|  | //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "MCTargetDesc/X86BaseInfo.h" | 
|  | #include "MCTargetDesc/X86FixupKinds.h" | 
|  | #include "llvm/MC/MCAsmBackend.h" | 
|  | #include "llvm/MC/MCAssembler.h" | 
|  | #include "llvm/MC/MCELFObjectWriter.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/MC/MCFixupKindInfo.h" | 
|  | #include "llvm/MC/MCMachObjectWriter.h" | 
|  | #include "llvm/MC/MCObjectWriter.h" | 
|  | #include "llvm/MC/MCSectionCOFF.h" | 
|  | #include "llvm/MC/MCSectionELF.h" | 
|  | #include "llvm/MC/MCSectionMachO.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ELF.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MachO.h" | 
|  | #include "llvm/Support/TargetRegistry.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | // Option to allow disabling arithmetic relaxation to workaround PR9807, which | 
|  | // is useful when running bitwise comparison experiments on Darwin. We should be | 
|  | // able to remove this once PR9807 is resolved. | 
|  | static cl::opt<bool> | 
|  | MCDisableArithRelaxation("mc-x86-disable-arith-relaxation", | 
|  | cl::desc("Disable relaxation of arithmetic instruction for X86")); | 
|  |  | 
|  | static unsigned getFixupKindLog2Size(unsigned Kind) { | 
|  | switch (Kind) { | 
|  | default: llvm_unreachable("invalid fixup kind!"); | 
|  | case FK_PCRel_1: | 
|  | case FK_SecRel_1: | 
|  | case FK_Data_1: return 0; | 
|  | case FK_PCRel_2: | 
|  | case FK_SecRel_2: | 
|  | case FK_Data_2: return 1; | 
|  | case FK_PCRel_4: | 
|  | case X86::reloc_riprel_4byte: | 
|  | case X86::reloc_riprel_4byte_movq_load: | 
|  | case X86::reloc_signed_4byte: | 
|  | case X86::reloc_global_offset_table: | 
|  | case FK_SecRel_4: | 
|  | case FK_Data_4: return 2; | 
|  | case FK_PCRel_8: | 
|  | case FK_SecRel_8: | 
|  | case FK_Data_8: return 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class X86ELFObjectWriter : public MCELFObjectTargetWriter { | 
|  | public: | 
|  | X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine, | 
|  | bool HasRelocationAddend, bool foobar) | 
|  | : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {} | 
|  | }; | 
|  |  | 
|  | class X86AsmBackend : public MCAsmBackend { | 
|  | StringRef CPU; | 
|  | public: | 
|  | X86AsmBackend(const Target &T, StringRef _CPU) | 
|  | : MCAsmBackend(), CPU(_CPU) {} | 
|  |  | 
|  | unsigned getNumFixupKinds() const { | 
|  | return X86::NumTargetFixupKinds; | 
|  | } | 
|  |  | 
|  | const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const { | 
|  | const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = { | 
|  | { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }, | 
|  | { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel}, | 
|  | { "reloc_signed_4byte", 0, 4 * 8, 0}, | 
|  | { "reloc_global_offset_table", 0, 4 * 8, 0} | 
|  | }; | 
|  |  | 
|  | if (Kind < FirstTargetFixupKind) | 
|  | return MCAsmBackend::getFixupKindInfo(Kind); | 
|  |  | 
|  | assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && | 
|  | "Invalid kind!"); | 
|  | return Infos[Kind - FirstTargetFixupKind]; | 
|  | } | 
|  |  | 
|  | void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize, | 
|  | uint64_t Value) const { | 
|  | unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind()); | 
|  |  | 
|  | assert(Fixup.getOffset() + Size <= DataSize && | 
|  | "Invalid fixup offset!"); | 
|  |  | 
|  | // Check that uppper bits are either all zeros or all ones. | 
|  | // Specifically ignore overflow/underflow as long as the leakage is | 
|  | // limited to the lower bits. This is to remain compatible with | 
|  | // other assemblers. | 
|  | assert(isIntN(Size * 8 + 1, Value) && | 
|  | "Value does not fit in the Fixup field"); | 
|  |  | 
|  | for (unsigned i = 0; i != Size; ++i) | 
|  | Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8)); | 
|  | } | 
|  |  | 
|  | bool mayNeedRelaxation(const MCInst &Inst) const; | 
|  |  | 
|  | bool fixupNeedsRelaxation(const MCFixup &Fixup, | 
|  | uint64_t Value, | 
|  | const MCRelaxableFragment *DF, | 
|  | const MCAsmLayout &Layout) const; | 
|  |  | 
|  | void relaxInstruction(const MCInst &Inst, MCInst &Res) const; | 
|  |  | 
|  | bool writeNopData(uint64_t Count, MCObjectWriter *OW) const; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static unsigned getRelaxedOpcodeBranch(unsigned Op) { | 
|  | switch (Op) { | 
|  | default: | 
|  | return Op; | 
|  |  | 
|  | case X86::JAE_1: return X86::JAE_4; | 
|  | case X86::JA_1:  return X86::JA_4; | 
|  | case X86::JBE_1: return X86::JBE_4; | 
|  | case X86::JB_1:  return X86::JB_4; | 
|  | case X86::JE_1:  return X86::JE_4; | 
|  | case X86::JGE_1: return X86::JGE_4; | 
|  | case X86::JG_1:  return X86::JG_4; | 
|  | case X86::JLE_1: return X86::JLE_4; | 
|  | case X86::JL_1:  return X86::JL_4; | 
|  | case X86::JMP_1: return X86::JMP_4; | 
|  | case X86::JNE_1: return X86::JNE_4; | 
|  | case X86::JNO_1: return X86::JNO_4; | 
|  | case X86::JNP_1: return X86::JNP_4; | 
|  | case X86::JNS_1: return X86::JNS_4; | 
|  | case X86::JO_1:  return X86::JO_4; | 
|  | case X86::JP_1:  return X86::JP_4; | 
|  | case X86::JS_1:  return X86::JS_4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned getRelaxedOpcodeArith(unsigned Op) { | 
|  | switch (Op) { | 
|  | default: | 
|  | return Op; | 
|  |  | 
|  | // IMUL | 
|  | case X86::IMUL16rri8: return X86::IMUL16rri; | 
|  | case X86::IMUL16rmi8: return X86::IMUL16rmi; | 
|  | case X86::IMUL32rri8: return X86::IMUL32rri; | 
|  | case X86::IMUL32rmi8: return X86::IMUL32rmi; | 
|  | case X86::IMUL64rri8: return X86::IMUL64rri32; | 
|  | case X86::IMUL64rmi8: return X86::IMUL64rmi32; | 
|  |  | 
|  | // AND | 
|  | case X86::AND16ri8: return X86::AND16ri; | 
|  | case X86::AND16mi8: return X86::AND16mi; | 
|  | case X86::AND32ri8: return X86::AND32ri; | 
|  | case X86::AND32mi8: return X86::AND32mi; | 
|  | case X86::AND64ri8: return X86::AND64ri32; | 
|  | case X86::AND64mi8: return X86::AND64mi32; | 
|  |  | 
|  | // OR | 
|  | case X86::OR16ri8: return X86::OR16ri; | 
|  | case X86::OR16mi8: return X86::OR16mi; | 
|  | case X86::OR32ri8: return X86::OR32ri; | 
|  | case X86::OR32mi8: return X86::OR32mi; | 
|  | case X86::OR64ri8: return X86::OR64ri32; | 
|  | case X86::OR64mi8: return X86::OR64mi32; | 
|  |  | 
|  | // XOR | 
|  | case X86::XOR16ri8: return X86::XOR16ri; | 
|  | case X86::XOR16mi8: return X86::XOR16mi; | 
|  | case X86::XOR32ri8: return X86::XOR32ri; | 
|  | case X86::XOR32mi8: return X86::XOR32mi; | 
|  | case X86::XOR64ri8: return X86::XOR64ri32; | 
|  | case X86::XOR64mi8: return X86::XOR64mi32; | 
|  |  | 
|  | // ADD | 
|  | case X86::ADD16ri8: return X86::ADD16ri; | 
|  | case X86::ADD16mi8: return X86::ADD16mi; | 
|  | case X86::ADD32ri8: return X86::ADD32ri; | 
|  | case X86::ADD32mi8: return X86::ADD32mi; | 
|  | case X86::ADD64ri8: return X86::ADD64ri32; | 
|  | case X86::ADD64mi8: return X86::ADD64mi32; | 
|  |  | 
|  | // SUB | 
|  | case X86::SUB16ri8: return X86::SUB16ri; | 
|  | case X86::SUB16mi8: return X86::SUB16mi; | 
|  | case X86::SUB32ri8: return X86::SUB32ri; | 
|  | case X86::SUB32mi8: return X86::SUB32mi; | 
|  | case X86::SUB64ri8: return X86::SUB64ri32; | 
|  | case X86::SUB64mi8: return X86::SUB64mi32; | 
|  |  | 
|  | // CMP | 
|  | case X86::CMP16ri8: return X86::CMP16ri; | 
|  | case X86::CMP16mi8: return X86::CMP16mi; | 
|  | case X86::CMP32ri8: return X86::CMP32ri; | 
|  | case X86::CMP32mi8: return X86::CMP32mi; | 
|  | case X86::CMP64ri8: return X86::CMP64ri32; | 
|  | case X86::CMP64mi8: return X86::CMP64mi32; | 
|  |  | 
|  | // PUSH | 
|  | case X86::PUSHi8: return X86::PUSHi32; | 
|  | case X86::PUSHi16: return X86::PUSHi32; | 
|  | case X86::PUSH64i8: return X86::PUSH64i32; | 
|  | case X86::PUSH64i16: return X86::PUSH64i32; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned getRelaxedOpcode(unsigned Op) { | 
|  | unsigned R = getRelaxedOpcodeArith(Op); | 
|  | if (R != Op) | 
|  | return R; | 
|  | return getRelaxedOpcodeBranch(Op); | 
|  | } | 
|  |  | 
|  | bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const { | 
|  | // Branches can always be relaxed. | 
|  | if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode()) | 
|  | return true; | 
|  |  | 
|  | if (MCDisableArithRelaxation) | 
|  | return false; | 
|  |  | 
|  | // Check if this instruction is ever relaxable. | 
|  | if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode()) | 
|  | return false; | 
|  |  | 
|  |  | 
|  | // Check if it has an expression and is not RIP relative. | 
|  | bool hasExp = false; | 
|  | bool hasRIP = false; | 
|  | for (unsigned i = 0; i < Inst.getNumOperands(); ++i) { | 
|  | const MCOperand &Op = Inst.getOperand(i); | 
|  | if (Op.isExpr()) | 
|  | hasExp = true; | 
|  |  | 
|  | if (Op.isReg() && Op.getReg() == X86::RIP) | 
|  | hasRIP = true; | 
|  | } | 
|  |  | 
|  | // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on | 
|  | // how we do relaxations? | 
|  | return hasExp && !hasRIP; | 
|  | } | 
|  |  | 
|  | bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, | 
|  | uint64_t Value, | 
|  | const MCRelaxableFragment *DF, | 
|  | const MCAsmLayout &Layout) const { | 
|  | // Relax if the value is too big for a (signed) i8. | 
|  | return int64_t(Value) != int64_t(int8_t(Value)); | 
|  | } | 
|  |  | 
|  | // FIXME: Can tblgen help at all here to verify there aren't other instructions | 
|  | // we can relax? | 
|  | void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const { | 
|  | // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel. | 
|  | unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode()); | 
|  |  | 
|  | if (RelaxedOp == Inst.getOpcode()) { | 
|  | SmallString<256> Tmp; | 
|  | raw_svector_ostream OS(Tmp); | 
|  | Inst.dump_pretty(OS); | 
|  | OS << "\n"; | 
|  | report_fatal_error("unexpected instruction to relax: " + OS.str()); | 
|  | } | 
|  |  | 
|  | Res = Inst; | 
|  | Res.setOpcode(RelaxedOp); | 
|  | } | 
|  |  | 
|  | /// \brief Write a sequence of optimal nops to the output, covering \p Count | 
|  | /// bytes. | 
|  | /// \return - true on success, false on failure | 
|  | bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const { | 
|  | static const uint8_t Nops[10][10] = { | 
|  | // nop | 
|  | {0x90}, | 
|  | // xchg %ax,%ax | 
|  | {0x66, 0x90}, | 
|  | // nopl (%[re]ax) | 
|  | {0x0f, 0x1f, 0x00}, | 
|  | // nopl 0(%[re]ax) | 
|  | {0x0f, 0x1f, 0x40, 0x00}, | 
|  | // nopl 0(%[re]ax,%[re]ax,1) | 
|  | {0x0f, 0x1f, 0x44, 0x00, 0x00}, | 
|  | // nopw 0(%[re]ax,%[re]ax,1) | 
|  | {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, | 
|  | // nopl 0L(%[re]ax) | 
|  | {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00}, | 
|  | // nopl 0L(%[re]ax,%[re]ax,1) | 
|  | {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, | 
|  | // nopw 0L(%[re]ax,%[re]ax,1) | 
|  | {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, | 
|  | // nopw %cs:0L(%[re]ax,%[re]ax,1) | 
|  | {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, | 
|  | }; | 
|  |  | 
|  | // This CPU doesnt support long nops. If needed add more. | 
|  | // FIXME: Can we get this from the subtarget somehow? | 
|  | if (CPU == "generic" || CPU == "i386" || CPU == "i486" || CPU == "i586" || | 
|  | CPU == "pentium" || CPU == "pentium-mmx" || CPU == "geode") { | 
|  | for (uint64_t i = 0; i < Count; ++i) | 
|  | OW->Write8(0x90); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // 15 is the longest single nop instruction.  Emit as many 15-byte nops as | 
|  | // needed, then emit a nop of the remaining length. | 
|  | do { | 
|  | const uint8_t ThisNopLength = (uint8_t) std::min(Count, (uint64_t) 15); | 
|  | const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10; | 
|  | for (uint8_t i = 0; i < Prefixes; i++) | 
|  | OW->Write8(0x66); | 
|  | const uint8_t Rest = ThisNopLength - Prefixes; | 
|  | for (uint8_t i = 0; i < Rest; i++) | 
|  | OW->Write8(Nops[Rest - 1][i]); | 
|  | Count -= ThisNopLength; | 
|  | } while (Count != 0); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* *** */ | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class ELFX86AsmBackend : public X86AsmBackend { | 
|  | public: | 
|  | uint8_t OSABI; | 
|  | ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU) | 
|  | : X86AsmBackend(T, CPU), OSABI(_OSABI) { | 
|  | HasReliableSymbolDifference = true; | 
|  | } | 
|  |  | 
|  | virtual bool doesSectionRequireSymbols(const MCSection &Section) const { | 
|  | const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section); | 
|  | return ES.getFlags() & ELF::SHF_MERGE; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class ELFX86_32AsmBackend : public ELFX86AsmBackend { | 
|  | public: | 
|  | ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU) | 
|  | : ELFX86AsmBackend(T, OSABI, CPU) {} | 
|  |  | 
|  | MCObjectWriter *createObjectWriter(raw_ostream &OS) const { | 
|  | return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class ELFX86_64AsmBackend : public ELFX86AsmBackend { | 
|  | public: | 
|  | ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU) | 
|  | : ELFX86AsmBackend(T, OSABI, CPU) {} | 
|  |  | 
|  | MCObjectWriter *createObjectWriter(raw_ostream &OS) const { | 
|  | return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class WindowsX86AsmBackend : public X86AsmBackend { | 
|  | bool Is64Bit; | 
|  |  | 
|  | public: | 
|  | WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU) | 
|  | : X86AsmBackend(T, CPU) | 
|  | , Is64Bit(is64Bit) { | 
|  | } | 
|  |  | 
|  | MCObjectWriter *createObjectWriter(raw_ostream &OS) const { | 
|  | return createX86WinCOFFObjectWriter(OS, Is64Bit); | 
|  | } | 
|  | }; | 
|  |  | 
|  | namespace CU { | 
|  |  | 
|  | /// Compact unwind encoding values. | 
|  | enum CompactUnwindEncodings { | 
|  | /// [RE]BP based frame where [RE]BP is pused on the stack immediately after | 
|  | /// the return address, then [RE]SP is moved to [RE]BP. | 
|  | UNWIND_MODE_BP_FRAME                   = 0x01000000, | 
|  |  | 
|  | /// A frameless function with a small constant stack size. | 
|  | UNWIND_MODE_STACK_IMMD                 = 0x02000000, | 
|  |  | 
|  | /// A frameless function with a large constant stack size. | 
|  | UNWIND_MODE_STACK_IND                  = 0x03000000, | 
|  |  | 
|  | /// No compact unwind encoding is available. | 
|  | UNWIND_MODE_DWARF                      = 0x04000000, | 
|  |  | 
|  | /// Mask for encoding the frame registers. | 
|  | UNWIND_BP_FRAME_REGISTERS              = 0x00007FFF, | 
|  |  | 
|  | /// Mask for encoding the frameless registers. | 
|  | UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF | 
|  | }; | 
|  |  | 
|  | } // end CU namespace | 
|  |  | 
|  | class DarwinX86AsmBackend : public X86AsmBackend { | 
|  | const MCRegisterInfo &MRI; | 
|  |  | 
|  | /// \brief Number of registers that can be saved in a compact unwind encoding. | 
|  | enum { CU_NUM_SAVED_REGS = 6 }; | 
|  |  | 
|  | mutable unsigned SavedRegs[CU_NUM_SAVED_REGS]; | 
|  | bool Is64Bit; | 
|  |  | 
|  | unsigned OffsetSize;                   ///< Offset of a "push" instruction. | 
|  | unsigned PushInstrSize;                ///< Size of a "push" instruction. | 
|  | unsigned MoveInstrSize;                ///< Size of a "move" instruction. | 
|  | unsigned StackDivide;                  ///< Amount to adjust stack stize by. | 
|  | protected: | 
|  | /// \brief Implementation of algorithm to generate the compact unwind encoding | 
|  | /// for the CFI instructions. | 
|  | uint32_t | 
|  | generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const { | 
|  | if (Instrs.empty()) return 0; | 
|  |  | 
|  | // Reset the saved registers. | 
|  | unsigned SavedRegIdx = 0; | 
|  | memset(SavedRegs, 0, sizeof(SavedRegs)); | 
|  |  | 
|  | bool HasFP = false; | 
|  |  | 
|  | // Encode that we are using EBP/RBP as the frame pointer. | 
|  | uint32_t CompactUnwindEncoding = 0; | 
|  |  | 
|  | unsigned SubtractInstrIdx = Is64Bit ? 3 : 2; | 
|  | unsigned InstrOffset = 0; | 
|  | unsigned StackAdjust = 0; | 
|  | unsigned StackSize = 0; | 
|  | unsigned PrevStackSize = 0; | 
|  | unsigned NumDefCFAOffsets = 0; | 
|  |  | 
|  | for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { | 
|  | const MCCFIInstruction &Inst = Instrs[i]; | 
|  |  | 
|  | switch (Inst.getOperation()) { | 
|  | default: | 
|  | llvm_unreachable("cannot handle CFI directive for compact unwind!"); | 
|  | case MCCFIInstruction::OpDefCfaRegister: { | 
|  | // Defines a frame pointer. E.g. | 
|  | // | 
|  | //     movq %rsp, %rbp | 
|  | //  L0: | 
|  | //     .cfi_def_cfa_register %rbp | 
|  | // | 
|  | HasFP = true; | 
|  | assert(MRI.getLLVMRegNum(Inst.getRegister(), true) == | 
|  | (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!"); | 
|  |  | 
|  | // Reset the counts. | 
|  | memset(SavedRegs, 0, sizeof(SavedRegs)); | 
|  | StackAdjust = 0; | 
|  | SavedRegIdx = 0; | 
|  | InstrOffset += MoveInstrSize; | 
|  | break; | 
|  | } | 
|  | case MCCFIInstruction::OpDefCfaOffset: { | 
|  | // Defines a new offset for the CFA. E.g. | 
|  | // | 
|  | //  With frame: | 
|  | // | 
|  | //     pushq %rbp | 
|  | //  L0: | 
|  | //     .cfi_def_cfa_offset 16 | 
|  | // | 
|  | //  Without frame: | 
|  | // | 
|  | //     subq $72, %rsp | 
|  | //  L0: | 
|  | //     .cfi_def_cfa_offset 80 | 
|  | // | 
|  | PrevStackSize = StackSize; | 
|  | StackSize = std::abs(Inst.getOffset()) / StackDivide; | 
|  | ++NumDefCFAOffsets; | 
|  | break; | 
|  | } | 
|  | case MCCFIInstruction::OpOffset: { | 
|  | // Defines a "push" of a callee-saved register. E.g. | 
|  | // | 
|  | //     pushq %r15 | 
|  | //     pushq %r14 | 
|  | //     pushq %rbx | 
|  | //  L0: | 
|  | //     subq $120, %rsp | 
|  | //  L1: | 
|  | //     .cfi_offset %rbx, -40 | 
|  | //     .cfi_offset %r14, -32 | 
|  | //     .cfi_offset %r15, -24 | 
|  | // | 
|  | if (SavedRegIdx == CU_NUM_SAVED_REGS) | 
|  | // If there are too many saved registers, we cannot use a compact | 
|  | // unwind encoding. | 
|  | return CU::UNWIND_MODE_DWARF; | 
|  |  | 
|  | unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true); | 
|  | SavedRegs[SavedRegIdx++] = Reg; | 
|  | StackAdjust += OffsetSize; | 
|  | InstrOffset += PushInstrSize; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | StackAdjust /= StackDivide; | 
|  |  | 
|  | if (HasFP) { | 
|  | if ((StackAdjust & 0xFF) != StackAdjust) | 
|  | // Offset was too big for a compact unwind encoding. | 
|  | return CU::UNWIND_MODE_DWARF; | 
|  |  | 
|  | // Get the encoding of the saved registers when we have a frame pointer. | 
|  | uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(); | 
|  | if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF; | 
|  |  | 
|  | CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME; | 
|  | CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16; | 
|  | CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS; | 
|  | } else { | 
|  | // If the amount of the stack allocation is the size of a register, then | 
|  | // we "push" the RAX/EAX register onto the stack instead of adjusting the | 
|  | // stack pointer with a SUB instruction. We don't support the push of the | 
|  | // RAX/EAX register with compact unwind. So we check for that situation | 
|  | // here. | 
|  | if ((NumDefCFAOffsets == SavedRegIdx + 1 && | 
|  | StackSize - PrevStackSize == 1) || | 
|  | (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2)) | 
|  | return CU::UNWIND_MODE_DWARF; | 
|  |  | 
|  | SubtractInstrIdx += InstrOffset; | 
|  | ++StackAdjust; | 
|  |  | 
|  | if ((StackSize & 0xFF) == StackSize) { | 
|  | // Frameless stack with a small stack size. | 
|  | CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD; | 
|  |  | 
|  | // Encode the stack size. | 
|  | CompactUnwindEncoding |= (StackSize & 0xFF) << 16; | 
|  | } else { | 
|  | if ((StackAdjust & 0x7) != StackAdjust) | 
|  | // The extra stack adjustments are too big for us to handle. | 
|  | return CU::UNWIND_MODE_DWARF; | 
|  |  | 
|  | // Frameless stack with an offset too large for us to encode compactly. | 
|  | CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND; | 
|  |  | 
|  | // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP' | 
|  | // instruction. | 
|  | CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16; | 
|  |  | 
|  | // Encode any extra stack stack adjustments (done via push | 
|  | // instructions). | 
|  | CompactUnwindEncoding |= (StackAdjust & 0x7) << 13; | 
|  | } | 
|  |  | 
|  | // Encode the number of registers saved. (Reverse the list first.) | 
|  | std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]); | 
|  | CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10; | 
|  |  | 
|  | // Get the encoding of the saved registers when we don't have a frame | 
|  | // pointer. | 
|  | uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx); | 
|  | if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF; | 
|  |  | 
|  | // Encode the register encoding. | 
|  | CompactUnwindEncoding |= | 
|  | RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION; | 
|  | } | 
|  |  | 
|  | return CompactUnwindEncoding; | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// \brief Get the compact unwind number for a given register. The number | 
|  | /// corresponds to the enum lists in compact_unwind_encoding.h. | 
|  | int getCompactUnwindRegNum(unsigned Reg) const { | 
|  | static const uint16_t CU32BitRegs[7] = { | 
|  | X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0 | 
|  | }; | 
|  | static const uint16_t CU64BitRegs[] = { | 
|  | X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 | 
|  | }; | 
|  | const uint16_t *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs; | 
|  | for (int Idx = 1; *CURegs; ++CURegs, ++Idx) | 
|  | if (*CURegs == Reg) | 
|  | return Idx; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /// \brief Return the registers encoded for a compact encoding with a frame | 
|  | /// pointer. | 
|  | uint32_t encodeCompactUnwindRegistersWithFrame() const { | 
|  | // Encode the registers in the order they were saved --- 3-bits per | 
|  | // register. The list of saved registers is assumed to be in reverse | 
|  | // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS. | 
|  | uint32_t RegEnc = 0; | 
|  | for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) { | 
|  | unsigned Reg = SavedRegs[i]; | 
|  | if (Reg == 0) break; | 
|  |  | 
|  | int CURegNum = getCompactUnwindRegNum(Reg); | 
|  | if (CURegNum == -1) return ~0U; | 
|  |  | 
|  | // Encode the 3-bit register number in order, skipping over 3-bits for | 
|  | // each register. | 
|  | RegEnc |= (CURegNum & 0x7) << (Idx++ * 3); | 
|  | } | 
|  |  | 
|  | assert((RegEnc & 0x3FFFF) == RegEnc && | 
|  | "Invalid compact register encoding!"); | 
|  | return RegEnc; | 
|  | } | 
|  |  | 
|  | /// \brief Create the permutation encoding used with frameless stacks. It is | 
|  | /// passed the number of registers to be saved and an array of the registers | 
|  | /// saved. | 
|  | uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const { | 
|  | // The saved registers are numbered from 1 to 6. In order to encode the | 
|  | // order in which they were saved, we re-number them according to their | 
|  | // place in the register order. The re-numbering is relative to the last | 
|  | // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in | 
|  | // that order: | 
|  | // | 
|  | //    Orig  Re-Num | 
|  | //    ----  ------ | 
|  | //     6       6 | 
|  | //     2       2 | 
|  | //     4       3 | 
|  | //     5       3 | 
|  | // | 
|  | for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) { | 
|  | int CUReg = getCompactUnwindRegNum(SavedRegs[i]); | 
|  | if (CUReg == -1) return ~0U; | 
|  | SavedRegs[i] = CUReg; | 
|  | } | 
|  |  | 
|  | // Reverse the list. | 
|  | std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]); | 
|  |  | 
|  | uint32_t RenumRegs[CU_NUM_SAVED_REGS]; | 
|  | for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){ | 
|  | unsigned Countless = 0; | 
|  | for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j) | 
|  | if (SavedRegs[j] < SavedRegs[i]) | 
|  | ++Countless; | 
|  |  | 
|  | RenumRegs[i] = SavedRegs[i] - Countless - 1; | 
|  | } | 
|  |  | 
|  | // Take the renumbered values and encode them into a 10-bit number. | 
|  | uint32_t permutationEncoding = 0; | 
|  | switch (RegCount) { | 
|  | case 6: | 
|  | permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1] | 
|  | + 6 * RenumRegs[2] +  2 * RenumRegs[3] | 
|  | +     RenumRegs[4]; | 
|  | break; | 
|  | case 5: | 
|  | permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2] | 
|  | + 6 * RenumRegs[3] +  2 * RenumRegs[4] | 
|  | +     RenumRegs[5]; | 
|  | break; | 
|  | case 4: | 
|  | permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3] | 
|  | + 3 * RenumRegs[4] +      RenumRegs[5]; | 
|  | break; | 
|  | case 3: | 
|  | permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4] | 
|  | +     RenumRegs[5]; | 
|  | break; | 
|  | case 2: | 
|  | permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5]; | 
|  | break; | 
|  | case 1: | 
|  | permutationEncoding |=       RenumRegs[5]; | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert((permutationEncoding & 0x3FF) == permutationEncoding && | 
|  | "Invalid compact register encoding!"); | 
|  | return permutationEncoding; | 
|  | } | 
|  |  | 
|  | public: | 
|  | DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU, | 
|  | bool Is64Bit) | 
|  | : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) { | 
|  | memset(SavedRegs, 0, sizeof(SavedRegs)); | 
|  | OffsetSize = Is64Bit ? 8 : 4; | 
|  | MoveInstrSize = Is64Bit ? 3 : 2; | 
|  | StackDivide = Is64Bit ? 8 : 4; | 
|  | PushInstrSize = 1; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class DarwinX86_32AsmBackend : public DarwinX86AsmBackend { | 
|  | bool SupportsCU; | 
|  | public: | 
|  | DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI, | 
|  | StringRef CPU, bool SupportsCU) | 
|  | : DarwinX86AsmBackend(T, MRI, CPU, false), SupportsCU(SupportsCU) {} | 
|  |  | 
|  | MCObjectWriter *createObjectWriter(raw_ostream &OS) const { | 
|  | return createX86MachObjectWriter(OS, /*Is64Bit=*/false, | 
|  | MachO::CPU_TYPE_I386, | 
|  | MachO::CPU_SUBTYPE_I386_ALL); | 
|  | } | 
|  |  | 
|  | /// \brief Generate the compact unwind encoding for the CFI instructions. | 
|  | virtual uint32_t | 
|  | generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const { | 
|  | return SupportsCU ? generateCompactUnwindEncodingImpl(Instrs) : 0; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class DarwinX86_64AsmBackend : public DarwinX86AsmBackend { | 
|  | bool SupportsCU; | 
|  | public: | 
|  | DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI, | 
|  | StringRef CPU, bool SupportsCU) | 
|  | : DarwinX86AsmBackend(T, MRI, CPU, true), SupportsCU(SupportsCU) { | 
|  | HasReliableSymbolDifference = true; | 
|  | } | 
|  |  | 
|  | MCObjectWriter *createObjectWriter(raw_ostream &OS) const { | 
|  | return createX86MachObjectWriter(OS, /*Is64Bit=*/true, | 
|  | MachO::CPU_TYPE_X86_64, | 
|  | MachO::CPU_SUBTYPE_X86_64_ALL); | 
|  | } | 
|  |  | 
|  | virtual bool doesSectionRequireSymbols(const MCSection &Section) const { | 
|  | // Temporary labels in the string literals sections require symbols. The | 
|  | // issue is that the x86_64 relocation format does not allow symbol + | 
|  | // offset, and so the linker does not have enough information to resolve the | 
|  | // access to the appropriate atom unless an external relocation is used. For | 
|  | // non-cstring sections, we expect the compiler to use a non-temporary label | 
|  | // for anything that could have an addend pointing outside the symbol. | 
|  | // | 
|  | // See <rdar://problem/4765733>. | 
|  | const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section); | 
|  | return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS; | 
|  | } | 
|  |  | 
|  | virtual bool isSectionAtomizable(const MCSection &Section) const { | 
|  | const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section); | 
|  | // Fixed sized data sections are uniqued, they cannot be diced into atoms. | 
|  | switch (SMO.getType()) { | 
|  | default: | 
|  | return true; | 
|  |  | 
|  | case MCSectionMachO::S_4BYTE_LITERALS: | 
|  | case MCSectionMachO::S_8BYTE_LITERALS: | 
|  | case MCSectionMachO::S_16BYTE_LITERALS: | 
|  | case MCSectionMachO::S_LITERAL_POINTERS: | 
|  | case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS: | 
|  | case MCSectionMachO::S_LAZY_SYMBOL_POINTERS: | 
|  | case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS: | 
|  | case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS: | 
|  | case MCSectionMachO::S_INTERPOSING: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Generate the compact unwind encoding for the CFI instructions. | 
|  | virtual uint32_t | 
|  | generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const { | 
|  | return SupportsCU ? generateCompactUnwindEncodingImpl(Instrs) : 0; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, | 
|  | const MCRegisterInfo &MRI, | 
|  | StringRef TT, | 
|  | StringRef CPU) { | 
|  | Triple TheTriple(TT); | 
|  |  | 
|  | if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) | 
|  | return new DarwinX86_32AsmBackend(T, MRI, CPU, | 
|  | TheTriple.isMacOSX() && | 
|  | !TheTriple.isMacOSXVersionLT(10, 7)); | 
|  |  | 
|  | if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF) | 
|  | return new WindowsX86AsmBackend(T, false, CPU); | 
|  |  | 
|  | uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); | 
|  | return new ELFX86_32AsmBackend(T, OSABI, CPU); | 
|  | } | 
|  |  | 
|  | MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, | 
|  | const MCRegisterInfo &MRI, | 
|  | StringRef TT, | 
|  | StringRef CPU) { | 
|  | Triple TheTriple(TT); | 
|  |  | 
|  | if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) | 
|  | return new DarwinX86_64AsmBackend(T, MRI, CPU, | 
|  | TheTriple.isMacOSX() && | 
|  | !TheTriple.isMacOSXVersionLT(10, 7)); | 
|  |  | 
|  | if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF) | 
|  | return new WindowsX86AsmBackend(T, true, CPU); | 
|  |  | 
|  | uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); | 
|  | return new ELFX86_64AsmBackend(T, OSABI, CPU); | 
|  | } |