|  | //===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements routines for translating from LLVM IR into SelectionDAG IR. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H | 
|  | #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H | 
|  |  | 
|  | #include "StatepointLowering.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Statepoint.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | class AddrSpaceCastInst; | 
|  | class AllocaInst; | 
|  | class BasicBlock; | 
|  | class BitCastInst; | 
|  | class BranchInst; | 
|  | class CallInst; | 
|  | class DbgValueInst; | 
|  | class ExtractElementInst; | 
|  | class ExtractValueInst; | 
|  | class FCmpInst; | 
|  | class FPExtInst; | 
|  | class FPToSIInst; | 
|  | class FPToUIInst; | 
|  | class FPTruncInst; | 
|  | class Function; | 
|  | class FunctionLoweringInfo; | 
|  | class GetElementPtrInst; | 
|  | class GCFunctionInfo; | 
|  | class ICmpInst; | 
|  | class IntToPtrInst; | 
|  | class IndirectBrInst; | 
|  | class InvokeInst; | 
|  | class InsertElementInst; | 
|  | class InsertValueInst; | 
|  | class Instruction; | 
|  | class LoadInst; | 
|  | class MachineBasicBlock; | 
|  | class MachineInstr; | 
|  | class MachineRegisterInfo; | 
|  | class MDNode; | 
|  | class MVT; | 
|  | class PHINode; | 
|  | class PtrToIntInst; | 
|  | class ReturnInst; | 
|  | class SDDbgValue; | 
|  | class SExtInst; | 
|  | class SelectInst; | 
|  | class ShuffleVectorInst; | 
|  | class SIToFPInst; | 
|  | class StoreInst; | 
|  | class SwitchInst; | 
|  | class DataLayout; | 
|  | class TargetLibraryInfo; | 
|  | class TargetLowering; | 
|  | class TruncInst; | 
|  | class UIToFPInst; | 
|  | class UnreachableInst; | 
|  | class VAArgInst; | 
|  | class ZExtInst; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// SelectionDAGBuilder - This is the common target-independent lowering | 
|  | /// implementation that is parameterized by a TargetLowering object. | 
|  | /// | 
|  | class SelectionDAGBuilder { | 
|  | /// CurInst - The current instruction being visited | 
|  | const Instruction *CurInst; | 
|  |  | 
|  | DenseMap<const Value*, SDValue> NodeMap; | 
|  |  | 
|  | /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used | 
|  | /// to preserve debug information for incoming arguments. | 
|  | DenseMap<const Value*, SDValue> UnusedArgNodeMap; | 
|  |  | 
|  | /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap. | 
|  | class DanglingDebugInfo { | 
|  | const DbgValueInst* DI; | 
|  | DebugLoc dl; | 
|  | unsigned SDNodeOrder; | 
|  | public: | 
|  | DanglingDebugInfo() : DI(nullptr), dl(DebugLoc()), SDNodeOrder(0) { } | 
|  | DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) | 
|  | : DI(di), dl(std::move(DL)), SDNodeOrder(SDNO) {} | 
|  | const DbgValueInst* getDI() { return DI; } | 
|  | DebugLoc getdl() { return dl; } | 
|  | unsigned getSDNodeOrder() { return SDNodeOrder; } | 
|  | }; | 
|  |  | 
|  | /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not | 
|  | /// yet seen the referent.  We defer handling these until we do see it. | 
|  | DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap; | 
|  |  | 
|  | public: | 
|  | /// PendingLoads - Loads are not emitted to the program immediately.  We bunch | 
|  | /// them up and then emit token factor nodes when possible.  This allows us to | 
|  | /// get simple disambiguation between loads without worrying about alias | 
|  | /// analysis. | 
|  | SmallVector<SDValue, 8> PendingLoads; | 
|  |  | 
|  | /// State used while lowering a statepoint sequence (gc_statepoint, | 
|  | /// gc_relocate, and gc_result).  See StatepointLowering.hpp/cpp for details. | 
|  | StatepointLoweringState StatepointLowering; | 
|  | private: | 
|  |  | 
|  | /// PendingExports - CopyToReg nodes that copy values to virtual registers | 
|  | /// for export to other blocks need to be emitted before any terminator | 
|  | /// instruction, but they have no other ordering requirements. We bunch them | 
|  | /// up and the emit a single tokenfactor for them just before terminator | 
|  | /// instructions. | 
|  | SmallVector<SDValue, 8> PendingExports; | 
|  |  | 
|  | /// SDNodeOrder - A unique monotonically increasing number used to order the | 
|  | /// SDNodes we create. | 
|  | unsigned SDNodeOrder; | 
|  |  | 
|  | enum CaseClusterKind { | 
|  | /// A cluster of adjacent case labels with the same destination, or just one | 
|  | /// case. | 
|  | CC_Range, | 
|  | /// A cluster of cases suitable for jump table lowering. | 
|  | CC_JumpTable, | 
|  | /// A cluster of cases suitable for bit test lowering. | 
|  | CC_BitTests | 
|  | }; | 
|  |  | 
|  | /// A cluster of case labels. | 
|  | struct CaseCluster { | 
|  | CaseClusterKind Kind; | 
|  | const ConstantInt *Low, *High; | 
|  | union { | 
|  | MachineBasicBlock *MBB; | 
|  | unsigned JTCasesIndex; | 
|  | unsigned BTCasesIndex; | 
|  | }; | 
|  | BranchProbability Prob; | 
|  |  | 
|  | static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, | 
|  | MachineBasicBlock *MBB, BranchProbability Prob) { | 
|  | CaseCluster C; | 
|  | C.Kind = CC_Range; | 
|  | C.Low = Low; | 
|  | C.High = High; | 
|  | C.MBB = MBB; | 
|  | C.Prob = Prob; | 
|  | return C; | 
|  | } | 
|  |  | 
|  | static CaseCluster jumpTable(const ConstantInt *Low, | 
|  | const ConstantInt *High, unsigned JTCasesIndex, | 
|  | BranchProbability Prob) { | 
|  | CaseCluster C; | 
|  | C.Kind = CC_JumpTable; | 
|  | C.Low = Low; | 
|  | C.High = High; | 
|  | C.JTCasesIndex = JTCasesIndex; | 
|  | C.Prob = Prob; | 
|  | return C; | 
|  | } | 
|  |  | 
|  | static CaseCluster bitTests(const ConstantInt *Low, const ConstantInt *High, | 
|  | unsigned BTCasesIndex, BranchProbability Prob) { | 
|  | CaseCluster C; | 
|  | C.Kind = CC_BitTests; | 
|  | C.Low = Low; | 
|  | C.High = High; | 
|  | C.BTCasesIndex = BTCasesIndex; | 
|  | C.Prob = Prob; | 
|  | return C; | 
|  | } | 
|  | }; | 
|  |  | 
|  | typedef std::vector<CaseCluster> CaseClusterVector; | 
|  | typedef CaseClusterVector::iterator CaseClusterIt; | 
|  |  | 
|  | struct CaseBits { | 
|  | uint64_t Mask; | 
|  | MachineBasicBlock* BB; | 
|  | unsigned Bits; | 
|  | BranchProbability ExtraProb; | 
|  |  | 
|  | CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits, | 
|  | BranchProbability Prob): | 
|  | Mask(mask), BB(bb), Bits(bits), ExtraProb(Prob) { } | 
|  |  | 
|  | CaseBits() : Mask(0), BB(nullptr), Bits(0) {} | 
|  | }; | 
|  |  | 
|  | typedef std::vector<CaseBits> CaseBitsVector; | 
|  |  | 
|  | /// Sort Clusters and merge adjacent cases. | 
|  | void sortAndRangeify(CaseClusterVector &Clusters); | 
|  |  | 
|  | /// CaseBlock - This structure is used to communicate between | 
|  | /// SelectionDAGBuilder and SDISel for the code generation of additional basic | 
|  | /// blocks needed by multi-case switch statements. | 
|  | struct CaseBlock { | 
|  | CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs, | 
|  | const Value *cmpmiddle, MachineBasicBlock *truebb, | 
|  | MachineBasicBlock *falsebb, MachineBasicBlock *me, | 
|  | BranchProbability trueprob = BranchProbability::getUnknown(), | 
|  | BranchProbability falseprob = BranchProbability::getUnknown()) | 
|  | : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs), | 
|  | TrueBB(truebb), FalseBB(falsebb), ThisBB(me), TrueProb(trueprob), | 
|  | FalseProb(falseprob) {} | 
|  |  | 
|  | // CC - the condition code to use for the case block's setcc node | 
|  | ISD::CondCode CC; | 
|  |  | 
|  | // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit. | 
|  | // Emit by default LHS op RHS. MHS is used for range comparisons: | 
|  | // If MHS is not null: (LHS <= MHS) and (MHS <= RHS). | 
|  | const Value *CmpLHS, *CmpMHS, *CmpRHS; | 
|  |  | 
|  | // TrueBB/FalseBB - the block to branch to if the setcc is true/false. | 
|  | MachineBasicBlock *TrueBB, *FalseBB; | 
|  |  | 
|  | // ThisBB - the block into which to emit the code for the setcc and branches | 
|  | MachineBasicBlock *ThisBB; | 
|  |  | 
|  | // TrueProb/FalseProb - branch weights. | 
|  | BranchProbability TrueProb, FalseProb; | 
|  | }; | 
|  |  | 
|  | struct JumpTable { | 
|  | JumpTable(unsigned R, unsigned J, MachineBasicBlock *M, | 
|  | MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {} | 
|  |  | 
|  | /// Reg - the virtual register containing the index of the jump table entry | 
|  | //. to jump to. | 
|  | unsigned Reg; | 
|  | /// JTI - the JumpTableIndex for this jump table in the function. | 
|  | unsigned JTI; | 
|  | /// MBB - the MBB into which to emit the code for the indirect jump. | 
|  | MachineBasicBlock *MBB; | 
|  | /// Default - the MBB of the default bb, which is a successor of the range | 
|  | /// check MBB.  This is when updating PHI nodes in successors. | 
|  | MachineBasicBlock *Default; | 
|  | }; | 
|  | struct JumpTableHeader { | 
|  | JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H, | 
|  | bool E = false) | 
|  | : First(std::move(F)), Last(std::move(L)), SValue(SV), HeaderBB(H), | 
|  | Emitted(E) {} | 
|  | APInt First; | 
|  | APInt Last; | 
|  | const Value *SValue; | 
|  | MachineBasicBlock *HeaderBB; | 
|  | bool Emitted; | 
|  | }; | 
|  | typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock; | 
|  |  | 
|  | struct BitTestCase { | 
|  | BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr, | 
|  | BranchProbability Prob): | 
|  | Mask(M), ThisBB(T), TargetBB(Tr), ExtraProb(Prob) { } | 
|  | uint64_t Mask; | 
|  | MachineBasicBlock *ThisBB; | 
|  | MachineBasicBlock *TargetBB; | 
|  | BranchProbability ExtraProb; | 
|  | }; | 
|  |  | 
|  | typedef SmallVector<BitTestCase, 3> BitTestInfo; | 
|  |  | 
|  | struct BitTestBlock { | 
|  | BitTestBlock(APInt F, APInt R, const Value *SV, unsigned Rg, MVT RgVT, | 
|  | bool E, bool CR, MachineBasicBlock *P, MachineBasicBlock *D, | 
|  | BitTestInfo C, BranchProbability Pr) | 
|  | : First(std::move(F)), Range(std::move(R)), SValue(SV), Reg(Rg), | 
|  | RegVT(RgVT), Emitted(E), ContiguousRange(CR), Parent(P), Default(D), | 
|  | Cases(std::move(C)), Prob(Pr) {} | 
|  | APInt First; | 
|  | APInt Range; | 
|  | const Value *SValue; | 
|  | unsigned Reg; | 
|  | MVT RegVT; | 
|  | bool Emitted; | 
|  | bool ContiguousRange; | 
|  | MachineBasicBlock *Parent; | 
|  | MachineBasicBlock *Default; | 
|  | BitTestInfo Cases; | 
|  | BranchProbability Prob; | 
|  | BranchProbability DefaultProb; | 
|  | }; | 
|  |  | 
|  | /// Check whether a range of clusters is dense enough for a jump table. | 
|  | bool isDense(const CaseClusterVector &Clusters, unsigned *TotalCases, | 
|  | unsigned First, unsigned Last, unsigned MinDensity); | 
|  |  | 
|  | /// Build a jump table cluster from Clusters[First..Last]. Returns false if it | 
|  | /// decides it's not a good idea. | 
|  | bool buildJumpTable(CaseClusterVector &Clusters, unsigned First, | 
|  | unsigned Last, const SwitchInst *SI, | 
|  | MachineBasicBlock *DefaultMBB, CaseCluster &JTCluster); | 
|  |  | 
|  | /// Find clusters of cases suitable for jump table lowering. | 
|  | void findJumpTables(CaseClusterVector &Clusters, const SwitchInst *SI, | 
|  | MachineBasicBlock *DefaultMBB); | 
|  |  | 
|  | /// Check whether the range [Low,High] fits in a machine word. | 
|  | bool rangeFitsInWord(const APInt &Low, const APInt &High); | 
|  |  | 
|  | /// Check whether these clusters are suitable for lowering with bit tests based | 
|  | /// on the number of destinations, comparison metric, and range. | 
|  | bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps, | 
|  | const APInt &Low, const APInt &High); | 
|  |  | 
|  | /// Build a bit test cluster from Clusters[First..Last]. Returns false if it | 
|  | /// decides it's not a good idea. | 
|  | bool buildBitTests(CaseClusterVector &Clusters, unsigned First, unsigned Last, | 
|  | const SwitchInst *SI, CaseCluster &BTCluster); | 
|  |  | 
|  | /// Find clusters of cases suitable for bit test lowering. | 
|  | void findBitTestClusters(CaseClusterVector &Clusters, const SwitchInst *SI); | 
|  |  | 
|  | struct SwitchWorkListItem { | 
|  | MachineBasicBlock *MBB; | 
|  | CaseClusterIt FirstCluster; | 
|  | CaseClusterIt LastCluster; | 
|  | const ConstantInt *GE; | 
|  | const ConstantInt *LT; | 
|  | BranchProbability DefaultProb; | 
|  | }; | 
|  | typedef SmallVector<SwitchWorkListItem, 4> SwitchWorkList; | 
|  |  | 
|  | /// Determine the rank by weight of CC in [First,Last]. If CC has more weight | 
|  | /// than each cluster in the range, its rank is 0. | 
|  | static unsigned caseClusterRank(const CaseCluster &CC, CaseClusterIt First, | 
|  | CaseClusterIt Last); | 
|  |  | 
|  | /// Emit comparison and split W into two subtrees. | 
|  | void splitWorkItem(SwitchWorkList &WorkList, const SwitchWorkListItem &W, | 
|  | Value *Cond, MachineBasicBlock *SwitchMBB); | 
|  |  | 
|  | /// Lower W. | 
|  | void lowerWorkItem(SwitchWorkListItem W, Value *Cond, | 
|  | MachineBasicBlock *SwitchMBB, | 
|  | MachineBasicBlock *DefaultMBB); | 
|  |  | 
|  |  | 
|  | /// A class which encapsulates all of the information needed to generate a | 
|  | /// stack protector check and signals to isel via its state being initialized | 
|  | /// that a stack protector needs to be generated. | 
|  | /// | 
|  | /// *NOTE* The following is a high level documentation of SelectionDAG Stack | 
|  | /// Protector Generation. The reason that it is placed here is for a lack of | 
|  | /// other good places to stick it. | 
|  | /// | 
|  | /// High Level Overview of SelectionDAG Stack Protector Generation: | 
|  | /// | 
|  | /// Previously, generation of stack protectors was done exclusively in the | 
|  | /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated | 
|  | /// splitting basic blocks at the IR level to create the success/failure basic | 
|  | /// blocks in the tail of the basic block in question. As a result of this, | 
|  | /// calls that would have qualified for the sibling call optimization were no | 
|  | /// longer eligible for optimization since said calls were no longer right in | 
|  | /// the "tail position" (i.e. the immediate predecessor of a ReturnInst | 
|  | /// instruction). | 
|  | /// | 
|  | /// Then it was noticed that since the sibling call optimization causes the | 
|  | /// callee to reuse the caller's stack, if we could delay the generation of | 
|  | /// the stack protector check until later in CodeGen after the sibling call | 
|  | /// decision was made, we get both the tail call optimization and the stack | 
|  | /// protector check! | 
|  | /// | 
|  | /// A few goals in solving this problem were: | 
|  | /// | 
|  | ///   1. Preserve the architecture independence of stack protector generation. | 
|  | /// | 
|  | ///   2. Preserve the normal IR level stack protector check for platforms like | 
|  | ///      OpenBSD for which we support platform-specific stack protector | 
|  | ///      generation. | 
|  | /// | 
|  | /// The main problem that guided the present solution is that one can not | 
|  | /// solve this problem in an architecture independent manner at the IR level | 
|  | /// only. This is because: | 
|  | /// | 
|  | ///   1. The decision on whether or not to perform a sibling call on certain | 
|  | ///      platforms (for instance i386) requires lower level information | 
|  | ///      related to available registers that can not be known at the IR level. | 
|  | /// | 
|  | ///   2. Even if the previous point were not true, the decision on whether to | 
|  | ///      perform a tail call is done in LowerCallTo in SelectionDAG which | 
|  | ///      occurs after the Stack Protector Pass. As a result, one would need to | 
|  | ///      put the relevant callinst into the stack protector check success | 
|  | ///      basic block (where the return inst is placed) and then move it back | 
|  | ///      later at SelectionDAG/MI time before the stack protector check if the | 
|  | ///      tail call optimization failed. The MI level option was nixed | 
|  | ///      immediately since it would require platform-specific pattern | 
|  | ///      matching. The SelectionDAG level option was nixed because | 
|  | ///      SelectionDAG only processes one IR level basic block at a time | 
|  | ///      implying one could not create a DAG Combine to move the callinst. | 
|  | /// | 
|  | /// To get around this problem a few things were realized: | 
|  | /// | 
|  | ///   1. While one can not handle multiple IR level basic blocks at the | 
|  | ///      SelectionDAG Level, one can generate multiple machine basic blocks | 
|  | ///      for one IR level basic block. This is how we handle bit tests and | 
|  | ///      switches. | 
|  | /// | 
|  | ///   2. At the MI level, tail calls are represented via a special return | 
|  | ///      MIInst called "tcreturn". Thus if we know the basic block in which we | 
|  | ///      wish to insert the stack protector check, we get the correct behavior | 
|  | ///      by always inserting the stack protector check right before the return | 
|  | ///      statement. This is a "magical transformation" since no matter where | 
|  | ///      the stack protector check intrinsic is, we always insert the stack | 
|  | ///      protector check code at the end of the BB. | 
|  | /// | 
|  | /// Given the aforementioned constraints, the following solution was devised: | 
|  | /// | 
|  | ///   1. On platforms that do not support SelectionDAG stack protector check | 
|  | ///      generation, allow for the normal IR level stack protector check | 
|  | ///      generation to continue. | 
|  | /// | 
|  | ///   2. On platforms that do support SelectionDAG stack protector check | 
|  | ///      generation: | 
|  | /// | 
|  | ///     a. Use the IR level stack protector pass to decide if a stack | 
|  | ///        protector is required/which BB we insert the stack protector check | 
|  | ///        in by reusing the logic already therein. If we wish to generate a | 
|  | ///        stack protector check in a basic block, we place a special IR | 
|  | ///        intrinsic called llvm.stackprotectorcheck right before the BB's | 
|  | ///        returninst or if there is a callinst that could potentially be | 
|  | ///        sibling call optimized, before the call inst. | 
|  | /// | 
|  | ///     b. Then when a BB with said intrinsic is processed, we codegen the BB | 
|  | ///        normally via SelectBasicBlock. In said process, when we visit the | 
|  | ///        stack protector check, we do not actually emit anything into the | 
|  | ///        BB. Instead, we just initialize the stack protector descriptor | 
|  | ///        class (which involves stashing information/creating the success | 
|  | ///        mbbb and the failure mbb if we have not created one for this | 
|  | ///        function yet) and export the guard variable that we are going to | 
|  | ///        compare. | 
|  | /// | 
|  | ///     c. After we finish selecting the basic block, in FinishBasicBlock if | 
|  | ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is | 
|  | ///        initialized, we produce the validation code with one of these | 
|  | ///        techniques: | 
|  | ///          1) with a call to a guard check function | 
|  | ///          2) with inlined instrumentation | 
|  | /// | 
|  | ///        1) We insert a call to the check function before the terminator. | 
|  | /// | 
|  | ///        2) We first find a splice point in the parent basic block | 
|  | ///        before the terminator and then splice the terminator of said basic | 
|  | ///        block into the success basic block. Then we code-gen a new tail for | 
|  | ///        the parent basic block consisting of the two loads, the comparison, | 
|  | ///        and finally two branches to the success/failure basic blocks. We | 
|  | ///        conclude by code-gening the failure basic block if we have not | 
|  | ///        code-gened it already (all stack protector checks we generate in | 
|  | ///        the same function, use the same failure basic block). | 
|  | class StackProtectorDescriptor { | 
|  | public: | 
|  | StackProtectorDescriptor() | 
|  | : ParentMBB(nullptr), SuccessMBB(nullptr), FailureMBB(nullptr) {} | 
|  |  | 
|  | /// Returns true if all fields of the stack protector descriptor are | 
|  | /// initialized implying that we should/are ready to emit a stack protector. | 
|  | bool shouldEmitStackProtector() const { | 
|  | return ParentMBB && SuccessMBB && FailureMBB; | 
|  | } | 
|  |  | 
|  | bool shouldEmitFunctionBasedCheckStackProtector() const { | 
|  | return ParentMBB && !SuccessMBB && !FailureMBB; | 
|  | } | 
|  |  | 
|  | /// Initialize the stack protector descriptor structure for a new basic | 
|  | /// block. | 
|  | void initialize(const BasicBlock *BB, MachineBasicBlock *MBB, | 
|  | bool FunctionBasedInstrumentation) { | 
|  | // Make sure we are not initialized yet. | 
|  | assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is " | 
|  | "already initialized!"); | 
|  | ParentMBB = MBB; | 
|  | if (!FunctionBasedInstrumentation) { | 
|  | SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true); | 
|  | FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Reset state that changes when we handle different basic blocks. | 
|  | /// | 
|  | /// This currently includes: | 
|  | /// | 
|  | /// 1. The specific basic block we are generating a | 
|  | /// stack protector for (ParentMBB). | 
|  | /// | 
|  | /// 2. The successor machine basic block that will contain the tail of | 
|  | /// parent mbb after we create the stack protector check (SuccessMBB). This | 
|  | /// BB is visited only on stack protector check success. | 
|  | void resetPerBBState() { | 
|  | ParentMBB = nullptr; | 
|  | SuccessMBB = nullptr; | 
|  | } | 
|  |  | 
|  | /// Reset state that only changes when we switch functions. | 
|  | /// | 
|  | /// This currently includes: | 
|  | /// | 
|  | /// 1. FailureMBB since we reuse the failure code path for all stack | 
|  | /// protector checks created in an individual function. | 
|  | /// | 
|  | /// 2.The guard variable since the guard variable we are checking against is | 
|  | /// always the same. | 
|  | void resetPerFunctionState() { | 
|  | FailureMBB = nullptr; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *getParentMBB() { return ParentMBB; } | 
|  | MachineBasicBlock *getSuccessMBB() { return SuccessMBB; } | 
|  | MachineBasicBlock *getFailureMBB() { return FailureMBB; } | 
|  |  | 
|  | private: | 
|  | /// The basic block for which we are generating the stack protector. | 
|  | /// | 
|  | /// As a result of stack protector generation, we will splice the | 
|  | /// terminators of this basic block into the successor mbb SuccessMBB and | 
|  | /// replace it with a compare/branch to the successor mbbs | 
|  | /// SuccessMBB/FailureMBB depending on whether or not the stack protector | 
|  | /// was violated. | 
|  | MachineBasicBlock *ParentMBB; | 
|  |  | 
|  | /// A basic block visited on stack protector check success that contains the | 
|  | /// terminators of ParentMBB. | 
|  | MachineBasicBlock *SuccessMBB; | 
|  |  | 
|  | /// This basic block visited on stack protector check failure that will | 
|  | /// contain a call to __stack_chk_fail(). | 
|  | MachineBasicBlock *FailureMBB; | 
|  |  | 
|  | /// Add a successor machine basic block to ParentMBB. If the successor mbb | 
|  | /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic | 
|  | /// block will be created. Assign a large weight if IsLikely is true. | 
|  | MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB, | 
|  | MachineBasicBlock *ParentMBB, | 
|  | bool IsLikely, | 
|  | MachineBasicBlock *SuccMBB = nullptr); | 
|  | }; | 
|  |  | 
|  | private: | 
|  | const TargetMachine &TM; | 
|  | public: | 
|  | /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling | 
|  | /// nodes without a corresponding SDNode. | 
|  | static const unsigned LowestSDNodeOrder = 1; | 
|  |  | 
|  | SelectionDAG &DAG; | 
|  | const DataLayout *DL; | 
|  | AliasAnalysis *AA; | 
|  | const TargetLibraryInfo *LibInfo; | 
|  |  | 
|  | /// SwitchCases - Vector of CaseBlock structures used to communicate | 
|  | /// SwitchInst code generation information. | 
|  | std::vector<CaseBlock> SwitchCases; | 
|  | /// JTCases - Vector of JumpTable structures used to communicate | 
|  | /// SwitchInst code generation information. | 
|  | std::vector<JumpTableBlock> JTCases; | 
|  | /// BitTestCases - Vector of BitTestBlock structures used to communicate | 
|  | /// SwitchInst code generation information. | 
|  | std::vector<BitTestBlock> BitTestCases; | 
|  | /// A StackProtectorDescriptor structure used to communicate stack protector | 
|  | /// information in between SelectBasicBlock and FinishBasicBlock. | 
|  | StackProtectorDescriptor SPDescriptor; | 
|  |  | 
|  | // Emit PHI-node-operand constants only once even if used by multiple | 
|  | // PHI nodes. | 
|  | DenseMap<const Constant *, unsigned> ConstantsOut; | 
|  |  | 
|  | /// FuncInfo - Information about the function as a whole. | 
|  | /// | 
|  | FunctionLoweringInfo &FuncInfo; | 
|  |  | 
|  | /// GFI - Garbage collection metadata for the function. | 
|  | GCFunctionInfo *GFI; | 
|  |  | 
|  | /// LPadToCallSiteMap - Map a landing pad to the call site indexes. | 
|  | DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap; | 
|  |  | 
|  | /// HasTailCall - This is set to true if a call in the current | 
|  | /// block has been translated as a tail call. In this case, | 
|  | /// no subsequent DAG nodes should be created. | 
|  | /// | 
|  | bool HasTailCall; | 
|  |  | 
|  | LLVMContext *Context; | 
|  |  | 
|  | SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo, | 
|  | CodeGenOpt::Level ol) | 
|  | : CurInst(nullptr), SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), | 
|  | DAG(dag), FuncInfo(funcinfo), | 
|  | HasTailCall(false) { | 
|  | } | 
|  |  | 
|  | void init(GCFunctionInfo *gfi, AliasAnalysis &aa, | 
|  | const TargetLibraryInfo *li); | 
|  |  | 
|  | /// clear - Clear out the current SelectionDAG and the associated | 
|  | /// state and prepare this SelectionDAGBuilder object to be used | 
|  | /// for a new block. This doesn't clear out information about | 
|  | /// additional blocks that are needed to complete switch lowering | 
|  | /// or PHI node updating; that information is cleared out as it is | 
|  | /// consumed. | 
|  | void clear(); | 
|  |  | 
|  | /// clearDanglingDebugInfo - Clear the dangling debug information | 
|  | /// map. This function is separated from the clear so that debug | 
|  | /// information that is dangling in a basic block can be properly | 
|  | /// resolved in a different basic block. This allows the | 
|  | /// SelectionDAG to resolve dangling debug information attached | 
|  | /// to PHI nodes. | 
|  | void clearDanglingDebugInfo(); | 
|  |  | 
|  | /// getRoot - Return the current virtual root of the Selection DAG, | 
|  | /// flushing any PendingLoad items. This must be done before emitting | 
|  | /// a store or any other node that may need to be ordered after any | 
|  | /// prior load instructions. | 
|  | /// | 
|  | SDValue getRoot(); | 
|  |  | 
|  | /// getControlRoot - Similar to getRoot, but instead of flushing all the | 
|  | /// PendingLoad items, flush all the PendingExports items. It is necessary | 
|  | /// to do this before emitting a terminator instruction. | 
|  | /// | 
|  | SDValue getControlRoot(); | 
|  |  | 
|  | SDLoc getCurSDLoc() const { | 
|  | return SDLoc(CurInst, SDNodeOrder); | 
|  | } | 
|  |  | 
|  | DebugLoc getCurDebugLoc() const { | 
|  | return CurInst ? CurInst->getDebugLoc() : DebugLoc(); | 
|  | } | 
|  |  | 
|  | unsigned getSDNodeOrder() const { return SDNodeOrder; } | 
|  |  | 
|  | void CopyValueToVirtualRegister(const Value *V, unsigned Reg); | 
|  |  | 
|  | void visit(const Instruction &I); | 
|  |  | 
|  | void visit(unsigned Opcode, const User &I); | 
|  |  | 
|  | /// getCopyFromRegs - If there was virtual register allocated for the value V | 
|  | /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. | 
|  | SDValue getCopyFromRegs(const Value *V, Type *Ty); | 
|  |  | 
|  | // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, | 
|  | // generate the debug data structures now that we've seen its definition. | 
|  | void resolveDanglingDebugInfo(const Value *V, SDValue Val); | 
|  | SDValue getValue(const Value *V); | 
|  | bool findValue(const Value *V) const; | 
|  |  | 
|  | SDValue getNonRegisterValue(const Value *V); | 
|  | SDValue getValueImpl(const Value *V); | 
|  |  | 
|  | void setValue(const Value *V, SDValue NewN) { | 
|  | SDValue &N = NodeMap[V]; | 
|  | assert(!N.getNode() && "Already set a value for this node!"); | 
|  | N = NewN; | 
|  | } | 
|  |  | 
|  | void setUnusedArgValue(const Value *V, SDValue NewN) { | 
|  | SDValue &N = UnusedArgNodeMap[V]; | 
|  | assert(!N.getNode() && "Already set a value for this node!"); | 
|  | N = NewN; | 
|  | } | 
|  |  | 
|  | void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, MachineBasicBlock *CurBB, | 
|  | MachineBasicBlock *SwitchBB, | 
|  | Instruction::BinaryOps Opc, BranchProbability TW, | 
|  | BranchProbability FW); | 
|  | void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | MachineBasicBlock *CurBB, | 
|  | MachineBasicBlock *SwitchBB, | 
|  | BranchProbability TW, BranchProbability FW); | 
|  | bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases); | 
|  | bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB); | 
|  | void CopyToExportRegsIfNeeded(const Value *V); | 
|  | void ExportFromCurrentBlock(const Value *V); | 
|  | void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall, | 
|  | const BasicBlock *EHPadBB = nullptr); | 
|  |  | 
|  | // Lower range metadata from 0 to N to assert zext to an integer of nearest | 
|  | // floor power of two. | 
|  | SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, | 
|  | SDValue Op); | 
|  |  | 
|  | void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, | 
|  | ImmutableCallSite CS, unsigned ArgIdx, | 
|  | unsigned NumArgs, SDValue Callee, | 
|  | Type *ReturnTy, bool IsPatchPoint); | 
|  |  | 
|  | std::pair<SDValue, SDValue> | 
|  | lowerInvokable(TargetLowering::CallLoweringInfo &CLI, | 
|  | const BasicBlock *EHPadBB = nullptr); | 
|  |  | 
|  | /// UpdateSplitBlock - When an MBB was split during scheduling, update the | 
|  | /// references that need to refer to the last resulting block. | 
|  | void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last); | 
|  |  | 
|  | /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes | 
|  | /// of lowering into a STATEPOINT node. | 
|  | struct StatepointLoweringInfo { | 
|  | /// Bases[i] is the base pointer for Ptrs[i].  Together they denote the set | 
|  | /// of gc pointers this STATEPOINT has to relocate. | 
|  | SmallVector<const Value *, 16> Bases; | 
|  | SmallVector<const Value *, 16> Ptrs; | 
|  |  | 
|  | /// The set of gc.relocate calls associated with this gc.statepoint. | 
|  | SmallVector<const GCRelocateInst *, 16> GCRelocates; | 
|  |  | 
|  | /// The full list of gc arguments to the gc.statepoint being lowered. | 
|  | ArrayRef<const Use> GCArgs; | 
|  |  | 
|  | /// The gc.statepoint instruction. | 
|  | const Instruction *StatepointInstr = nullptr; | 
|  |  | 
|  | /// The list of gc transition arguments present in the gc.statepoint being | 
|  | /// lowered. | 
|  | ArrayRef<const Use> GCTransitionArgs; | 
|  |  | 
|  | /// The ID that the resulting STATEPOINT instruction has to report. | 
|  | unsigned ID = -1; | 
|  |  | 
|  | /// Information regarding the underlying call instruction. | 
|  | TargetLowering::CallLoweringInfo CLI; | 
|  |  | 
|  | /// The deoptimization state associated with this gc.statepoint call, if | 
|  | /// any. | 
|  | ArrayRef<const Use> DeoptState; | 
|  |  | 
|  | /// Flags associated with the meta arguments being lowered. | 
|  | uint64_t StatepointFlags = -1; | 
|  |  | 
|  | /// The number of patchable bytes the call needs to get lowered into. | 
|  | unsigned NumPatchBytes = -1; | 
|  |  | 
|  | /// The exception handling unwind destination, in case this represents an | 
|  | /// invoke of gc.statepoint. | 
|  | const BasicBlock *EHPadBB = nullptr; | 
|  |  | 
|  | explicit StatepointLoweringInfo(SelectionDAG &DAG) : CLI(DAG) {} | 
|  | }; | 
|  |  | 
|  | /// Lower \p SLI into a STATEPOINT instruction. | 
|  | SDValue LowerAsSTATEPOINT(StatepointLoweringInfo &SLI); | 
|  |  | 
|  | // This function is responsible for the whole statepoint lowering process. | 
|  | // It uniformly handles invoke and call statepoints. | 
|  | void LowerStatepoint(ImmutableStatepoint Statepoint, | 
|  | const BasicBlock *EHPadBB = nullptr); | 
|  |  | 
|  | void LowerCallSiteWithDeoptBundle(ImmutableCallSite CS, SDValue Callee, | 
|  | const BasicBlock *EHPadBB); | 
|  |  | 
|  | void LowerDeoptimizeCall(const CallInst *CI); | 
|  | void LowerDeoptimizingReturn(); | 
|  |  | 
|  | void LowerCallSiteWithDeoptBundleImpl(ImmutableCallSite CS, SDValue Callee, | 
|  | const BasicBlock *EHPadBB, | 
|  | bool VarArgDisallowed, | 
|  | bool ForceVoidReturnTy); | 
|  |  | 
|  | private: | 
|  | // Terminator instructions. | 
|  | void visitRet(const ReturnInst &I); | 
|  | void visitBr(const BranchInst &I); | 
|  | void visitSwitch(const SwitchInst &I); | 
|  | void visitIndirectBr(const IndirectBrInst &I); | 
|  | void visitUnreachable(const UnreachableInst &I); | 
|  | void visitCleanupRet(const CleanupReturnInst &I); | 
|  | void visitCatchSwitch(const CatchSwitchInst &I); | 
|  | void visitCatchRet(const CatchReturnInst &I); | 
|  | void visitCatchPad(const CatchPadInst &I); | 
|  | void visitCleanupPad(const CleanupPadInst &CPI); | 
|  |  | 
|  | BranchProbability getEdgeProbability(const MachineBasicBlock *Src, | 
|  | const MachineBasicBlock *Dst) const; | 
|  | void addSuccessorWithProb( | 
|  | MachineBasicBlock *Src, MachineBasicBlock *Dst, | 
|  | BranchProbability Prob = BranchProbability::getUnknown()); | 
|  |  | 
|  | public: | 
|  | void visitSwitchCase(CaseBlock &CB, | 
|  | MachineBasicBlock *SwitchBB); | 
|  | void visitSPDescriptorParent(StackProtectorDescriptor &SPD, | 
|  | MachineBasicBlock *ParentBB); | 
|  | void visitSPDescriptorFailure(StackProtectorDescriptor &SPD); | 
|  | void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB); | 
|  | void visitBitTestCase(BitTestBlock &BB, | 
|  | MachineBasicBlock* NextMBB, | 
|  | BranchProbability BranchProbToNext, | 
|  | unsigned Reg, | 
|  | BitTestCase &B, | 
|  | MachineBasicBlock *SwitchBB); | 
|  | void visitJumpTable(JumpTable &JT); | 
|  | void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH, | 
|  | MachineBasicBlock *SwitchBB); | 
|  |  | 
|  | private: | 
|  | // These all get lowered before this pass. | 
|  | void visitInvoke(const InvokeInst &I); | 
|  | void visitResume(const ResumeInst &I); | 
|  |  | 
|  | void visitBinary(const User &I, unsigned OpCode); | 
|  | void visitShift(const User &I, unsigned Opcode); | 
|  | void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); } | 
|  | void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); } | 
|  | void visitSub(const User &I)  { visitBinary(I, ISD::SUB); } | 
|  | void visitFSub(const User &I); | 
|  | void visitMul(const User &I)  { visitBinary(I, ISD::MUL); } | 
|  | void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); } | 
|  | void visitURem(const User &I) { visitBinary(I, ISD::UREM); } | 
|  | void visitSRem(const User &I) { visitBinary(I, ISD::SREM); } | 
|  | void visitFRem(const User &I) { visitBinary(I, ISD::FREM); } | 
|  | void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); } | 
|  | void visitSDiv(const User &I); | 
|  | void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); } | 
|  | void visitAnd (const User &I) { visitBinary(I, ISD::AND); } | 
|  | void visitOr  (const User &I) { visitBinary(I, ISD::OR); } | 
|  | void visitXor (const User &I) { visitBinary(I, ISD::XOR); } | 
|  | void visitShl (const User &I) { visitShift(I, ISD::SHL); } | 
|  | void visitLShr(const User &I) { visitShift(I, ISD::SRL); } | 
|  | void visitAShr(const User &I) { visitShift(I, ISD::SRA); } | 
|  | void visitICmp(const User &I); | 
|  | void visitFCmp(const User &I); | 
|  | // Visit the conversion instructions | 
|  | void visitTrunc(const User &I); | 
|  | void visitZExt(const User &I); | 
|  | void visitSExt(const User &I); | 
|  | void visitFPTrunc(const User &I); | 
|  | void visitFPExt(const User &I); | 
|  | void visitFPToUI(const User &I); | 
|  | void visitFPToSI(const User &I); | 
|  | void visitUIToFP(const User &I); | 
|  | void visitSIToFP(const User &I); | 
|  | void visitPtrToInt(const User &I); | 
|  | void visitIntToPtr(const User &I); | 
|  | void visitBitCast(const User &I); | 
|  | void visitAddrSpaceCast(const User &I); | 
|  |  | 
|  | void visitExtractElement(const User &I); | 
|  | void visitInsertElement(const User &I); | 
|  | void visitShuffleVector(const User &I); | 
|  |  | 
|  | void visitExtractValue(const ExtractValueInst &I); | 
|  | void visitInsertValue(const InsertValueInst &I); | 
|  | void visitLandingPad(const LandingPadInst &I); | 
|  |  | 
|  | void visitGetElementPtr(const User &I); | 
|  | void visitSelect(const User &I); | 
|  |  | 
|  | void visitAlloca(const AllocaInst &I); | 
|  | void visitLoad(const LoadInst &I); | 
|  | void visitStore(const StoreInst &I); | 
|  | void visitMaskedLoad(const CallInst &I); | 
|  | void visitMaskedStore(const CallInst &I); | 
|  | void visitMaskedGather(const CallInst &I); | 
|  | void visitMaskedScatter(const CallInst &I); | 
|  | void visitAtomicCmpXchg(const AtomicCmpXchgInst &I); | 
|  | void visitAtomicRMW(const AtomicRMWInst &I); | 
|  | void visitFence(const FenceInst &I); | 
|  | void visitPHI(const PHINode &I); | 
|  | void visitCall(const CallInst &I); | 
|  | bool visitMemCmpCall(const CallInst &I); | 
|  | bool visitMemChrCall(const CallInst &I); | 
|  | bool visitStrCpyCall(const CallInst &I, bool isStpcpy); | 
|  | bool visitStrCmpCall(const CallInst &I); | 
|  | bool visitStrLenCall(const CallInst &I); | 
|  | bool visitStrNLenCall(const CallInst &I); | 
|  | bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode); | 
|  | bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode); | 
|  | void visitAtomicLoad(const LoadInst &I); | 
|  | void visitAtomicStore(const StoreInst &I); | 
|  | void visitLoadFromSwiftError(const LoadInst &I); | 
|  | void visitStoreToSwiftError(const StoreInst &I); | 
|  |  | 
|  | void visitInlineAsm(ImmutableCallSite CS); | 
|  | const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic); | 
|  | void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic); | 
|  |  | 
|  | void visitVAStart(const CallInst &I); | 
|  | void visitVAArg(const VAArgInst &I); | 
|  | void visitVAEnd(const CallInst &I); | 
|  | void visitVACopy(const CallInst &I); | 
|  | void visitStackmap(const CallInst &I); | 
|  | void visitPatchpoint(ImmutableCallSite CS, | 
|  | const BasicBlock *EHPadBB = nullptr); | 
|  |  | 
|  | // These two are implemented in StatepointLowering.cpp | 
|  | void visitGCRelocate(const GCRelocateInst &I); | 
|  | void visitGCResult(const GCResultInst &I); | 
|  |  | 
|  | void visitUserOp1(const Instruction &I) { | 
|  | llvm_unreachable("UserOp1 should not exist at instruction selection time!"); | 
|  | } | 
|  | void visitUserOp2(const Instruction &I) { | 
|  | llvm_unreachable("UserOp2 should not exist at instruction selection time!"); | 
|  | } | 
|  |  | 
|  | void processIntegerCallValue(const Instruction &I, | 
|  | SDValue Value, bool IsSigned); | 
|  |  | 
|  | void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB); | 
|  |  | 
|  | void emitInlineAsmError(ImmutableCallSite CS, const Twine &Message); | 
|  |  | 
|  | /// EmitFuncArgumentDbgValue - If V is an function argument then create | 
|  | /// corresponding DBG_VALUE machine instruction for it now. At the end of | 
|  | /// instruction selection, they will be inserted to the entry BB. | 
|  | bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable, | 
|  | DIExpression *Expr, DILocation *DL, | 
|  | int64_t Offset, bool IsIndirect, | 
|  | const SDValue &N); | 
|  |  | 
|  | /// Return the next block after MBB, or nullptr if there is none. | 
|  | MachineBasicBlock *NextBlock(MachineBasicBlock *MBB); | 
|  |  | 
|  | /// Update the DAG and DAG builder with the relevant information after | 
|  | /// a new root node has been created which could be a tail call. | 
|  | void updateDAGForMaybeTailCall(SDValue MaybeTC); | 
|  | }; | 
|  |  | 
|  | /// RegsForValue - This struct represents the registers (physical or virtual) | 
|  | /// that a particular set of values is assigned, and the type information about | 
|  | /// the value. The most common situation is to represent one value at a time, | 
|  | /// but struct or array values are handled element-wise as multiple values.  The | 
|  | /// splitting of aggregates is performed recursively, so that we never have | 
|  | /// aggregate-typed registers. The values at this point do not necessarily have | 
|  | /// legal types, so each value may require one or more registers of some legal | 
|  | /// type. | 
|  | /// | 
|  | struct RegsForValue { | 
|  | /// ValueVTs - The value types of the values, which may not be legal, and | 
|  | /// may need be promoted or synthesized from one or more registers. | 
|  | /// | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  |  | 
|  | /// RegVTs - The value types of the registers. This is the same size as | 
|  | /// ValueVTs and it records, for each value, what the type of the assigned | 
|  | /// register or registers are. (Individual values are never synthesized | 
|  | /// from more than one type of register.) | 
|  | /// | 
|  | /// With virtual registers, the contents of RegVTs is redundant with TLI's | 
|  | /// getRegisterType member function, however when with physical registers | 
|  | /// it is necessary to have a separate record of the types. | 
|  | /// | 
|  | SmallVector<MVT, 4> RegVTs; | 
|  |  | 
|  | /// Regs - This list holds the registers assigned to the values. | 
|  | /// Each legal or promoted value requires one register, and each | 
|  | /// expanded value requires multiple registers. | 
|  | /// | 
|  | SmallVector<unsigned, 4> Regs; | 
|  |  | 
|  | RegsForValue(); | 
|  |  | 
|  | RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, EVT valuevt); | 
|  |  | 
|  | RegsForValue(LLVMContext &Context, const TargetLowering &TLI, | 
|  | const DataLayout &DL, unsigned Reg, Type *Ty); | 
|  |  | 
|  | /// append - Add the specified values to this one. | 
|  | void append(const RegsForValue &RHS) { | 
|  | ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); | 
|  | RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); | 
|  | Regs.append(RHS.Regs.begin(), RHS.Regs.end()); | 
|  | } | 
|  |  | 
|  | /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from | 
|  | /// this value and returns the result as a ValueVTs value.  This uses | 
|  | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
|  | /// If the Flag pointer is NULL, no flag is used. | 
|  | SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, | 
|  | const SDLoc &dl, SDValue &Chain, SDValue *Flag, | 
|  | const Value *V = nullptr) const; | 
|  |  | 
|  | /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the specified | 
|  | /// value into the registers specified by this object.  This uses Chain/Flag | 
|  | /// as the input and updates them for the output Chain/Flag.  If the Flag | 
|  | /// pointer is nullptr, no flag is used.  If V is not nullptr, then it is used | 
|  | /// in printing better diagnostic messages on error. | 
|  | void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, | 
|  | SDValue &Chain, SDValue *Flag, const Value *V = nullptr, | 
|  | ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; | 
|  |  | 
|  | /// AddInlineAsmOperands - Add this value to the specified inlineasm node | 
|  | /// operand list.  This adds the code marker, matching input operand index | 
|  | /// (if applicable), and includes the number of values added into it. | 
|  | void AddInlineAsmOperands(unsigned Kind, bool HasMatching, | 
|  | unsigned MatchingIdx, const SDLoc &dl, | 
|  | SelectionDAG &DAG, std::vector<SDValue> &Ops) const; | 
|  | }; | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | #endif |