| //===-- ModuloSchedulingSuperBlock.cpp - ModuloScheduling--------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This ModuloScheduling pass is based on the Swing Modulo Scheduling |
| // algorithm, but has been extended to support SuperBlocks (multiple |
| // basic block, single entry, multipl exit loops). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "ModuloSchedSB" |
| |
| #include "DependenceAnalyzer.h" |
| #include "ModuloSchedulingSuperBlock.h" |
| #include "llvm/Constants.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/GraphWriter.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/SCCIterator.h" |
| #include "llvm/Instructions.h" |
| #include "../MachineCodeForInstruction.h" |
| #include "../SparcV9RegisterInfo.h" |
| #include "../SparcV9Internals.h" |
| #include "../SparcV9TmpInstr.h" |
| #include <fstream> |
| #include <sstream> |
| #include <cmath> |
| #include <utility> |
| |
| using namespace llvm; |
| /// Create ModuloSchedulingSBPass |
| /// |
| FunctionPass *llvm::createModuloSchedulingSBPass(TargetMachine & targ) { |
| DEBUG(std::cerr << "Created ModuloSchedulingSBPass\n"); |
| return new ModuloSchedulingSBPass(targ); |
| } |
| |
| |
| #if 1 |
| #define TIME_REGION(VARNAME, DESC) \ |
| NamedRegionTimer VARNAME(DESC) |
| #else |
| #define TIME_REGION(VARNAME, DESC) |
| #endif |
| |
| |
| //Graph Traits for printing out the dependence graph |
| template<typename GraphType> |
| static void WriteGraphToFileSB(std::ostream &O, const std::string &GraphName, |
| const GraphType >) { |
| std::string Filename = GraphName + ".dot"; |
| O << "Writing '" << Filename << "'..."; |
| std::ofstream F(Filename.c_str()); |
| |
| if (F.good()) |
| WriteGraph(F, GT); |
| else |
| O << " error opening file for writing!"; |
| O << "\n"; |
| }; |
| |
| namespace llvm { |
| Statistic<> NumLoops("moduloschedSB-numLoops", "Total Number of Loops"); |
| Statistic<> NumSB("moduloschedSB-numSuperBlocks", "Total Number of SuperBlocks"); |
| Statistic<> BBWithCalls("modulosched-BBCalls", "Basic Blocks rejected due to calls"); |
| Statistic<> BBWithCondMov("modulosched-loopCondMov", |
| "Basic Blocks rejected due to conditional moves"); |
| Statistic<> SBResourceConstraint("modulosched-resourceConstraint", |
| "Loops constrained by resources"); |
| Statistic<> SBRecurrenceConstraint("modulosched-recurrenceConstraint", |
| "Loops constrained by recurrences"); |
| Statistic<> SBFinalIISum("modulosched-finalIISum", "Sum of all final II"); |
| Statistic<> SBIISum("modulosched-IISum", "Sum of all theoretical II"); |
| Statistic<> SBMSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled"); |
| Statistic<> SBNoSched("modulosched-noSched", "No schedule"); |
| Statistic<> SBSameStage("modulosched-sameStage", "Max stage is 0"); |
| Statistic<> SBBLoops("modulosched-SBBLoops", "Number single basic block loops"); |
| Statistic<> SBInvalid("modulosched-SBInvalid", "Number invalid superblock loops"); |
| Statistic<> SBValid("modulosched-SBValid", "Number valid superblock loops"); |
| Statistic<> SBSize("modulosched-SBSize", "Total size of all valid superblocks"); |
| |
| template<> |
| struct DOTGraphTraits<MSchedGraphSB*> : public DefaultDOTGraphTraits { |
| static std::string getGraphName(MSchedGraphSB *F) { |
| return "Dependence Graph"; |
| } |
| |
| static std::string getNodeLabel(MSchedGraphSBNode *Node, MSchedGraphSB *Graph) { |
| if(!Node->isPredicate()) { |
| if (Node->getInst()) { |
| std::stringstream ss; |
| ss << *(Node->getInst()); |
| return ss.str(); //((MachineInstr*)Node->getInst()); |
| } |
| else |
| return "No Inst"; |
| } |
| else |
| return "Pred Node"; |
| } |
| static std::string getEdgeSourceLabel(MSchedGraphSBNode *Node, |
| MSchedGraphSBNode::succ_iterator I) { |
| //Label each edge with the type of dependence |
| std::string edgelabel = ""; |
| switch (I.getEdge().getDepOrderType()) { |
| |
| case MSchedGraphSBEdge::TrueDep: |
| edgelabel = "True"; |
| break; |
| |
| case MSchedGraphSBEdge::AntiDep: |
| edgelabel = "Anti"; |
| break; |
| |
| case MSchedGraphSBEdge::OutputDep: |
| edgelabel = "Output"; |
| break; |
| |
| case MSchedGraphSBEdge::NonDataDep: |
| edgelabel = "Pred"; |
| break; |
| |
| default: |
| edgelabel = "Unknown"; |
| break; |
| } |
| |
| //FIXME |
| int iteDiff = I.getEdge().getIteDiff(); |
| std::string intStr = "(IteDiff: "; |
| intStr += itostr(iteDiff); |
| |
| intStr += ")"; |
| edgelabel += intStr; |
| |
| return edgelabel; |
| } |
| }; |
| |
| bool ModuloSchedulingSBPass::runOnFunction(Function &F) { |
| bool Changed = false; |
| |
| //Get MachineFunction |
| MachineFunction &MF = MachineFunction::get(&F); |
| |
| //Get Loop Info & Dependence Anaysis info |
| LoopInfo &LI = getAnalysis<LoopInfo>(); |
| DependenceAnalyzer &DA = getAnalysis<DependenceAnalyzer>(); |
| |
| //Worklist of superblocks |
| std::vector<std::vector<const MachineBasicBlock*> > Worklist; |
| FindSuperBlocks(F, LI, Worklist); |
| |
| DEBUG(if(Worklist.size() == 0) std::cerr << "No superblocks in function to ModuloSchedule\n"); |
| |
| //Loop over worklist and ModuloSchedule each SuperBlock |
| for(std::vector<std::vector<const MachineBasicBlock*> >::iterator SB = Worklist.begin(), |
| SBE = Worklist.end(); SB != SBE; ++SB) { |
| |
| //Print out Superblock |
| DEBUG(std::cerr << "ModuloScheduling SB: \n"; |
| for(std::vector<const MachineBasicBlock*>::const_iterator BI = SB->begin(), |
| BE = SB->end(); BI != BE; ++BI) { |
| (*BI)->print(std::cerr);}); |
| |
| if(!CreateDefMap(*SB)) { |
| defaultInst = 0; |
| defMap.clear(); |
| continue; |
| } |
| |
| MSchedGraphSB *MSG = new MSchedGraphSB(*SB, target, indVarInstrs[*SB], DA, |
| machineTollvm[*SB]); |
| |
| //Write Graph out to file |
| DEBUG(WriteGraphToFileSB(std::cerr, F.getName(), MSG)); |
| |
| //Calculate Resource II |
| int ResMII = calculateResMII(*SB); |
| |
| //Calculate Recurrence II |
| int RecMII = calculateRecMII(MSG, ResMII); |
| |
| DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n"); |
| |
| //Our starting initiation interval is the maximum of RecMII and ResMII |
| if(RecMII < ResMII) |
| ++SBRecurrenceConstraint; |
| else |
| ++SBResourceConstraint; |
| |
| II = std::max(RecMII, ResMII); |
| int mII = II; |
| |
| |
| //Print out II, RecMII, and ResMII |
| DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n"); |
| |
| //Calculate Node Properties |
| calculateNodeAttributes(MSG, ResMII); |
| |
| //Dump node properties if in debug mode |
| DEBUG(for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), |
| E = nodeToAttributesMap.end(); I !=E; ++I) { |
| std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " |
| << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth |
| << " Height: " << I->second.height << "\n"; |
| }); |
| |
| |
| //Put nodes in order to schedule them |
| computePartialOrder(); |
| |
| //Dump out partial order |
| DEBUG(for(std::vector<std::set<MSchedGraphSBNode*> >::iterator I = partialOrder.begin(), |
| E = partialOrder.end(); I !=E; ++I) { |
| std::cerr << "Start set in PO\n"; |
| for(std::set<MSchedGraphSBNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J) |
| std::cerr << "PO:" << **J << "\n"; |
| }); |
| |
| //Place nodes in final order |
| orderNodes(); |
| |
| //Dump out order of nodes |
| DEBUG(for(std::vector<MSchedGraphSBNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) { |
| std::cerr << "FO:" << **I << "\n"; |
| }); |
| |
| |
| //Finally schedule nodes |
| bool haveSched = computeSchedule(*SB, MSG); |
| |
| //Print out final schedule |
| DEBUG(schedule.print(std::cerr)); |
| |
| //Final scheduling step is to reconstruct the loop only if we actual have |
| //stage > 0 |
| if(haveSched) { |
| //schedule.printSchedule(std::cerr); |
| reconstructLoop(*SB); |
| ++SBMSLoops; |
| //Changed = true; |
| SBIISum += mII; |
| SBFinalIISum += II; |
| |
| if(schedule.getMaxStage() == 0) |
| ++SBSameStage; |
| } |
| else |
| ++SBNoSched; |
| |
| //Clear out our maps for the next basic block that is processed |
| nodeToAttributesMap.clear(); |
| partialOrder.clear(); |
| recurrenceList.clear(); |
| FinalNodeOrder.clear(); |
| schedule.clear(); |
| defMap.clear(); |
| |
| } |
| return Changed; |
| } |
| |
| void ModuloSchedulingSBPass::FindSuperBlocks(Function &F, LoopInfo &LI, |
| std::vector<std::vector<const MachineBasicBlock*> > &Worklist) { |
| |
| //Get MachineFunction |
| MachineFunction &MF = MachineFunction::get(&F); |
| |
| //Map of LLVM BB to machine BB |
| std::map<BasicBlock*, MachineBasicBlock*> bbMap; |
| |
| for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI) { |
| BasicBlock *llvmBB = (BasicBlock*) BI->getBasicBlock(); |
| assert(!bbMap.count(llvmBB) && "LLVM BB already in map!"); |
| bbMap[llvmBB] = &*BI; |
| } |
| |
| //Iterate over the loops, and find super blocks |
| for(LoopInfo::iterator LB = LI.begin(), LE = LI.end(); LB != LE; ++LB) { |
| Loop *L = *LB; |
| ++NumLoops; |
| |
| //If loop is not single entry, try the next one |
| if(!L->getLoopPreheader()) |
| continue; |
| |
| //Check size of this loop, we don't want SBB loops |
| if(L->getBlocks().size() == 1) |
| continue; |
| |
| //Check if this loop contains no sub loops |
| if(L->getSubLoops().size() == 0) { |
| |
| std::vector<const MachineBasicBlock*> superBlock; |
| |
| //Get Loop Headers |
| BasicBlock *header = L->getHeader(); |
| |
| //Follow the header and make sure each BB only has one entry and is valid |
| BasicBlock *current = header; |
| assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB\n"); |
| MachineBasicBlock *currentMBB = bbMap[header]; |
| bool done = false; |
| bool success = true; |
| unsigned offset = 0; |
| std::map<const MachineInstr*, unsigned> indexMap; |
| |
| while(!done) { |
| //Loop over successors of this BB, they should be in the |
| //loop block and be valid |
| BasicBlock *next = 0; |
| for(succ_iterator I = succ_begin(current), E = succ_end(current); |
| I != E; ++I) { |
| if(L->contains(*I)) { |
| if(!next) |
| next = *I; |
| else { |
| done = true; |
| success = false; |
| break; |
| } |
| } |
| } |
| |
| if(success) { |
| superBlock.push_back(currentMBB); |
| if(next == header) |
| done = true; |
| else if(!next->getSinglePredecessor()) { |
| done = true; |
| success = false; |
| } |
| else { |
| //Check that the next BB only has one entry |
| current = next; |
| assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB"); |
| currentMBB = bbMap[current]; |
| } |
| } |
| } |
| |
| |
| |
| |
| |
| if(success) { |
| ++NumSB; |
| |
| //Loop over all the blocks in the superblock |
| for(std::vector<const MachineBasicBlock*>::iterator currentMBB = superBlock.begin(), MBBEnd = superBlock.end(); currentMBB != MBBEnd; ++currentMBB) { |
| if(!MachineBBisValid(*currentMBB, indexMap, offset)) { |
| success = false; |
| break; |
| } |
| } |
| } |
| |
| if(success) { |
| if(getIndVar(superBlock, bbMap, indexMap)) { |
| ++SBValid; |
| Worklist.push_back(superBlock); |
| SBSize += superBlock.size(); |
| } |
| else |
| ++SBInvalid; |
| } |
| } |
| } |
| } |
| |
| |
| bool ModuloSchedulingSBPass::getIndVar(std::vector<const MachineBasicBlock*> &superBlock, std::map<BasicBlock*, MachineBasicBlock*> &bbMap, |
| std::map<const MachineInstr*, unsigned> &indexMap) { |
| //See if we can get induction var instructions |
| std::set<const BasicBlock*> llvmSuperBlock; |
| |
| for(unsigned i =0; i < superBlock.size(); ++i) |
| llvmSuperBlock.insert(superBlock[i]->getBasicBlock()); |
| |
| //Get Target machine instruction info |
| const TargetInstrInfo *TMI = target.getInstrInfo(); |
| |
| //Get the loop back branch |
| BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) (superBlock[superBlock.size()-1])->getBasicBlock())->getTerminator()); |
| std::set<Instruction*> indVar; |
| |
| if(b->isConditional()) { |
| //Get the condition for the branch |
| Value *cond = b->getCondition(); |
| |
| DEBUG(std::cerr << "Condition: " << *cond << "\n"); |
| |
| //List of instructions associated with induction variable |
| std::vector<Instruction*> stack; |
| |
| //Add branch |
| indVar.insert(b); |
| |
| if(Instruction *I = dyn_cast<Instruction>(cond)) |
| if(bbMap.count(I->getParent())) { |
| if (!assocIndVar(I, indVar, stack, bbMap, superBlock[(superBlock.size()-1)]->getBasicBlock(), llvmSuperBlock)) |
| return false; |
| } |
| else |
| return false; |
| else |
| return false; |
| } |
| else { |
| indVar.insert(b); |
| } |
| |
| //Dump out instructions associate with indvar for debug reasons |
| DEBUG(for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); |
| N != NE; ++N) { |
| std::cerr << **N << "\n"; |
| }); |
| |
| //Create map of machine instr to llvm instr |
| std::map<MachineInstr*, Instruction*> mllvm; |
| for(std::vector<const MachineBasicBlock*>::iterator MBB = superBlock.begin(), MBE = superBlock.end(); MBB != MBE; ++MBB) { |
| BasicBlock *BB = (BasicBlock*) (*MBB)->getBasicBlock(); |
| for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { |
| MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(I); |
| for (unsigned j = 0; j < tempMvec.size(); j++) { |
| mllvm[tempMvec[j]] = I; |
| } |
| } |
| } |
| |
| //Convert list of LLVM Instructions to list of Machine instructions |
| std::map<const MachineInstr*, unsigned> mIndVar; |
| for(std::set<Instruction*>::iterator N = indVar.begin(), |
| NE = indVar.end(); N != NE; ++N) { |
| |
| //If we have a load, we can't handle this loop because |
| //there is no way to preserve dependences between loads |
| //and stores |
| if(isa<LoadInst>(*N)) |
| return false; |
| |
| MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(*N); |
| for (unsigned j = 0; j < tempMvec.size(); j++) { |
| MachineOpCode OC = (tempMvec[j])->getOpcode(); |
| if(TMI->isNop(OC)) |
| continue; |
| if(!indexMap.count(tempMvec[j])) |
| continue; |
| mIndVar[(MachineInstr*) tempMvec[j]] = indexMap[(MachineInstr*) tempMvec[j]]; |
| DEBUG(std::cerr << *(tempMvec[j]) << " at index " << indexMap[(MachineInstr*) tempMvec[j]] << "\n"); |
| } |
| } |
| |
| //Put into a map for future access |
| indVarInstrs[superBlock] = mIndVar; |
| machineTollvm[superBlock] = mllvm; |
| |
| return true; |
| |
| } |
| |
| bool ModuloSchedulingSBPass::assocIndVar(Instruction *I, |
| std::set<Instruction*> &indVar, |
| std::vector<Instruction*> &stack, |
| std::map<BasicBlock*, MachineBasicBlock*> &bbMap, |
| const BasicBlock *last, std::set<const BasicBlock*> &llvmSuperBlock) { |
| |
| stack.push_back(I); |
| |
| //If this is a phi node, check if its the canonical indvar |
| if(PHINode *PN = dyn_cast<PHINode>(I)) { |
| if(llvmSuperBlock.count(PN->getParent())) { |
| if (Instruction *Inc = |
| dyn_cast<Instruction>(PN->getIncomingValueForBlock(last))) |
| if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) |
| if (CI->equalsInt(1)) { |
| //We have found the indvar, so add the stack, and inc instruction to the set |
| indVar.insert(stack.begin(), stack.end()); |
| indVar.insert(Inc); |
| stack.pop_back(); |
| return true; |
| } |
| return false; |
| } |
| } |
| else { |
| //Loop over each of the instructions operands, check if they are an instruction and in this BB |
| for(unsigned i = 0; i < I->getNumOperands(); ++i) { |
| if(Instruction *N = dyn_cast<Instruction>(I->getOperand(i))) { |
| if(bbMap.count(N->getParent())) |
| if(!assocIndVar(N, indVar, stack, bbMap, last, llvmSuperBlock)) |
| return false; |
| } |
| } |
| } |
| |
| stack.pop_back(); |
| return true; |
| } |
| |
| |
| /// This function checks if a Machine Basic Block is valid for modulo |
| /// scheduling. This means that it has no control flow (if/else or |
| /// calls) in the block. Currently ModuloScheduling only works on |
| /// single basic block loops. |
| bool ModuloSchedulingSBPass::MachineBBisValid(const MachineBasicBlock *BI, |
| std::map<const MachineInstr*, unsigned> &indexMap, |
| unsigned &offset) { |
| |
| //Check size of our basic block.. make sure we have more then just the terminator in it |
| if(BI->getBasicBlock()->size() == 1) |
| return false; |
| |
| //Get Target machine instruction info |
| const TargetInstrInfo *TMI = target.getInstrInfo(); |
| |
| unsigned count = 0; |
| for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { |
| //Get opcode to check instruction type |
| MachineOpCode OC = I->getOpcode(); |
| |
| //Look for calls |
| if(TMI->isCall(OC)) { |
| ++BBWithCalls; |
| return false; |
| } |
| |
| //Look for conditional move |
| if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi |
| || OC == V9::MOVRLZr || OC == V9::MOVRLZi || OC == V9::MOVRNZr || OC == V9::MOVRNZi |
| || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr |
| || OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr |
| || OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi |
| || OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi |
| || OC == V9::MOVFNEr || OC == V9::MOVFNEi) { |
| ++BBWithCondMov; |
| return false; |
| } |
| |
| indexMap[I] = count + offset; |
| |
| if(TMI->isNop(OC)) |
| continue; |
| |
| ++count; |
| } |
| |
| offset += count; |
| |
| return true; |
| } |
| } |
| |
| bool ModuloSchedulingSBPass::CreateDefMap(std::vector<const MachineBasicBlock*> &SB) { |
| defaultInst = 0; |
| |
| for(std::vector<const MachineBasicBlock*>::iterator BI = SB.begin(), |
| BE = SB.end(); BI != BE; ++BI) { |
| |
| for(MachineBasicBlock::const_iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) { |
| for(unsigned opNum = 0; opNum < I->getNumOperands(); ++opNum) { |
| const MachineOperand &mOp = I->getOperand(opNum); |
| if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { |
| Value *V = mOp.getVRegValue(); |
| //assert if this is the second def we have seen |
| if(defMap.count(V) && isa<PHINode>(V)) |
| DEBUG(std::cerr << "FIXME: Dup def for phi!\n"); |
| else { |
| //assert(!defMap.count(V) && "Def already in the map"); |
| if(defMap.count(V)) |
| return false; |
| defMap[V] = (MachineInstr*) &*I; |
| } |
| } |
| |
| //See if we can use this Value* as our defaultInst |
| if(!defaultInst && mOp.getType() == MachineOperand::MO_VirtualRegister) { |
| Value *V = mOp.getVRegValue(); |
| if(!isa<TmpInstruction>(V) && !isa<Argument>(V) && !isa<Constant>(V) && !isa<PHINode>(V)) |
| defaultInst = (Instruction*) V; |
| } |
| } |
| } |
| } |
| |
| if(!defaultInst) |
| return false; |
| |
| return true; |
| |
| } |
| |
| |
| //ResMII is calculated by determining the usage count for each resource |
| //and using the maximum. |
| //FIXME: In future there should be a way to get alternative resources |
| //for each instruction |
| int ModuloSchedulingSBPass::calculateResMII(std::vector<const MachineBasicBlock*> &superBlock) { |
| |
| TIME_REGION(X, "calculateResMII"); |
| |
| const TargetInstrInfo *mii = target.getInstrInfo(); |
| const TargetSchedInfo *msi = target.getSchedInfo(); |
| |
| int ResMII = 0; |
| |
| //Map to keep track of usage count of each resource |
| std::map<unsigned, unsigned> resourceUsageCount; |
| |
| for(std::vector<const MachineBasicBlock*>::iterator BI = superBlock.begin(), BE = superBlock.end(); BI != BE; ++BI) { |
| for(MachineBasicBlock::const_iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) { |
| |
| //Get resource usage for this instruction |
| InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode()); |
| std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle; |
| |
| //Loop over resources in each cycle and increments their usage count |
| for(unsigned i=0; i < resources.size(); ++i) |
| for(unsigned j=0; j < resources[i].size(); ++j) { |
| if(!resourceUsageCount.count(resources[i][j])) { |
| resourceUsageCount[resources[i][j]] = 1; |
| } |
| else { |
| resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1; |
| } |
| } |
| } |
| } |
| |
| //Find maximum usage count |
| |
| //Get max number of instructions that can be issued at once. (FIXME) |
| int issueSlots = msi->maxNumIssueTotal; |
| |
| for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) { |
| |
| //Get the total number of the resources in our cpu |
| int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers; |
| |
| //Get total usage count for this resources |
| unsigned usageCount = RB->second; |
| |
| //Divide the usage count by either the max number we can issue or the number of |
| //resources (whichever is its upper bound) |
| double finalUsageCount; |
| DEBUG(std::cerr << "Resource Num: " << RB->first << " Usage: " << usageCount << " TotalNum: " << resourceNum << "\n"); |
| |
| if( resourceNum <= issueSlots) |
| finalUsageCount = ceil(1.0 * usageCount / resourceNum); |
| else |
| finalUsageCount = ceil(1.0 * usageCount / issueSlots); |
| |
| |
| //Only keep track of the max |
| ResMII = std::max( (int) finalUsageCount, ResMII); |
| |
| } |
| |
| return ResMII; |
| |
| } |
| |
| /// calculateRecMII - Calculates the value of the highest recurrence |
| /// By value we mean the total latency/distance |
| int ModuloSchedulingSBPass::calculateRecMII(MSchedGraphSB *graph, int MII) { |
| |
| TIME_REGION(X, "calculateRecMII"); |
| |
| findAllCircuits(graph, MII); |
| int RecMII = 0; |
| |
| for(std::set<std::pair<int, std::vector<MSchedGraphSBNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) { |
| RecMII = std::max(RecMII, I->first); |
| } |
| |
| return MII; |
| } |
| |
| int CircCountSB; |
| |
| void ModuloSchedulingSBPass::unblock(MSchedGraphSBNode *u, std::set<MSchedGraphSBNode*> &blocked, |
| std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B) { |
| |
| //Unblock u |
| DEBUG(std::cerr << "Unblocking: " << *u << "\n"); |
| blocked.erase(u); |
| |
| //std::set<MSchedGraphSBNode*> toErase; |
| while (!B[u].empty()) { |
| MSchedGraphSBNode *W = *B[u].begin(); |
| B[u].erase(W); |
| //toErase.insert(*W); |
| DEBUG(std::cerr << "Removed: " << *W << "from B-List\n"); |
| if(blocked.count(W)) |
| unblock(W, blocked, B); |
| } |
| |
| } |
| |
| void ModuloSchedulingSBPass::addSCC(std::vector<MSchedGraphSBNode*> &SCC, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) { |
| |
| int totalDelay = 0; |
| int totalDistance = 0; |
| std::vector<MSchedGraphSBNode*> recc; |
| MSchedGraphSBNode *start = 0; |
| MSchedGraphSBNode *end = 0; |
| |
| //Loop over recurrence, get delay and distance |
| for(std::vector<MSchedGraphSBNode*>::iterator N = SCC.begin(), NE = SCC.end(); N != NE; ++N) { |
| DEBUG(std::cerr << **N << "\n"); |
| totalDelay += (*N)->getLatency(); |
| |
| for(unsigned i = 0; i < (*N)->succ_size(); ++i) { |
| MSchedGraphSBEdge *edge = (*N)->getSuccessor(i); |
| if(find(SCC.begin(), SCC.end(), edge->getDest()) != SCC.end()) { |
| totalDistance += edge->getIteDiff(); |
| if(edge->getIteDiff() > 0) |
| if(!start && !end) { |
| start = *N; |
| end = edge->getDest(); |
| } |
| |
| } |
| } |
| |
| |
| //Get the original node |
| recc.push_back(newNodes[*N]); |
| |
| |
| } |
| |
| DEBUG(std::cerr << "End Recc\n"); |
| |
| |
| assert( (start && end) && "Must have start and end node to ignore edge for SCC"); |
| |
| if(start && end) { |
| //Insert reccurrence into the list |
| DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n"); |
| edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start]))); |
| } |
| |
| int lastII = totalDelay / totalDistance; |
| |
| |
| recurrenceList.insert(std::make_pair(lastII, recc)); |
| |
| } |
| |
| bool ModuloSchedulingSBPass::circuit(MSchedGraphSBNode *v, std::vector<MSchedGraphSBNode*> &stack, |
| std::set<MSchedGraphSBNode*> &blocked, std::vector<MSchedGraphSBNode*> &SCC, |
| MSchedGraphSBNode *s, std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B, |
| int II, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) { |
| bool f = false; |
| |
| DEBUG(std::cerr << "Finding Circuits Starting with: ( " << v << ")"<< *v << "\n"); |
| |
| //Push node onto the stack |
| stack.push_back(v); |
| |
| //block this node |
| blocked.insert(v); |
| |
| //Loop over all successors of node v that are in the scc, create Adjaceny list |
| std::set<MSchedGraphSBNode*> AkV; |
| for(MSchedGraphSBNode::succ_iterator I = v->succ_begin(), E = v->succ_end(); I != E; ++I) { |
| if((std::find(SCC.begin(), SCC.end(), *I) != SCC.end())) { |
| AkV.insert(*I); |
| } |
| } |
| |
| for(std::set<MSchedGraphSBNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) { |
| if(*I == s) { |
| //We have a circuit, so add it to our list |
| addRecc(stack, newNodes); |
| f = true; |
| } |
| else if(!blocked.count(*I)) { |
| if(circuit(*I, stack, blocked, SCC, s, B, II, newNodes)) |
| f = true; |
| } |
| else |
| DEBUG(std::cerr << "Blocked: " << **I << "\n"); |
| } |
| |
| |
| if(f) { |
| unblock(v, blocked, B); |
| } |
| else { |
| for(std::set<MSchedGraphSBNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) |
| B[*I].insert(v); |
| |
| } |
| |
| //Pop v |
| stack.pop_back(); |
| |
| return f; |
| |
| } |
| |
| void ModuloSchedulingSBPass::addRecc(std::vector<MSchedGraphSBNode*> &stack, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) { |
| std::vector<MSchedGraphSBNode*> recc; |
| //Dump recurrence for now |
| DEBUG(std::cerr << "Starting Recc\n"); |
| |
| int totalDelay = 0; |
| int totalDistance = 0; |
| MSchedGraphSBNode *lastN = 0; |
| MSchedGraphSBNode *start = 0; |
| MSchedGraphSBNode *end = 0; |
| |
| //Loop over recurrence, get delay and distance |
| for(std::vector<MSchedGraphSBNode*>::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) { |
| DEBUG(std::cerr << **N << "\n"); |
| totalDelay += (*N)->getLatency(); |
| if(lastN) { |
| int iteDiff = (*N)->getInEdge(lastN).getIteDiff(); |
| totalDistance += iteDiff; |
| |
| if(iteDiff > 0) { |
| start = lastN; |
| end = *N; |
| } |
| } |
| //Get the original node |
| lastN = *N; |
| recc.push_back(newNodes[*N]); |
| |
| |
| } |
| |
| //Get the loop edge |
| totalDistance += lastN->getIteDiff(*stack.begin()); |
| |
| DEBUG(std::cerr << "End Recc\n"); |
| CircCountSB++; |
| |
| if(start && end) { |
| //Insert reccurrence into the list |
| DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n"); |
| edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start]))); |
| } |
| else { |
| //Insert reccurrence into the list |
| DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n"); |
| edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN]))); |
| |
| } |
| //Adjust II until we get close to the inequality delay - II*distance <= 0 |
| int RecMII = II; //Starting value |
| int value = totalDelay-(RecMII * totalDistance); |
| int lastII = II; |
| while(value < 0) { |
| |
| lastII = RecMII; |
| RecMII--; |
| value = totalDelay-(RecMII * totalDistance); |
| } |
| |
| recurrenceList.insert(std::make_pair(lastII, recc)); |
| |
| } |
| |
| |
| void ModuloSchedulingSBPass::findAllCircuits(MSchedGraphSB *g, int II) { |
| |
| CircCountSB = 0; |
| |
| //Keep old to new node mapping information |
| std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> newNodes; |
| |
| //copy the graph |
| MSchedGraphSB *MSG = new MSchedGraphSB(*g, newNodes); |
| |
| DEBUG(std::cerr << "Finding All Circuits\n"); |
| |
| //Set of blocked nodes |
| std::set<MSchedGraphSBNode*> blocked; |
| |
| //Stack holding current circuit |
| std::vector<MSchedGraphSBNode*> stack; |
| |
| //Map for B Lists |
| std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > B; |
| |
| //current node |
| MSchedGraphSBNode *s; |
| |
| |
| //Iterate over the graph until its down to one node or empty |
| while(MSG->size() > 1) { |
| |
| //Write Graph out to file |
| //WriteGraphToFile(std::cerr, "Graph" + utostr(MSG->size()), MSG); |
| |
| DEBUG(std::cerr << "Graph Size: " << MSG->size() << "\n"); |
| DEBUG(std::cerr << "Finding strong component Vk with least vertex\n"); |
| |
| //Iterate over all the SCCs in the graph |
| std::set<MSchedGraphSBNode*> Visited; |
| std::vector<MSchedGraphSBNode*> Vk; |
| MSchedGraphSBNode* s = 0; |
| int numEdges = 0; |
| |
| //Find scc with the least vertex |
| for (MSchedGraphSB::iterator GI = MSG->begin(), E = MSG->end(); GI != E; ++GI) |
| if (Visited.insert(GI->second).second) { |
| for (scc_iterator<MSchedGraphSBNode*> SCCI = scc_begin(GI->second), |
| E = scc_end(GI->second); SCCI != E; ++SCCI) { |
| std::vector<MSchedGraphSBNode*> &nextSCC = *SCCI; |
| |
| if (Visited.insert(nextSCC[0]).second) { |
| Visited.insert(nextSCC.begin()+1, nextSCC.end()); |
| |
| if(nextSCC.size() > 1) { |
| DEBUG(std::cerr << "SCC size: " << nextSCC.size() << "\n"); |
| |
| for(unsigned i = 0; i < nextSCC.size(); ++i) { |
| //Loop over successor and see if in scc, then count edge |
| MSchedGraphSBNode *node = nextSCC[i]; |
| for(MSchedGraphSBNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) { |
| if(find(nextSCC.begin(), nextSCC.end(), *S) != nextSCC.end()) |
| numEdges++; |
| } |
| } |
| DEBUG(std::cerr << "Num Edges: " << numEdges << "\n"); |
| } |
| |
| //Ignore self loops |
| if(nextSCC.size() > 1) { |
| |
| //Get least vertex in Vk |
| if(!s) { |
| s = nextSCC[0]; |
| Vk = nextSCC; |
| } |
| |
| for(unsigned i = 0; i < nextSCC.size(); ++i) { |
| if(nextSCC[i] < s) { |
| s = nextSCC[i]; |
| Vk = nextSCC; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| |
| //Process SCC |
| DEBUG(for(std::vector<MSchedGraphSBNode*>::iterator N = Vk.begin(), NE = Vk.end(); |
| N != NE; ++N) { std::cerr << *((*N)->getInst()); }); |
| |
| //Iterate over all nodes in this scc |
| for(std::vector<MSchedGraphSBNode*>::iterator N = Vk.begin(), NE = Vk.end(); |
| N != NE; ++N) { |
| blocked.erase(*N); |
| B[*N].clear(); |
| } |
| if(Vk.size() > 1) { |
| if(numEdges < 98) |
| circuit(s, stack, blocked, Vk, s, B, II, newNodes); |
| else |
| addSCC(Vk, newNodes); |
| |
| |
| //Delete nodes from the graph |
| //Find all nodes up to s and delete them |
| std::vector<MSchedGraphSBNode*> nodesToRemove; |
| nodesToRemove.push_back(s); |
| for(MSchedGraphSB::iterator N = MSG->begin(), NE = MSG->end(); N != NE; ++N) { |
| if(N->second < s ) |
| nodesToRemove.push_back(N->second); |
| } |
| for(std::vector<MSchedGraphSBNode*>::iterator N = nodesToRemove.begin(), NE = nodesToRemove.end(); N != NE; ++N) { |
| DEBUG(std::cerr << "Deleting Node: " << **N << "\n"); |
| MSG->deleteNode(*N); |
| } |
| } |
| else |
| break; |
| } |
| DEBUG(std::cerr << "Num Circuits found: " << CircCountSB << "\n"); |
| } |
| /// calculateNodeAttributes - The following properties are calculated for |
| /// each node in the dependence graph: ASAP, ALAP, Depth, Height, and |
| /// MOB. |
| void ModuloSchedulingSBPass::calculateNodeAttributes(MSchedGraphSB *graph, int MII) { |
| |
| TIME_REGION(X, "calculateNodeAttributes"); |
| |
| assert(nodeToAttributesMap.empty() && "Node attribute map was not cleared"); |
| |
| //Loop over the nodes and add them to the map |
| for(MSchedGraphSB::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { |
| |
| DEBUG(std::cerr << "Inserting node into attribute map: " << *I->second << "\n"); |
| |
| //Assert if its already in the map |
| assert(nodeToAttributesMap.count(I->second) == 0 && |
| "Node attributes are already in the map"); |
| |
| //Put into the map with default attribute values |
| nodeToAttributesMap[I->second] = MSNodeSBAttributes(); |
| } |
| |
| //Create set to deal with reccurrences |
| std::set<MSchedGraphSBNode*> visitedNodes; |
| |
| //Now Loop over map and calculate the node attributes |
| for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { |
| calculateASAP(I->first, MII, (MSchedGraphSBNode*) 0); |
| visitedNodes.clear(); |
| } |
| |
| int maxASAP = findMaxASAP(); |
| //Calculate ALAP which depends on ASAP being totally calculated |
| for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { |
| calculateALAP(I->first, MII, maxASAP, (MSchedGraphSBNode*) 0); |
| visitedNodes.clear(); |
| } |
| |
| //Calculate MOB which depends on ASAP being totally calculated, also do depth and height |
| for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { |
| (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP); |
| |
| DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n"); |
| calculateDepth(I->first, (MSchedGraphSBNode*) 0); |
| calculateHeight(I->first, (MSchedGraphSBNode*) 0); |
| } |
| |
| |
| } |
| |
| /// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not |
| bool ModuloSchedulingSBPass::ignoreEdge(MSchedGraphSBNode *srcNode, MSchedGraphSBNode *destNode) { |
| if(destNode == 0 || srcNode ==0) |
| return false; |
| |
| bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode))); |
| |
| DEBUG(std::cerr << "Ignoring edge? from: " << *srcNode << " to " << *destNode << "\n"); |
| |
| return findEdge; |
| } |
| |
| |
| /// calculateASAP - Calculates the |
| int ModuloSchedulingSBPass::calculateASAP(MSchedGraphSBNode *node, int MII, MSchedGraphSBNode *destNode) { |
| |
| DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n"); |
| |
| //Get current node attributes |
| MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second; |
| |
| if(attributes.ASAP != -1) |
| return attributes.ASAP; |
| |
| int maxPredValue = 0; |
| |
| //Iterate over all of the predecessors and find max |
| for(MSchedGraphSBNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { |
| |
| //Only process if we are not ignoring the edge |
| if(!ignoreEdge(*P, node)) { |
| int predASAP = -1; |
| predASAP = calculateASAP(*P, MII, node); |
| |
| assert(predASAP != -1 && "ASAP has not been calculated"); |
| int iteDiff = node->getInEdge(*P).getIteDiff(); |
| |
| int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII); |
| DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n"); |
| maxPredValue = std::max(maxPredValue, currentPredValue); |
| } |
| } |
| |
| attributes.ASAP = maxPredValue; |
| |
| DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n"); |
| |
| return maxPredValue; |
| } |
| |
| |
| int ModuloSchedulingSBPass::calculateALAP(MSchedGraphSBNode *node, int MII, |
| int maxASAP, MSchedGraphSBNode *srcNode) { |
| |
| DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n"); |
| |
| MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second; |
| |
| if(attributes.ALAP != -1) |
| return attributes.ALAP; |
| |
| if(node->hasSuccessors()) { |
| |
| //Trying to deal with the issue where the node has successors, but |
| //we are ignoring all of the edges to them. So this is my hack for |
| //now.. there is probably a more elegant way of doing this (FIXME) |
| bool processedOneEdge = false; |
| |
| //FIXME, set to something high to start |
| int minSuccValue = 9999999; |
| |
| //Iterate over all of the predecessors and fine max |
| for(MSchedGraphSBNode::succ_iterator P = node->succ_begin(), |
| E = node->succ_end(); P != E; ++P) { |
| |
| //Only process if we are not ignoring the edge |
| if(!ignoreEdge(node, *P)) { |
| processedOneEdge = true; |
| int succALAP = -1; |
| succALAP = calculateALAP(*P, MII, maxASAP, node); |
| |
| assert(succALAP != -1 && "Successors ALAP should have been caclulated"); |
| |
| int iteDiff = P.getEdge().getIteDiff(); |
| |
| int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII; |
| |
| DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n"); |
| |
| minSuccValue = std::min(minSuccValue, currentSuccValue); |
| } |
| } |
| |
| if(processedOneEdge) |
| attributes.ALAP = minSuccValue; |
| |
| else |
| attributes.ALAP = maxASAP; |
| } |
| else |
| attributes.ALAP = maxASAP; |
| |
| DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n"); |
| |
| if(attributes.ALAP < 0) |
| attributes.ALAP = 0; |
| |
| return attributes.ALAP; |
| } |
| |
| int ModuloSchedulingSBPass::findMaxASAP() { |
| int maxASAP = 0; |
| |
| for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), |
| E = nodeToAttributesMap.end(); I != E; ++I) |
| maxASAP = std::max(maxASAP, I->second.ASAP); |
| return maxASAP; |
| } |
| |
| |
| int ModuloSchedulingSBPass::calculateHeight(MSchedGraphSBNode *node,MSchedGraphSBNode *srcNode) { |
| |
| MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second; |
| |
| if(attributes.height != -1) |
| return attributes.height; |
| |
| int maxHeight = 0; |
| |
| //Iterate over all of the predecessors and find max |
| for(MSchedGraphSBNode::succ_iterator P = node->succ_begin(), |
| E = node->succ_end(); P != E; ++P) { |
| |
| |
| if(!ignoreEdge(node, *P)) { |
| int succHeight = calculateHeight(*P, node); |
| |
| assert(succHeight != -1 && "Successors Height should have been caclulated"); |
| |
| int currentHeight = succHeight + node->getLatency(); |
| maxHeight = std::max(maxHeight, currentHeight); |
| } |
| } |
| attributes.height = maxHeight; |
| DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n"); |
| return maxHeight; |
| } |
| |
| |
| int ModuloSchedulingSBPass::calculateDepth(MSchedGraphSBNode *node, |
| MSchedGraphSBNode *destNode) { |
| |
| MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second; |
| |
| if(attributes.depth != -1) |
| return attributes.depth; |
| |
| int maxDepth = 0; |
| |
| //Iterate over all of the predecessors and fine max |
| for(MSchedGraphSBNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { |
| |
| if(!ignoreEdge(*P, node)) { |
| int predDepth = -1; |
| predDepth = calculateDepth(*P, node); |
| |
| assert(predDepth != -1 && "Predecessors ASAP should have been caclulated"); |
| |
| int currentDepth = predDepth + (*P)->getLatency(); |
| maxDepth = std::max(maxDepth, currentDepth); |
| } |
| } |
| attributes.depth = maxDepth; |
| |
| DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n"); |
| return maxDepth; |
| } |
| |
| void ModuloSchedulingSBPass::computePartialOrder() { |
| |
| TIME_REGION(X, "calculatePartialOrder"); |
| |
| DEBUG(std::cerr << "Computing Partial Order\n"); |
| |
| //Steps to add a recurrence to the partial order 1) Find reccurrence |
| //with the highest RecMII. Add it to the partial order. 2) For each |
| //recurrence with decreasing RecMII, add it to the partial order |
| //along with any nodes that connect this recurrence to recurrences |
| //already in the partial order |
| for(std::set<std::pair<int, std::vector<MSchedGraphSBNode*> > >::reverse_iterator |
| I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) { |
| |
| std::set<MSchedGraphSBNode*> new_recurrence; |
| |
| //Loop through recurrence and remove any nodes already in the partial order |
| for(std::vector<MSchedGraphSBNode*>::const_iterator N = I->second.begin(), |
| NE = I->second.end(); N != NE; ++N) { |
| |
| bool found = false; |
| for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), |
| PE = partialOrder.end(); PO != PE; ++PO) { |
| if(PO->count(*N)) |
| found = true; |
| } |
| |
| //Check if its a branch, and remove to handle special |
| if(!found) { |
| new_recurrence.insert(*N); |
| } |
| |
| } |
| |
| |
| if(new_recurrence.size() > 0) { |
| |
| std::vector<MSchedGraphSBNode*> path; |
| std::set<MSchedGraphSBNode*> nodesToAdd; |
| |
| //Dump recc we are dealing with (minus nodes already in PO) |
| DEBUG(std::cerr << "Recc: "); |
| DEBUG(for(std::set<MSchedGraphSBNode*>::iterator R = new_recurrence.begin(), RE = new_recurrence.end(); R != RE; ++R) { std::cerr << **R ; }); |
| |
| //Add nodes that connect this recurrence to recurrences in the partial path |
| for(std::set<MSchedGraphSBNode*>::iterator N = new_recurrence.begin(), |
| NE = new_recurrence.end(); N != NE; ++N) |
| searchPath(*N, path, nodesToAdd, new_recurrence); |
| |
| //Add nodes to this recurrence if they are not already in the partial order |
| for(std::set<MSchedGraphSBNode*>::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end(); |
| N != NE; ++N) { |
| bool found = false; |
| for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), |
| PE = partialOrder.end(); PO != PE; ++PO) { |
| if(PO->count(*N)) |
| found = true; |
| } |
| if(!found) { |
| assert("FOUND CONNECTOR"); |
| new_recurrence.insert(*N); |
| } |
| } |
| |
| partialOrder.push_back(new_recurrence); |
| } |
| } |
| |
| //Add any nodes that are not already in the partial order |
| //Add them in a set, one set per connected component |
| std::set<MSchedGraphSBNode*> lastNodes; |
| std::set<MSchedGraphSBNode*> noPredNodes; |
| for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), |
| E = nodeToAttributesMap.end(); I != E; ++I) { |
| |
| bool found = false; |
| |
| //Check if its already in our partial order, if not add it to the final vector |
| for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), |
| PE = partialOrder.end(); PO != PE; ++PO) { |
| if(PO->count(I->first)) |
| found = true; |
| } |
| if(!found) |
| lastNodes.insert(I->first); |
| } |
| |
| //For each node w/out preds, see if there is a path to one of the |
| //recurrences, and if so add them to that current recc |
| /*for(std::set<MSchedGraphSBNode*>::iterator N = noPredNodes.begin(), NE = noPredNodes.end(); |
| N != NE; ++N) { |
| DEBUG(std::cerr << "No Pred Path from: " << **N << "\n"); |
| for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), |
| PE = partialOrder.end(); PO != PE; ++PO) { |
| std::vector<MSchedGraphSBNode*> path; |
| pathToRecc(*N, path, *PO, lastNodes); |
| } |
| }*/ |
| |
| |
| //Break up remaining nodes that are not in the partial order |
| ///into their connected compoenents |
| while(lastNodes.size() > 0) { |
| std::set<MSchedGraphSBNode*> ccSet; |
| connectedComponentSet(*(lastNodes.begin()),ccSet, lastNodes); |
| if(ccSet.size() > 0) |
| partialOrder.push_back(ccSet); |
| } |
| |
| } |
| |
| void ModuloSchedulingSBPass::connectedComponentSet(MSchedGraphSBNode *node, std::set<MSchedGraphSBNode*> &ccSet, std::set<MSchedGraphSBNode*> &lastNodes) { |
| |
| //Add to final set |
| if( !ccSet.count(node) && lastNodes.count(node)) { |
| lastNodes.erase(node); |
| ccSet.insert(node); |
| } |
| else |
| return; |
| |
| //Loop over successors and recurse if we have not seen this node before |
| for(MSchedGraphSBNode::succ_iterator node_succ = node->succ_begin(), end=node->succ_end(); node_succ != end; ++node_succ) { |
| connectedComponentSet(*node_succ, ccSet, lastNodes); |
| } |
| |
| } |
| |
| void ModuloSchedulingSBPass::searchPath(MSchedGraphSBNode *node, |
| std::vector<MSchedGraphSBNode*> &path, |
| std::set<MSchedGraphSBNode*> &nodesToAdd, |
| std::set<MSchedGraphSBNode*> &new_reccurrence) { |
| //Push node onto the path |
| path.push_back(node); |
| |
| //Loop over all successors and see if there is a path from this node to |
| //a recurrence in the partial order, if so.. add all nodes to be added to recc |
| for(MSchedGraphSBNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; |
| ++S) { |
| |
| //Check if we should ignore this edge first |
| if(ignoreEdge(node,*S)) |
| continue; |
| |
| //check if successor is in this recurrence, we will get to it eventually |
| if(new_reccurrence.count(*S)) |
| continue; |
| |
| //If this node exists in a recurrence already in the partial |
| //order, then add all nodes in the path to the set of nodes to add |
| //Check if its already in our partial order, if not add it to the |
| //final vector |
| bool found = false; |
| for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), |
| PE = partialOrder.end(); PO != PE; ++PO) { |
| |
| if(PO->count(*S)) { |
| found = true; |
| break; |
| } |
| } |
| |
| if(!found) { |
| nodesToAdd.insert(*S); |
| searchPath(*S, path, nodesToAdd, new_reccurrence); |
| } |
| } |
| |
| //Pop Node off the path |
| path.pop_back(); |
| } |
| |
| void dumpIntersection(std::set<MSchedGraphSBNode*> &IntersectCurrent) { |
| std::cerr << "Intersection ("; |
| for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) |
| std::cerr << **I << ", "; |
| std::cerr << ")\n"; |
| } |
| |
| void ModuloSchedulingSBPass::orderNodes() { |
| |
| TIME_REGION(X, "orderNodes"); |
| |
| int BOTTOM_UP = 0; |
| int TOP_DOWN = 1; |
| |
| //Set default order |
| int order = BOTTOM_UP; |
| |
| //Loop over and find all pred nodes and schedule them first |
| /*for(std::vector<std::set<MSchedGraphSBNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { |
| for(std::set<MSchedGraphSBNode*>::iterator N = CurrentSet->begin(), NE = CurrentSet->end(); N != NE; ++N) |
| if((*N)->isPredicate()) { |
| FinalNodeOrder.push_back(*N); |
| CurrentSet->erase(*N); |
| } |
| }*/ |
| |
| |
| |
| //Loop over all the sets and place them in the final node order |
| for(std::vector<std::set<MSchedGraphSBNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { |
| |
| DEBUG(std::cerr << "Processing set in S\n"); |
| DEBUG(dumpIntersection(*CurrentSet)); |
| |
| //Result of intersection |
| std::set<MSchedGraphSBNode*> IntersectCurrent; |
| |
| predIntersect(*CurrentSet, IntersectCurrent); |
| |
| //If the intersection of predecessor and current set is not empty |
| //sort nodes bottom up |
| if(IntersectCurrent.size() != 0) { |
| DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n"); |
| order = BOTTOM_UP; |
| } |
| //If empty, use successors |
| else { |
| DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n"); |
| |
| succIntersect(*CurrentSet, IntersectCurrent); |
| |
| //sort top-down |
| if(IntersectCurrent.size() != 0) { |
| DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n"); |
| order = TOP_DOWN; |
| } |
| else { |
| DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n"); |
| //Find node with max ASAP in current Set |
| MSchedGraphSBNode *node; |
| int maxASAP = 0; |
| DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n"); |
| for(std::set<MSchedGraphSBNode*>::iterator J = CurrentSet->begin(), JE = CurrentSet->end(); J != JE; ++J) { |
| //Get node attributes |
| MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*J)->second; |
| //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); |
| |
| if(maxASAP <= nodeAttr.ASAP) { |
| maxASAP = nodeAttr.ASAP; |
| node = *J; |
| } |
| } |
| assert(node != 0 && "In node ordering node should not be null"); |
| IntersectCurrent.insert(node); |
| order = BOTTOM_UP; |
| } |
| } |
| |
| //Repeat until all nodes are put into the final order from current set |
| while(IntersectCurrent.size() > 0) { |
| |
| if(order == TOP_DOWN) { |
| DEBUG(std::cerr << "Order is TOP DOWN\n"); |
| |
| while(IntersectCurrent.size() > 0) { |
| DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n"); |
| |
| int MOB = 0; |
| int height = 0; |
| MSchedGraphSBNode *highestHeightNode = *(IntersectCurrent.begin()); |
| |
| //Find node in intersection with highest heigh and lowest MOB |
| for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(), |
| E = IntersectCurrent.end(); I != E; ++I) { |
| |
| //Get current nodes properties |
| MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; |
| |
| if(height < nodeAttr.height) { |
| highestHeightNode = *I; |
| height = nodeAttr.height; |
| MOB = nodeAttr.MOB; |
| } |
| else if(height == nodeAttr.height) { |
| if(MOB > nodeAttr.height) { |
| highestHeightNode = *I; |
| height = nodeAttr.height; |
| MOB = nodeAttr.MOB; |
| } |
| } |
| } |
| |
| //Append our node with greatest height to the NodeOrder |
| if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) { |
| DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n"); |
| FinalNodeOrder.push_back(highestHeightNode); |
| } |
| |
| //Remove V from IntersectOrder |
| IntersectCurrent.erase(std::find(IntersectCurrent.begin(), |
| IntersectCurrent.end(), highestHeightNode)); |
| |
| |
| //Intersect V's successors with CurrentSet |
| for(MSchedGraphSBNode::succ_iterator P = highestHeightNode->succ_begin(), |
| E = highestHeightNode->succ_end(); P != E; ++P) { |
| //if(lower_bound(CurrentSet->begin(), |
| // CurrentSet->end(), *P) != CurrentSet->end()) { |
| if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { |
| if(ignoreEdge(highestHeightNode, *P)) |
| continue; |
| //If not already in Intersect, add |
| if(!IntersectCurrent.count(*P)) |
| IntersectCurrent.insert(*P); |
| } |
| } |
| } //End while loop over Intersect Size |
| |
| //Change direction |
| order = BOTTOM_UP; |
| |
| //Reset Intersect to reflect changes in OrderNodes |
| IntersectCurrent.clear(); |
| predIntersect(*CurrentSet, IntersectCurrent); |
| |
| } //End If TOP_DOWN |
| |
| //Begin if BOTTOM_UP |
| else { |
| DEBUG(std::cerr << "Order is BOTTOM UP\n"); |
| while(IntersectCurrent.size() > 0) { |
| DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n"); |
| |
| //dump intersection |
| DEBUG(dumpIntersection(IntersectCurrent)); |
| //Get node with highest depth, if a tie, use one with lowest |
| //MOB |
| int MOB = 0; |
| int depth = 0; |
| MSchedGraphSBNode *highestDepthNode = *(IntersectCurrent.begin()); |
| |
| for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(), |
| E = IntersectCurrent.end(); I != E; ++I) { |
| //Find node attribute in graph |
| MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; |
| |
| if(depth < nodeAttr.depth) { |
| highestDepthNode = *I; |
| depth = nodeAttr.depth; |
| MOB = nodeAttr.MOB; |
| } |
| else if(depth == nodeAttr.depth) { |
| if(MOB > nodeAttr.MOB) { |
| highestDepthNode = *I; |
| depth = nodeAttr.depth; |
| MOB = nodeAttr.MOB; |
| } |
| } |
| } |
| |
| |
| |
| //Append highest depth node to the NodeOrder |
| if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) { |
| DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n"); |
| FinalNodeOrder.push_back(highestDepthNode); |
| } |
| //Remove heightestDepthNode from IntersectOrder |
| IntersectCurrent.erase(highestDepthNode); |
| |
| |
| //Intersect heightDepthNode's pred with CurrentSet |
| for(MSchedGraphSBNode::pred_iterator P = highestDepthNode->pred_begin(), |
| E = highestDepthNode->pred_end(); P != E; ++P) { |
| if(CurrentSet->count(*P)) { |
| if(ignoreEdge(*P, highestDepthNode)) |
| continue; |
| |
| //If not already in Intersect, add |
| if(!IntersectCurrent.count(*P)) |
| IntersectCurrent.insert(*P); |
| } |
| } |
| |
| } //End while loop over Intersect Size |
| |
| //Change order |
| order = TOP_DOWN; |
| |
| //Reset IntersectCurrent to reflect changes in OrderNodes |
| IntersectCurrent.clear(); |
| succIntersect(*CurrentSet, IntersectCurrent); |
| } //End if BOTTOM_DOWN |
| |
| DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n"); |
| } |
| //End Wrapping while loop |
| DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n"); |
| }//End for over all sets of nodes |
| |
| //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no |
| //data dependencies) to the final order. We add this manually. It will always be |
| //in the last set of S since its not part of a recurrence |
| //Loop over all the sets and place them in the final node order |
| std::vector<std::set<MSchedGraphSBNode*> > ::reverse_iterator LastSet = partialOrder.rbegin(); |
| for(std::set<MSchedGraphSBNode*>::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end(); |
| CurrentNode != LastNode; ++CurrentNode) { |
| if((*CurrentNode)->getInst()->getOpcode() == V9::BA) |
| FinalNodeOrder.push_back(*CurrentNode); |
| } |
| //Return final Order |
| //return FinalNodeOrder; |
| } |
| |
| |
| void ModuloSchedulingSBPass::predIntersect(std::set<MSchedGraphSBNode*> &CurrentSet, std::set<MSchedGraphSBNode*> &IntersectResult) { |
| |
| for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { |
| for(MSchedGraphSBNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), |
| E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { |
| |
| //Check if we are supposed to ignore this edge or not |
| if(ignoreEdge(*P,FinalNodeOrder[j])) |
| continue; |
| |
| if(CurrentSet.count(*P)) |
| if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) |
| IntersectResult.insert(*P); |
| } |
| } |
| } |
| |
| void ModuloSchedulingSBPass::succIntersect(std::set<MSchedGraphSBNode*> &CurrentSet, std::set<MSchedGraphSBNode*> &IntersectResult) { |
| |
| for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { |
| for(MSchedGraphSBNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), |
| E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { |
| |
| //Check if we are supposed to ignore this edge or not |
| if(ignoreEdge(FinalNodeOrder[j],*P)) |
| continue; |
| |
| if(CurrentSet.count(*P)) |
| if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) |
| IntersectResult.insert(*P); |
| } |
| } |
| } |
| |
| |
| |
| bool ModuloSchedulingSBPass::computeSchedule(std::vector<const MachineBasicBlock*> &SB, MSchedGraphSB *MSG) { |
| |
| TIME_REGION(X, "computeSchedule"); |
| |
| bool success = false; |
| |
| //FIXME: Should be set to max II of the original loop |
| //Cap II in order to prevent infinite loop |
| int capII = MSG->totalDelay(); |
| |
| while(!success) { |
| |
| //Keep track of branches, but do not insert into the schedule |
| std::vector<MSchedGraphSBNode*> branches; |
| |
| //Loop over the final node order and process each node |
| for(std::vector<MSchedGraphSBNode*>::iterator I = FinalNodeOrder.begin(), |
| E = FinalNodeOrder.end(); I != E; ++I) { |
| |
| //CalculateEarly and Late start |
| bool initialLSVal = false; |
| bool initialESVal = false; |
| int EarlyStart = 0; |
| int LateStart = 0; |
| bool hasSucc = false; |
| bool hasPred = false; |
| bool sched; |
| |
| if((*I)->isBranch()) |
| if((*I)->hasPredecessors()) |
| sched = true; |
| else |
| sched = false; |
| else |
| sched = true; |
| |
| if(sched) { |
| //Loop over nodes in the schedule and determine if they are predecessors |
| //or successors of the node we are trying to schedule |
| for(MSScheduleSB::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); |
| nodesByCycle != nodesByCycleEnd; ++nodesByCycle) { |
| |
| //For this cycle, get the vector of nodes schedule and loop over it |
| for(std::vector<MSchedGraphSBNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) { |
| |
| if((*I)->isPredecessor(*schedNode)) { |
| int diff = (*I)->getInEdge(*schedNode).getIteDiff(); |
| int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II; |
| DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); |
| DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n"); |
| if(initialESVal) |
| EarlyStart = std::max(EarlyStart, ES_Temp); |
| else { |
| EarlyStart = ES_Temp; |
| initialESVal = true; |
| } |
| hasPred = true; |
| } |
| if((*I)->isSuccessor(*schedNode)) { |
| int diff = (*schedNode)->getInEdge(*I).getIteDiff(); |
| int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II; |
| DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); |
| DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n"); |
| if(initialLSVal) |
| LateStart = std::min(LateStart, LS_Temp); |
| else { |
| LateStart = LS_Temp; |
| initialLSVal = true; |
| } |
| hasSucc = true; |
| } |
| } |
| } |
| } |
| else { |
| branches.push_back(*I); |
| continue; |
| } |
| |
| //Check if the node has no pred or successors and set Early Start to its ASAP |
| if(!hasSucc && !hasPred) |
| EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP; |
| |
| DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n"); |
| DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n"); |
| |
| //Now, try to schedule this node depending upon its pred and successor in the schedule |
| //already |
| if(!hasSucc && hasPred) |
| success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1)); |
| else if(!hasPred && hasSucc) |
| success = scheduleNode(*I, LateStart, (LateStart - II +1)); |
| else if(hasPred && hasSucc) { |
| if(EarlyStart > LateStart) { |
| success = false; |
| //LateStart = EarlyStart; |
| DEBUG(std::cerr << "Early Start can not be later then the late start cycle, schedule fails\n"); |
| } |
| else |
| success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1))); |
| } |
| else |
| success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1); |
| |
| if(!success) { |
| ++II; |
| schedule.clear(); |
| break; |
| } |
| |
| } |
| |
| if(success) { |
| DEBUG(std::cerr << "Constructing Schedule Kernel\n"); |
| success = schedule.constructKernel(II, branches, indVarInstrs[SB]); |
| DEBUG(std::cerr << "Done Constructing Schedule Kernel\n"); |
| if(!success) { |
| ++II; |
| schedule.clear(); |
| } |
| DEBUG(std::cerr << "Final II: " << II << "\n"); |
| |
| } |
| |
| if(II >= capII) { |
| DEBUG(std::cerr << "Maximum II reached, giving up\n"); |
| return false; |
| } |
| |
| assert(II < capII && "The II should not exceed the original loop number of cycles"); |
| } |
| return true; |
| } |
| |
| |
| bool ModuloSchedulingSBPass::scheduleNode(MSchedGraphSBNode *node, |
| int start, int end) { |
| bool success = false; |
| |
| DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n"); |
| |
| //Make sure start and end are not negative |
| //if(start < 0) { |
| //start = 0; |
| |
| //} |
| //if(end < 0) |
| //end = 0; |
| |
| bool forward = true; |
| if(start > end) |
| forward = false; |
| |
| bool increaseSC = true; |
| int cycle = start ; |
| |
| |
| while(increaseSC) { |
| |
| increaseSC = false; |
| |
| increaseSC = schedule.insert(node, cycle, II); |
| |
| if(!increaseSC) |
| return true; |
| |
| //Increment cycle to try again |
| if(forward) { |
| ++cycle; |
| DEBUG(std::cerr << "Increase cycle: " << cycle << "\n"); |
| if(cycle > end) |
| return false; |
| } |
| else { |
| --cycle; |
| DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n"); |
| if(cycle < end) |
| return false; |
| } |
| } |
| |
| return success; |
| } |
| |
| void ModuloSchedulingSBPass::reconstructLoop(std::vector<const MachineBasicBlock*> &SB) { |
| |
| TIME_REGION(X, "reconstructLoop"); |
| |
| |
| DEBUG(std::cerr << "Reconstructing Loop\n"); |
| |
| //First find the value *'s that we need to "save" |
| std::map<const Value*, std::pair<const MachineInstr*, int> > valuesToSave; |
| |
| //Keep track of instructions we have already seen and their stage because |
| //we don't want to "save" values if they are used in the kernel immediately |
| std::map<const MachineInstr*, int> lastInstrs; |
| |
| |
| std::set<MachineBasicBlock*> seenBranchesBB; |
| const TargetInstrInfo *MTI = target.getInstrInfo(); |
| std::map<MachineBasicBlock*, std::vector<std::pair<MachineInstr*, int> > > instrsMovedDown; |
| std::map<MachineBasicBlock*, int> branchStage; |
| |
| //Loop over kernel and only look at instructions from a stage > 0 |
| //Look at its operands and save values *'s that are read |
| for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { |
| |
| if(I->second !=0) { |
| //For this instruction, get the Value*'s that it reads and put them into the set. |
| //Assert if there is an operand of another type that we need to save |
| const MachineInstr *inst = I->first; |
| lastInstrs[inst] = I->second; |
| |
| for(unsigned i=0; i < inst->getNumOperands(); ++i) { |
| //get machine operand |
| const MachineOperand &mOp = inst->getOperand(i); |
| |
| if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { |
| //find the value in the map |
| if (const Value* srcI = mOp.getVRegValue()) { |
| |
| if(isa<Constant>(srcI) || isa<Argument>(srcI)) |
| continue; |
| |
| //Before we declare this Value* one that we should save |
| //make sure its def is not of the same stage as this instruction |
| //because it will be consumed before its used |
| Instruction *defInst = (Instruction*) srcI; |
| |
| //Should we save this value? |
| bool save = true; |
| |
| //Continue if not in the def map, loop invariant code does not need to be saved |
| if(!defMap.count(srcI)) |
| continue; |
| |
| MachineInstr *defInstr = defMap[srcI]; |
| |
| |
| if(lastInstrs.count(defInstr)) { |
| if(lastInstrs[defInstr] == I->second) { |
| save = false; |
| |
| } |
| } |
| |
| if(save) |
| valuesToSave[srcI] = std::make_pair(I->first, i); |
| } |
| } |
| |
| if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) { |
| assert("Our assumption is wrong. We have another type of register that needs to be saved\n"); |
| } |
| } |
| } |
| |
| |
| //Do a check to see if instruction was moved below its original branch |
| if(MTI->isBranch(I->first->getOpcode())) { |
| seenBranchesBB.insert(I->first->getParent()); |
| branchStage[I->first->getParent()] = I->second; |
| } |
| else { |
| instrsMovedDown[I->first->getParent()].push_back(std::make_pair(I->first, I->second)); |
| //assert(seenBranchesBB.count(I->first->getParent()) && "Instruction moved below branch\n"); |
| } |
| |
| } |
| |
| //The new loop will consist of one or more prologues, the kernel, and one or more epilogues. |
| |
| //Map to keep track of old to new values |
| std::map<Value*, std::map<int, Value*> > newValues; |
| |
| //Map to keep track of old to new values in kernel |
| std::map<Value*, std::map<int, Value*> > kernelPHIs; |
| |
| //Another map to keep track of what machine basic blocks these new value*s are in since |
| //they have no llvm instruction equivalent |
| std::map<Value*, MachineBasicBlock*> newValLocation; |
| |
| std::vector<std::vector<MachineBasicBlock*> > prologues; |
| std::vector<std::vector<BasicBlock*> > llvm_prologues; |
| |
| //Map to keep track of where the inner branches go |
| std::map<const MachineBasicBlock*, Value*> sideExits; |
| |
| |
| //Write prologue |
| if(schedule.getMaxStage() != 0) |
| writePrologues(prologues, SB, llvm_prologues, valuesToSave, newValues, newValLocation); |
| |
| std::vector<BasicBlock*> llvmKernelBBs; |
| std::vector<MachineBasicBlock*> machineKernelBBs; |
| Function *parent = (Function*) SB[0]->getBasicBlock()->getParent(); |
| |
| for(unsigned i = 0; i < SB.size(); ++i) { |
| llvmKernelBBs.push_back(new BasicBlock("Kernel", parent)); |
| |
| machineKernelBBs.push_back(new MachineBasicBlock(llvmKernelBBs[i])); |
| (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(machineKernelBBs[i]); |
| } |
| |
| writeKernel(llvmKernelBBs, machineKernelBBs, valuesToSave, newValues, newValLocation, kernelPHIs); |
| |
| |
| std::vector<std::vector<MachineBasicBlock*> > epilogues; |
| std::vector<std::vector<BasicBlock*> > llvm_epilogues; |
| |
| //Write epilogues |
| if(schedule.getMaxStage() != 0) |
| writeEpilogues(epilogues, SB, llvm_epilogues, valuesToSave, newValues, newValLocation, kernelPHIs); |
| |
| |
| //Fix our branches |
| fixBranches(prologues, llvm_prologues, machineKernelBBs, llvmKernelBBs, epilogues, llvm_epilogues, SB, sideExits); |
| |
| //Print out epilogues and prologue |
| DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator PI = prologues.begin(), PE = prologues.end(); |
| PI != PE; ++PI) { |
| std::cerr << "PROLOGUE\n"; |
| for(std::vector<MachineBasicBlock*>::iterator I = PI->begin(), E = PI->end(); I != E; ++I) |
| (*I)->print(std::cerr); |
| }); |
| |
| DEBUG(std::cerr << "KERNEL\n"); |
| DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = machineKernelBBs.begin(), E = machineKernelBBs.end(); I != E; ++I) { (*I)->print(std::cerr);}); |
| |
| DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator EI = epilogues.begin(), EE = epilogues.end(); |
| EI != EE; ++EI) { |
| std::cerr << "EPILOGUE\n"; |
| for(std::vector<MachineBasicBlock*>::iterator I = EI->begin(), E = EI->end(); I != E; ++I) |
| (*I)->print(std::cerr); |
| }); |
| |
| |
| //Remove phis |
| removePHIs(SB, prologues, epilogues, machineKernelBBs, newValLocation); |
| |
| //Print out epilogues and prologue |
| DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator PI = prologues.begin(), PE = prologues.end(); |
| PI != PE; ++PI) { |
| std::cerr << "PROLOGUE\n"; |
| for(std::vector<MachineBasicBlock*>::iterator I = PI->begin(), E = PI->end(); I != E; ++I) |
| (*I)->print(std::cerr); |
| }); |
| |
| DEBUG(std::cerr << "KERNEL\n"); |
| DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = machineKernelBBs.begin(), E = machineKernelBBs.end(); I != E; ++I) { (*I)->print(std::cerr);}); |
| |
| DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator EI = epilogues.begin(), EE = epilogues.end(); |
| EI != EE; ++EI) { |
| std::cerr << "EPILOGUE\n"; |
| for(std::vector<MachineBasicBlock*>::iterator I = EI->begin(), E = EI->end(); I != E; ++I) |
| (*I)->print(std::cerr); |
| }); |
| |
| writeSideExits(prologues, llvm_prologues, epilogues, llvm_epilogues, sideExits, instrsMovedDown, SB, machineKernelBBs, branchStage); |
| |
| |
| DEBUG(std::cerr << "New Machine Function" << "\n"); |
| } |
| |
| |
| void ModuloSchedulingSBPass::fixBranches(std::vector<std::vector<MachineBasicBlock*> > &prologues, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::vector<MachineBasicBlock*> &machineKernelBB, std::vector<BasicBlock*> &llvmKernelBB, std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::vector<const MachineBasicBlock*> &SB, std::map<const MachineBasicBlock*, Value*> &sideExits) { |
| |
| const TargetInstrInfo *TMI = target.getInstrInfo(); |
| |
| //Get exit BB |
| BasicBlock *last = (BasicBlock*) SB[SB.size()-1]->getBasicBlock(); |
| BasicBlock *kernel_exit = 0; |
| bool sawFirst = false; |
| |
| for(succ_iterator I = succ_begin(last), |
| E = succ_end(last); I != E; ++I) { |
| if (*I != SB[0]->getBasicBlock()) { |
| kernel_exit = *I; |
| break; |
| } |
| else |
| sawFirst = true; |
| } |
| if(!kernel_exit && sawFirst) { |
| kernel_exit = (BasicBlock*) SB[0]->getBasicBlock(); |
| } |
| |
| assert(kernel_exit && "Kernel Exit can not be null"); |
| |
| if(schedule.getMaxStage() != 0) { |
| //Fix prologue branches |
| for(unsigned i = 0; i < prologues.size(); ++i) { |
| |
| for(unsigned j = 0; j < prologues[i].size(); ++j) { |
| |
| MachineBasicBlock *currentMBB = prologues[i][j]; |
| |
| //Find terminator since getFirstTerminator does not work! |
| for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { |
| MachineOpCode OC = mInst->getOpcode(); |
| //If its a branch update its branchto |
| if(TMI->isBranch(OC)) { |
| for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { |
| MachineOperand &mOp = mInst->getOperand(opNum); |
| if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { |
| //Check if we are branching to the kernel, if not branch to epilogue |
| if(mOp.getVRegValue() == SB[0]->getBasicBlock()) { |
| if(i >= prologues.size()-1) |
| mOp.setValueReg(llvmKernelBB[0]); |
| else |
| mOp.setValueReg(llvm_prologues[i+1][0]); |
| } |
| else if( (mOp.getVRegValue() == kernel_exit) && (j == prologues[i].size()-1)) { |
| mOp.setValueReg(llvm_epilogues[i][0]); |
| } |
| else if(mOp.getVRegValue() == SB[j+1]->getBasicBlock()) { |
| mOp.setValueReg(llvm_prologues[i][j+1]); |
| } |
| |
| } |
| } |
| |
| DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); |
| } |
| } |
| |
| //Update llvm basic block with our new branch instr |
| DEBUG(std::cerr << SB[i]->getBasicBlock()->getTerminator() << "\n"); |
| |
| const BranchInst *branchVal = dyn_cast<BranchInst>(SB[i]->getBasicBlock()->getTerminator()); |
| |
| //Check for inner branch |
| if(j < prologues[i].size()-1) { |
| //Find our side exit LLVM basic block |
| BasicBlock *sideExit = 0; |
| for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) { |
| if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock()) |
| sideExit = branchVal->getSuccessor(s); |
| } |
| assert(sideExit && "Must have side exit llvm basic block"); |
| TerminatorInst *newBranch = new BranchInst(sideExit, |
| llvm_prologues[i][j+1], |
| branchVal->getCondition(), |
| llvm_prologues[i][j]); |
| } |
| else { |
| //If last prologue |
| if(i == prologues.size()-1) { |
| TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], |
| llvm_epilogues[i][0], |
| branchVal->getCondition(), |
| llvm_prologues[i][j]); |
| } |
| else { |
| TerminatorInst *newBranch = new BranchInst(llvm_prologues[i+1][0], |
| llvm_epilogues[i][0], |
| branchVal->getCondition(), |
| llvm_prologues[i][j]); |
| } |
| } |
| } |
| } |
| } |
| |
| //Fix up kernel machine branches |
| for(unsigned i = 0; i < machineKernelBB.size(); ++i) { |
| MachineBasicBlock *currentMBB = machineKernelBB[i]; |
| |
| for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { |
| MachineOpCode OC = mInst->getOpcode(); |
| if(TMI->isBranch(OC)) { |
| for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { |
| MachineOperand &mOp = mInst->getOperand(opNum); |
| |
| if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) { |
| //Deal with inner kernel branches |
| if(i < machineKernelBB.size()-1) { |
| if(mOp.getVRegValue() == SB[i+1]->getBasicBlock()) |
| mOp.setValueReg(llvmKernelBB[i+1]); |
| //Side exit! |
| else { |
| sideExits[SB[i]] = mOp.getVRegValue(); |
| } |
| } |
| else { |
| if(mOp.getVRegValue() == SB[0]->getBasicBlock()) |
| mOp.setValueReg(llvmKernelBB[0]); |
| else { |
| if(llvm_epilogues.size() > 0) |
| mOp.setValueReg(llvm_epilogues[0][0]); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| //Update kernelLLVM branches |
| const BranchInst *branchVal = dyn_cast<BranchInst>(SB[0]->getBasicBlock()->getTerminator()); |
| |
| //deal with inner branch |
| if(i < machineKernelBB.size()-1) { |
| |
| //Find our side exit LLVM basic block |
| BasicBlock *sideExit = 0; |
| for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) { |
| if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock()) |
| sideExit = branchVal->getSuccessor(s); |
| } |
| assert(sideExit && "Must have side exit llvm basic block"); |
| TerminatorInst *newBranch = new BranchInst(sideExit, |
| llvmKernelBB[i+1], |
| branchVal->getCondition(), |
| llvmKernelBB[i]); |
| } |
| else { |
| //Deal with outter branches |
| if(epilogues.size() > 0) { |
| TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], |
| llvm_epilogues[0][0], |
| branchVal->getCondition(), |
| llvmKernelBB[i]); |
| } |
| else { |
| TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], |
| kernel_exit, |
| branchVal->getCondition(), |
| llvmKernelBB[i]); |
| } |
| } |
| } |
| |
| if(schedule.getMaxStage() != 0) { |
| |
| //Lastly add unconditional branches for the epilogues |
| for(unsigned i = 0; i < epilogues.size(); ++i) { |
| |
| for(unsigned j=0; j < epilogues[i].size(); ++j) { |
| //Now since we don't have fall throughs, add a unconditional |
| //branch to the next prologue |
| |
| //Before adding these, we need to check if the epilogue already has |
| //a branch in it |
| bool hasBranch = false; |
| /*if(j < epilogues[i].size()-1) { |
| MachineBasicBlock *currentMBB = epilogues[i][j]; |
| for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { |
| |
| MachineOpCode OC = mInst->getOpcode(); |
| |
| //If its a branch update its branchto |
| if(TMI->isBranch(OC)) { |
| hasBranch = true; |
| for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { |
| MachineOperand &mOp = mInst->getOperand(opNum); |
| if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { |
| |
| if(mOp.getVRegValue() != sideExits[SB[j]]) { |
| mOp.setValueReg(llvm_epilogues[i][j+1]); |
| } |
| |
| } |
| } |
| |
| |
| DEBUG(std::cerr << "New Epilogue Branch: " << *mInst << "\n"); |
| } |
| } |
| if(hasBranch) { |
| const BranchInst *branchVal = dyn_cast<BranchInst>(SB[j]->getBasicBlock()->getTerminator()); |
| TerminatorInst *newBranch = new BranchInst((BasicBlock*)sideExits[SB[j]], |
| llvm_epilogues[i][j+1], |
| branchVal->getCondition(), |
| llvm_epilogues[i][j]); |
| } |
| }*/ |
| |
| if(!hasBranch) { |
| |
| //Handle inner branches |
| if(j < epilogues[i].size()-1) { |
| BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i][j+1]); |
| TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i][j+1], |
| llvm_epilogues[i][j]); |
| } |
| else { |
| |
| //Check if this is the last epilogue |
| if(i != epilogues.size()-1) { |
| BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i+1][0]); |
| //Add unconditional branch to end of epilogue |
| TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i+1][0], |
| llvm_epilogues[i][j]); |
| |
| } |
| else { |
| BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(kernel_exit); |
| TerminatorInst *newBranch = new BranchInst(kernel_exit, llvm_epilogues[i][j]); |
| } |
| } |
| |
| //Add one more nop! |
| BuildMI(epilogues[i][j], V9::NOP, 0); |
| |
| } |
| } |
| } |
| } |
| |
| //Find all llvm basic blocks that branch to the loop entry and |
| //change to our first prologue. |
| const BasicBlock *llvmBB = SB[0]->getBasicBlock(); |
| |
| std::vector<const BasicBlock*>Preds (pred_begin(llvmBB), pred_end(llvmBB)); |
| |
| for(std::vector<const BasicBlock*>::iterator P = Preds.begin(), |
| PE = Preds.end(); P != PE; ++P) { |
| if(*P == SB[SB.size()-1]->getBasicBlock()) |
| continue; |
| else { |
| DEBUG(std::cerr << "Found our entry BB\n"); |
| DEBUG((*P)->print(std::cerr)); |
| //Get the Terminator instruction for this basic block and print it out |
| //DEBUG(std::cerr << *((*P)->getTerminator()) << "\n"); |
| |
| //Update the terminator |
| TerminatorInst *term = ((BasicBlock*)*P)->getTerminator(); |
| for(unsigned i=0; i < term->getNumSuccessors(); ++i) { |
| if(term->getSuccessor(i) == llvmBB) { |
| DEBUG(std::cerr << "Replacing successor bb\n"); |
| if(llvm_prologues.size() > 0) { |
| term->setSuccessor(i, llvm_prologues[0][0]); |
| |
| DEBUG(std::cerr << "New Term" << *((*P)->getTerminator()) << "\n"); |
| |
| //Also update its corresponding machine instruction |
| MachineCodeForInstruction & tempMvec = |
| MachineCodeForInstruction::get(term); |
| for (unsigned j = 0; j < tempMvec.size(); j++) { |
| MachineInstr *temp = tempMvec[j]; |
| MachineOpCode opc = temp->getOpcode(); |
| if(TMI->isBranch(opc)) { |
| DEBUG(std::cerr << *temp << "\n"); |
| //Update branch |
| for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { |
| MachineOperand &mOp = temp->getOperand(opNum); |
| if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { |
| if(mOp.getVRegValue() == llvmBB) |
| mOp.setValueReg(llvm_prologues[0][0]); |
| } |
| } |
| } |
| } |
| } |
| else { |
| term->setSuccessor(i, llvmKernelBB[0]); |
| |
| //Also update its corresponding machine instruction |
| MachineCodeForInstruction & tempMvec = |
| MachineCodeForInstruction::get(term); |
| for(unsigned j = 0; j < tempMvec.size(); j++) { |
| MachineInstr *temp = tempMvec[j]; |
| MachineOpCode opc = temp->getOpcode(); |
| if(TMI->isBranch(opc)) { |
| DEBUG(std::cerr << *temp << "\n"); |
| //Update branch |
| for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { |
| MachineOperand &mOp = temp->getOperand(opNum); |
| if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) { |
| if(mOp.getVRegValue() == llvmBB) |
| mOp.setValueReg(llvmKernelBB[0]); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| break; |
| } |
| } |
| |
| } |
| |
| |
| void ModuloSchedulingSBPass::writePrologues(std::vector<std::vector<MachineBasicBlock *> > &prologues, std::vector<const MachineBasicBlock*> &origSB, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) { |
| |
| //Keep a map to easily know whats in the kernel |
| std::map<int, std::set<const MachineInstr*> > inKernel; |
| int maxStageCount = 0; |
| |
| //Keep a map of new values we consumed in case they need to be added back |
| std::map<Value*, std::map<int, Value*> > consumedValues; |
| |
| DEBUG(schedule.print(std::cerr)); |
| |
| for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { |
| maxStageCount = std::max(maxStageCount, I->second); |
| |
| //Put int the map so we know what instructions in each stage are in the kernel |
| DEBUG(std::cerr << "Inserting instruction " << *(I->first) << " into map at stage " << I->second << "\n"); |
| inKernel[I->second].insert(I->first); |
| } |
| |
| //Get target information to look at machine operands |
| const TargetInstrInfo *mii = target.getInstrInfo(); |
| |
| //Now write the prologues |
| for(int i = 0; i < maxStageCount; ++i) { |
| std::vector<MachineBasicBlock*> current_prologue; |
| std::vector<BasicBlock*> current_llvm_prologue; |
| |
| for(std::vector<const MachineBasicBlock*>::iterator MB = origSB.begin(), |
| MBE = origSB.end(); MB != MBE; ++MB) { |
| const MachineBasicBlock *MBB = *MB; |
| //Create new llvm and machine bb |
| BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (MBB->getBasicBlock()->getParent())); |
| MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); |
| |
| DEBUG(std::cerr << "i=" << i << "\n"); |
| |
| for(int j = i; j >= 0; --j) { |
| //iterate over instructions in original bb |
| for(MachineBasicBlock::const_iterator MI = MBB->begin(), |
| ME = MBB->end(); ME != MI; ++MI) { |
| if(inKernel[j].count(&*MI)) { |
| MachineInstr *instClone = MI->clone(); |
| machineBB->push_back(instClone); |
| |
| //If its a branch, insert a nop |
| if(mii->isBranch(instClone->getOpcode())) |
| BuildMI(machineBB, V9::NOP, 0); |
| |
| |
| DEBUG(std::cerr << "Cloning: " << *MI << "\n"); |
| |
| //After cloning, we may need to save the value that this instruction defines |
| for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) { |
| Instruction *tmp; |
| |
| //get machine operand |
| MachineOperand &mOp = instClone->getOperand(opNum); |
| if(mOp.getType() == MachineOperand::MO_VirtualRegister |
| && mOp.isDef()) { |
| |
| //Check if this is a value we should save |
| if(valuesToSave.count(mOp.getVRegValue())) { |
| //Save copy in tmpInstruction |
| tmp = new TmpInstruction(mOp.getVRegValue()); |
| |
| //Add TmpInstruction to safe LLVM Instruction MCFI |
| MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); |
| tempMvec.addTemp((Value*) tmp); |
| |
| DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) |
| << " New Value: " << *tmp << " Stage: " << i << "\n"); |
| |
| newValues[mOp.getVRegValue()][i]= tmp; |
| newValLocation[tmp] = machineBB; |
| |
| DEBUG(std::cerr << "Machine Instr Operands: " |
| << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n"); |
| |
| //Create machine instruction and put int machineBB |
| MachineInstr *saveValue; |
| if(mOp.getVRegValue()->getType() == Type::FloatTy) |
| saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); |
| else if(mOp.getVRegValue()->getType() == Type::DoubleTy) |
| saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); |
| else |
| saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); |
| |
| |
| DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n"); |
| } |
| } |
| |
| //We may also need to update the value that we use if |
| //its from an earlier prologue |
| if(j != 0) { |
| if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { |
| if(newValues.count(mOp.getVRegValue())) { |
| if(newValues[mOp.getVRegValue()].count(i-1)) { |
| Value *oldV = mOp.getVRegValue(); |
| DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n"); |
| //Update the operand with the right value |
| mOp.setValueReg(newValues[mOp.getVRegValue()][i-1]); |
| |
| //Remove this value since we have consumed it |
| //NOTE: Should this only be done if j != maxStage? |
| consumedValues[oldV][i-1] = (newValues[oldV][i-1]); |
| DEBUG(std::cerr << "Deleted value: " << consumedValues[oldV][i-1] << "\n"); |
| newValues[oldV].erase(i-1); |
| } |
| } |
| else |
| if(consumedValues.count(mOp.getVRegValue())) |
| assert(!consumedValues[mOp.getVRegValue()].count(i-1) && "Found a case where we need the value"); |
| } |
| } |
| } |
| } |
| } |
| } |
| (((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB); |
| current_prologue.push_back(machineBB); |
| current_llvm_prologue.push_back(llvmBB); |
| } |
| prologues.push_back(current_prologue); |
| llvm_prologues.push_back(current_llvm_prologue); |
| |
| } |
| } |
| |
| |
| void ModuloSchedulingSBPass::writeEpilogues(std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<const MachineBasicBlock*> &origSB, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) { |
| |
| std::map<int, std::set<const MachineInstr*> > inKernel; |
| const TargetInstrInfo *MTI = target.getInstrInfo(); |
| |
| for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { |
| |
| //Put int the map so we know what instructions in each stage are in the kernel |
| inKernel[I->second].insert(I->first); |
| } |
| |
| std::map<Value*, Value*> valPHIs; |
| |
| //some debug stuff, will remove later |
| DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), E = newValues.end(); V !=E; ++V) { |
| std::cerr << "Old Value: " << *(V->first) << "\n"; |
| for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) |
| std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n"; |
| }); |
| |
| |
| //Now write the epilogues |
| for(int i = schedule.getMaxStage()-1; i >= 0; --i) { |
| std::vector<MachineBasicBlock*> current_epilogue; |
| std::vector<BasicBlock*> current_llvm_epilogue; |
| |
| for(std::vector<const MachineBasicBlock*>::iterator MB = origSB.begin(), MBE = origSB.end(); MB != MBE; ++MB) { |
| const MachineBasicBlock *MBB = *MB; |
| |
| BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (MBB->getBasicBlock()->getParent())); |
| MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); |
| |
| DEBUG(std::cerr << " Epilogue #: " << i << "\n"); |
| |
| std::map<Value*, int> inEpilogue; |
| |
| for(MachineBasicBlock::const_iterator MI = MBB->begin(), ME = MBB->end(); ME != MI; ++MI) { |
| for(int j=schedule.getMaxStage(); j > i; --j) { |
| if(inKernel[j].count(&*MI)) { |
| DEBUG(std::cerr << "Cloning instruction " << *MI << "\n"); |
| MachineInstr *clone = MI->clone(); |
| |
| //Update operands that need to use the result from the phi |
| for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) { |
| //get machine operand |
| const MachineOperand &mOp = clone->getOperand(opNum); |
| |
| if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) { |
| |
| DEBUG(std::cerr << "Writing PHI for " << (mOp.getVRegValue()) << "\n"); |
| |
| //If this is the last instructions for the max iterations ago, don't update operands |
| if(inEpilogue.count(mOp.getVRegValue())) |
| if(inEpilogue[mOp.getVRegValue()] == i) |
| continue; |
| |
| //Quickly write appropriate phis for this operand |
| if(newValues.count(mOp.getVRegValue())) { |
| if(newValues[mOp.getVRegValue()].count(i)) { |
| Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]); |
| |
| //Get machine code for this instruction |
| MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); |
| tempMvec.addTemp((Value*) tmp); |
| |
| //assert of no kernelPHI for this value |
| assert(kernelPHIs[mOp.getVRegValue()][i] !=0 && "Must have final kernel phi to construct epilogue phi"); |
| |
| MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp); |
| DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); |
| valPHIs[mOp.getVRegValue()] = tmp; |
| } |
| } |
| |
| if(valPHIs.count(mOp.getVRegValue())) { |
| //Update the operand in the cloned instruction |
| clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]); |
| } |
| } |
| else if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef())) { |
| inEpilogue[mOp.getVRegValue()] = i; |
| } |
| |
| } |
| machineBB->push_back(clone); |
| //if(MTI->isBranch(clone->getOpcode())) |
| //BuildMI(machineBB, V9::NOP, 0); |
| } |
| } |
| } |
| (((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB); |
| current_epilogue.push_back(machineBB); |
| current_llvm_epilogue.push_back(llvmBB); |
| } |
| |
| DEBUG(std::cerr << "EPILOGUE #" << i << "\n"); |
| DEBUG(for(std::vector<MachineBasicBlock*>::iterator B = current_epilogue.begin(), BE = current_epilogue.end(); B != BE; ++B) { |
| (*B)->print(std::cerr);}); |
| |
| epilogues.push_back(current_epilogue); |
| llvm_epilogues.push_back(current_llvm_epilogue); |
| } |
| } |
| |
| void ModuloSchedulingSBPass::writeKernel(std::vector<BasicBlock*> &llvmBB, std::vector<MachineBasicBlock*> &machineBB, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) { |
| |
| //Keep track of operands that are read and saved from a previous iteration. The new clone |
| //instruction will use the result of the phi instead. |
| std::map<Value*, Value*> finalPHIValue; |
| std::map<Value*, Value*> kernelValue; |
| |
| //Branches are a special case |
| std::vector<MachineInstr*> branches; |
| |
| //Get target information to look at machine operands |
| const TargetInstrInfo *mii = target.getInstrInfo(); |
| unsigned index = 0; |
| int numBr = 0; |
| bool seenBranch = false; |
| |
| //Create TmpInstructions for the final phis |
| for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { |
| |
| DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first) << "\n";); |
| |
| //Clone instruction |
| const MachineInstr *inst = I->first; |
| MachineInstr *instClone = inst->clone(); |
| |
| if(seenBranch && !mii->isBranch(instClone->getOpcode())) { |
| index++; |
| seenBranch = false; |
| numBr = 0; |
| } |
| else if(seenBranch && (numBr == 2)) { |
| index++; |
| numBr = 0; |
| } |
| |
| //Insert into machine basic block |
| assert(index < machineBB.size() && "Must have a valid index into kernel MBBs"); |
| machineBB[index]->push_back(instClone); |
| |
| if(mii->isBranch(instClone->getOpcode())) { |
| BuildMI(machineBB[index], V9::NOP, 0); |
| |
| seenBranch = true; |
| numBr++; |
| } |
| |
| DEBUG(std::cerr << "Cloned Inst: " << *instClone << "\n"); |
| |
| //Loop over Machine Operands |
| for(unsigned i=0; i < inst->getNumOperands(); ++i) { |
| //get machine operand |
| const MachineOperand &mOp = inst->getOperand(i); |
| |
| if(I->second != 0) { |
| if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { |
| |
| //Check to see where this operand is defined if this instruction is from max stage |
| if(I->second == schedule.getMaxStage()) { |
| DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n"); |
| } |
| |
| //If its in the value saved, we need to create a temp instruction and use that instead |
| if(valuesToSave.count(mOp.getVRegValue())) { |
| |
| //Check if we already have a final PHI value for this |
| if(!finalPHIValue.count(mOp.getVRegValue())) { |
| //Only create phi if the operand def is from a stage before this one |
| if(schedule.defPreviousStage(mOp.getVRegValue(), I->second)) { |
| TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); |
| |
| //Get machine code for this instruction |
| MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); |
| tempMvec.addTemp((Value*) tmp); |
| |
| //Update the operand in the cloned instruction |
| instClone->getOperand(i).setValueReg(tmp); |
| |
| //save this as our final phi |
| finalPHIValue[mOp.getVRegValue()] = tmp; |
| newValLocation[tmp] = machineBB[index]; |
| } |
| } |
| else { |
| //Use the previous final phi value |
| instClone->getOperand(i).setValueReg(finalPHIValue[mOp.getVRegValue()]); |
| } |
| } |
| } |
| } |
| if(I->second != schedule.getMaxStage()) { |
| if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { |
| if(valuesToSave.count(mOp.getVRegValue())) { |
| |
| TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); |
| |
| //Get machine code for this instruction |
| MachineCodeForInstruction & tempVec = MachineCodeForInstruction::get(defaultInst); |
| tempVec.addTemp((Value*) tmp); |
| |
| //Create new machine instr and put in MBB |
| MachineInstr *saveValue; |
| if(mOp.getVRegValue()->getType() == Type::FloatTy) |
| saveValue = BuildMI(machineBB[index], V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); |
| else if(mOp.getVRegValue()->getType() == Type::DoubleTy) |
| saveValue = BuildMI(machineBB[index], V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); |
| else |
| saveValue = BuildMI(machineBB[index], V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); |
| |
| |
| //Save for future cleanup |
| kernelValue[mOp.getVRegValue()] = tmp; |
| newValLocation[tmp] = machineBB[index]; |
| kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp; |
| } |
| } |
| } |
| } |
| |
| } |
| |
| //Loop over each value we need to generate phis for |
| for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), |
| E = newValues.end(); V != E; ++V) { |
| |
| |
| DEBUG(std::cerr << "Writing phi for" << *(V->first)); |
| DEBUG(std::cerr << "\nMap of Value* for this phi\n"); |
| DEBUG(for(std::map<int, Value*>::iterator I = V->second.begin(), |
| IE = V->second.end(); I != IE; ++I) { |
| std::cerr << "Stage: " << I->first; |
| std::cerr << " Value: " << *(I->second) << "\n"; |
| }); |
| |
| //If we only have one current iteration live, its safe to set |
| //lastPhi = to kernel value |
| if(V->second.size() == 1) { |
| assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi"); |
| MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]); |
| DEBUG(std::cerr << "Resulting PHI (one live): " << *saveValue << "\n"); |
| kernelPHIs[V->first][V->second.begin()->first] = kernelValue[V->first]; |
| DEBUG(std::cerr << "Put kernel phi in at stage: " << schedule.getMaxStage()-1 << " (map stage = " << V->second.begin()->first << ")\n"); |
| } |
| else { |
| |
| //Keep track of last phi created. |
| Instruction *lastPhi = 0; |
| |
| unsigned count = 1; |
| //Loop over the the map backwards to generate phis |
| for(std::map<int, Value*>::reverse_iterator I = V->second.rbegin(), IE = V->second.rend(); |
| I != IE; ++I) { |
| |
| if(count < (V->second).size()) { |
| if(lastPhi == 0) { |
| lastPhi = new TmpInstruction(I->second); |
| |
| //Get machine code for this instruction |
| MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); |
| tempMvec.addTemp((Value*) lastPhi); |
| |
| MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi); |
| DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); |
| newValLocation[lastPhi] = machineBB[0]; |
| } |
| else { |
| Instruction *tmp = new TmpInstruction(I->second); |
| |
| //Get machine code for this instruction |
| MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); |
| tempMvec.addTemp((Value*) tmp); |
| |
| |
| MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp); |
| DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); |
| lastPhi = tmp; |
| kernelPHIs[V->first][I->first] = lastPhi; |
| newValLocation[lastPhi] = machineBB[0]; |
| } |
| } |
| //Final phi value |
| else { |
| //The resulting value must be the Value* we created earlier |
| assert(lastPhi != 0 && "Last phi is NULL!\n"); |
| MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]); |
| DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); |
| kernelPHIs[V->first][I->first] = finalPHIValue[V->first]; |
| } |
| |
| ++count; |
| } |
| |
| } |
| } |
| } |
| |
| |
| void ModuloSchedulingSBPass::removePHIs(std::vector<const MachineBasicBlock*> &SB, std::vector<std::vector<MachineBasicBlock*> > &prologues, std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<MachineBasicBlock*> &kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) { |
| |
| //Worklist to delete things |
| std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist; |
| |
| //Worklist of TmpInstructions that need to be added to a MCFI |
| std::vector<Instruction*> addToMCFI; |
| |
| //Worklist to add OR instructions to end of kernel so not to invalidate the iterator |
| //std::vector<std::pair<Instruction*, Value*> > newORs; |
| |
| const TargetInstrInfo *TMI = target.getInstrInfo(); |
| |
| //Start with the kernel and for each phi insert a copy for the phi |
| //def and for each arg |
| //phis are only in the first BB in the kernel |
| for(MachineBasicBlock::iterator I = kernelBB[0]->begin(), E = kernelBB[0]->end(); |
| I != E; ++I) { |
| |
| DEBUG(std::cerr << "Looking at Instr: " << *I << "\n"); |
| |
| //Get op code and check if its a phi |
| if(I->getOpcode() == V9::PHI) { |
| |
| DEBUG(std::cerr << "Replacing PHI: " << *I << "\n"); |
| Instruction *tmp = 0; |
| |
| for(unsigned i = 0; i < I->getNumOperands(); ++i) { |
| |
| //Get Operand |
| const MachineOperand &mOp = I->getOperand(i); |
| assert(mOp.getType() == MachineOperand::MO_VirtualRegister |
| && "Should be a Value*\n"); |
| |
| if(!tmp) { |
| tmp = new TmpInstruction(mOp.getVRegValue()); |
| addToMCFI.push_back(tmp); |
| } |
| |
| //Now for all our arguments we read, OR to the new |
| //TmpInstruction that we created |
| if(mOp.isUse()) { |
| DEBUG(std::cerr << "Use: " << mOp << "\n"); |
| //Place a copy at the end of its BB but before the branches |
| assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); |
| //Reverse iterate to find the branches, we can safely assume no instructions have been |
| //put in the nop positions |
| for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { |
| MachineOpCode opc = inst->getOpcode(); |
| if(TMI->isBranch(opc) || TMI->isNop(opc)) |
| continue; |
| else { |
| if(mOp.getVRegValue()->getType() == Type::FloatTy) |
| BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); |
| else if(mOp.getVRegValue()->getType() == Type::DoubleTy) |
| BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); |
| else |
| BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); |
| |
| break; |
| } |
| |
| } |
| |
| } |
| else { |
| //Remove the phi and replace it with an OR |
| DEBUG(std::cerr << "Def: " << mOp << "\n"); |
| //newORs.push_back(std::make_pair(tmp, mOp.getVRegValue())); |
| if(tmp->getType() == Type::FloatTy) |
| BuildMI(*kernelBB[0], I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); |
| else if(tmp->getType() == Type::DoubleTy) |
| BuildMI(*kernelBB[0], I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); |
| else |
| BuildMI(*kernelBB[0], I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); |
| |
| |
| worklist.push_back(std::make_pair(kernelBB[0], I)); |
| } |
| |
| } |
| |
| } |
| |
| |
| } |
| |
| //Add TmpInstructions to some MCFI |
| if(addToMCFI.size() > 0) { |
| MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); |
| for(unsigned x = 0; x < addToMCFI.size(); ++x) { |
| tempMvec.addTemp(addToMCFI[x]); |
| } |
| addToMCFI.clear(); |
| } |
| |
| |
| //Remove phis from epilogue |
| for(std::vector<std::vector<MachineBasicBlock*> >::iterator MB = epilogues.begin(), |
| ME = epilogues.end(); MB != ME; ++MB) { |
| |
| for(std::vector<MachineBasicBlock*>::iterator currentMBB = MB->begin(), currentME = MB->end(); currentMBB != currentME; ++currentMBB) { |
| |
| for(MachineBasicBlock::iterator I = (*currentMBB)->begin(), |
| E = (*currentMBB)->end(); I != E; ++I) { |
| |
| DEBUG(std::cerr << "Looking at Instr: " << *I << "\n"); |
| //Get op code and check if its a phi |
| if(I->getOpcode() == V9::PHI) { |
| Instruction *tmp = 0; |
| |
| for(unsigned i = 0; i < I->getNumOperands(); ++i) { |
| //Get Operand |
| const MachineOperand &mOp = I->getOperand(i); |
| assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); |
| |
| if(!tmp) { |
| tmp = new TmpInstruction(mOp.getVRegValue()); |
| addToMCFI.push_back(tmp); |
| } |
| |
| //Now for all our arguments we read, OR to the new TmpInstruction that we created |
| if(mOp.isUse()) { |
| DEBUG(std::cerr << "Use: " << mOp << "\n"); |
| //Place a copy at the end of its BB but before the branches |
| assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); |
| //Reverse iterate to find the branches, we can safely assume no instructions have been |
| //put in the nop positions |
| for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { |
| MachineOpCode opc = inst->getOpcode(); |
| if(TMI->isBranch(opc) || TMI->isNop(opc)) |
| continue; |
| else { |
| if(mOp.getVRegValue()->getType() == Type::FloatTy) |
| BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); |
| else if(mOp.getVRegValue()->getType() == Type::DoubleTy) |
| BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); |
| else |
| BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); |
| |
| |
| break; |
| } |
| |
| } |
| |
| } |
| else { |
| //Remove the phi and replace it with an OR |
| DEBUG(std::cerr << "Def: " << mOp << "\n"); |
| if(tmp->getType() == Type::FloatTy) |
| BuildMI(**currentMBB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); |
| else if(tmp->getType() == Type::DoubleTy) |
| BuildMI(**currentMBB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); |
| else |
| BuildMI(**currentMBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); |
| |
| worklist.push_back(std::make_pair(*currentMBB,I)); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| if(addToMCFI.size() > 0) { |
| MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); |
| for(unsigned x = 0; x < addToMCFI.size(); ++x) { |
| tempMvec.addTemp(addToMCFI[x]); |
| } |
| addToMCFI.clear(); |
| } |
| |
| //Delete the phis |
| for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) { |
| DEBUG(std::cerr << "Deleting PHI " << *I->second << "\n"); |
| I->first->erase(I->second); |
| |
| } |
| |
| |
| assert((addToMCFI.size() == 0) && "We should have added all TmpInstructions to some MachineCodeForInstruction"); |
| } |
| |
| |
| |
| |
| void ModuloSchedulingSBPass::writeSideExits(std::vector<std::vector<MachineBasicBlock *> > &prologues, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::vector<std::vector<MachineBasicBlock *> > &epilogues, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::map<const MachineBasicBlock*, Value*> &sideExits, std::map<MachineBasicBlock*, std::vector<std::pair<MachineInstr*, int> > > &instrsMovedDown, std::vector<const MachineBasicBlock*> &SB, std::vector<MachineBasicBlock*> &kernelMBBs, std::map<MachineBasicBlock*, int> branchStage) { |
| |
| const TargetInstrInfo *TMI = target.getInstrInfo(); |
| |
| //Repeat for each side exit |
| for(unsigned sideExitNum = 0; sideExitNum < SB.size()-1; ++sideExitNum) { |
| |
| std::vector<std::vector<BasicBlock*> > side_llvm_epilogues; |
| std::vector<std::vector<MachineBasicBlock*> > side_epilogues; |
| MachineBasicBlock* sideMBB; |
| BasicBlock* sideBB; |
| |
| //Create side exit blocks |
| //Get the LLVM basic block |
| BasicBlock *bb = (BasicBlock*) SB[sideExitNum]->getBasicBlock(); |
| MachineBasicBlock *mbb = (MachineBasicBlock*) SB[sideExitNum]; |
| |
| int stage = branchStage[mbb]; |
| |
| //Create new basic blocks for our side exit instructios that were moved below the branch |
| sideBB = new BasicBlock("SideExit", (Function*) bb->getParent()); |
| sideMBB = new MachineBasicBlock(sideBB); |
| (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(sideMBB); |
| |
| |
| if(instrsMovedDown.count(mbb)) { |
| for(std::vector<std::pair<MachineInstr*, int> >::iterator I = instrsMovedDown[mbb].begin(), E = instrsMovedDown[mbb].end(); I != E; ++I) { |
| if(branchStage[mbb] == I->second) |
| sideMBB->push_back((I->first)->clone()); |
| } |
| |
| //Add unconditional branches to original exits |
| BuildMI(sideMBB, V9::BA, 1).addPCDisp(sideExits[mbb]); |
| BuildMI(sideMBB, V9::NOP, 0); |
| |
| //Add unconditioal branch to llvm BB |
| BasicBlock *extBB = dyn_cast<BasicBlock>(sideExits[mbb]); |
| assert(extBB && "Side exit basicblock can not be null"); |
| TerminatorInst *newBranch = new BranchInst(extBB, sideBB); |
| } |
| |
| //Clone epilogues and update their branches, one cloned epilogue set per side exit |
| //only clone epilogues that are from a greater stage! |
| for(unsigned i = 0; i < epilogues.size()-stage; ++i) { |
| std::vector<MachineBasicBlock*> MB = epilogues[i]; |
| |
| std::vector<MachineBasicBlock*> newEp; |
| std::vector<BasicBlock*> newLLVMEp; |
| |
| for(std::vector<MachineBasicBlock*>::iterator currentMBB = MB.begin(), |
| lastMBB = MB.end(); currentMBB != lastMBB; ++currentMBB) { |
| BasicBlock *tmpBB = new BasicBlock("SideEpilogue", (Function*) (*currentMBB)->getBasicBlock()->getParent()); |
| MachineBasicBlock *tmp = new MachineBasicBlock(tmpBB); |
| |
| //Clone instructions and insert into new MBB |
| for(MachineBasicBlock::iterator I = (*currentMBB)->begin(), |
| E = (*currentMBB)->end(); I != E; ++I) { |
| |
| MachineInstr *clone = I->clone(); |
| if(clone->getOpcode() == V9::BA && (currentMBB+1 == lastMBB)) { |
| //update branch to side exit |
| for(unsigned i = 0; i < clone->getNumOperands(); ++i) { |
| MachineOperand &mOp = clone->getOperand(i); |
| if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { |
| mOp.setValueReg(sideBB); |
| } |
| } |
| } |
| |
| tmp->push_back(clone); |
| |
| } |
| |
| //Add llvm branch |
| TerminatorInst *newBranch = new BranchInst(sideBB, tmpBB); |
| |
| newEp.push_back(tmp); |
| (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(tmp); |
| |
| newLLVMEp.push_back(tmpBB); |
| |
| } |
| side_llvm_epilogues.push_back(newLLVMEp); |
| side_epilogues.push_back(newEp); |
| } |
| |
| //Now stich up all the branches |
| |
| //Loop over prologues, and if its an inner branch and branches to our original side exit |
| //then have it branch to the appropriate epilogue first (if it exists) |
| for(unsigned P = 0; P < prologues.size(); ++P) { |
| |
| //Get BB side exit we are dealing with |
| MachineBasicBlock *currentMBB = prologues[P][sideExitNum]; |
| if(P >= (unsigned) stage) { |
| //Iterate backwards of machine instructions to find the branch we need to update |
| for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { |
| MachineOpCode OC = mInst->getOpcode(); |
| |
| //If its a branch update its branchto |
| if(TMI->isBranch(OC)) { |
| for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { |
| MachineOperand &mOp = mInst->getOperand(opNum); |
| if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { |
| //Check if we branch to side exit |
| if(mOp.getVRegValue() == sideExits[mbb]) { |
| mOp.setValueReg(side_llvm_epilogues[P][0]); |
| } |
| } |
| } |
| DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); |
| } |
| } |
| |
| //Update llvm branch |
| TerminatorInst *branchVal = ((BasicBlock*) currentMBB->getBasicBlock())->getTerminator(); |
| DEBUG(std::cerr << *branchVal << "\n"); |
| |
| for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) { |
| if(branchVal->getSuccessor(i) == sideExits[mbb]) { |
| DEBUG(std::cerr << "Replacing successor bb\n"); |
| branchVal->setSuccessor(i, side_llvm_epilogues[P][0]); |
| } |
| } |
| } |
| else { |
| //must add BA branch because another prologue or kernel has the actual side exit branch |
| //Add unconditional branches to original exits |
| assert( (sideExitNum+1) < prologues[P].size() && "must have valid prologue to branch to"); |
| BuildMI(prologues[P][sideExitNum], V9::BA, 1).addPCDisp((BasicBlock*)(prologues[P][sideExitNum+1])->getBasicBlock()); |
| BuildMI(prologues[P][sideExitNum], V9::NOP, 0); |
| |
| TerminatorInst *newBranch = new BranchInst((BasicBlock*) (prologues[P][sideExitNum+1])->getBasicBlock(), (BasicBlock*) (prologues[P][sideExitNum])->getBasicBlock()); |
| |
| } |
| } |
| |
| |
| //Update side exits in kernel |
| MachineBasicBlock *currentMBB = kernelMBBs[sideExitNum]; |
| //Iterate backwards of machine instructions to find the branch we need to update |
| for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { |
| MachineOpCode OC = mInst->getOpcode(); |
| |
| //If its a branch update its branchto |
| if(TMI->isBranch(OC)) { |
| for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { |
| MachineOperand &mOp = mInst->getOperand(opNum); |
| if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { |
| //Check if we branch to side exit |
| if(mOp.getVRegValue() == sideExits[mbb]) { |
| if(side_llvm_epilogues.size() > 0) |
| mOp.setValueReg(side_llvm_epilogues[0][0]); |
| else |
| mOp.setValueReg(sideBB); |
| } |
| } |
| } |
| DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); |
| } |
| } |
| |
| //Update llvm branch |
| //Update llvm branch |
| TerminatorInst *branchVal = ((BasicBlock*)currentMBB->getBasicBlock())->getTerminator(); |
| DEBUG(std::cerr << *branchVal << "\n"); |
| |
| for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) { |
| if(branchVal->getSuccessor(i) == sideExits[mbb]) { |
| DEBUG(std::cerr << "Replacing successor bb\n"); |
| if(side_llvm_epilogues.size() > 0) |
| branchVal->setSuccessor(i, side_llvm_epilogues[0][0]); |
| else |
| branchVal->setSuccessor(i, sideBB); |
| } |
| } |
| } |
| } |
| |