|  | //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the ScheduleDAG class, which is a base class used by | 
|  | // scheduling implementation classes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "pre-RA-sched" | 
|  | #include "SDNodeDbgValue.h" | 
|  | #include "ScheduleDAGSDNodes.h" | 
|  | #include "InstrEmitter.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtarget.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(LoadsClustered, "Number of loads clustered together"); | 
|  |  | 
|  | ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) | 
|  | : ScheduleDAG(mf), | 
|  | InstrItins(mf.getTarget().getInstrItineraryData()) {} | 
|  |  | 
|  | /// Run - perform scheduling. | 
|  | /// | 
|  | void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb, | 
|  | MachineBasicBlock::iterator insertPos) { | 
|  | DAG = dag; | 
|  | ScheduleDAG::Run(bb, insertPos); | 
|  | } | 
|  |  | 
|  | /// NewSUnit - Creates a new SUnit and return a ptr to it. | 
|  | /// | 
|  | SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) { | 
|  | #ifndef NDEBUG | 
|  | const SUnit *Addr = 0; | 
|  | if (!SUnits.empty()) | 
|  | Addr = &SUnits[0]; | 
|  | #endif | 
|  | SUnits.push_back(SUnit(N, (unsigned)SUnits.size())); | 
|  | assert((Addr == 0 || Addr == &SUnits[0]) && | 
|  | "SUnits std::vector reallocated on the fly!"); | 
|  | SUnits.back().OrigNode = &SUnits.back(); | 
|  | SUnit *SU = &SUnits.back(); | 
|  | const TargetLowering &TLI = DAG->getTargetLoweringInfo(); | 
|  | if (!N || | 
|  | (N->isMachineOpcode() && | 
|  | N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) | 
|  | SU->SchedulingPref = Sched::None; | 
|  | else | 
|  | SU->SchedulingPref = TLI.getSchedulingPreference(N); | 
|  | return SU; | 
|  | } | 
|  |  | 
|  | SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { | 
|  | SUnit *SU = NewSUnit(Old->getNode()); | 
|  | SU->OrigNode = Old->OrigNode; | 
|  | SU->Latency = Old->Latency; | 
|  | SU->isCall = Old->isCall; | 
|  | SU->isTwoAddress = Old->isTwoAddress; | 
|  | SU->isCommutable = Old->isCommutable; | 
|  | SU->hasPhysRegDefs = Old->hasPhysRegDefs; | 
|  | SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; | 
|  | SU->SchedulingPref = Old->SchedulingPref; | 
|  | Old->isCloned = true; | 
|  | return SU; | 
|  | } | 
|  |  | 
|  | /// CheckForPhysRegDependency - Check if the dependency between def and use of | 
|  | /// a specified operand is a physical register dependency. If so, returns the | 
|  | /// register and the cost of copying the register. | 
|  | static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, | 
|  | const TargetRegisterInfo *TRI, | 
|  | const TargetInstrInfo *TII, | 
|  | unsigned &PhysReg, int &Cost) { | 
|  | if (Op != 2 || User->getOpcode() != ISD::CopyToReg) | 
|  | return; | 
|  |  | 
|  | unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | return; | 
|  |  | 
|  | unsigned ResNo = User->getOperand(2).getResNo(); | 
|  | if (Def->isMachineOpcode()) { | 
|  | const TargetInstrDesc &II = TII->get(Def->getMachineOpcode()); | 
|  | if (ResNo >= II.getNumDefs() && | 
|  | II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) { | 
|  | PhysReg = Reg; | 
|  | const TargetRegisterClass *RC = | 
|  | TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo)); | 
|  | Cost = RC->getCopyCost(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void AddFlags(SDNode *N, SDValue Flag, bool AddFlag, | 
|  | SelectionDAG *DAG) { | 
|  | SmallVector<EVT, 4> VTs; | 
|  | SDNode *FlagDestNode = Flag.getNode(); | 
|  |  | 
|  | // Don't add a flag from a node to itself. | 
|  | if (FlagDestNode == N) return; | 
|  |  | 
|  | // Don't add a flag to something which already has a flag. | 
|  | if (N->getValueType(N->getNumValues() - 1) == MVT::Flag) return; | 
|  |  | 
|  | for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) | 
|  | VTs.push_back(N->getValueType(I)); | 
|  |  | 
|  | if (AddFlag) | 
|  | VTs.push_back(MVT::Flag); | 
|  |  | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I) | 
|  | Ops.push_back(N->getOperand(I)); | 
|  |  | 
|  | if (FlagDestNode) | 
|  | Ops.push_back(Flag); | 
|  |  | 
|  | SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size()); | 
|  | MachineSDNode::mmo_iterator Begin = 0, End = 0; | 
|  | MachineSDNode *MN = dyn_cast<MachineSDNode>(N); | 
|  |  | 
|  | // Store memory references. | 
|  | if (MN) { | 
|  | Begin = MN->memoperands_begin(); | 
|  | End = MN->memoperands_end(); | 
|  | } | 
|  |  | 
|  | DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size()); | 
|  |  | 
|  | // Reset the memory references | 
|  | if (MN) | 
|  | MN->setMemRefs(Begin, End); | 
|  | } | 
|  |  | 
|  | /// ClusterNeighboringLoads - Force nearby loads together by "flagging" them. | 
|  | /// This function finds loads of the same base and different offsets. If the | 
|  | /// offsets are not far apart (target specific), it add MVT::Flag inputs and | 
|  | /// outputs to ensure they are scheduled together and in order. This | 
|  | /// optimization may benefit some targets by improving cache locality. | 
|  | void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { | 
|  | SDNode *Chain = 0; | 
|  | unsigned NumOps = Node->getNumOperands(); | 
|  | if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) | 
|  | Chain = Node->getOperand(NumOps-1).getNode(); | 
|  | if (!Chain) | 
|  | return; | 
|  |  | 
|  | // Look for other loads of the same chain. Find loads that are loading from | 
|  | // the same base pointer and different offsets. | 
|  | SmallPtrSet<SDNode*, 16> Visited; | 
|  | SmallVector<int64_t, 4> Offsets; | 
|  | DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode. | 
|  | bool Cluster = false; | 
|  | SDNode *Base = Node; | 
|  | for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); | 
|  | I != E; ++I) { | 
|  | SDNode *User = *I; | 
|  | if (User == Node || !Visited.insert(User)) | 
|  | continue; | 
|  | int64_t Offset1, Offset2; | 
|  | if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || | 
|  | Offset1 == Offset2) | 
|  | // FIXME: Should be ok if they addresses are identical. But earlier | 
|  | // optimizations really should have eliminated one of the loads. | 
|  | continue; | 
|  | if (O2SMap.insert(std::make_pair(Offset1, Base)).second) | 
|  | Offsets.push_back(Offset1); | 
|  | O2SMap.insert(std::make_pair(Offset2, User)); | 
|  | Offsets.push_back(Offset2); | 
|  | if (Offset2 < Offset1) | 
|  | Base = User; | 
|  | Cluster = true; | 
|  | } | 
|  |  | 
|  | if (!Cluster) | 
|  | return; | 
|  |  | 
|  | // Sort them in increasing order. | 
|  | std::sort(Offsets.begin(), Offsets.end()); | 
|  |  | 
|  | // Check if the loads are close enough. | 
|  | SmallVector<SDNode*, 4> Loads; | 
|  | unsigned NumLoads = 0; | 
|  | int64_t BaseOff = Offsets[0]; | 
|  | SDNode *BaseLoad = O2SMap[BaseOff]; | 
|  | Loads.push_back(BaseLoad); | 
|  | for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { | 
|  | int64_t Offset = Offsets[i]; | 
|  | SDNode *Load = O2SMap[Offset]; | 
|  | if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) | 
|  | break; // Stop right here. Ignore loads that are further away. | 
|  | Loads.push_back(Load); | 
|  | ++NumLoads; | 
|  | } | 
|  |  | 
|  | if (NumLoads == 0) | 
|  | return; | 
|  |  | 
|  | // Cluster loads by adding MVT::Flag outputs and inputs. This also | 
|  | // ensure they are scheduled in order of increasing addresses. | 
|  | SDNode *Lead = Loads[0]; | 
|  | AddFlags(Lead, SDValue(0, 0), true, DAG); | 
|  |  | 
|  | SDValue InFlag = SDValue(Lead, Lead->getNumValues() - 1); | 
|  | for (unsigned I = 1, E = Loads.size(); I != E; ++I) { | 
|  | bool OutFlag = I < E - 1; | 
|  | SDNode *Load = Loads[I]; | 
|  |  | 
|  | AddFlags(Load, InFlag, OutFlag, DAG); | 
|  |  | 
|  | if (OutFlag) | 
|  | InFlag = SDValue(Load, Load->getNumValues() - 1); | 
|  |  | 
|  | ++LoadsClustered; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ClusterNodes - Cluster certain nodes which should be scheduled together. | 
|  | /// | 
|  | void ScheduleDAGSDNodes::ClusterNodes() { | 
|  | for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), | 
|  | E = DAG->allnodes_end(); NI != E; ++NI) { | 
|  | SDNode *Node = &*NI; | 
|  | if (!Node || !Node->isMachineOpcode()) | 
|  | continue; | 
|  |  | 
|  | unsigned Opc = Node->getMachineOpcode(); | 
|  | const TargetInstrDesc &TID = TII->get(Opc); | 
|  | if (TID.mayLoad()) | 
|  | // Cluster loads from "near" addresses into combined SUnits. | 
|  | ClusterNeighboringLoads(Node); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ScheduleDAGSDNodes::BuildSchedUnits() { | 
|  | // During scheduling, the NodeId field of SDNode is used to map SDNodes | 
|  | // to their associated SUnits by holding SUnits table indices. A value | 
|  | // of -1 means the SDNode does not yet have an associated SUnit. | 
|  | unsigned NumNodes = 0; | 
|  | for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), | 
|  | E = DAG->allnodes_end(); NI != E; ++NI) { | 
|  | NI->setNodeId(-1); | 
|  | ++NumNodes; | 
|  | } | 
|  |  | 
|  | // Reserve entries in the vector for each of the SUnits we are creating.  This | 
|  | // ensure that reallocation of the vector won't happen, so SUnit*'s won't get | 
|  | // invalidated. | 
|  | // FIXME: Multiply by 2 because we may clone nodes during scheduling. | 
|  | // This is a temporary workaround. | 
|  | SUnits.reserve(NumNodes * 2); | 
|  |  | 
|  | // Add all nodes in depth first order. | 
|  | SmallVector<SDNode*, 64> Worklist; | 
|  | SmallPtrSet<SDNode*, 64> Visited; | 
|  | Worklist.push_back(DAG->getRoot().getNode()); | 
|  | Visited.insert(DAG->getRoot().getNode()); | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | SDNode *NI = Worklist.pop_back_val(); | 
|  |  | 
|  | // Add all operands to the worklist unless they've already been added. | 
|  | for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i) | 
|  | if (Visited.insert(NI->getOperand(i).getNode())) | 
|  | Worklist.push_back(NI->getOperand(i).getNode()); | 
|  |  | 
|  | if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate. | 
|  | continue; | 
|  |  | 
|  | // If this node has already been processed, stop now. | 
|  | if (NI->getNodeId() != -1) continue; | 
|  |  | 
|  | SUnit *NodeSUnit = NewSUnit(NI); | 
|  |  | 
|  | // See if anything is flagged to this node, if so, add them to flagged | 
|  | // nodes.  Nodes can have at most one flag input and one flag output.  Flags | 
|  | // are required to be the last operand and result of a node. | 
|  |  | 
|  | // Scan up to find flagged preds. | 
|  | SDNode *N = NI; | 
|  | while (N->getNumOperands() && | 
|  | N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) { | 
|  | N = N->getOperand(N->getNumOperands()-1).getNode(); | 
|  | assert(N->getNodeId() == -1 && "Node already inserted!"); | 
|  | N->setNodeId(NodeSUnit->NodeNum); | 
|  | if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) | 
|  | NodeSUnit->isCall = true; | 
|  | } | 
|  |  | 
|  | // Scan down to find any flagged succs. | 
|  | N = NI; | 
|  | while (N->getValueType(N->getNumValues()-1) == MVT::Flag) { | 
|  | SDValue FlagVal(N, N->getNumValues()-1); | 
|  |  | 
|  | // There are either zero or one users of the Flag result. | 
|  | bool HasFlagUse = false; | 
|  | for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); | 
|  | UI != E; ++UI) | 
|  | if (FlagVal.isOperandOf(*UI)) { | 
|  | HasFlagUse = true; | 
|  | assert(N->getNodeId() == -1 && "Node already inserted!"); | 
|  | N->setNodeId(NodeSUnit->NodeNum); | 
|  | N = *UI; | 
|  | if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) | 
|  | NodeSUnit->isCall = true; | 
|  | break; | 
|  | } | 
|  | if (!HasFlagUse) break; | 
|  | } | 
|  |  | 
|  | // If there are flag operands involved, N is now the bottom-most node | 
|  | // of the sequence of nodes that are flagged together. | 
|  | // Update the SUnit. | 
|  | NodeSUnit->setNode(N); | 
|  | assert(N->getNodeId() == -1 && "Node already inserted!"); | 
|  | N->setNodeId(NodeSUnit->NodeNum); | 
|  |  | 
|  | // Assign the Latency field of NodeSUnit using target-provided information. | 
|  | ComputeLatency(NodeSUnit); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ScheduleDAGSDNodes::AddSchedEdges() { | 
|  | const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>(); | 
|  |  | 
|  | // Check to see if the scheduler cares about latencies. | 
|  | bool UnitLatencies = ForceUnitLatencies(); | 
|  |  | 
|  | // Pass 2: add the preds, succs, etc. | 
|  | for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { | 
|  | SUnit *SU = &SUnits[su]; | 
|  | SDNode *MainNode = SU->getNode(); | 
|  |  | 
|  | if (MainNode->isMachineOpcode()) { | 
|  | unsigned Opc = MainNode->getMachineOpcode(); | 
|  | const TargetInstrDesc &TID = TII->get(Opc); | 
|  | for (unsigned i = 0; i != TID.getNumOperands(); ++i) { | 
|  | if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) { | 
|  | SU->isTwoAddress = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (TID.isCommutable()) | 
|  | SU->isCommutable = true; | 
|  | } | 
|  |  | 
|  | // Find all predecessors and successors of the group. | 
|  | for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) { | 
|  | if (N->isMachineOpcode() && | 
|  | TII->get(N->getMachineOpcode()).getImplicitDefs()) { | 
|  | SU->hasPhysRegClobbers = true; | 
|  | unsigned NumUsed = InstrEmitter::CountResults(N); | 
|  | while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) | 
|  | --NumUsed;    // Skip over unused values at the end. | 
|  | if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) | 
|  | SU->hasPhysRegDefs = true; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | SDNode *OpN = N->getOperand(i).getNode(); | 
|  | if (isPassiveNode(OpN)) continue;   // Not scheduled. | 
|  | SUnit *OpSU = &SUnits[OpN->getNodeId()]; | 
|  | assert(OpSU && "Node has no SUnit!"); | 
|  | if (OpSU == SU) continue;           // In the same group. | 
|  |  | 
|  | EVT OpVT = N->getOperand(i).getValueType(); | 
|  | assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!"); | 
|  | bool isChain = OpVT == MVT::Other; | 
|  |  | 
|  | unsigned PhysReg = 0; | 
|  | int Cost = 1; | 
|  | // Determine if this is a physical register dependency. | 
|  | CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); | 
|  | assert((PhysReg == 0 || !isChain) && | 
|  | "Chain dependence via physreg data?"); | 
|  | // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler | 
|  | // emits a copy from the physical register to a virtual register unless | 
|  | // it requires a cross class copy (cost < 0). That means we are only | 
|  | // treating "expensive to copy" register dependency as physical register | 
|  | // dependency. This may change in the future though. | 
|  | if (Cost >= 0) | 
|  | PhysReg = 0; | 
|  |  | 
|  | // If this is a ctrl dep, latency is 1. | 
|  | unsigned OpLatency = isChain ? 1 : OpSU->Latency; | 
|  | const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data, | 
|  | OpLatency, PhysReg); | 
|  | if (!isChain && !UnitLatencies) { | 
|  | ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep)); | 
|  | ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep)); | 
|  | } | 
|  |  | 
|  | SU->addPred(dep); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// BuildSchedGraph - Build the SUnit graph from the selection dag that we | 
|  | /// are input.  This SUnit graph is similar to the SelectionDAG, but | 
|  | /// excludes nodes that aren't interesting to scheduling, and represents | 
|  | /// flagged together nodes with a single SUnit. | 
|  | void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) { | 
|  | // Cluster certain nodes which should be scheduled together. | 
|  | ClusterNodes(); | 
|  | // Populate the SUnits array. | 
|  | BuildSchedUnits(); | 
|  | // Compute all the scheduling dependencies between nodes. | 
|  | AddSchedEdges(); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) { | 
|  | // Check to see if the scheduler cares about latencies. | 
|  | if (ForceUnitLatencies()) { | 
|  | SU->Latency = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!InstrItins || InstrItins->isEmpty()) { | 
|  | SU->Latency = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Compute the latency for the node.  We use the sum of the latencies for | 
|  | // all nodes flagged together into this SUnit. | 
|  | SU->Latency = 0; | 
|  | for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) | 
|  | if (N->isMachineOpcode()) | 
|  | SU->Latency += TII->getInstrLatency(InstrItins, N); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use, | 
|  | unsigned OpIdx, SDep& dep) const{ | 
|  | // Check to see if the scheduler cares about latencies. | 
|  | if (ForceUnitLatencies()) | 
|  | return; | 
|  |  | 
|  | if (dep.getKind() != SDep::Data) | 
|  | return; | 
|  |  | 
|  | unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); | 
|  | if (Use->isMachineOpcode()) | 
|  | // Adjust the use operand index by num of defs. | 
|  | OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); | 
|  | int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); | 
|  | if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg && | 
|  | !BB->succ_empty()) { | 
|  | unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | // This copy is a liveout value. It is likely coalesced, so reduce the | 
|  | // latency so not to penalize the def. | 
|  | // FIXME: need target specific adjustment here? | 
|  | Latency = (Latency > 1) ? Latency - 1 : 1; | 
|  | } | 
|  | if (Latency >= 0) | 
|  | dep.setLatency(Latency); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const { | 
|  | if (!SU->getNode()) { | 
|  | dbgs() << "PHYS REG COPY\n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | SU->getNode()->dump(DAG); | 
|  | dbgs() << "\n"; | 
|  | SmallVector<SDNode *, 4> FlaggedNodes; | 
|  | for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode()) | 
|  | FlaggedNodes.push_back(N); | 
|  | while (!FlaggedNodes.empty()) { | 
|  | dbgs() << "    "; | 
|  | FlaggedNodes.back()->dump(DAG); | 
|  | dbgs() << "\n"; | 
|  | FlaggedNodes.pop_back(); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct OrderSorter { | 
|  | bool operator()(const std::pair<unsigned, MachineInstr*> &A, | 
|  | const std::pair<unsigned, MachineInstr*> &B) { | 
|  | return A.first < B.first; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | // ProcessSourceNode - Process nodes with source order numbers. These are added | 
|  | // to a vector which EmitSchedule uses to determine how to insert dbg_value | 
|  | // instructions in the right order. | 
|  | static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG, | 
|  | InstrEmitter &Emitter, | 
|  | DenseMap<SDValue, unsigned> &VRBaseMap, | 
|  | SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders, | 
|  | SmallSet<unsigned, 8> &Seen) { | 
|  | unsigned Order = DAG->GetOrdering(N); | 
|  | if (!Order || !Seen.insert(Order)) | 
|  | return; | 
|  |  | 
|  | MachineBasicBlock *BB = Emitter.getBlock(); | 
|  | if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) { | 
|  | // Did not insert any instruction. | 
|  | Orders.push_back(std::make_pair(Order, (MachineInstr*)0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos()))); | 
|  | if (!N->getHasDebugValue()) | 
|  | return; | 
|  | // Opportunistically insert immediate dbg_value uses, i.e. those with source | 
|  | // order number right after the N. | 
|  | MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); | 
|  | SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N); | 
|  | for (unsigned i = 0, e = DVs.size(); i != e; ++i) { | 
|  | if (DVs[i]->isInvalidated()) | 
|  | continue; | 
|  | unsigned DVOrder = DVs[i]->getOrder(); | 
|  | if (DVOrder == ++Order) { | 
|  | MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap); | 
|  | if (DbgMI) { | 
|  | Orders.push_back(std::make_pair(DVOrder, DbgMI)); | 
|  | BB->insert(InsertPos, DbgMI); | 
|  | } | 
|  | DVs[i]->setIsInvalidated(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// EmitSchedule - Emit the machine code in scheduled order. | 
|  | MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() { | 
|  | InstrEmitter Emitter(BB, InsertPos); | 
|  | DenseMap<SDValue, unsigned> VRBaseMap; | 
|  | DenseMap<SUnit*, unsigned> CopyVRBaseMap; | 
|  | SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; | 
|  | SmallSet<unsigned, 8> Seen; | 
|  | bool HasDbg = DAG->hasDebugValues(); | 
|  |  | 
|  | // If this is the first BB, emit byval parameter dbg_value's. | 
|  | if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { | 
|  | SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); | 
|  | SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); | 
|  | for (; PDI != PDE; ++PDI) { | 
|  | MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); | 
|  | if (DbgMI) | 
|  | BB->insert(InsertPos, DbgMI); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = Sequence.size(); i != e; i++) { | 
|  | SUnit *SU = Sequence[i]; | 
|  | if (!SU) { | 
|  | // Null SUnit* is a noop. | 
|  | EmitNoop(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For pre-regalloc scheduling, create instructions corresponding to the | 
|  | // SDNode and any flagged SDNodes and append them to the block. | 
|  | if (!SU->getNode()) { | 
|  | // Emit a copy. | 
|  | EmitPhysRegCopy(SU, CopyVRBaseMap); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SmallVector<SDNode *, 4> FlaggedNodes; | 
|  | for (SDNode *N = SU->getNode()->getFlaggedNode(); N; | 
|  | N = N->getFlaggedNode()) | 
|  | FlaggedNodes.push_back(N); | 
|  | while (!FlaggedNodes.empty()) { | 
|  | SDNode *N = FlaggedNodes.back(); | 
|  | Emitter.EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned, | 
|  | VRBaseMap); | 
|  | // Remember the source order of the inserted instruction. | 
|  | if (HasDbg) | 
|  | ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen); | 
|  | FlaggedNodes.pop_back(); | 
|  | } | 
|  | Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, | 
|  | VRBaseMap); | 
|  | // Remember the source order of the inserted instruction. | 
|  | if (HasDbg) | 
|  | ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, | 
|  | Seen); | 
|  | } | 
|  |  | 
|  | // Insert all the dbg_values which have not already been inserted in source | 
|  | // order sequence. | 
|  | if (HasDbg) { | 
|  | MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); | 
|  |  | 
|  | // Sort the source order instructions and use the order to insert debug | 
|  | // values. | 
|  | std::sort(Orders.begin(), Orders.end(), OrderSorter()); | 
|  |  | 
|  | SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); | 
|  | SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); | 
|  | // Now emit the rest according to source order. | 
|  | unsigned LastOrder = 0; | 
|  | for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { | 
|  | unsigned Order = Orders[i].first; | 
|  | MachineInstr *MI = Orders[i].second; | 
|  | // Insert all SDDbgValue's whose order(s) are before "Order". | 
|  | if (!MI) | 
|  | continue; | 
|  | #ifndef NDEBUG | 
|  | unsigned LastDIOrder = 0; | 
|  | #endif | 
|  | for (; DI != DE && | 
|  | (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) { | 
|  | #ifndef NDEBUG | 
|  | assert((*DI)->getOrder() >= LastDIOrder && | 
|  | "SDDbgValue nodes must be in source order!"); | 
|  | LastDIOrder = (*DI)->getOrder(); | 
|  | #endif | 
|  | if ((*DI)->isInvalidated()) | 
|  | continue; | 
|  | MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); | 
|  | if (DbgMI) { | 
|  | if (!LastOrder) | 
|  | // Insert to start of the BB (after PHIs). | 
|  | BB->insert(BBBegin, DbgMI); | 
|  | else { | 
|  | // Insert at the instruction, which may be in a different | 
|  | // block, if the block was split by a custom inserter. | 
|  | MachineBasicBlock::iterator Pos = MI; | 
|  | MI->getParent()->insert(llvm::next(Pos), DbgMI); | 
|  | } | 
|  | } | 
|  | } | 
|  | LastOrder = Order; | 
|  | } | 
|  | // Add trailing DbgValue's before the terminator. FIXME: May want to add | 
|  | // some of them before one or more conditional branches? | 
|  | while (DI != DE) { | 
|  | MachineBasicBlock *InsertBB = Emitter.getBlock(); | 
|  | MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator(); | 
|  | if (!(*DI)->isInvalidated()) { | 
|  | MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap); | 
|  | if (DbgMI) | 
|  | InsertBB->insert(Pos, DbgMI); | 
|  | } | 
|  | ++DI; | 
|  | } | 
|  | } | 
|  |  | 
|  | BB = Emitter.getBlock(); | 
|  | InsertPos = Emitter.getInsertPos(); | 
|  | return BB; | 
|  | } |