and stores such that it could be promoted to a vector |
| /// SSA value. We only can ensure this for a limited set of operations, and we |
| /// don't want to do the rewrites unless we are confident that the result will |
| /// be promotable, so we have an early test here. |
| static bool |
| isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S, |
| uint64_t SliceBeginOffset, uint64_t SliceEndOffset, |
| AllocaSlices::const_iterator I, |
| AllocaSlices::const_iterator E, |
| ArrayRef<AllocaSlices::iterator> SplitUses) { |
| VectorType *Ty = dyn_cast<VectorType>(AllocaTy); |
| if (!Ty) |
| return false; |
| |
| uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType()); |
| |
| // While the definition of LLVM vectors is bitpacked, we don't support sizes |
| // that aren't byte sized. |
| if (ElementSize % 8) |
| return false; |
| assert((DL.getTypeSizeInBits(Ty) % 8) == 0 && |
| "vector size not a multiple of element size?"); |
| ElementSize /= 8; |
| |
| for (; I != E; ++I) |
| if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset, |
| SliceEndOffset, Ty, ElementSize, I)) |
| return false; |
| |
| for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(), |
| SUE = SplitUses.end(); |
| SUI != SUE; ++SUI) |
| if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset, |
| SliceEndOffset, Ty, ElementSize, *SUI)) |
| return false; |
| |
| return true; |
| } |
| |
| /// \brief Test whether a slice of an alloca is valid for integer widening. |
| /// |
| /// This implements the necessary checking for the \c isIntegerWideningViable |
| /// test below on a single slice of the alloca. |
| static bool isIntegerWideningViableForSlice(const DataLayout &DL, |
| Type *AllocaTy, |
| uint64_t AllocBeginOffset, |
| uint64_t Size, AllocaSlices &S, |
| AllocaSlices::const_iterator I, |
| bool &WholeAllocaOp) { |
| uint64_t RelBegin = I->beginOffset() - AllocBeginOffset; |
| uint64_t RelEnd = I->endOffset() - AllocBeginOffset; |
| |
| // We can't reasonably handle cases where the load or store extends past |
| // the end of the aloca's type and into its padding. |
| if (RelEnd > Size) |
| return false; |
| |
| Use *U = I->getUse(); |
| |
| if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { |
| if (LI->isVolatile()) |
| return false; |
| if (RelBegin == 0 && RelEnd == Size) |
| WholeAllocaOp = true; |
| if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { |
| if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) |
| return false; |
| } else if (RelBegin != 0 || RelEnd != Size || |
| !canConvertValue(DL, AllocaTy, LI->getType())) { |
| // Non-integer loads need to be convertible from the alloca type so that |
| // they are promotable. |
| return false; |
| } |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { |
| Type *ValueTy = SI->getValueOperand()->getType(); |
| if (SI->isVolatile()) |
| return false; |
| if (RelBegin == 0 && RelEnd == Size) |
| WholeAllocaOp = true; |
| if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { |
| if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) |
| return false; |
| } else if (RelBegin != 0 || RelEnd != Size || |
| !canConvertValue(DL, ValueTy, AllocaTy)) { |
| // Non-integer stores need to be convertible to the alloca type so that |
| // they are promotable. |
| return false; |
| } |
| } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { |
| if (MI->isVolatile() || !isa<Constant>(MI->getLength())) |
| return false; |
| if (!I->isSplittable()) |
| return false; // Skip any unsplittable intrinsics. |
| } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { |
| if (II->getIntrinsicID() != Intrinsic::lifetime_start && |
| II->getIntrinsicID() != Intrinsic::lifetime_end) |
| return false; |
| } else { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// \brief Test whether the given alloca partition's integer operations can be |
| /// widened to promotable ones. |
| /// |
| /// This is a quick test to check whether we can rewrite the integer loads and |
| /// stores to a particular alloca into wider loads and stores and be able to |
| /// promote the resulting alloca. |
| static bool |
| isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy, |
| uint64_t AllocBeginOffset, AllocaSlices &S, |
| AllocaSlices::const_iterator I, |
| AllocaSlices::const_iterator E, |
| ArrayRef<AllocaSlices::iterator> SplitUses) { |
| uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy); |
| // Don't create integer types larger than the maximum bitwidth. |
| if (SizeInBits > IntegerType::MAX_INT_BITS) |
| return false; |
| |
| // Don't try to handle allocas with bit-padding. |
| if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy)) |
| return false; |
| |
| // We need to ensure that an integer type with the appropriate bitwidth can |
| // be converted to the alloca type, whatever that is. We don't want to force |
| // the alloca itself to have an integer type if there is a more suitable one. |
| Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); |
| if (!canConvertValue(DL, AllocaTy, IntTy) || |
| !canConvertValue(DL, IntTy, AllocaTy)) |
| return false; |
| |
| uint64_t Size = DL.getTypeStoreSize(AllocaTy); |
| |
| // While examining uses, we ensure that the alloca has a covering load or |
| // store. We don't want to widen the integer operations only to fail to |
| // promote due to some other unsplittable entry (which we may make splittable |
| // later). However, if there are only splittable uses, go ahead and assume |
| // that we cover the alloca. |
| bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits); |
| |
| for (; I != E; ++I) |
| if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size, |
| S, I, WholeAllocaOp)) |
| return false; |
| |
| for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(), |
| SUE = SplitUses.end(); |
| SUI != SUE; ++SUI) |
| if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size, |
| S, *SUI, WholeAllocaOp)) |
| return false; |
| |
| return WholeAllocaOp; |
| } |
| |
| static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, |
| IntegerType *Ty, uint64_t Offset, |
| const Twine &Name) { |
| DEBUG(dbgs() << " start: " << *V << "\n"); |
| IntegerType *IntTy = cast<IntegerType>(V->getType()); |
| assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && |
| "Element extends past full value"); |
| uint64_t ShAmt = 8*Offset; |
| if (DL.isBigEndian()) |
| ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); |
| if (ShAmt) { |
| V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); |
| DEBUG(dbgs() << " shifted: " << *V << "\n"); |
| } |
| assert(Ty->getBitWidth() <= IntTy->getBitWidth() && |
| "Cannot extract to a larger integer!"); |
| if (Ty != IntTy) { |
| V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); |
| DEBUG(dbgs() << " trunced: " << *V << "\n"); |
| } |
| return V; |
| } |
| |
| static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, |
| Value *V, uint64_t Offset, const Twine &Name) { |
| IntegerType *IntTy = cast<IntegerType>(Old->getType()); |
| IntegerType *Ty = cast<IntegerType>(V->getType()); |
| assert(Ty->getBitWidth() <= IntTy->getBitWidth() && |
| "Cannot insert a larger integer!"); |
| DEBUG(dbgs() << " start: " << *V << "\n"); |
| if (Ty != IntTy) { |
| V = IRB.CreateZExt(V, IntTy, Name + ".ext"); |
| DEBUG(dbgs() << " extended: " << *V << "\n"); |
| } |
| assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && |
| "Element store outside of alloca store"); |
| uint64_t ShAmt = 8*Offset; |
| if (DL.isBigEndian()) |
| ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); |
| if (ShAmt) { |
| V = IRB.CreateShl(V, ShAmt, Name + ".shift"); |
| DEBUG(dbgs() << " shifted: " << *V << "\n"); |
| } |
| |
| if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { |
| APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); |
| Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); |
| DEBUG(dbgs() << " masked: " << *Old << "\n"); |
| V = IRB.CreateOr(Old, V, Name + ".insert"); |
| DEBUG(dbgs() << " inserted: " << *V << "\n"); |
| } |
| return V; |
| } |
| |
| static Value *extractVector(IRBuilderTy &IRB, Value *V, |
| unsigned BeginIndex, unsigned EndIndex, |
| const Twine &Name) { |
| VectorType *VecTy = cast<VectorType>(V->getType()); |
| unsigned NumElements = EndIndex - BeginIndex; |
| assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); |
| |
| if (NumElements == VecTy->getNumElements()) |
| return V; |
| |
| if (NumElements == 1) { |
| V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), |
| Name + ".extract"); |
| DEBUG(dbgs() << " extract: " << *V << "\n"); |
| return V; |
| } |
| |
| SmallVector<Constant*, 8> Mask; |
| Mask.reserve(NumElements); |
| for (unsigned i = BeginIndex; i != EndIndex; ++i) |
| Mask.push_back(IRB.getInt32(i)); |
| V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), |
| ConstantVector::get(Mask), |
| Name + ".extract"); |
| DEBUG(dbgs() << " shuffle: " << *V << "\n"); |
| return V; |
| } |
| |
| static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, |
| unsigned BeginIndex, const Twine &Name) { |
| VectorType *VecTy = cast<VectorType>(Old->getType()); |
| assert(VecTy && "Can only insert a vector into a vector"); |
| |
| VectorType *Ty = dyn_cast<VectorType>(V->getType()); |
| if (!Ty) { |
| // Single element to insert. |
| V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), |
| Name + ".insert"); |
| DEBUG(dbgs() << " insert: " << *V << "\n"); |
| return V; |
| } |
| |
| assert(Ty->getNumElements() <= VecTy->getNumElements() && |
| "Too many elements!"); |
| if (Ty->getNumElements() == VecTy->getNumElements()) { |
| assert(V->getType() == VecTy && "Vector type mismatch"); |
| return V; |
| } |
| unsigned EndIndex = BeginIndex + Ty->getNumElements(); |
| |
| // When inserting a smaller vector into the larger to store, we first |
| // use a shuffle vector to widen it with undef elements, and then |
| // a second shuffle vector to select between the loaded vector and the |
| // incoming vector. |
| SmallVector<Constant*, 8> Mask; |
| Mask.reserve(VecTy->getNumElements()); |
| for (unsigned i = 0; i != VecTy->getNumElements(); ++i) |
| if (i >= BeginIndex && i < EndIndex) |
| Mask.push_back(IRB.getInt32(i - BeginIndex)); |
| else |
| Mask.push_back(UndefValue::get(IRB.getInt32Ty())); |
| V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), |
| ConstantVector::get(Mask), |
| Name + ".expand"); |
| DEBUG(dbgs() << " shuffle: " << *V << "\n"); |
| |
| Mask.clear(); |
| for (unsigned i = 0; i != VecTy->getNumElements(); ++i) |
| Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); |
| |
| V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend"); |
| |
| DEBUG(dbgs() << " blend: " << *V << "\n"); |
| return V; |
| } |
| |
| namespace { |
| /// \brief Visitor to rewrite instructions using p particular slice of an alloca |
| /// to use a new alloca. |
| /// |
| /// Also implements the rewriting to vector-based accesses when the partition |
| /// passes the isVectorPromotionViable predicate. Most of the rewriting logic |
| /// lives here. |
| class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> { |
| // Befriend the base class so it can delegate to private visit methods. |
| friend class llvm::InstVisitor<AllocaSliceRewriter, bool>; |
| typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base; |
| |
| const DataLayout &DL; |
| AllocaSlices &S; |
| SROA &Pass; |
| AllocaInst &OldAI, &NewAI; |
| const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; |
| Type *NewAllocaTy; |
| |
| // If we are rewriting an alloca partition which can be written as pure |
| // vector operations, we stash extra information here. When VecTy is |
| // non-null, we have some strict guarantees about the rewritten alloca: |
| // - The new alloca is exactly the size of the vector type here. |
| // - The accesses all either map to the entire vector or to a single |
| // element. |
| // - The set of accessing instructions is only one of those handled above |
| // in isVectorPromotionViable. Generally these are the same access kinds |
| // which are promotable via mem2reg. |
| VectorType *VecTy; |
| Type *ElementTy; |
| uint64_t ElementSize; |
| |
| // This is a convenience and flag variable that will be null unless the new |
| // alloca's integer operations should be widened to this integer type due to |
| // passing isIntegerWideningViable above. If it is non-null, the desired |
| // integer type will be stored here for easy access during rewriting. |
| IntegerType *IntTy; |
| |
| // The original offset of the slice currently being rewritten relative to |
| // the original alloca. |
| uint64_t BeginOffset, EndOffset; |
| // The new offsets of the slice currently being rewritten relative to the |
| // original alloca. |
| uint64_t NewBeginOffset, NewEndOffset; |
| |
| uint64_t SliceSize; |
| bool IsSplittable; |
| bool IsSplit; |
| Use *OldUse; |
| Instruction *OldPtr; |
| |
| // Track post-rewrite users which are PHI nodes and Selects. |
| SmallPtrSetImpl<PHINode *> &PHIUsers; |
| SmallPtrSetImpl<SelectInst *> &SelectUsers; |
| |
| // Utility IR builder, whose name prefix is setup for each visited use, and |
| // the insertion point is set to point to the user. |
| IRBuilderTy IRB; |
| |
| public: |
| AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass, |
| AllocaInst &OldAI, AllocaInst &NewAI, |
| uint64_t NewAllocaBeginOffset, |
| uint64_t NewAllocaEndOffset, bool IsVectorPromotable, |
| bool IsIntegerPromotable, |
| SmallPtrSetImpl<PHINode *> &PHIUsers, |
| SmallPtrSetImpl<SelectInst *> &SelectUsers) |
| : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI), |
| NewAllocaBeginOffset(NewAllocaBeginOffset), |
| NewAllocaEndOffset(NewAllocaEndOffset), |
| NewAllocaTy(NewAI.getAllocatedType()), |
| VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : nullptr), |
| ElementTy(VecTy ? VecTy->getElementType() : nullptr), |
| ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0), |
| IntTy(IsIntegerPromotable |
| ? Type::getIntNTy( |
| NewAI.getContext(), |
| DL.getTypeSizeInBits(NewAI.getAllocatedType())) |
| : nullptr), |
| BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(), |
| OldPtr(), PHIUsers(PHIUsers), SelectUsers(SelectUsers), |
| IRB(NewAI.getContext(), ConstantFolder()) { |
| if (VecTy) { |
| assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 && |
| "Only multiple-of-8 sized vector elements are viable"); |
| ++NumVectorized; |
| } |
| assert((!IsVectorPromotable && !IsIntegerPromotable) || |
| IsVectorPromotable != IsIntegerPromotable); |
| } |
| |
| bool visit(AllocaSlices::const_iterator I) { |
| bool CanSROA = true; |
| BeginOffset = I->beginOffset(); |
| EndOffset = I->endOffset(); |
| IsSplittable = I->isSplittable(); |
| IsSplit = |
| BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; |
| |
| // Compute the intersecting offset range. |
| assert(BeginOffset < NewAllocaEndOffset); |
| assert(EndOffset > NewAllocaBeginOffset); |
| NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); |
| NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); |
| |
| SliceSize = NewEndOffset - NewBeginOffset; |
| |
| OldUse = I->getUse(); |
| OldPtr = cast<Instruction>(OldUse->get()); |
| |
| Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); |
| IRB.SetInsertPoint(OldUserI); |
| IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); |
| IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); |
| |
| CanSROA &= visit(cast<Instruction>(OldUse->getUser())); |
| if (VecTy || IntTy) |
| assert(CanSROA); |
| return CanSROA; |
| } |
| |
| private: |
| // Make sure the other visit overloads are visible. |
| using Base::visit; |
| |
| // Every instruction which can end up as a user must have a rewrite rule. |
| bool visitInstruction(Instruction &I) { |
| DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); |
| llvm_unreachable("No rewrite rule for this instruction!"); |
| } |
| |
| Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { |
| // Note that the offset computation can use BeginOffset or NewBeginOffset |
| // interchangeably for unsplit slices. |
| assert(IsSplit || BeginOffset == NewBeginOffset); |
| uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| |
| #ifndef NDEBUG |
| StringRef OldName = OldPtr->getName(); |
| // Skip through the last '.sroa.' component of the name. |
| size_t LastSROAPrefix = OldName.rfind(".sroa."); |
| if (LastSROAPrefix != StringRef::npos) { |
| OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); |
| // Look for an SROA slice index. |
| size_t IndexEnd = OldName.find_first_not_of("0123456789"); |
| if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { |
| // Strip the index and look for the offset. |
| OldName = OldName.substr(IndexEnd + 1); |
| size_t OffsetEnd = OldName.find_first_not_of("0123456789"); |
| if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') |
| // Strip the offset. |
| OldName = OldName.substr(OffsetEnd + 1); |
| } |
| } |
| // Strip any SROA suffixes as well. |
| OldName = OldName.substr(0, OldName.find(".sroa_")); |
| #endif |
| |
| return getAdjustedPtr(IRB, DL, &NewAI, |
| APInt(DL.getPointerSizeInBits(), Offset), PointerTy, |
| #ifndef NDEBUG |
| Twine(OldName) + "." |
| #else |
| Twine() |
| #endif |
| ); |
| } |
| |
| /// \brief Compute suitable alignment to access this slice of the *new* alloca. |
| /// |
| /// You can optionally pass a type to this routine and if that type's ABI |
| /// alignment is itself suitable, this will return zero. |
| unsigned getSliceAlign(Type *Ty = nullptr) { |
| unsigned NewAIAlign = NewAI.getAlignment(); |
| if (!NewAIAlign) |
| NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType()); |
| unsigned Align = MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset); |
| return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align; |
| } |
| |
| unsigned getIndex(uint64_t Offset) { |
| assert(VecTy && "Can only call getIndex when rewriting a vector"); |
| uint64_t RelOffset = Offset - NewAllocaBeginOffset; |
| assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); |
| uint32_t Index = RelOffset / ElementSize; |
| assert(Index * ElementSize == RelOffset); |
| return Index; |
| } |
| |
| void deleteIfTriviallyDead(Value *V) { |
| Instruction *I = cast<Instruction>(V); |
| if (isInstructionTriviallyDead(I)) |
| Pass.DeadInsts.insert(I); |
| } |
| |
| Value *rewriteVectorizedLoadInst() { |
| unsigned BeginIndex = getIndex(NewBeginOffset); |
| unsigned EndIndex = getIndex(NewEndOffset); |
| assert(EndIndex > BeginIndex && "Empty vector!"); |
| |
| Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| "load"); |
| return extractVector(IRB, V, BeginIndex, EndIndex, "vec"); |
| } |
| |
| Value *rewriteIntegerLoad(LoadInst &LI) { |
| assert(IntTy && "We cannot insert an integer to the alloca"); |
| assert(!LI.isVolatile()); |
| Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| "load"); |
| V = convertValue(DL, IRB, V, IntTy); |
| assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); |
| uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) |
| V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset, |
| "extract"); |
| return V; |
| } |
| |
| bool visitLoadInst(LoadInst &LI) { |
| DEBUG(dbgs() << " original: " << LI << "\n"); |
| Value *OldOp = LI.getOperand(0); |
| assert(OldOp == OldPtr); |
| |
| Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) |
| : LI.getType(); |
| bool IsPtrAdjusted = false; |
| Value *V; |
| if (VecTy) { |
| V = rewriteVectorizedLoadInst(); |
| } else if (IntTy && LI.getType()->isIntegerTy()) { |
| V = rewriteIntegerLoad(LI); |
| } else if (NewBeginOffset == NewAllocaBeginOffset && |
| canConvertValue(DL, NewAllocaTy, LI.getType())) { |
| V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| LI.isVolatile(), LI.getName()); |
| } else { |
| Type *LTy = TargetTy->getPointerTo(); |
| V = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy), |
| getSliceAlign(TargetTy), LI.isVolatile(), |
| LI.getName()); |
| IsPtrAdjusted = true; |
| } |
| V = convertValue(DL, IRB, V, TargetTy); |
| |
| if (IsSplit) { |
| assert(!LI.isVolatile()); |
| assert(LI.getType()->isIntegerTy() && |
| "Only integer type loads and stores are split"); |
| assert(SliceSize < DL.getTypeStoreSize(LI.getType()) && |
| "Split load isn't smaller than original load"); |
| assert(LI.getType()->getIntegerBitWidth() == |
| DL.getTypeStoreSizeInBits(LI.getType()) && |
| "Non-byte-multiple bit width"); |
| // Move the insertion point just past the load so that we can refer to it. |
| IRB.SetInsertPoint(std::next(BasicBlock::iterator(&LI))); |
| // Create a placeholder value with the same type as LI to use as the |
| // basis for the new value. This allows us to replace the uses of LI with |
| // the computed value, and then replace the placeholder with LI, leaving |
| // LI only used for this computation. |
| Value *Placeholder |
| = new LoadInst(UndefValue::get(LI.getType()->getPointerTo())); |
| V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset, |
| "insert"); |
| LI.replaceAllUsesWith(V); |
| Placeholder->replaceAllUsesWith(&LI); |
| delete Placeholder; |
| } else { |
| LI.replaceAllUsesWith(V); |
| } |
| |
| Pass.DeadInsts.insert(&LI); |
| deleteIfTriviallyDead(OldOp); |
| DEBUG(dbgs() << " to: " << *V << "\n"); |
| return !LI.isVolatile() && !IsPtrAdjusted; |
| } |
| |
| bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp) { |
| if (V->getType() != VecTy) { |
| unsigned BeginIndex = getIndex(NewBeginOffset); |
| unsigned EndIndex = getIndex(NewEndOffset); |
| assert(EndIndex > BeginIndex && "Empty vector!"); |
| unsigned NumElements = EndIndex - BeginIndex; |
| assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); |
| Type *SliceTy = |
| (NumElements == 1) ? ElementTy |
| : VectorType::get(ElementTy, NumElements); |
| if (V->getType() != SliceTy) |
| V = convertValue(DL, IRB, V, SliceTy); |
| |
| // Mix in the existing elements. |
| Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| "load"); |
| V = insertVector(IRB, Old, V, BeginIndex, "vec"); |
| } |
| StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); |
| Pass.DeadInsts.insert(&SI); |
| |
| (void)Store; |
| DEBUG(dbgs() << " to: " << *Store << "\n"); |
| return true; |
| } |
| |
| bool rewriteIntegerStore(Value *V, StoreInst &SI) { |
| assert(IntTy && "We cannot extract an integer from the alloca"); |
| assert(!SI.isVolatile()); |
| if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) { |
| Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| "oldload"); |
| Old = convertValue(DL, IRB, Old, IntTy); |
| assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); |
| uint64_t Offset = BeginOffset - NewAllocaBeginOffset; |
| V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, |
| "insert"); |
| } |
| V = convertValue(DL, IRB, V, NewAllocaTy); |
| StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); |
| Pass.DeadInsts.insert(&SI); |
| (void)Store; |
| DEBUG(dbgs() << " to: " << *Store << "\n"); |
| return true; |
| } |
| |
| bool visitStoreInst(StoreInst &SI) { |
| DEBUG(dbgs() << " original: " << SI << "\n"); |
| Value *OldOp = SI.getOperand(1); |
| assert(OldOp == OldPtr); |
| |
| Value *V = SI.getValueOperand(); |
| |
| // Strip all inbounds GEPs and pointer casts to try to dig out any root |
| // alloca that should be re-examined after promoting this alloca. |
| if (V->getType()->isPointerTy()) |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) |
| Pass.PostPromotionWorklist.insert(AI); |
| |
| if (SliceSize < DL.getTypeStoreSize(V->getType())) { |
| assert(!SI.isVolatile()); |
| assert(V->getType()->isIntegerTy() && |
| "Only integer type loads and stores are split"); |
| assert(V->getType()->getIntegerBitWidth() == |
| DL.getTypeStoreSizeInBits(V->getType()) && |
| "Non-byte-multiple bit width"); |
| IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); |
| V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset, |
| "extract"); |
| } |
| |
| if (VecTy) |
| return rewriteVectorizedStoreInst(V, SI, OldOp); |
| if (IntTy && V->getType()->isIntegerTy()) |
| return rewriteIntegerStore(V, SI); |
| |
| StoreInst *NewSI; |
| if (NewBeginOffset == NewAllocaBeginOffset && |
| NewEndOffset == NewAllocaEndOffset && |
| canConvertValue(DL, V->getType(), NewAllocaTy)) { |
| V = convertValue(DL, IRB, V, NewAllocaTy); |
| NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), |
| SI.isVolatile()); |
| } else { |
| Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo()); |
| NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()), |
| SI.isVolatile()); |
| } |
| (void)NewSI; |
| Pass.DeadInsts.insert(&SI); |
| deleteIfTriviallyDead(OldOp); |
| |
| DEBUG(dbgs() << " to: " << *NewSI << "\n"); |
| return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile(); |
| } |
| |
| /// \brief Compute an integer value from splatting an i8 across the given |
| /// number of bytes. |
| /// |
| /// Note that this routine assumes an i8 is a byte. If that isn't true, don't |
| /// call this routine. |
| /// FIXME: Heed the advice above. |
| /// |
| /// \param V The i8 value to splat. |
| /// \param Size The number of bytes in the output (assuming i8 is one byte) |
| Value *getIntegerSplat(Value *V, unsigned Size) { |
| assert(Size > 0 && "Expected a positive number of bytes."); |
| IntegerType *VTy = cast<IntegerType>(V->getType()); |
| assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); |
| if (Size == 1) |
| return V; |
| |
| Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8); |
| V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"), |
| ConstantExpr::getUDiv( |
| Constant::getAllOnesValue(SplatIntTy), |
| ConstantExpr::getZExt( |
| Constant::getAllOnesValue(V->getType()), |
| SplatIntTy)), |
| "isplat"); |
| return V; |
| } |
| |
| /// \brief Compute a vector splat for a given element value. |
| Value *getVectorSplat(Value *V, unsigned NumElements) { |
| V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); |
| DEBUG(dbgs() << " splat: " << *V << "\n"); |
| return V; |
| } |
| |
| bool visitMemSetInst(MemSetInst &II) { |
| DEBUG(dbgs() << " original: " << II << "\n"); |
| assert(II.getRawDest() == OldPtr); |
| |
| // If the memset has a variable size, it cannot be split, just adjust the |
| // pointer to the new alloca. |
| if (!isa<Constant>(II.getLength())) { |
| assert(!IsSplit); |
| assert(NewBeginOffset == BeginOffset); |
| II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); |
| Type *CstTy = II.getAlignmentCst()->getType(); |
| II.setAlignment(ConstantInt::get(CstTy, getSliceAlign())); |
| |
| deleteIfTriviallyDead(OldPtr); |
| return false; |
| } |
| |
| // Record this instruction for deletion. |
| Pass.DeadInsts.insert(&II); |
| |
| Type *AllocaTy = NewAI.getAllocatedType(); |
| Type *ScalarTy = AllocaTy->getScalarType(); |
| |
| // If this doesn't map cleanly onto the alloca type, and that type isn't |
| // a single value type, just emit a memset. |
| if (!VecTy && !IntTy && |
| (BeginOffset > NewAllocaBeginOffset || |
| EndOffset < NewAllocaEndOffset || |
| SliceSize != DL.getTypeStoreSize(AllocaTy) || |
| !AllocaTy->isSingleValueType() || |
| !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) || |
| DL.getTypeSizeInBits(ScalarTy)%8 != 0)) { |
| Type *SizeTy = II.getLength()->getType(); |
| Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); |
| CallInst *New = IRB.CreateMemSet( |
| getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, |
| getSliceAlign(), II.isVolatile()); |
| (void)New; |
| DEBUG(dbgs() << " to: " << *New << "\n"); |
| return false; |
| } |
| |
| // If we can represent this as a simple value, we have to build the actual |
| // value to store, which requires expanding the byte present in memset to |
| // a sensible representation for the alloca type. This is essentially |
| // splatting the byte to a sufficiently wide integer, splatting it across |
| // any desired vector width, and bitcasting to the final type. |
| Value *V; |
| |
| if (VecTy) { |
| // If this is a memset of a vectorized alloca, insert it. |
| assert(ElementTy == ScalarTy); |
| |
| unsigned BeginIndex = getIndex(NewBeginOffset); |
| unsigned EndIndex = getIndex(NewEndOffset); |
| assert(EndIndex > BeginIndex && "Empty vector!"); |
| unsigned NumElements = EndIndex - BeginIndex; |
| assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); |
| |
| Value *Splat = |
| getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8); |
| Splat = convertValue(DL, IRB, Splat, ElementTy); |
| if (NumElements > 1) |
| Splat = getVectorSplat(Splat, NumElements); |
| |
| Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| "oldload"); |
| V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); |
| } else if (IntTy) { |
| // If this is a memset on an alloca where we can widen stores, insert the |
| // set integer. |
| assert(!II.isVolatile()); |
| |
| uint64_t Size = NewEndOffset - NewBeginOffset; |
| V = getIntegerSplat(II.getValue(), Size); |
| |
| if (IntTy && (BeginOffset != NewAllocaBeginOffset || |
| EndOffset != NewAllocaBeginOffset)) { |
| Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| "oldload"); |
| Old = convertValue(DL, IRB, Old, IntTy); |
| uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| V = insertInteger(DL, IRB, Old, V, Offset, "insert"); |
| } else { |
| assert(V->getType() == IntTy && |
| "Wrong type for an alloca wide integer!"); |
| } |
| V = convertValue(DL, IRB, V, AllocaTy); |
| } else { |
| // Established these invariants above. |
| assert(NewBeginOffset == NewAllocaBeginOffset); |
| assert(NewEndOffset == NewAllocaEndOffset); |
| |
| V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8); |
| if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) |
| V = getVectorSplat(V, AllocaVecTy->getNumElements()); |
| |
| V = convertValue(DL, IRB, V, AllocaTy); |
| } |
| |
| Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), |
| II.isVolatile()); |
| (void)New; |
| DEBUG(dbgs() << " to: " << *New << "\n"); |
| return !II.isVolatile(); |
| } |
| |
| bool visitMemTransferInst(MemTransferInst &II) { |
| // Rewriting of memory transfer instructions can be a bit tricky. We break |
| // them into two categories: split intrinsics and unsplit intrinsics. |
| |
| DEBUG(dbgs() << " original: " << II << "\n"); |
| |
| bool IsDest = &II.getRawDestUse() == OldUse; |
| assert((IsDest && II.getRawDest() == OldPtr) || |
| (!IsDest && II.getRawSource() == OldPtr)); |
| |
| unsigned SliceAlign = getSliceAlign(); |
| |
| // For unsplit intrinsics, we simply modify the source and destination |
| // pointers in place. This isn't just an optimization, it is a matter of |
| // correctness. With unsplit intrinsics we may be dealing with transfers |
| // within a single alloca before SROA ran, or with transfers that have |
| // a variable length. We may also be dealing with memmove instead of |
| // memcpy, and so simply updating the pointers is the necessary for us to |
| // update both source and dest of a single call. |
| if (!IsSplittable) { |
| Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); |
| if (IsDest) |
| II.setDest(AdjustedPtr); |
| else |
| II.setSource(AdjustedPtr); |
| |
| if (II.getAlignment() > SliceAlign) { |
| Type *CstTy = II.getAlignmentCst()->getType(); |
| II.setAlignment( |
| ConstantInt::get(CstTy, MinAlign(II.getAlignment(), SliceAlign))); |
| } |
| |
| DEBUG(dbgs() << " to: " << II << "\n"); |
| deleteIfTriviallyDead(OldPtr); |
| return false; |
| } |
| // For split transfer intrinsics we have an incredibly useful assurance: |
| // the source and destination do not reside within the same alloca, and at |
| // least one of them does not escape. This means that we can replace |
| // memmove with memcpy, and we don't need to worry about all manner of |
| // downsides to splitting and transforming the operations. |
| |
| // If this doesn't map cleanly onto the alloca type, and that type isn't |
| // a single value type, just emit a memcpy. |
| bool EmitMemCpy = |
| !VecTy && !IntTy && |
| (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || |
| SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) || |
| !NewAI.getAllocatedType()->isSingleValueType()); |
| |
| // If we're just going to emit a memcpy, the alloca hasn't changed, and the |
| // size hasn't been shrunk based on analysis of the viable range, this is |
| // a no-op. |
| if (EmitMemCpy && &OldAI == &NewAI) { |
| // Ensure the start lines up. |
| assert(NewBeginOffset == BeginOffset); |
| |
| // Rewrite the size as needed. |
| if (NewEndOffset != EndOffset) |
| II.setLength(ConstantInt::get(II.getLength()->getType(), |
| NewEndOffset - NewBeginOffset)); |
| return false; |
| } |
| // Record this instruction for deletion. |
| Pass.DeadInsts.insert(&II); |
| |
| // Strip all inbounds GEPs and pointer casts to try to dig out any root |
| // alloca that should be re-examined after rewriting this instruction. |
| Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); |
| if (AllocaInst *AI |
| = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { |
| assert(AI != &OldAI && AI != &NewAI && |
| "Splittable transfers cannot reach the same alloca on both ends."); |
| Pass.Worklist.insert(AI); |
| } |
| |
| Type *OtherPtrTy = OtherPtr->getType(); |
| unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); |
| |
| // Compute the relative offset for the other pointer within the transfer. |
| unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS); |
| APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset); |
| unsigned OtherAlign = MinAlign(II.getAlignment() ? II.getAlignment() : 1, |
| OtherOffset.zextOrTrunc(64).getZExtValue()); |
| |
| if (EmitMemCpy) { |
| // Compute the other pointer, folding as much as possible to produce |
| // a single, simple GEP in most cases. |
| OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, |
| OtherPtr->getName() + "."); |
| |
| Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); |
| Type *SizeTy = II.getLength()->getType(); |
| Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); |
| |
| CallInst *New = IRB.CreateMemCpy( |
| IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size, |
| MinAlign(SliceAlign, OtherAlign), II.isVolatile()); |
| (void)New; |
| DEBUG(dbgs() << " to: " << *New << "\n"); |
| return false; |
| } |
| |
| bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && |
| NewEndOffset == NewAllocaEndOffset; |
| uint64_t Size = NewEndOffset - NewBeginOffset; |
| unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; |
| unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; |
| unsigned NumElements = EndIndex - BeginIndex; |
| IntegerType *SubIntTy |
| = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : nullptr; |
| |
| // Reset the other pointer type to match the register type we're going to |
| // use, but using the address space of the original other pointer. |
| if (VecTy && !IsWholeAlloca) { |
| if (NumElements == 1) |
| OtherPtrTy = VecTy->getElementType(); |
| else |
| OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements); |
| |
| OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS); |
| } else if (IntTy && !IsWholeAlloca) { |
| OtherPtrTy = SubIntTy->getPointerTo(OtherAS); |
| } else { |
| OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS); |
| } |
| |
| Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, |
| OtherPtr->getName() + "."); |
| unsigned SrcAlign = OtherAlign; |
| Value *DstPtr = &NewAI; |
| unsigned DstAlign = SliceAlign; |
| if (!IsDest) { |
| std::swap(SrcPtr, DstPtr); |
| std::swap(SrcAlign, DstAlign); |
| } |
| |
| Value *Src; |
| if (VecTy && !IsWholeAlloca && !IsDest) { |
| Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| "load"); |
| Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); |
| } else if (IntTy && !IsWholeAlloca && !IsDest) { |
| Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| "load"); |
| Src = convertValue(DL, IRB, Src, IntTy); |
| uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); |
| } else { |
| Src = IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(), |
| "copyload"); |
| } |
| |
| if (VecTy && !IsWholeAlloca && IsDest) { |
| Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| "oldload"); |
| Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); |
| } else if (IntTy && !IsWholeAlloca && IsDest) { |
| Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| "oldload"); |
| Old = convertValue(DL, IRB, Old, IntTy); |
| uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); |
| Src = convertValue(DL, IRB, Src, NewAllocaTy); |
| } |
| |
| StoreInst *Store = cast<StoreInst>( |
| IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); |
| (void)Store; |
| DEBUG(dbgs() << " to: " << *Store << "\n"); |
| return !II.isVolatile(); |
| } |
| |
| bool visitIntrinsicInst(IntrinsicInst &II) { |
| assert(II.getIntrinsicID() == Intrinsic::lifetime_start || |
| II.getIntrinsicID() == Intrinsic::lifetime_end); |
| DEBUG(dbgs() << " original: " << II << "\n"); |
| assert(II.getArgOperand(1) == OldPtr); |
| |
| // Record this instruction for deletion. |
| Pass.DeadInsts.insert(&II); |
| |
| ConstantInt *Size |
| = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), |
| NewEndOffset - NewBeginOffset); |
| Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); |
| Value *New; |
| if (II.getIntrinsicID() == Intrinsic::lifetime_start) |
| New = IRB.CreateLifetimeStart(Ptr, Size); |
| else |
| New = IRB.CreateLifetimeEnd(Ptr, Size); |
| |
| (void)New; |
| DEBUG(dbgs() << " to: " << *New << "\n"); |
| return true; |
| } |
| |
| bool visitPHINode(PHINode &PN) { |
| DEBUG(dbgs() << " original: " << PN << "\n"); |
| assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); |
| assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); |
| |
| // We would like to compute a new pointer in only one place, but have it be |
| // as local as possible to the PHI. To do that, we re-use the location of |
| // the old pointer, which necessarily must be in the right position to |
| // dominate the PHI. |
| IRBuilderTy PtrBuilder(IRB); |
| if (isa<PHINode>(OldPtr)) |
| PtrBuilder.SetInsertPoint(OldPtr->getParent()->getFirstInsertionPt()); |
| else |
| PtrBuilder.SetInsertPoint(OldPtr); |
| PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc()); |
| |
| Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType()); |
| // Replace the operands which were using the old pointer. |
| std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); |
| |
| DEBUG(dbgs() << " to: " << PN << "\n"); |
| deleteIfTriviallyDead(OldPtr); |
| |
| // PHIs can't be promoted on their own, but often can be speculated. We |
| // check the speculation outside of the rewriter so that we see the |
| // fully-rewritten alloca. |
| PHIUsers.insert(&PN); |
| return true; |
| } |
| |
| bool visitSelectInst(SelectInst &SI) { |
| DEBUG(dbgs() << " original: " << SI << "\n"); |
| assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && |
| "Pointer isn't an operand!"); |
| assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); |
| assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); |
| |
| Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); |
| // Replace the operands which were using the old pointer. |
| if (SI.getOperand(1) == OldPtr) |
| SI.setOperand(1, NewPtr); |
| if (SI.getOperand(2) == OldPtr) |
| SI.setOperand(2, NewPtr); |
| |
| DEBUG(dbgs() << " to: " << SI << "\n"); |
| deleteIfTriviallyDead(OldPtr); |
| |
| // Selects can't be promoted on their own, but often can be speculated. We |
| // check the speculation outside of the rewriter so that we see the |
| // fully-rewritten alloca. |
| SelectUsers.insert(&SI); |
| return true; |
| } |
| |
| }; |
| } |
| |
| namespace { |
| /// \brief Visitor to rewrite aggregate loads and stores as scalar. |
| /// |
| /// This pass aggressively rewrites all aggregate loads and stores on |
| /// a particular pointer (or any pointer derived from it which we can identify) |
| /// with scalar loads and stores. |
| class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { |
| // Befriend the base class so it can delegate to private visit methods. |
| friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>; |
| |
| const DataLayout &DL; |
| |
| /// Queue of pointer uses to analyze and potentially rewrite. |
| SmallVector<Use *, 8> Queue; |
| |
| /// Set to prevent us from cycling with phi nodes and loops. |
| SmallPtrSet<User *, 8> Visited; |
| |
| /// The current pointer use being rewritten. This is used to dig up the used |
| /// value (as opposed to the user). |
| Use *U; |
| |
| public: |
| AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {} |
| |
| /// Rewrite loads and stores through a pointer and all pointers derived from |
| /// it. |
| bool rewrite(Instruction &I) { |
| DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); |
| enqueueUsers(I); |
| bool Changed = false; |
| while (!Queue.empty()) { |
| U = Queue.pop_back_val(); |
| Changed |= visit(cast<Instruction>(U->getUser())); |
| } |
| return Changed; |
| } |
| |
| private: |
| /// Enqueue all the users of the given instruction for further processing. |
| /// This uses a set to de-duplicate users. |
| void enqueueUsers(Instruction &I) { |
| for (Use &U : I.uses()) |
| if (Visited.insert(U.getUser())) |
| Queue.push_back(&U); |
| } |
| |
| // Conservative default is to not rewrite anything. |
| bool visitInstruction(Instruction &I) { return false; } |
| |
| /// \brief Generic recursive split emission class. |
| template <typename Derived> |
| class OpSplitter { |
| protected: |
| /// The builder used to form new instructions. |
| IRBuilderTy IRB; |
| /// The indices which to be used with insert- or extractvalue to select the |
| /// appropriate value within the aggregate. |
| SmallVector<unsigned, 4> Indices; |
| /// The indices to a GEP instruction which will move Ptr to the correct slot |
| /// within the aggregate. |
| SmallVector<Value *, 4> GEPIndices; |
| /// The base pointer of the original op, used as a base for GEPing the |
| /// split operations. |
| Value *Ptr; |
| |
| /// Initialize the splitter with an insertion point, Ptr and start with a |
| /// single zero GEP index. |
| OpSplitter(Instruction *InsertionPoint, Value *Ptr) |
| : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {} |
| |
| public: |
| /// \brief Generic recursive split emission routine. |
| /// |
| /// This method recursively splits an aggregate op (load or store) into |
| /// scalar or vector ops. It splits recursively until it hits a single value |
| /// and emits that single value operation via the template argument. |
| /// |
| /// The logic of this routine relies on GEPs and insertvalue and |
| /// extractvalue all operating with the same fundamental index list, merely |
| /// formatted differently (GEPs need actual values). |
| /// |
| /// \param Ty The type being split recursively into smaller ops. |
| /// \param Agg The aggregate value being built up or stored, depending on |
| /// whether this is splitting a load or a store respectively. |
| void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { |
| if (Ty->isSingleValueType()) |
| return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name); |
| |
| if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| unsigned OldSize = Indices.size(); |
| (void)OldSize; |
| for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; |
| ++Idx) { |
| assert(Indices.size() == OldSize && "Did not return to the old size"); |
| Indices.push_back(Idx); |
| GEPIndices.push_back(IRB.getInt32(Idx)); |
| emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); |
| GEPIndices.pop_back(); |
| Indices.pop_back(); |
| } |
| return; |
| } |
| |
| if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| unsigned OldSize = Indices.size(); |
| (void)OldSize; |
| for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; |
| ++Idx) { |
| assert(Indices.size() == OldSize && "Did not return to the old size"); |
| Indices.push_back(Idx); |
| GEPIndices.push_back(IRB.getInt32(Idx)); |
| emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); |
| GEPIndices.pop_back(); |
| Indices.pop_back(); |
| } |
| return; |
| } |
| |
| llvm_unreachable("Only arrays and structs are aggregate loadable types"); |
| } |
| }; |
| |
| struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { |
| LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr) |
| : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {} |
| |
| /// Emit a leaf load of a single value. This is called at the leaves of the |
| /// recursive emission to actually load values. |
| void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { |
| assert(Ty->isSingleValueType()); |
| // Load the single value and insert it using the indices. |
| Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"); |
| Value *Load = IRB.CreateLoad(GEP, Name + ".load"); |
| Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); |
| DEBUG(dbgs() << " to: " << *Load << "\n"); |
| } |
| }; |
| |
| bool visitLoadInst(LoadInst &LI) { |
| assert(LI.getPointerOperand() == *U); |
| if (!LI.isSimple() || LI.getType()->isSingleValueType()) |
| return false; |
| |
| // We have an aggregate being loaded, split it apart. |
| DEBUG(dbgs() << " original: " << LI << "\n"); |
| LoadOpSplitter Splitter(&LI, *U); |
| Value *V = UndefValue::get(LI.getType()); |
| Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); |
| LI.replaceAllUsesWith(V); |
| LI.eraseFromParent(); |
| return true; |
| } |
| |
| struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { |
| StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr) |
| : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {} |
| |
| /// Emit a leaf store of a single value. This is called at the leaves of the |
| /// recursive emission to actually produce stores. |
| void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { |
| assert(Ty->isSingleValueType()); |
| // Extract the single value and store it using the indices. |
| Value *Store = IRB.CreateStore( |
| IRB.CreateExtractValue(Agg, Indices, Name + ".extract"), |
| IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep")); |
| (void)Store; |
| DEBUG(dbgs() << " to: " << *Store << "\n"); |
| } |
| }; |
| |
| bool visitStoreInst(StoreInst &SI) { |
| if (!SI.isSimple() || SI.getPointerOperand() != *U) |
| return false; |
| Value *V = SI.getValueOperand(); |
| if (V->getType()->isSingleValueType()) |
| return false; |
| |
| // We have an aggregate being stored, split it apart. |
| DEBUG(dbgs() << " original: " << SI << "\n"); |
| StoreOpSplitter Splitter(&SI, *U); |
| Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); |
| SI.eraseFromParent(); |
| return true; |
| } |
| |
| bool visitBitCastInst(BitCastInst &BC) { |
| enqueueUsers(BC); |
| return false; |
| } |
| |
| bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| enqueueUsers(GEPI); |
| return false; |
| } |
| |
| bool visitPHINode(PHINode &PN) { |
| enqueueUsers(PN); |
| return false; |
| } |
| |
| bool visitSelectInst(SelectInst &SI) { |
| enqueueUsers(SI); |
| return false; |
| } |
| }; |
| } |
| |
| /// \brief Strip aggregate type wrapping. |
| /// |
| /// This removes no-op aggregate types wrapping an underlying type. It will |
| /// strip as many layers of types as it can without changing either the type |
| /// size or the allocated size. |
| static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { |
| if (Ty->isSingleValueType()) |
| return Ty; |
| |
| uint64_t AllocSize = DL.getTypeAllocSize(Ty); |
| uint64_t TypeSize = DL.getTypeSizeInBits(Ty); |
| |
| Type *InnerTy; |
| if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { |
| InnerTy = ArrTy->getElementType(); |
| } else if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| const StructLayout *SL = DL.getStructLayout(STy); |
| unsigned Index = SL->getElementContainingOffset(0); |
| InnerTy = STy->getElementType(Index); |
| } else { |
| return Ty; |
| } |
| |
| if (AllocSize > DL.getTypeAllocSize(InnerTy) || |
| TypeSize > DL.getTypeSizeInBits(InnerTy)) |
| return Ty; |
| |
| return stripAggregateTypeWrapping(DL, InnerTy); |
| } |
| |
| /// \brief Try to find a partition of the aggregate type passed in for a given |
| /// offset and size. |
| /// |
| /// This recurses through the aggregate type and tries to compute a subtype |
| /// based on the offset and size. When the offset and size span a sub-section |
| /// of an array, it will even compute a new array type for that sub-section, |
| /// and the same for structs. |
| /// |
| /// Note that this routine is very strict and tries to find a partition of the |
| /// type which produces the *exact* right offset and size. It is not forgiving |
| /// when the size or offset cause either end of type-based partition to be off. |
| /// Also, this is a best-effort routine. It is reasonable to give up and not |
| /// return a type if necessary. |
| static Type *getTypePartition(const DataLayout &DL, Type *Ty, |
| uint64_t Offset, uint64_t Size) { |
| if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size) |
| return stripAggregateTypeWrapping(DL, Ty); |
| if (Offset > DL.getTypeAllocSize(Ty) || |
| (DL.getTypeAllocSize(Ty) - Offset) < Size) |
| return nullptr; |
| |
| if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) { |
| // We can't partition pointers... |
| if (SeqTy->isPointerTy()) |
| return nullptr; |
| |
| Type *ElementTy = SeqTy->getElementType(); |
| uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); |
| uint64_t NumSkippedElements = Offset / ElementSize; |
| if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) { |
| if (NumSkippedElements >= ArrTy->getNumElements()) |
| return nullptr; |
| } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) { |
| if (NumSkippedElements >= VecTy->getNumElements()) |
| return nullptr; |
| } |
| Offset -= NumSkippedElements * ElementSize; |
| |
| // First check if we need to recurse. |
| if (Offset > 0 || Size < ElementSize) { |
| // Bail if the partition ends in a different array element. |
| if ((Offset + Size) > ElementSize) |
| return nullptr; |
| // Recurse through the element type trying to peel off offset bytes. |
| return getTypePartition(DL, ElementTy, Offset, Size); |
| } |
| assert(Offset == 0); |
| |
| if (Size == ElementSize) |
| return stripAggregateTypeWrapping(DL, ElementTy); |
| assert(Size > ElementSize); |
| uint64_t NumElements = Size / ElementSize; |
| if (NumElements * ElementSize != Size) |
| return nullptr; |
| return ArrayType::get(ElementTy, NumElements); |
| } |
| |
| StructType *STy = dyn_cast<StructType>(Ty); |
| if (!STy) |
| return nullptr; |
| |
| const StructLayout *SL = DL.getStructLayout(STy); |
| if (Offset >= SL->getSizeInBytes()) |
| return nullptr; |
| uint64_t EndOffset = Offset + Size; |
| if (EndOffset > SL->getSizeInBytes()) |
| return nullptr; |
| |
| unsigned Index = SL->getElementContainingOffset(Offset); |
| Offset -= SL->getElementOffset(Index); |
| |
| Type *ElementTy = STy->getElementType(Index); |
| uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); |
| if (Offset >= ElementSize) |
| return nullptr; // The offset points into alignment padding. |
| |
| // See if any partition must be contained by the element. |
| if (Offset > 0 || Size < ElementSize) { |
| if ((Offset + Size) > ElementSize) |
| return nullptr; |
| return getTypePartition(DL, ElementTy, Offset, Size); |
| } |
| assert(Offset == 0); |
| |
| if (Size == ElementSize) |
| return stripAggregateTypeWrapping(DL, ElementTy); |
| |
| StructType::element_iterator EI = STy->element_begin() + Index, |
| EE = STy->element_end(); |
| if (EndOffset < SL->getSizeInBytes()) { |
| unsigned EndIndex = SL->getElementContainingOffset(EndOffset); |
| if (Index == EndIndex) |
| return nullptr; // Within a single element and its padding. |
| |
| // Don't try to form "natural" types if the elements don't line up with the |
| // expected size. |
| // FIXME: We could potentially recurse down through the last element in the |
| // sub-struct to find a natural end point. |
| if (SL->getElementOffset(EndIndex) != EndOffset) |
| return nullptr; |
| |
| assert(Index < EndIndex); |
| EE = STy->element_begin() + EndIndex; |
| } |
| |
| // Try to build up a sub-structure. |
| StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE), |
| STy->isPacked()); |
| const StructLayout *SubSL = DL.getStructLayout(SubTy); |
| if (Size != SubSL->getSizeInBytes()) |
| return nullptr; // The sub-struct doesn't have quite the size needed. |
| |
| return SubTy; |
| } |
| |
| /// \brief Rewrite an alloca partition's users. |
| /// |
| /// This routine drives both of the rewriting goals of the SROA pass. It tries |
| /// to rewrite uses of an alloca partition to be conducive for SSA value |
| /// promotion. If the partition needs a new, more refined alloca, this will |
| /// build that new alloca, preserving as much type information as possible, and |
| /// rewrite the uses of the old alloca to point at the new one and have the |
| /// appropriate new offsets. It also evaluates how successful the rewrite was |
| /// at enabling promotion and if it was successful queues the alloca to be |
| /// promoted. |
| bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S, |
| AllocaSlices::iterator B, AllocaSlices::iterator E, |
| int64_t BeginOffset, int64_t EndOffset, |
| ArrayRef<AllocaSlices::iterator> SplitUses) { |
| assert(BeginOffset < EndOffset); |
| uint64_t SliceSize = EndOffset - BeginOffset; |
| |
| // Try to compute a friendly type for this partition of the alloca. This |
| // won't always succeed, in which case we fall back to a legal integer type |
| // or an i8 array of an appropriate size. |
| Type *SliceTy = nullptr; |
| if (Type *CommonUseTy = findCommonType(B, E, EndOffset)) |
| if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize) |
| SliceTy = CommonUseTy; |
| if (!SliceTy) |
| if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(), |
| BeginOffset, SliceSize)) |
| SliceTy = TypePartitionTy; |
| if ((!SliceTy || (SliceTy->isArrayTy() && |
| SliceTy->getArrayElementType()->isIntegerTy())) && |
| DL->isLegalInteger(SliceSize * 8)) |
| SliceTy = Type::getIntNTy(*C, SliceSize * 8); |
| if (!SliceTy) |
| SliceTy = ArrayType::get(Type::getInt8Ty(*C), SliceSize); |
| assert(DL->getTypeAllocSize(SliceTy) >= SliceSize); |
| |
| bool IsVectorPromotable = isVectorPromotionViable( |
| *DL, SliceTy, S, BeginOffset, EndOffset, B, E, SplitUses); |
| |
| bool IsIntegerPromotable = |
| !IsVectorPromotable && |
| isIntegerWideningViable(*DL, SliceTy, BeginOffset, S, B, E, SplitUses); |
| |
| // Check for the case where we're going to rewrite to a new alloca of the |
| // exact same type as the original, and with the same access offsets. In that |
| // case, re-use the existing alloca, but still run through the rewriter to |
| // perform phi and select speculation. |
| AllocaInst *NewAI; |
| if (SliceTy == AI.getAllocatedType()) { |
| assert(BeginOffset == 0 && |
| "Non-zero begin offset but same alloca type"); |
| NewAI = &AI; |
| // FIXME: We should be able to bail at this point with "nothing changed". |
| // FIXME: We might want to defer PHI speculation until after here. |
| } else { |
| unsigned Alignment = AI.getAlignment(); |
| if (!Alignment) { |
| // The minimum alignment which users can rely on when the explicit |
| // alignment is omitted or zero is that required by the ABI for this |
| // type. |
| Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); |
| } |
| Alignment = MinAlign(Alignment, BeginOffset); |
| // If we will get at least this much alignment from the type alone, leave |
| // the alloca's alignment unconstrained. |
| if (Alignment <= DL->getABITypeAlignment(SliceTy)) |
| Alignment = 0; |
| NewAI = new AllocaInst(SliceTy, nullptr, Alignment, |
| AI.getName() + ".sroa." + Twine(B - S.begin()), &AI); |
| ++NumNewAllocas; |
| } |
| |
| DEBUG(dbgs() << "Rewriting alloca partition " |
| << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI |
| << "\n"); |
| |
| // Track the high watermark on the worklist as it is only relevant for |
| // promoted allocas. We will reset it to this point if the alloca is not in |
| // fact scheduled for promotion. |
| unsigned PPWOldSize = PostPromotionWorklist.size(); |
| unsigned NumUses = 0; |
| SmallPtrSet<PHINode *, 8> PHIUsers; |
| SmallPtrSet<SelectInst *, 8> SelectUsers; |
| |
| AllocaSliceRewriter Rewriter(*DL, S, *this, AI, *NewAI, BeginOffset, |
| EndOffset, IsVectorPromotable, |
| IsIntegerPromotable, PHIUsers, SelectUsers); |
| bool Promotable = true; |
| for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(), |
| SUE = SplitUses.end(); |
| SUI != SUE; ++SUI) { |
| DEBUG(dbgs() << " rewriting split "); |
| DEBUG(S.printSlice(dbgs(), *SUI, "")); |
| Promotable &= Rewriter.visit(*SUI); |
| ++NumUses; |
| } |
| for (AllocaSlices::iterator I = B; I != E; ++I) { |
| DEBUG(dbgs() << " rewriting "); |
| DEBUG(S.printSlice(dbgs(), I, "")); |
| Promotable &= Rewriter.visit(I); |
| ++NumUses; |
| } |
| |
| NumAllocaPartitionUses += NumUses; |
| MaxUsesPerAllocaPartition = |
| std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition); |
| |
| // Now that we've processed all the slices in the new partition, check if any |
| // PHIs or Selects would block promotion. |
| for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(), |
| E = PHIUsers.end(); |
| I != E; ++I) |
| if (!isSafePHIToSpeculate(**I, DL)) { |
| Promotable = false; |
| PHIUsers.clear(); |
| SelectUsers.clear(); |
| break; |
| } |
| for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(), |
| E = SelectUsers.end(); |
| I != E; ++I) |
| if (!isSafeSelectToSpeculate(**I, DL)) { |
| Promotable = false; |
| PHIUsers.clear(); |
| SelectUsers.clear(); |
| break; |
| } |
| |
| if (Promotable) { |
| if (PHIUsers.empty() && SelectUsers.empty()) { |
| // Promote the alloca. |
| PromotableAllocas.push_back(NewAI); |
| } else { |
| // If we have either PHIs or Selects to speculate, add them to those |
| // worklists and re-queue the new alloca so that we promote in on the |
| // next iteration. |
| for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(), |
| E = PHIUsers.end(); |
| I != E; ++I) |
| SpeculatablePHIs.insert(*I); |
| for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(), |
| E = SelectUsers.end(); |
| I != E; ++I) |
| SpeculatableSelects.insert(*I); |
| Worklist.insert(NewAI); |
| } |
| } else { |
| // If we can't promote the alloca, iterate on it to check for new |
| // refinements exposed by splitting the current alloca. Don't iterate on an |
| // alloca which didn't actually change and didn't get promoted. |
| if (NewAI != &AI) |
| Worklist.insert(NewAI); |
| |
| // Drop any post-promotion work items if promotion didn't happen. |
| while (PostPromotionWorklist.size() > PPWOldSize) |
| PostPromotionWorklist.pop_back(); |
| } |
| |
| return true; |
| } |
| |
| static void |
| removeFinishedSplitUses(SmallVectorImpl<AllocaSlices::iterator> &SplitUses, |
| uint64_t &MaxSplitUseEndOffset, uint64_t Offset) { |
| if (Offset >= MaxSplitUseEndOffset) { |
| SplitUses.clear(); |
| MaxSplitUseEndOffset = 0; |
| return; |
| } |
| |
| size_t SplitUsesOldSize = SplitUses.size(); |
| SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(), |
| [Offset](const AllocaSlices::iterator &I) { |
| return I->endOffset() <= Offset; |
| }), |
| SplitUses.end()); |
| if (SplitUsesOldSize == SplitUses.size()) |
| return; |
| |
| // Recompute the max. While this is linear, so is remove_if. |
| MaxSplitUseEndOffset = 0; |
| for (SmallVectorImpl<AllocaSlices::iterator>::iterator |
| SUI = SplitUses.begin(), |
| SUE = SplitUses.end(); |
| SUI != SUE; ++SUI) |
| MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset); |
| } |
| |
| /// \brief Walks the slices of an alloca and form partitions based on them, |
| /// rewriting each of their uses. |
| bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) { |
| if (S.begin() == S.end()) |
| return false; |
| |
| unsigned NumPartitions = 0; |
| bool Changed = false; |
| SmallVector<AllocaSlices::iterator, 4> SplitUses; |
| uint64_t MaxSplitUseEndOffset = 0; |
| |
| uint64_t BeginOffset = S.begin()->beginOffset(); |
| |
| for (AllocaSlices::iterator SI = S.begin(), SJ = std::next(SI), SE = S.end(); |
| SI != SE; SI = SJ) { |
| uint64_t MaxEndOffset = SI->endOffset(); |
| |
| if (!SI->isSplittable()) { |
| // When we're forming an unsplittable region, it must always start at the |
| // first slice and will extend through its end. |
| assert(BeginOffset == SI->beginOffset()); |
| |
| // Form a partition including all of the overlapping slices with this |
| // unsplittable slice. |
| while (SJ != SE && SJ->beginOffset() < MaxEndOffset) { |
| if (!SJ->isSplittable()) |
| MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset()); |
| ++SJ; |
| } |
| } else { |
| assert(SI->isSplittable()); // Established above. |
| |
| // Collect all of the overlapping splittable slices. |
| while (SJ != SE && SJ->beginOffset() < MaxEndOffset && |
| SJ->isSplittable()) { |
| MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset()); |
| ++SJ; |
| } |
| |
| // Back up MaxEndOffset and SJ if we ended the span early when |
| // encountering an unsplittable slice. |
| if (SJ != SE && SJ->beginOffset() < MaxEndOffset) { |
| assert(!SJ->isSplittable()); |
| MaxEndOffset = SJ->beginOffset(); |
| } |
| } |
| |
| // Check if we have managed to move the end offset forward yet. If so, |
| // we'll have to rewrite uses and erase old split uses. |
| if (BeginOffset < MaxEndOffset) { |
| // Rewrite a sequence of overlapping slices. |
| Changed |= |
| rewritePartition(AI, S, SI, SJ, BeginOffset, MaxEndOffset, SplitUses); |
| ++NumPartitions; |
| |
| removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset); |
| } |
| |
| // Accumulate all the splittable slices from the [SI,SJ) region which |
| // overlap going forward. |
| for (AllocaSlices::iterator SK = SI; SK != SJ; ++SK) |
| if (SK->isSplittable() && SK->endOffset() > MaxEndOffset) { |
| SplitUses.push_back(SK); |
| MaxSplitUseEndOffset = std::max(SK->endOffset(), MaxSplitUseEndOffset); |
| } |
| |
| // If we're already at the end and we have no split uses, we're done. |
| if (SJ == SE && SplitUses.empty()) |
| break; |
| |
| // If we have no split uses or no gap in offsets, we're ready to move to |
| // the next slice. |
| if (SplitUses.empty() || (SJ != SE && MaxEndOffset == SJ->beginOffset())) { |
| BeginOffset = SJ->beginOffset(); |
| continue; |
| } |
| |
| // Even if we have split slices, if the next slice is splittable and the |
| // split slices reach it, we can simply set up the beginning offset of the |
| // next iteration to bridge between them. |
| if (SJ != SE && SJ->isSplittable() && |
| MaxSplitUseEndOffset > SJ->beginOffset()) { |
| BeginOffset = MaxEndOffset; |
| continue; |
| } |
| |
| // Otherwise, we have a tail of split slices. Rewrite them with an empty |
| // range of slices. |
| uint64_t PostSplitEndOffset = |
| SJ == SE ? MaxSplitUseEndOffset : SJ->beginOffset(); |
| |
| Changed |= rewritePartition(AI, S, SJ, SJ, MaxEndOffset, PostSplitEndOffset, |
| SplitUses); |
| ++NumPartitions; |
| |
| if (SJ == SE) |
| break; // Skip the rest, we don't need to do any cleanup. |
| |
| removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, |
| PostSplitEndOffset); |
| |
| // Now just reset the begin offset for the next iteration. |
| BeginOffset = SJ->beginOffset(); |
| } |
| |
| NumAllocaPartitions += NumPartitions; |
| MaxPartitionsPerAlloca = |
| std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca); |
| |
| return Changed; |
| } |
| |
| /// \brief Clobber a use with undef, deleting the used value if it becomes dead. |
| void SROA::clobberUse(Use &U) { |
| Value *OldV = U; |
| // Replace the use with an undef value. |
| U = UndefValue::get(OldV->getType()); |
| |
| // Check for this making an instruction dead. We have to garbage collect |
| // all the dead instructions to ensure the uses of any alloca end up being |
| // minimal. |
| if (Instruction *OldI = dyn_cast<Instruction>(OldV)) |
| if (isInstructionTriviallyDead(OldI)) { |
| DeadInsts.insert(OldI); |
| } |
| } |
| |
| /// \brief Analyze an alloca for SROA. |
| /// |
| /// This analyzes the alloca to ensure we can reason about it, builds |
| /// the slices of the alloca, and then hands it off to be split and |
| /// rewritten as needed. |
| bool SROA::runOnAlloca(AllocaInst &AI) { |
| DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); |
| ++NumAllocasAnalyzed; |
| |
| // Special case dead allocas, as they're trivial. |
| if (AI.use_empty()) { |
| AI.eraseFromParent(); |
| return true; |
| } |
| |
| // Skip alloca forms that this analysis can't handle. |
| if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() || |
| DL->getTypeAllocSize(AI.getAllocatedType()) == 0) |
| return false; |
| |
| bool Changed = false; |
| |
| // First, split any FCA loads and stores touching this alloca to promote |
| // better splitting and promotion opportunities. |
| AggLoadStoreRewriter AggRewriter(*DL); |
| Changed |= AggRewriter.rewrite(AI); |
| |
| // Build the slices using a recursive instruction-visiting builder. |
| AllocaSlices S(*DL, AI); |
| DEBUG(S.print(dbgs())); |
| if (S.isEscaped()) |
| return Changed; |
| |
| // Delete all the dead users of this alloca before splitting and rewriting it. |
| for (AllocaSlices::dead_user_iterator DI = S.dead_user_begin(), |
| DE = S.dead_user_end(); |
| DI != DE; ++DI) { |
| // Free up everything used by this instruction. |
| for (Use &DeadOp : (*DI)->operands()) |
| clobberUse(DeadOp); |
| |
| // Now replace the uses of this instruction. |
| (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType())); |
| |
| // And mark it for deletion. |
| DeadInsts.insert(*DI); |
| Changed = true; |
| } |
| for (AllocaSlices::dead_op_iterator DO = S.dead_op_begin(), |
| DE = S.dead_op_end(); |
| DO != DE; ++DO) { |
| clobberUse(**DO); |
| Changed = true; |
| } |
| |
| // No slices to split. Leave the dead alloca for a later pass to clean up. |
| if (S.begin() == S.end()) |
| return Changed; |
| |
| Changed |= splitAlloca(AI, S); |
| |
| DEBUG(dbgs() << " Speculating PHIs\n"); |
| while (!SpeculatablePHIs.empty()) |
| speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val()); |
| |
| DEBUG(dbgs() << " Speculating Selects\n"); |
| while (!SpeculatableSelects.empty()) |
| speculateSelectInstLoads(*SpeculatableSelects.pop_back_val()); |
| |
| return Changed; |
| } |
| |
| /// \brief Delete the dead instructions accumulated in this run. |
| /// |
| /// Recursively deletes the dead instructions we've accumulated. This is done |
| /// at the very end to maximize locality of the recursive delete and to |
| /// minimize the problems of invalidated instruction pointers as such pointers |
| /// are used heavily in the intermediate stages of the algorithm. |
| /// |
| /// We also record the alloca instructions deleted here so that they aren't |
| /// subsequently handed to mem2reg to promote. |
| void SROA::deleteDeadInstructions(SmallPtrSetImpl<AllocaInst*> &DeletedAllocas) { |
| while (!DeadInsts.empty()) { |
| Instruction *I = DeadInsts.pop_back_val(); |
| DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); |
| |
| I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| |
| for (Use &Operand : I->operands()) |
| if (Instruction *U = dyn_cast<Instruction>(Operand)) { |
| // Zero out the operand and see if it becomes trivially dead. |
| Operand = nullptr; |
| if (isInstructionTriviallyDead(U)) |
| DeadInsts.insert(U); |
| } |
| |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| DeletedAllocas.insert(AI); |
| |
| ++NumDeleted; |
| I->eraseFromParent(); |
| } |
| } |
| |
| static void enqueueUsersInWorklist(Instruction &I, |
| SmallVectorImpl<Instruction *> &Worklist, |
| SmallPtrSetImpl<Instruction *> &Visited) { |
| for (User *U : I.users()) |
| if (Visited.insert(cast<Instruction>(U))) |
| Worklist.push_back(cast<Instruction>(U)); |
| } |
| |
| /// \brief Promote the allocas, using the best available technique. |
| /// |
| /// This attempts to promote whatever allocas have been identified as viable in |
| /// the PromotableAllocas list. If that list is empty, there is nothing to do. |
| /// If there is a domtree available, we attempt to promote using the full power |
| /// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is |
| /// based on the SSAUpdater utilities. This function returns whether any |
| /// promotion occurred. |
| bool SROA::promoteAllocas(Function &F) { |
| if (PromotableAllocas.empty()) |
| return false; |
| |
| NumPromoted += PromotableAllocas.size(); |
| |
| if (DT && !ForceSSAUpdater) { |
| DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); |
| PromoteMemToReg(PromotableAllocas, *DT, nullptr, AT); |
| PromotableAllocas.clear(); |
| return true; |
| } |
| |
| DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n"); |
| SSAUpdater SSA; |
| DIBuilder DIB(*F.getParent()); |
| SmallVector<Instruction *, 64> Insts; |
| |
| // We need a worklist to walk the uses of each alloca. |
| SmallVector<Instruction *, 8> Worklist; |
| SmallPtrSet<Instruction *, 8> Visited; |
| SmallVector<Instruction *, 32> DeadInsts; |
| |
| for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) { |
| AllocaInst *AI = PromotableAllocas[Idx]; |
| Insts.clear(); |
| Worklist.clear(); |
| Visited.clear(); |
| |
| enqueueUsersInWorklist(*AI, Worklist, Visited); |
| |
| while (!Worklist.empty()) { |
| Instruction *I = Worklist.pop_back_val(); |
| |
| // FIXME: Currently the SSAUpdater infrastructure doesn't reason about |
| // lifetime intrinsics and so we strip them (and the bitcasts+GEPs |
| // leading to them) here. Eventually it should use them to optimize the |
| // scalar values produced. |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| assert(II->getIntrinsicID() == Intrinsic::lifetime_start || |
| II->getIntrinsicID() == Intrinsic::lifetime_end); |
| II->eraseFromParent(); |
| continue; |
| } |
| |
| // Push the loads and stores we find onto the list. SROA will already |
| // have validated that all loads and stores are viable candidates for |
| // promotion. |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| assert(LI->getType() == AI->getAllocatedType()); |
| Insts.push_back(LI); |
| continue; |
| } |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| assert(SI->getValueOperand()->getType() == AI->getAllocatedType()); |
| Insts.push_back(SI); |
| continue; |
| } |
| |
| // For everything else, we know that only no-op bitcasts and GEPs will |
| // make it this far, just recurse through them and recall them for later |
| // removal. |
| DeadInsts.push_back(I); |
| enqueueUsersInWorklist(*I, Worklist, Visited); |
| } |
| AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts); |
| while (!DeadInsts.empty()) |
| DeadInsts.pop_back_val()->eraseFromParent(); |
| AI->eraseFromParent(); |
| } |
| |
| PromotableAllocas.clear(); |
| return true; |
| } |
| |
| bool SROA::runOnFunction(Function &F) { |
| if (skipOptnoneFunction(F)) |
| return false; |
| |
| DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); |
| C = &F.getContext(); |
| DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); |
| if (!DLP) { |
| DEBUG(dbgs() << " Skipping SROA -- no target data!\n"); |
| return false; |
| } |
| DL = &DLP->getDataLayout(); |
| DominatorTreeWrapperPass *DTWP = |
| getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
| DT = DTWP ? &DTWP->getDomTree() : nullptr; |
| AT = &getAnalysis<AssumptionTracker>(); |
| |
| BasicBlock &EntryBB = F.getEntryBlock(); |
| for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); |
| I != E; ++I) |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| Worklist.insert(AI); |
| |
| bool Changed = false; |
| // A set of deleted alloca instruction pointers which should be removed from |
| // the list of promotable allocas. |
| SmallPtrSet<AllocaInst *, 4> DeletedAllocas; |
| |
| do { |
| while (!Worklist.empty()) { |
| Changed |= runOnAlloca(*Worklist.pop_back_val()); |
| deleteDeadInstructions(DeletedAllocas); |
| |
| // Remove the deleted allocas from various lists so that we don't try to |
| // continue processing them. |
| if (!DeletedAllocas.empty()) { |
| auto IsInSet = [&](AllocaInst *AI) { |
| return DeletedAllocas.count(AI); |
| }; |
| Worklist.remove_if(IsInSet); |
| PostPromotionWorklist.remove_if(IsInSet); |
| PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(), |
| PromotableAllocas.end(), |
| IsInSet), |
| PromotableAllocas.end()); |
| DeletedAllocas.clear(); |
| } |
| } |
| |
| Changed |= promoteAllocas(F); |
| |
| Worklist = PostPromotionWorklist; |
| PostPromotionWorklist.clear(); |
| } while (!Worklist.empty()); |
| |
| return Changed; |
| } |
| |
| void SROA::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<AssumptionTracker>(); |
| if (RequiresDomTree) |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.setPreservesCFG(); |
| } |