|  | //===- Writer.cpp ---------------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Writer.h" | 
|  | #include "Config.h" | 
|  | #include "LinkerScript.h" | 
|  | #include "Memory.h" | 
|  | #include "OutputSections.h" | 
|  | #include "Relocations.h" | 
|  | #include "Strings.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "SyntheticSections.h" | 
|  | #include "Target.h" | 
|  |  | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/Support/FileOutputBuffer.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <climits> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::support; | 
|  | using namespace llvm::support::endian; | 
|  |  | 
|  | using namespace lld; | 
|  | using namespace lld::elf; | 
|  |  | 
|  | namespace { | 
|  | // The writer writes a SymbolTable result to a file. | 
|  | template <class ELFT> class Writer { | 
|  | public: | 
|  | typedef typename ELFT::uint uintX_t; | 
|  | typedef typename ELFT::Shdr Elf_Shdr; | 
|  | typedef typename ELFT::Ehdr Elf_Ehdr; | 
|  | typedef typename ELFT::Phdr Elf_Phdr; | 
|  | typedef typename ELFT::Sym Elf_Sym; | 
|  | typedef typename ELFT::SymRange Elf_Sym_Range; | 
|  | typedef typename ELFT::Rela Elf_Rela; | 
|  | void run(); | 
|  |  | 
|  | private: | 
|  | typedef PhdrEntry<ELFT> Phdr; | 
|  |  | 
|  | void createSyntheticSections(); | 
|  | void copyLocalSymbols(); | 
|  | void addReservedSymbols(); | 
|  | void addInputSec(InputSectionBase<ELFT> *S); | 
|  | void createSections(); | 
|  | void forEachRelSec(std::function<void(InputSectionBase<ELFT> &)> Fn); | 
|  | void sortSections(); | 
|  | void finalizeSections(); | 
|  | void addPredefinedSections(); | 
|  |  | 
|  | std::vector<Phdr> createPhdrs(); | 
|  | void addPtArmExid(std::vector<Phdr> &Phdrs); | 
|  | void assignAddresses(); | 
|  | void assignFileOffsets(); | 
|  | void assignFileOffsetsBinary(); | 
|  | void setPhdrs(); | 
|  | void fixHeaders(); | 
|  | void fixSectionAlignments(); | 
|  | void fixAbsoluteSymbols(); | 
|  | void openFile(); | 
|  | void writeHeader(); | 
|  | void writeSections(); | 
|  | void writeSectionsBinary(); | 
|  | void writeBuildId(); | 
|  |  | 
|  | std::unique_ptr<FileOutputBuffer> Buffer; | 
|  |  | 
|  | std::vector<OutputSectionBase *> OutputSections; | 
|  | OutputSectionFactory<ELFT> Factory; | 
|  |  | 
|  | void addRelIpltSymbols(); | 
|  | void addStartEndSymbols(); | 
|  | void addStartStopSymbols(OutputSectionBase *Sec); | 
|  | uintX_t getEntryAddr(); | 
|  | OutputSectionBase *findSection(StringRef Name); | 
|  |  | 
|  | std::vector<Phdr> Phdrs; | 
|  |  | 
|  | uintX_t FileSize; | 
|  | uintX_t SectionHeaderOff; | 
|  | }; | 
|  | } // anonymous namespace | 
|  |  | 
|  | StringRef elf::getOutputSectionName(StringRef Name) { | 
|  | if (Config->Relocatable) | 
|  | return Name; | 
|  |  | 
|  | for (StringRef V : | 
|  | {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.", | 
|  | ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", | 
|  | ".gcc_except_table.", ".tdata.", ".ARM.exidx."}) { | 
|  | StringRef Prefix = V.drop_back(); | 
|  | if (Name.startswith(V) || Name == Prefix) | 
|  | return Prefix; | 
|  | } | 
|  |  | 
|  | // CommonSection is identified as "COMMON" in linker scripts. | 
|  | // By default, it should go to .bss section. | 
|  | if (Name == "COMMON") | 
|  | return ".bss"; | 
|  |  | 
|  | // ".zdebug_" is a prefix for ZLIB-compressed sections. | 
|  | // Because we decompressed input sections, we want to remove 'z'. | 
|  | if (Name.startswith(".zdebug_")) | 
|  | return Saver.save(Twine(".") + Name.substr(2)); | 
|  | return Name; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void elf::reportDiscarded(InputSectionBase<ELFT> *IS) { | 
|  | if (!Config->PrintGcSections) | 
|  | return; | 
|  | errs() << "removing unused section from '" << IS->Name << "' in file '" | 
|  | << IS->getFile()->getName() << "'\n"; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool needsInterpSection() { | 
|  | return !Symtab<ELFT>::X->getSharedFiles().empty() && | 
|  | !Config->DynamicLinker.empty() && | 
|  | !Script<ELFT>::X->ignoreInterpSection(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } | 
|  |  | 
|  | // The main function of the writer. | 
|  | template <class ELFT> void Writer<ELFT>::run() { | 
|  | // Create linker-synthesized sections such as .got or .plt. | 
|  | // Such sections are of type input section. | 
|  | createSyntheticSections(); | 
|  |  | 
|  | // We need to create some reserved symbols such as _end. Create them. | 
|  | if (!Config->Relocatable) | 
|  | addReservedSymbols(); | 
|  |  | 
|  | // Some architectures use small displacements for jump instructions. | 
|  | // It is linker's responsibility to create thunks containing long | 
|  | // jump instructions if jump targets are too far. Create thunks. | 
|  | if (Target->NeedsThunks) | 
|  | forEachRelSec(createThunks<ELFT>); | 
|  |  | 
|  | // Create output sections. | 
|  | Script<ELFT>::X->OutputSections = &OutputSections; | 
|  | if (ScriptConfig->HasSections) { | 
|  | // If linker script contains SECTIONS commands, let it create sections. | 
|  | Script<ELFT>::X->processCommands(Factory); | 
|  |  | 
|  | // Linker scripts may have left some input sections unassigned. | 
|  | // Assign such sections using the default rule. | 
|  | Script<ELFT>::X->addOrphanSections(Factory); | 
|  | } else { | 
|  | // If linker script does not contain SECTIONS commands, create | 
|  | // output sections by default rules. We still need to give the | 
|  | // linker script a chance to run, because it might contain | 
|  | // non-SECTIONS commands such as ASSERT. | 
|  | createSections(); | 
|  | Script<ELFT>::X->processCommands(Factory); | 
|  | } | 
|  |  | 
|  | if (Config->Discard != DiscardPolicy::All) | 
|  | copyLocalSymbols(); | 
|  |  | 
|  | // Now that we have a complete set of output sections. This function | 
|  | // completes section contents. For example, we need to add strings | 
|  | // to the string table, and add entries to .got and .plt. | 
|  | // finalizeSections does that. | 
|  | finalizeSections(); | 
|  | if (ErrorCount) | 
|  | return; | 
|  |  | 
|  | if (Config->Relocatable) { | 
|  | assignFileOffsets(); | 
|  | } else { | 
|  | Phdrs = Script<ELFT>::X->hasPhdrsCommands() ? Script<ELFT>::X->createPhdrs() | 
|  | : createPhdrs(); | 
|  | addPtArmExid(Phdrs); | 
|  | fixHeaders(); | 
|  | if (ScriptConfig->HasSections) { | 
|  | Script<ELFT>::X->assignAddresses(Phdrs); | 
|  | } else { | 
|  | fixSectionAlignments(); | 
|  | assignAddresses(); | 
|  | } | 
|  |  | 
|  | if (!Config->OFormatBinary) | 
|  | assignFileOffsets(); | 
|  | else | 
|  | assignFileOffsetsBinary(); | 
|  |  | 
|  | setPhdrs(); | 
|  | fixAbsoluteSymbols(); | 
|  | } | 
|  |  | 
|  | // Write the result down to a file. | 
|  | openFile(); | 
|  | if (ErrorCount) | 
|  | return; | 
|  | if (!Config->OFormatBinary) { | 
|  | writeHeader(); | 
|  | writeSections(); | 
|  | } else { | 
|  | writeSectionsBinary(); | 
|  | } | 
|  |  | 
|  | // Backfill .note.gnu.build-id section content. This is done at last | 
|  | // because the content is usually a hash value of the entire output file. | 
|  | writeBuildId(); | 
|  | if (ErrorCount) | 
|  | return; | 
|  |  | 
|  | if (auto EC = Buffer->commit()) | 
|  | error(EC, "failed to write to the output file"); | 
|  |  | 
|  | // Flush the output streams and exit immediately. A full shutdown | 
|  | // is a good test that we are keeping track of all allocated memory, | 
|  | // but actually freeing it is a waste of time in a regular linker run. | 
|  | if (Config->ExitEarly) | 
|  | exitLld(0); | 
|  | } | 
|  |  | 
|  | // Initialize Out<ELFT> members. | 
|  | template <class ELFT> void Writer<ELFT>::createSyntheticSections() { | 
|  | // Initialize all pointers with NULL. This is needed because | 
|  | // you can call lld::elf::main more than once as a library. | 
|  | memset(&Out<ELFT>::First, 0, sizeof(Out<ELFT>)); | 
|  |  | 
|  | // Create singleton output sections. | 
|  | Out<ELFT>::Bss = | 
|  | make<OutputSection<ELFT>>(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); | 
|  | In<ELFT>::DynStrTab = make<StringTableSection<ELFT>>(".dynstr", true); | 
|  | In<ELFT>::Dynamic = make<DynamicSection<ELFT>>(); | 
|  | Out<ELFT>::EhFrame = make<EhOutputSection<ELFT>>(); | 
|  | In<ELFT>::Plt = make<PltSection<ELFT>>(); | 
|  | In<ELFT>::RelaDyn = make<RelocationSection<ELFT>>( | 
|  | Config->Rela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); | 
|  | In<ELFT>::ShStrTab = make<StringTableSection<ELFT>>(".shstrtab", false); | 
|  |  | 
|  | Out<ELFT>::ElfHeader = make<OutputSectionBase>("", 0, SHF_ALLOC); | 
|  | Out<ELFT>::ElfHeader->Size = sizeof(Elf_Ehdr); | 
|  | Out<ELFT>::ProgramHeaders = make<OutputSectionBase>("", 0, SHF_ALLOC); | 
|  | Out<ELFT>::ProgramHeaders->updateAlignment(sizeof(uintX_t)); | 
|  |  | 
|  | if (needsInterpSection<ELFT>()) { | 
|  | In<ELFT>::Interp = createInterpSection<ELFT>(); | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::Interp); | 
|  | } else { | 
|  | In<ELFT>::Interp = nullptr; | 
|  | } | 
|  |  | 
|  | if (Config->EhFrameHdr) | 
|  | In<ELFT>::EhFrameHdr = make<EhFrameHeader<ELFT>>(); | 
|  |  | 
|  | if (Config->GdbIndex) | 
|  | In<ELFT>::GdbIndex = make<GdbIndexSection<ELFT>>(); | 
|  |  | 
|  | In<ELFT>::RelaPlt = make<RelocationSection<ELFT>>( | 
|  | Config->Rela ? ".rela.plt" : ".rel.plt", false /*Sort*/); | 
|  | if (Config->Strip != StripPolicy::All) { | 
|  | In<ELFT>::StrTab = make<StringTableSection<ELFT>>(".strtab", false); | 
|  | In<ELFT>::SymTab = make<SymbolTableSection<ELFT>>(*In<ELFT>::StrTab); | 
|  | } | 
|  |  | 
|  | // Initialize linker generated sections | 
|  | if (!Config->Relocatable) | 
|  | Symtab<ELFT>::X->Sections.push_back(createCommentSection<ELFT>()); | 
|  |  | 
|  | if (Config->BuildId != BuildIdKind::None) { | 
|  | In<ELFT>::BuildId = make<BuildIdSection<ELFT>>(); | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::BuildId); | 
|  | } | 
|  |  | 
|  | InputSection<ELFT> *Common = createCommonSection<ELFT>(); | 
|  | if (!Common->Data.empty()) { | 
|  | In<ELFT>::Common = Common; | 
|  | Symtab<ELFT>::X->Sections.push_back(Common); | 
|  | } | 
|  |  | 
|  | // Add MIPS-specific sections. | 
|  | bool HasDynSymTab = !Symtab<ELFT>::X->getSharedFiles().empty() || Config->Pic; | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | if (!Config->Shared && HasDynSymTab) { | 
|  | In<ELFT>::MipsRldMap = make<MipsRldMapSection<ELFT>>(); | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::MipsRldMap); | 
|  | } | 
|  | if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) | 
|  | Symtab<ELFT>::X->Sections.push_back(Sec); | 
|  | if (auto *Sec = MipsOptionsSection<ELFT>::create()) | 
|  | Symtab<ELFT>::X->Sections.push_back(Sec); | 
|  | if (auto *Sec = MipsReginfoSection<ELFT>::create()) | 
|  | Symtab<ELFT>::X->Sections.push_back(Sec); | 
|  | } | 
|  |  | 
|  | if (HasDynSymTab) { | 
|  | In<ELFT>::DynSymTab = make<SymbolTableSection<ELFT>>(*In<ELFT>::DynStrTab); | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::DynSymTab); | 
|  |  | 
|  | In<ELFT>::VerSym = make<VersionTableSection<ELFT>>(); | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::VerSym); | 
|  |  | 
|  | if (!Config->VersionDefinitions.empty()) { | 
|  | In<ELFT>::VerDef = make<VersionDefinitionSection<ELFT>>(); | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::VerDef); | 
|  | } | 
|  |  | 
|  | In<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>(); | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::VerNeed); | 
|  |  | 
|  | if (Config->GnuHash) { | 
|  | In<ELFT>::GnuHashTab = make<GnuHashTableSection<ELFT>>(); | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::GnuHashTab); | 
|  | } | 
|  |  | 
|  | if (Config->SysvHash) { | 
|  | In<ELFT>::HashTab = make<HashTableSection<ELFT>>(); | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::HashTab); | 
|  | } | 
|  |  | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::Dynamic); | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::DynStrTab); | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::RelaDyn); | 
|  | } | 
|  |  | 
|  | // Add .got. MIPS' .got is so different from the other archs, | 
|  | // it has its own class. | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | In<ELFT>::MipsGot = make<MipsGotSection<ELFT>>(); | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::MipsGot); | 
|  | } else { | 
|  | In<ELFT>::Got = make<GotSection<ELFT>>(); | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::Got); | 
|  | } | 
|  |  | 
|  | In<ELFT>::GotPlt = make<GotPltSection<ELFT>>(); | 
|  | Symtab<ELFT>::X->Sections.push_back(In<ELFT>::GotPlt); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static bool shouldKeepInSymtab(InputSectionBase<ELFT> *Sec, StringRef SymName, | 
|  | const SymbolBody &B) { | 
|  | if (B.isFile()) | 
|  | return false; | 
|  |  | 
|  | // We keep sections in symtab for relocatable output. | 
|  | if (B.isSection()) | 
|  | return Config->Relocatable; | 
|  |  | 
|  | // If sym references a section in a discarded group, don't keep it. | 
|  | if (Sec == &InputSection<ELFT>::Discarded) | 
|  | return false; | 
|  |  | 
|  | if (Config->Discard == DiscardPolicy::None) | 
|  | return true; | 
|  |  | 
|  | // In ELF assembly .L symbols are normally discarded by the assembler. | 
|  | // If the assembler fails to do so, the linker discards them if | 
|  | // * --discard-locals is used. | 
|  | // * The symbol is in a SHF_MERGE section, which is normally the reason for | 
|  | //   the assembler keeping the .L symbol. | 
|  | if (!SymName.startswith(".L") && !SymName.empty()) | 
|  | return true; | 
|  |  | 
|  | if (Config->Discard == DiscardPolicy::Locals) | 
|  | return false; | 
|  |  | 
|  | return !Sec || !(Sec->Flags & SHF_MERGE); | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool includeInSymtab(const SymbolBody &B) { | 
|  | if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj) | 
|  | return false; | 
|  |  | 
|  | if (auto *D = dyn_cast<DefinedRegular<ELFT>>(&B)) { | 
|  | // Always include absolute symbols. | 
|  | if (!D->Section) | 
|  | return true; | 
|  | // Exclude symbols pointing to garbage-collected sections. | 
|  | if (!D->Section->Live) | 
|  | return false; | 
|  | if (auto *S = dyn_cast<MergeInputSection<ELFT>>(D->Section)) | 
|  | if (!S->getSectionPiece(D->Value)->Live) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Local symbols are not in the linker's symbol table. This function scans | 
|  | // each object file's symbol table to copy local symbols to the output. | 
|  | template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { | 
|  | if (!In<ELFT>::SymTab) | 
|  | return; | 
|  | for (elf::ObjectFile<ELFT> *F : Symtab<ELFT>::X->getObjectFiles()) { | 
|  | for (SymbolBody *B : F->getLocalSymbols()) { | 
|  | if (!B->IsLocal) | 
|  | fatal(toString(F) + | 
|  | ": broken object: getLocalSymbols returns a non-local symbol"); | 
|  | auto *DR = dyn_cast<DefinedRegular<ELFT>>(B); | 
|  |  | 
|  | // No reason to keep local undefined symbol in symtab. | 
|  | if (!DR) | 
|  | continue; | 
|  | if (!includeInSymtab<ELFT>(*B)) | 
|  | continue; | 
|  |  | 
|  | InputSectionBase<ELFT> *Sec = DR->Section; | 
|  | if (!shouldKeepInSymtab<ELFT>(Sec, B->getName(), *B)) | 
|  | continue; | 
|  | ++In<ELFT>::SymTab->NumLocals; | 
|  | if (Config->Relocatable) | 
|  | B->DynsymIndex = In<ELFT>::SymTab->NumLocals; | 
|  | F->KeptLocalSyms.push_back(std::make_pair( | 
|  | DR, In<ELFT>::SymTab->StrTabSec.addString(B->getName()))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that | 
|  | // we would like to make sure appear is a specific order to maximize their | 
|  | // coverage by a single signed 16-bit offset from the TOC base pointer. | 
|  | // Conversely, the special .tocbss section should be first among all SHT_NOBITS | 
|  | // sections. This will put it next to the loaded special PPC64 sections (and, | 
|  | // thus, within reach of the TOC base pointer). | 
|  | static int getPPC64SectionRank(StringRef SectionName) { | 
|  | return StringSwitch<int>(SectionName) | 
|  | .Case(".tocbss", 0) | 
|  | .Case(".branch_lt", 2) | 
|  | .Case(".toc", 3) | 
|  | .Case(".toc1", 4) | 
|  | .Case(".opd", 5) | 
|  | .Default(1); | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool elf::isRelroSection(const OutputSectionBase *Sec) { | 
|  | if (!Config->ZRelro) | 
|  | return false; | 
|  | uint64_t Flags = Sec->Flags; | 
|  | if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) | 
|  | return false; | 
|  | if (Flags & SHF_TLS) | 
|  | return true; | 
|  | uint32_t Type = Sec->Type; | 
|  | if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || | 
|  | Type == SHT_PREINIT_ARRAY) | 
|  | return true; | 
|  | if (Sec == In<ELFT>::GotPlt->OutSec) | 
|  | return Config->ZNow; | 
|  | if (Sec == In<ELFT>::Dynamic->OutSec) | 
|  | return true; | 
|  | if (In<ELFT>::Got && Sec == In<ELFT>::Got->OutSec) | 
|  | return true; | 
|  | if (In<ELFT>::MipsGot && Sec == In<ELFT>::MipsGot->OutSec) | 
|  | return true; | 
|  | StringRef S = Sec->getName(); | 
|  | return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || | 
|  | S == ".eh_frame"; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static bool compareSectionsNonScript(const OutputSectionBase *A, | 
|  | const OutputSectionBase *B) { | 
|  | // Put .interp first because some loaders want to see that section | 
|  | // on the first page of the executable file when loaded into memory. | 
|  | bool AIsInterp = A->getName() == ".interp"; | 
|  | bool BIsInterp = B->getName() == ".interp"; | 
|  | if (AIsInterp != BIsInterp) | 
|  | return AIsInterp; | 
|  |  | 
|  | // Allocatable sections go first to reduce the total PT_LOAD size and | 
|  | // so debug info doesn't change addresses in actual code. | 
|  | bool AIsAlloc = A->Flags & SHF_ALLOC; | 
|  | bool BIsAlloc = B->Flags & SHF_ALLOC; | 
|  | if (AIsAlloc != BIsAlloc) | 
|  | return AIsAlloc; | 
|  |  | 
|  | // We don't have any special requirements for the relative order of two non | 
|  | // allocatable sections. | 
|  | if (!AIsAlloc) | 
|  | return false; | 
|  |  | 
|  | // We want the read only sections first so that they go in the PT_LOAD | 
|  | // covering the program headers at the start of the file. | 
|  | bool AIsWritable = A->Flags & SHF_WRITE; | 
|  | bool BIsWritable = B->Flags & SHF_WRITE; | 
|  | if (AIsWritable != BIsWritable) | 
|  | return BIsWritable; | 
|  |  | 
|  | if (!ScriptConfig->HasSections) { | 
|  | // For a corresponding reason, put non exec sections first (the program | 
|  | // header PT_LOAD is not executable). | 
|  | // We only do that if we are not using linker scripts, since with linker | 
|  | // scripts ro and rx sections are in the same PT_LOAD, so their relative | 
|  | // order is not important. | 
|  | bool AIsExec = A->Flags & SHF_EXECINSTR; | 
|  | bool BIsExec = B->Flags & SHF_EXECINSTR; | 
|  | if (AIsExec != BIsExec) | 
|  | return BIsExec; | 
|  | } | 
|  |  | 
|  | // If we got here we know that both A and B are in the same PT_LOAD. | 
|  |  | 
|  | // The TLS initialization block needs to be a single contiguous block in a R/W | 
|  | // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS | 
|  | // sections are placed here as they don't take up virtual address space in the | 
|  | // PT_LOAD. | 
|  | bool AIsTls = A->Flags & SHF_TLS; | 
|  | bool BIsTls = B->Flags & SHF_TLS; | 
|  | if (AIsTls != BIsTls) | 
|  | return AIsTls; | 
|  |  | 
|  | // The next requirement we have is to put nobits sections last. The | 
|  | // reason is that the only thing the dynamic linker will see about | 
|  | // them is a p_memsz that is larger than p_filesz. Seeing that it | 
|  | // zeros the end of the PT_LOAD, so that has to correspond to the | 
|  | // nobits sections. | 
|  | bool AIsNoBits = A->Type == SHT_NOBITS; | 
|  | bool BIsNoBits = B->Type == SHT_NOBITS; | 
|  | if (AIsNoBits != BIsNoBits) | 
|  | return BIsNoBits; | 
|  |  | 
|  | // We place RelRo section before plain r/w ones. | 
|  | bool AIsRelRo = isRelroSection<ELFT>(A); | 
|  | bool BIsRelRo = isRelroSection<ELFT>(B); | 
|  | if (AIsRelRo != BIsRelRo) | 
|  | return AIsRelRo; | 
|  |  | 
|  | // Some architectures have additional ordering restrictions for sections | 
|  | // within the same PT_LOAD. | 
|  | if (Config->EMachine == EM_PPC64) | 
|  | return getPPC64SectionRank(A->getName()) < | 
|  | getPPC64SectionRank(B->getName()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Output section ordering is determined by this function. | 
|  | template <class ELFT> | 
|  | static bool compareSections(const OutputSectionBase *A, | 
|  | const OutputSectionBase *B) { | 
|  | // For now, put sections mentioned in a linker script first. | 
|  | int AIndex = Script<ELFT>::X->getSectionIndex(A->getName()); | 
|  | int BIndex = Script<ELFT>::X->getSectionIndex(B->getName()); | 
|  | bool AInScript = AIndex != INT_MAX; | 
|  | bool BInScript = BIndex != INT_MAX; | 
|  | if (AInScript != BInScript) | 
|  | return AInScript; | 
|  | // If both are in the script, use that order. | 
|  | if (AInScript) | 
|  | return AIndex < BIndex; | 
|  |  | 
|  | return compareSectionsNonScript<ELFT>(A, B); | 
|  | } | 
|  |  | 
|  | // Program header entry | 
|  | template <class ELFT> | 
|  | PhdrEntry<ELFT>::PhdrEntry(unsigned Type, unsigned Flags) { | 
|  | H.p_type = Type; | 
|  | H.p_flags = Flags; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void PhdrEntry<ELFT>::add(OutputSectionBase *Sec) { | 
|  | Last = Sec; | 
|  | if (!First) | 
|  | First = Sec; | 
|  | H.p_align = std::max<typename ELFT::uint>(H.p_align, Sec->Addralign); | 
|  | if (H.p_type == PT_LOAD) | 
|  | Sec->FirstInPtLoad = First; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static Symbol *addOptionalSynthetic(StringRef Name, OutputSectionBase *Sec, | 
|  | typename ELFT::uint Val, | 
|  | uint8_t StOther = STV_HIDDEN) { | 
|  | SymbolBody *S = Symtab<ELFT>::X->find(Name); | 
|  | if (!S) | 
|  | return nullptr; | 
|  | if (!S->isUndefined() && !S->isShared()) | 
|  | return S->symbol(); | 
|  | return Symtab<ELFT>::X->addSynthetic(Name, Sec, Val, StOther); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static Symbol *addRegular(StringRef Name, InputSectionBase<ELFT> *Sec, | 
|  | typename ELFT::uint Value) { | 
|  | // The linker generated symbols are added as STB_WEAK to allow user defined | 
|  | // ones to override them. | 
|  | return Symtab<ELFT>::X->addRegular(Name, STV_HIDDEN, STT_NOTYPE, Value, | 
|  | /*Size=*/0, STB_WEAK, Sec, | 
|  | /*File=*/nullptr); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static Symbol *addOptionalRegular(StringRef Name, InputSectionBase<ELFT> *IS, | 
|  | typename ELFT::uint Value) { | 
|  | SymbolBody *S = Symtab<ELFT>::X->find(Name); | 
|  | if (!S) | 
|  | return nullptr; | 
|  | if (!S->isUndefined() && !S->isShared()) | 
|  | return S->symbol(); | 
|  | return addRegular(Name, IS, Value); | 
|  | } | 
|  |  | 
|  | // The beginning and the ending of .rel[a].plt section are marked | 
|  | // with __rel[a]_iplt_{start,end} symbols if it is a statically linked | 
|  | // executable. The runtime needs these symbols in order to resolve | 
|  | // all IRELATIVE relocs on startup. For dynamic executables, we don't | 
|  | // need these symbols, since IRELATIVE relocs are resolved through GOT | 
|  | // and PLT. For details, see http://www.airs.com/blog/archives/403. | 
|  | template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { | 
|  | if (In<ELFT>::DynSymTab) | 
|  | return; | 
|  | StringRef S = Config->Rela ? "__rela_iplt_start" : "__rel_iplt_start"; | 
|  | addOptionalRegular<ELFT>(S, In<ELFT>::RelaPlt, 0); | 
|  |  | 
|  | S = Config->Rela ? "__rela_iplt_end" : "__rel_iplt_end"; | 
|  | addOptionalRegular<ELFT>(S, In<ELFT>::RelaPlt, -1); | 
|  | } | 
|  |  | 
|  | // The linker is expected to define some symbols depending on | 
|  | // the linking result. This function defines such symbols. | 
|  | template <class ELFT> void Writer<ELFT>::addReservedSymbols() { | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer | 
|  | // so that it points to an absolute address which is relative to GOT. | 
|  | // Default offset is 0x7ff0. | 
|  | // See "Global Data Symbols" in Chapter 6 in the following document: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | ElfSym<ELFT>::MipsGp = addRegular("_gp", In<ELFT>::MipsGot, 0x7ff0)->body(); | 
|  |  | 
|  | // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between | 
|  | // start of function and 'gp' pointer into GOT. | 
|  | if (Symbol *S = addOptionalRegular("_gp_disp", In<ELFT>::MipsGot, 0)) | 
|  | ElfSym<ELFT>::MipsGpDisp = cast<DefinedRegular<ELFT>>(S->body()); | 
|  |  | 
|  | // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' | 
|  | // pointer. This symbol is used in the code generated by .cpload pseudo-op | 
|  | // in case of using -mno-shared option. | 
|  | // https://sourceware.org/ml/binutils/2004-12/msg00094.html | 
|  | if (Symbol *S = addOptionalRegular("__gnu_local_gp", In<ELFT>::MipsGot, 0)) | 
|  | ElfSym<ELFT>::MipsLocalGp = cast<DefinedRegular<ELFT>>(S->body()); | 
|  | } | 
|  |  | 
|  | // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol | 
|  | // is magical and is used to produce a R_386_GOTPC relocation. | 
|  | // The R_386_GOTPC relocation value doesn't actually depend on the | 
|  | // symbol value, so it could use an index of STN_UNDEF which, according | 
|  | // to the spec, means the symbol value is 0. | 
|  | // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in | 
|  | // the object file. | 
|  | // The situation is even stranger on x86_64 where the assembly doesn't | 
|  | // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as | 
|  | // an undefined symbol in the .o files. | 
|  | // Given that the symbol is effectively unused, we just create a dummy | 
|  | // hidden one to avoid the undefined symbol error. | 
|  | Symtab<ELFT>::X->addIgnored("_GLOBAL_OFFSET_TABLE_"); | 
|  |  | 
|  | // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For | 
|  | // static linking the linker is required to optimize away any references to | 
|  | // __tls_get_addr, so it's not defined anywhere. Create a hidden definition | 
|  | // to avoid the undefined symbol error. As usual special cases are ARM and | 
|  | // MIPS - the libc for these targets defines __tls_get_addr itself because | 
|  | // there are no TLS optimizations for these targets. | 
|  | if (!In<ELFT>::DynSymTab && | 
|  | (Config->EMachine != EM_MIPS && Config->EMachine != EM_ARM)) | 
|  | Symtab<ELFT>::X->addIgnored("__tls_get_addr"); | 
|  |  | 
|  | // If linker script do layout we do not need to create any standart symbols. | 
|  | if (ScriptConfig->HasSections) | 
|  | return; | 
|  |  | 
|  | ElfSym<ELFT>::EhdrStart = Symtab<ELFT>::X->addIgnored("__ehdr_start"); | 
|  |  | 
|  | auto Define = [this](StringRef S, DefinedRegular<ELFT> *&Sym1, | 
|  | DefinedRegular<ELFT> *&Sym2) { | 
|  | Sym1 = Symtab<ELFT>::X->addIgnored(S, STV_DEFAULT); | 
|  |  | 
|  | // The name without the underscore is not a reserved name, | 
|  | // so it is defined only when there is a reference against it. | 
|  | assert(S.startswith("_")); | 
|  | S = S.substr(1); | 
|  | if (SymbolBody *B = Symtab<ELFT>::X->find(S)) | 
|  | if (B->isUndefined()) | 
|  | Sym2 = Symtab<ELFT>::X->addAbsolute(S, STV_DEFAULT); | 
|  | }; | 
|  |  | 
|  | Define("_end", ElfSym<ELFT>::End, ElfSym<ELFT>::End2); | 
|  | Define("_etext", ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2); | 
|  | Define("_edata", ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2); | 
|  | } | 
|  |  | 
|  | // Sort input sections by section name suffixes for | 
|  | // __attribute__((init_priority(N))). | 
|  | template <class ELFT> static void sortInitFini(OutputSectionBase *S) { | 
|  | if (S) | 
|  | reinterpret_cast<OutputSection<ELFT> *>(S)->sortInitFini(); | 
|  | } | 
|  |  | 
|  | // Sort input sections by the special rule for .ctors and .dtors. | 
|  | template <class ELFT> static void sortCtorsDtors(OutputSectionBase *S) { | 
|  | if (S) | 
|  | reinterpret_cast<OutputSection<ELFT> *>(S)->sortCtorsDtors(); | 
|  | } | 
|  |  | 
|  | // Sort input sections using the list provided by --symbol-ordering-file. | 
|  | template <class ELFT> | 
|  | static void sortBySymbolsOrder(ArrayRef<OutputSectionBase *> V) { | 
|  | if (Config->SymbolOrderingFile.empty()) | 
|  | return; | 
|  |  | 
|  | // Build sections order map from symbols list. | 
|  | DenseMap<InputSectionBase<ELFT> *, unsigned> SectionsOrder; | 
|  | for (elf::ObjectFile<ELFT> *File : Symtab<ELFT>::X->getObjectFiles()) { | 
|  | for (SymbolBody *Body : File->getSymbols()) { | 
|  | auto *D = dyn_cast<DefinedRegular<ELFT>>(Body); | 
|  | if (!D || !D->Section) | 
|  | continue; | 
|  | auto It = | 
|  | Config->SymbolOrderingFile.find(CachedHashString(Body->getName())); | 
|  | if (It == Config->SymbolOrderingFile.end()) | 
|  | continue; | 
|  |  | 
|  | auto It2 = SectionsOrder.insert({D->Section, It->second}); | 
|  | if (!It2.second) | 
|  | It2.first->second = std::min(It->second, It2.first->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (OutputSectionBase *Base : V) | 
|  | if (OutputSection<ELFT> *Sec = dyn_cast<OutputSection<ELFT>>(Base)) | 
|  | Sec->sort([&](InputSection<ELFT> *S) { | 
|  | auto It = SectionsOrder.find(S); | 
|  | return It == SectionsOrder.end() ? UINT32_MAX : It->second; | 
|  | }); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::forEachRelSec( | 
|  | std::function<void(InputSectionBase<ELFT> &)> Fn) { | 
|  | for (InputSectionBase<ELFT> *IS : Symtab<ELFT>::X->Sections) { | 
|  | if (!IS->Live) | 
|  | continue; | 
|  | // Scan all relocations. Each relocation goes through a series | 
|  | // of tests to determine if it needs special treatment, such as | 
|  | // creating GOT, PLT, copy relocations, etc. | 
|  | // Note that relocations for non-alloc sections are directly | 
|  | // processed by InputSection::relocateNonAlloc. | 
|  | if (!(IS->Flags & SHF_ALLOC)) | 
|  | continue; | 
|  | if (isa<InputSection<ELFT>>(IS) || isa<EhInputSection<ELFT>>(IS)) | 
|  | Fn(*IS); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addInputSec(InputSectionBase<ELFT> *IS) { | 
|  | if (!IS) | 
|  | return; | 
|  |  | 
|  | if (!IS->Live) { | 
|  | reportDiscarded(IS); | 
|  | return; | 
|  | } | 
|  | OutputSectionBase *Sec; | 
|  | bool IsNew; | 
|  | StringRef OutsecName = getOutputSectionName(IS->Name); | 
|  | std::tie(Sec, IsNew) = Factory.create(IS, OutsecName); | 
|  | if (IsNew) | 
|  | OutputSections.push_back(Sec); | 
|  | Sec->addSection(IS); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::createSections() { | 
|  | for (InputSectionBase<ELFT> *IS : Symtab<ELFT>::X->Sections) | 
|  | addInputSec(IS); | 
|  |  | 
|  | sortBySymbolsOrder<ELFT>(OutputSections); | 
|  | sortInitFini<ELFT>(findSection(".init_array")); | 
|  | sortInitFini<ELFT>(findSection(".fini_array")); | 
|  | sortCtorsDtors<ELFT>(findSection(".ctors")); | 
|  | sortCtorsDtors<ELFT>(findSection(".dtors")); | 
|  |  | 
|  | for (OutputSectionBase *Sec : OutputSections) | 
|  | Sec->assignOffsets(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static bool canSharePtLoad(const OutputSectionBase &S1, | 
|  | const OutputSectionBase &S2) { | 
|  | if (!(S1.Flags & SHF_ALLOC) || !(S2.Flags & SHF_ALLOC)) | 
|  | return false; | 
|  |  | 
|  | bool S1IsWrite = S1.Flags & SHF_WRITE; | 
|  | bool S2IsWrite = S2.Flags & SHF_WRITE; | 
|  | if (S1IsWrite != S2IsWrite) | 
|  | return false; | 
|  |  | 
|  | if (!S1IsWrite) | 
|  | return true; // RO and RX share a PT_LOAD with linker scripts. | 
|  | return (S1.Flags & SHF_EXECINSTR) == (S2.Flags & SHF_EXECINSTR); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::sortSections() { | 
|  | // Don't sort if using -r. It is not necessary and we want to preserve the | 
|  | // relative order for SHF_LINK_ORDER sections. | 
|  | if (Config->Relocatable) | 
|  | return; | 
|  | if (!ScriptConfig->HasSections) { | 
|  | std::stable_sort(OutputSections.begin(), OutputSections.end(), | 
|  | compareSectionsNonScript<ELFT>); | 
|  | return; | 
|  | } | 
|  | Script<ELFT>::X->adjustSectionsBeforeSorting(); | 
|  |  | 
|  | // The order of the sections in the script is arbitrary and may not agree with | 
|  | // compareSectionsNonScript. This means that we cannot easily define a | 
|  | // strict weak ordering. To see why, consider a comparison of a section in the | 
|  | // script and one not in the script. We have a two simple options: | 
|  | // * Make them equivalent (a is not less than b, and b is not less than a). | 
|  | //   The problem is then that equivalence has to be transitive and we can | 
|  | //   have sections a, b and c with only b in a script and a less than c | 
|  | //   which breaks this property. | 
|  | // * Use compareSectionsNonScript. Given that the script order doesn't have | 
|  | //   to match, we can end up with sections a, b, c, d where b and c are in the | 
|  | //   script and c is compareSectionsNonScript less than b. In which case d | 
|  | //   can be equivalent to c, a to b and d < a. As a concrete example: | 
|  | //   .a (rx) # not in script | 
|  | //   .b (rx) # in script | 
|  | //   .c (ro) # in script | 
|  | //   .d (ro) # not in script | 
|  | // | 
|  | // The way we define an order then is: | 
|  | // *  First put script sections at the start and sort the script and | 
|  | //    non-script sections independently. | 
|  | // *  Move each non-script section to its preferred position. We try | 
|  | //    to put each section in the last position where it it can share | 
|  | //    a PT_LOAD. | 
|  |  | 
|  | std::stable_sort(OutputSections.begin(), OutputSections.end(), | 
|  | compareSections<ELFT>); | 
|  |  | 
|  | auto I = OutputSections.begin(); | 
|  | auto E = OutputSections.end(); | 
|  | auto NonScriptI = | 
|  | std::find_if(OutputSections.begin(), E, [](OutputSectionBase *S) { | 
|  | return Script<ELFT>::X->getSectionIndex(S->getName()) == INT_MAX; | 
|  | }); | 
|  | while (NonScriptI != E) { | 
|  | auto BestPos = std::max_element( | 
|  | I, NonScriptI, [&](OutputSectionBase *&A, OutputSectionBase *&B) { | 
|  | bool ACanSharePtLoad = canSharePtLoad<ELFT>(**NonScriptI, *A); | 
|  | bool BCanSharePtLoad = canSharePtLoad<ELFT>(**NonScriptI, *B); | 
|  | if (ACanSharePtLoad != BCanSharePtLoad) | 
|  | return BCanSharePtLoad; | 
|  |  | 
|  | bool ACmp = compareSectionsNonScript<ELFT>(*NonScriptI, A); | 
|  | bool BCmp = compareSectionsNonScript<ELFT>(*NonScriptI, B); | 
|  | if (ACmp != BCmp) | 
|  | return BCmp; // FIXME: missing test | 
|  |  | 
|  | size_t PosA = &A - &OutputSections[0]; | 
|  | size_t PosB = &B - &OutputSections[0]; | 
|  | return ACmp ? PosA > PosB : PosA < PosB; | 
|  | }); | 
|  |  | 
|  | // max_element only returns NonScriptI if the range is empty. If the range | 
|  | // is not empty we should consider moving the the element forward one | 
|  | // position. | 
|  | if (BestPos != NonScriptI && | 
|  | !compareSectionsNonScript<ELFT>(*NonScriptI, *BestPos)) | 
|  | ++BestPos; | 
|  | std::rotate(BestPos, NonScriptI, NonScriptI + 1); | 
|  | ++NonScriptI; | 
|  | } | 
|  |  | 
|  | Script<ELFT>::X->adjustSectionsAfterSorting(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void | 
|  | finalizeSynthetic(const std::vector<SyntheticSection<ELFT> *> &Sections) { | 
|  | for (SyntheticSection<ELFT> *SS : Sections) | 
|  | if (SS && SS->OutSec) { | 
|  | SS->finalize(); | 
|  | SS->OutSec->Size = 0; | 
|  | SS->OutSec->assignOffsets(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We need to add input synthetic sections early in createSyntheticSections() | 
|  | // to make them visible from linkescript side. But not all sections are always | 
|  | // required to be in output. For example we don't need dynamic section content | 
|  | // sometimes. This function filters out such unused sections from output. | 
|  | template <class ELFT> | 
|  | static void removeUnusedSyntheticSections(std::vector<OutputSectionBase *> &V) { | 
|  | // Input synthetic sections are placed after all regular ones. We iterate over | 
|  | // them all and exit at first non-synthetic. | 
|  | for (InputSectionBase<ELFT> *S : llvm::reverse(Symtab<ELFT>::X->Sections)) { | 
|  | SyntheticSection<ELFT> *SS = dyn_cast<SyntheticSection<ELFT>>(S); | 
|  | if (!SS) | 
|  | return; | 
|  | if (!SS->empty() || !SS->OutSec) | 
|  | continue; | 
|  |  | 
|  | OutputSection<ELFT> *OutSec = cast<OutputSection<ELFT>>(SS->OutSec); | 
|  | OutSec->Sections.erase( | 
|  | std::find(OutSec->Sections.begin(), OutSec->Sections.end(), SS)); | 
|  | // If there is no other sections in output section, remove it from output. | 
|  | if (OutSec->Sections.empty()) | 
|  | V.erase(std::find(V.begin(), V.end(), OutSec)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create output section objects and add them to OutputSections. | 
|  | template <class ELFT> void Writer<ELFT>::finalizeSections() { | 
|  | Out<ELFT>::DebugInfo = findSection(".debug_info"); | 
|  | Out<ELFT>::PreinitArray = findSection(".preinit_array"); | 
|  | Out<ELFT>::InitArray = findSection(".init_array"); | 
|  | Out<ELFT>::FiniArray = findSection(".fini_array"); | 
|  |  | 
|  | // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop | 
|  | // symbols for sections, so that the runtime can get the start and end | 
|  | // addresses of each section by section name. Add such symbols. | 
|  | if (!Config->Relocatable) { | 
|  | addStartEndSymbols(); | 
|  | for (OutputSectionBase *Sec : OutputSections) | 
|  | addStartStopSymbols(Sec); | 
|  | } | 
|  |  | 
|  | // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. | 
|  | // It should be okay as no one seems to care about the type. | 
|  | // Even the author of gold doesn't remember why gold behaves that way. | 
|  | // https://sourceware.org/ml/binutils/2002-03/msg00360.html | 
|  | if (In<ELFT>::DynSymTab) | 
|  | addRegular("_DYNAMIC", In<ELFT>::Dynamic, 0); | 
|  |  | 
|  | // Define __rel[a]_iplt_{start,end} symbols if needed. | 
|  | addRelIpltSymbols(); | 
|  |  | 
|  | if (!Out<ELFT>::EhFrame->empty()) { | 
|  | OutputSections.push_back(Out<ELFT>::EhFrame); | 
|  | Out<ELFT>::EhFrame->finalize(); | 
|  | } | 
|  |  | 
|  | // Scan relocations. This must be done after every symbol is declared so that | 
|  | // we can correctly decide if a dynamic relocation is needed. | 
|  | forEachRelSec(scanRelocations<ELFT>); | 
|  |  | 
|  | // Now that we have defined all possible symbols including linker- | 
|  | // synthesized ones. Visit all symbols to give the finishing touches. | 
|  | for (Symbol *S : Symtab<ELFT>::X->getSymbols()) { | 
|  | SymbolBody *Body = S->body(); | 
|  |  | 
|  | if (!includeInSymtab<ELFT>(*Body)) | 
|  | continue; | 
|  | if (In<ELFT>::SymTab) | 
|  | In<ELFT>::SymTab->addSymbol(Body); | 
|  |  | 
|  | if (In<ELFT>::DynSymTab && S->includeInDynsym()) { | 
|  | In<ELFT>::DynSymTab->addSymbol(Body); | 
|  | if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(Body)) | 
|  | if (SS->file()->isNeeded()) | 
|  | In<ELFT>::VerNeed->addSymbol(SS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do not proceed if there was an undefined symbol. | 
|  | if (ErrorCount) | 
|  | return; | 
|  |  | 
|  | // So far we have added sections from input object files. | 
|  | // This function adds linker-created Out<ELFT>::* sections. | 
|  | addPredefinedSections(); | 
|  | removeUnusedSyntheticSections<ELFT>(OutputSections); | 
|  |  | 
|  | sortSections(); | 
|  |  | 
|  | unsigned I = 1; | 
|  | for (OutputSectionBase *Sec : OutputSections) { | 
|  | Sec->SectionIndex = I++; | 
|  | Sec->ShName = In<ELFT>::ShStrTab->addString(Sec->getName()); | 
|  | } | 
|  |  | 
|  | // Fill other section headers. The dynamic table is finalized | 
|  | // at the end because some tags like RELSZ depend on result | 
|  | // of finalizing other sections. | 
|  | for (OutputSectionBase *Sec : OutputSections) | 
|  | Sec->finalize(); | 
|  |  | 
|  | // Dynamic section must be the last one in this list and dynamic | 
|  | // symbol table section (DynSymTab) must be the first one. | 
|  | finalizeSynthetic<ELFT>( | 
|  | {In<ELFT>::DynSymTab, In<ELFT>::GnuHashTab, In<ELFT>::HashTab, | 
|  | In<ELFT>::SymTab, In<ELFT>::ShStrTab, In<ELFT>::StrTab, In<ELFT>::VerDef, | 
|  | In<ELFT>::DynStrTab, In<ELFT>::GdbIndex, In<ELFT>::Got, | 
|  | In<ELFT>::MipsGot, In<ELFT>::GotPlt, In<ELFT>::RelaDyn, | 
|  | In<ELFT>::RelaPlt, In<ELFT>::Plt, In<ELFT>::EhFrameHdr, In<ELFT>::VerSym, | 
|  | In<ELFT>::VerNeed, In<ELFT>::Dynamic}); | 
|  | } | 
|  |  | 
|  | // This function add Out<ELFT>::* sections to OutputSections. | 
|  | template <class ELFT> void Writer<ELFT>::addPredefinedSections() { | 
|  | auto Add = [&](OutputSectionBase *OS) { | 
|  | if (OS) | 
|  | OutputSections.push_back(OS); | 
|  | }; | 
|  |  | 
|  | // This order is not the same as the final output order | 
|  | // because we sort the sections using their attributes below. | 
|  | if (In<ELFT>::GdbIndex && Out<ELFT>::DebugInfo) | 
|  | addInputSec(In<ELFT>::GdbIndex); | 
|  | addInputSec(In<ELFT>::SymTab); | 
|  | addInputSec(In<ELFT>::ShStrTab); | 
|  | addInputSec(In<ELFT>::StrTab); | 
|  |  | 
|  | // We always need to add rel[a].plt to output if it has entries. | 
|  | // Even during static linking it can contain R_[*]_IRELATIVE relocations. | 
|  | if (!In<ELFT>::RelaPlt->empty()) | 
|  | addInputSec(In<ELFT>::RelaPlt); | 
|  |  | 
|  | if (!In<ELFT>::Plt->empty()) | 
|  | addInputSec(In<ELFT>::Plt); | 
|  | if (!Out<ELFT>::EhFrame->empty()) | 
|  | addInputSec(In<ELFT>::EhFrameHdr); | 
|  | if (Out<ELFT>::Bss->Size > 0) | 
|  | Add(Out<ELFT>::Bss); | 
|  |  | 
|  | auto OS = dyn_cast_or_null<OutputSection<ELFT>>(findSection(".ARM.exidx")); | 
|  | if (OS && !OS->Sections.empty() && !Config->Relocatable) | 
|  | OS->addSection(make<ARMExidxSentinelSection<ELFT>>()); | 
|  | } | 
|  |  | 
|  | // The linker is expected to define SECNAME_start and SECNAME_end | 
|  | // symbols for a few sections. This function defines them. | 
|  | template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { | 
|  | auto Define = [&](StringRef Start, StringRef End, OutputSectionBase *OS) { | 
|  | // These symbols resolve to the image base if the section does not exist. | 
|  | addOptionalSynthetic<ELFT>(Start, OS, 0); | 
|  | addOptionalSynthetic<ELFT>(End, OS, | 
|  | OS ? DefinedSynthetic<ELFT>::SectionEnd : 0); | 
|  | }; | 
|  |  | 
|  | Define("__preinit_array_start", "__preinit_array_end", | 
|  | Out<ELFT>::PreinitArray); | 
|  | Define("__init_array_start", "__init_array_end", Out<ELFT>::InitArray); | 
|  | Define("__fini_array_start", "__fini_array_end", Out<ELFT>::FiniArray); | 
|  |  | 
|  | if (OutputSectionBase *Sec = findSection(".ARM.exidx")) | 
|  | Define("__exidx_start", "__exidx_end", Sec); | 
|  | } | 
|  |  | 
|  | // If a section name is valid as a C identifier (which is rare because of | 
|  | // the leading '.'), linkers are expected to define __start_<secname> and | 
|  | // __stop_<secname> symbols. They are at beginning and end of the section, | 
|  | // respectively. This is not requested by the ELF standard, but GNU ld and | 
|  | // gold provide the feature, and used by many programs. | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addStartStopSymbols(OutputSectionBase *Sec) { | 
|  | StringRef S = Sec->getName(); | 
|  | if (!isValidCIdentifier(S)) | 
|  | return; | 
|  | addOptionalSynthetic<ELFT>(Saver.save("__start_" + S), Sec, 0, STV_DEFAULT); | 
|  | addOptionalSynthetic<ELFT>(Saver.save("__stop_" + S), Sec, | 
|  | DefinedSynthetic<ELFT>::SectionEnd, STV_DEFAULT); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | OutputSectionBase *Writer<ELFT>::findSection(StringRef Name) { | 
|  | for (OutputSectionBase *Sec : OutputSections) | 
|  | if (Sec->getName() == Name) | 
|  | return Sec; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool needsPtLoad(OutputSectionBase *Sec) { | 
|  | if (!(Sec->Flags & SHF_ALLOC)) | 
|  | return false; | 
|  |  | 
|  | // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is | 
|  | // responsible for allocating space for them, not the PT_LOAD that | 
|  | // contains the TLS initialization image. | 
|  | if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Linker scripts are responsible for aligning addresses. Unfortunately, most | 
|  | // linker scripts are designed for creating two PT_LOADs only, one RX and one | 
|  | // RW. This means that there is no alignment in the RO to RX transition and we | 
|  | // cannot create a PT_LOAD there. | 
|  | template <class ELFT> | 
|  | static typename ELFT::uint computeFlags(typename ELFT::uint F) { | 
|  | if (ScriptConfig->HasSections && !(F & PF_W)) | 
|  | return F | PF_X; | 
|  | return F; | 
|  | } | 
|  |  | 
|  | // Decide which program headers to create and which sections to include in each | 
|  | // one. | 
|  | template <class ELFT> std::vector<PhdrEntry<ELFT>> Writer<ELFT>::createPhdrs() { | 
|  | std::vector<Phdr> Ret; | 
|  | auto AddHdr = [&](unsigned Type, unsigned Flags) -> Phdr * { | 
|  | Ret.emplace_back(Type, Flags); | 
|  | return &Ret.back(); | 
|  | }; | 
|  |  | 
|  | // The first phdr entry is PT_PHDR which describes the program header itself. | 
|  | Phdr &Hdr = *AddHdr(PT_PHDR, PF_R); | 
|  | Hdr.add(Out<ELFT>::ProgramHeaders); | 
|  |  | 
|  | // PT_INTERP must be the second entry if exists. | 
|  | if (OutputSectionBase *Sec = findSection(".interp")) { | 
|  | Phdr &Hdr = *AddHdr(PT_INTERP, Sec->getPhdrFlags()); | 
|  | Hdr.add(Sec); | 
|  | } | 
|  |  | 
|  | // Add the first PT_LOAD segment for regular output sections. | 
|  | uintX_t Flags = computeFlags<ELFT>(PF_R); | 
|  | Phdr *Load = AddHdr(PT_LOAD, Flags); | 
|  | if (!ScriptConfig->HasSections) { | 
|  | Load->add(Out<ELFT>::ElfHeader); | 
|  | Load->add(Out<ELFT>::ProgramHeaders); | 
|  | } | 
|  |  | 
|  | Phdr TlsHdr(PT_TLS, PF_R); | 
|  | Phdr RelRo(PT_GNU_RELRO, PF_R); | 
|  | Phdr Note(PT_NOTE, PF_R); | 
|  | for (OutputSectionBase *Sec : OutputSections) { | 
|  | if (!(Sec->Flags & SHF_ALLOC)) | 
|  | break; | 
|  |  | 
|  | // If we meet TLS section then we create TLS header | 
|  | // and put all TLS sections inside for further use when | 
|  | // assign addresses. | 
|  | if (Sec->Flags & SHF_TLS) | 
|  | TlsHdr.add(Sec); | 
|  |  | 
|  | if (!needsPtLoad<ELFT>(Sec)) | 
|  | continue; | 
|  |  | 
|  | // Segments are contiguous memory regions that has the same attributes | 
|  | // (e.g. executable or writable). There is one phdr for each segment. | 
|  | // Therefore, we need to create a new phdr when the next section has | 
|  | // different flags or is loaded at a discontiguous address using AT linker | 
|  | // script command. | 
|  | uintX_t NewFlags = computeFlags<ELFT>(Sec->getPhdrFlags()); | 
|  | if (Script<ELFT>::X->hasLMA(Sec->getName()) || Flags != NewFlags) { | 
|  | Load = AddHdr(PT_LOAD, NewFlags); | 
|  | Flags = NewFlags; | 
|  | } | 
|  |  | 
|  | Load->add(Sec); | 
|  |  | 
|  | if (isRelroSection<ELFT>(Sec)) | 
|  | RelRo.add(Sec); | 
|  | if (Sec->Type == SHT_NOTE) | 
|  | Note.add(Sec); | 
|  | } | 
|  |  | 
|  | // Add the TLS segment unless it's empty. | 
|  | if (TlsHdr.First) | 
|  | Ret.push_back(std::move(TlsHdr)); | 
|  |  | 
|  | // Add an entry for .dynamic. | 
|  | if (In<ELFT>::DynSymTab) { | 
|  | Phdr &H = *AddHdr(PT_DYNAMIC, In<ELFT>::Dynamic->OutSec->getPhdrFlags()); | 
|  | H.add(In<ELFT>::Dynamic->OutSec); | 
|  | } | 
|  |  | 
|  | // PT_GNU_RELRO includes all sections that should be marked as | 
|  | // read-only by dynamic linker after proccessing relocations. | 
|  | if (RelRo.First) | 
|  | Ret.push_back(std::move(RelRo)); | 
|  |  | 
|  | // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. | 
|  | if (!Out<ELFT>::EhFrame->empty() && In<ELFT>::EhFrameHdr) { | 
|  | Phdr &Hdr = | 
|  | *AddHdr(PT_GNU_EH_FRAME, In<ELFT>::EhFrameHdr->OutSec->getPhdrFlags()); | 
|  | Hdr.add(In<ELFT>::EhFrameHdr->OutSec); | 
|  | } | 
|  |  | 
|  | // PT_OPENBSD_RANDOMIZE specifies the location and size of a part of the | 
|  | // memory image of the program that must be filled with random data before any | 
|  | // code in the object is executed. | 
|  | if (OutputSectionBase *Sec = findSection(".openbsd.randomdata")) { | 
|  | Phdr &Hdr = *AddHdr(PT_OPENBSD_RANDOMIZE, Sec->getPhdrFlags()); | 
|  | Hdr.add(Sec); | 
|  | } | 
|  |  | 
|  | // PT_GNU_STACK is a special section to tell the loader to make the | 
|  | // pages for the stack non-executable. | 
|  | if (!Config->ZExecstack) { | 
|  | Phdr &Hdr = *AddHdr(PT_GNU_STACK, PF_R | PF_W); | 
|  | if (Config->ZStackSize != uint64_t(-1)) | 
|  | Hdr.H.p_memsz = Config->ZStackSize; | 
|  | } | 
|  |  | 
|  | // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable | 
|  | // is expected to perform W^X violations, such as calling mprotect(2) or | 
|  | // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on | 
|  | // OpenBSD. | 
|  | if (Config->ZWxneeded) | 
|  | AddHdr(PT_OPENBSD_WXNEEDED, PF_X); | 
|  |  | 
|  | if (Note.First) | 
|  | Ret.push_back(std::move(Note)); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry<ELFT>> &Phdrs) { | 
|  | if (Config->EMachine != EM_ARM) | 
|  | return; | 
|  | auto I = std::find_if( | 
|  | OutputSections.begin(), OutputSections.end(), | 
|  | [](OutputSectionBase *Sec) { return Sec->Type == SHT_ARM_EXIDX; }); | 
|  | if (I == OutputSections.end()) | 
|  | return; | 
|  |  | 
|  | // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME | 
|  | Phdr ARMExidx(PT_ARM_EXIDX, PF_R); | 
|  | ARMExidx.add(*I); | 
|  | Phdrs.push_back(ARMExidx); | 
|  | } | 
|  |  | 
|  | // The first section of each PT_LOAD and the first section after PT_GNU_RELRO | 
|  | // have to be page aligned so that the dynamic linker can set the permissions. | 
|  | template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { | 
|  | for (const Phdr &P : Phdrs) | 
|  | if (P.H.p_type == PT_LOAD) | 
|  | P.First->PageAlign = true; | 
|  |  | 
|  | for (const Phdr &P : Phdrs) { | 
|  | if (P.H.p_type != PT_GNU_RELRO) | 
|  | continue; | 
|  | // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we | 
|  | // have to align it to a page. | 
|  | auto End = OutputSections.end(); | 
|  | auto I = std::find(OutputSections.begin(), End, P.Last); | 
|  | if (I == End || (I + 1) == End) | 
|  | continue; | 
|  | OutputSectionBase *Sec = *(I + 1); | 
|  | if (needsPtLoad<ELFT>(Sec)) | 
|  | Sec->PageAlign = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We should set file offsets and VAs for elf header and program headers | 
|  | // sections. These are special, we do not include them into output sections | 
|  | // list, but have them to simplify the code. | 
|  | template <class ELFT> void Writer<ELFT>::fixHeaders() { | 
|  | Out<ELFT>::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); | 
|  | // If the script has SECTIONS, assignAddresses will compute the values. | 
|  | if (ScriptConfig->HasSections) | 
|  | return; | 
|  | uintX_t BaseVA = Config->ImageBase; | 
|  | Out<ELFT>::ElfHeader->Addr = BaseVA; | 
|  | Out<ELFT>::ProgramHeaders->Addr = BaseVA + Out<ELFT>::ElfHeader->Size; | 
|  | } | 
|  |  | 
|  | // Assign VAs (addresses at run-time) to output sections. | 
|  | template <class ELFT> void Writer<ELFT>::assignAddresses() { | 
|  | uintX_t VA = Config->ImageBase + getHeaderSize<ELFT>(); | 
|  | uintX_t ThreadBssOffset = 0; | 
|  | for (OutputSectionBase *Sec : OutputSections) { | 
|  | uintX_t Alignment = Sec->Addralign; | 
|  | if (Sec->PageAlign) | 
|  | Alignment = std::max<uintX_t>(Alignment, Config->MaxPageSize); | 
|  |  | 
|  | auto I = Config->SectionStartMap.find(Sec->getName()); | 
|  | if (I != Config->SectionStartMap.end()) | 
|  | VA = I->second; | 
|  |  | 
|  | // We only assign VAs to allocated sections. | 
|  | if (needsPtLoad<ELFT>(Sec)) { | 
|  | VA = alignTo(VA, Alignment); | 
|  | Sec->Addr = VA; | 
|  | VA += Sec->Size; | 
|  | } else if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) { | 
|  | uintX_t TVA = VA + ThreadBssOffset; | 
|  | TVA = alignTo(TVA, Alignment); | 
|  | Sec->Addr = TVA; | 
|  | ThreadBssOffset = TVA - VA + Sec->Size; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adjusts the file alignment for a given output section and returns | 
|  | // its new file offset. The file offset must be the same with its | 
|  | // virtual address (modulo the page size) so that the loader can load | 
|  | // executables without any address adjustment. | 
|  | template <class ELFT, class uintX_t> | 
|  | static uintX_t getFileAlignment(uintX_t Off, OutputSectionBase *Sec) { | 
|  | uintX_t Alignment = Sec->Addralign; | 
|  | if (Sec->PageAlign) | 
|  | Alignment = std::max<uintX_t>(Alignment, Config->MaxPageSize); | 
|  | Off = alignTo(Off, Alignment); | 
|  |  | 
|  | OutputSectionBase *First = Sec->FirstInPtLoad; | 
|  | // If the section is not in a PT_LOAD, we have no other constraint. | 
|  | if (!First) | 
|  | return Off; | 
|  |  | 
|  | // If two sections share the same PT_LOAD the file offset is calculated using | 
|  | // this formula: Off2 = Off1 + (VA2 - VA1). | 
|  | if (Sec == First) | 
|  | return alignTo(Off, Target->MaxPageSize, Sec->Addr); | 
|  | return First->Offset + Sec->Addr - First->Addr; | 
|  | } | 
|  |  | 
|  | template <class ELFT, class uintX_t> | 
|  | void setOffset(OutputSectionBase *Sec, uintX_t &Off) { | 
|  | if (Sec->Type == SHT_NOBITS) { | 
|  | Sec->Offset = Off; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Off = getFileAlignment<ELFT>(Off, Sec); | 
|  | Sec->Offset = Off; | 
|  | Off += Sec->Size; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { | 
|  | uintX_t Off = 0; | 
|  | for (OutputSectionBase *Sec : OutputSections) | 
|  | if (Sec->Flags & SHF_ALLOC) | 
|  | setOffset<ELFT>(Sec, Off); | 
|  | FileSize = alignTo(Off, sizeof(uintX_t)); | 
|  | } | 
|  |  | 
|  | // Assign file offsets to output sections. | 
|  | template <class ELFT> void Writer<ELFT>::assignFileOffsets() { | 
|  | uintX_t Off = 0; | 
|  | setOffset<ELFT>(Out<ELFT>::ElfHeader, Off); | 
|  | setOffset<ELFT>(Out<ELFT>::ProgramHeaders, Off); | 
|  |  | 
|  | for (OutputSectionBase *Sec : OutputSections) | 
|  | setOffset<ELFT>(Sec, Off); | 
|  |  | 
|  | SectionHeaderOff = alignTo(Off, sizeof(uintX_t)); | 
|  | FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); | 
|  | } | 
|  |  | 
|  | // Finalize the program headers. We call this function after we assign | 
|  | // file offsets and VAs to all sections. | 
|  | template <class ELFT> void Writer<ELFT>::setPhdrs() { | 
|  | for (Phdr &P : Phdrs) { | 
|  | Elf_Phdr &H = P.H; | 
|  | OutputSectionBase *First = P.First; | 
|  | OutputSectionBase *Last = P.Last; | 
|  | if (First) { | 
|  | H.p_filesz = Last->Offset - First->Offset; | 
|  | if (Last->Type != SHT_NOBITS) | 
|  | H.p_filesz += Last->Size; | 
|  | H.p_memsz = Last->Addr + Last->Size - First->Addr; | 
|  | H.p_offset = First->Offset; | 
|  | H.p_vaddr = First->Addr; | 
|  | if (!P.HasLMA) | 
|  | H.p_paddr = First->getLMA(); | 
|  | } | 
|  | if (H.p_type == PT_LOAD) | 
|  | H.p_align = Config->MaxPageSize; | 
|  | else if (H.p_type == PT_GNU_RELRO) | 
|  | H.p_align = 1; | 
|  |  | 
|  | // The TLS pointer goes after PT_TLS. At least glibc will align it, | 
|  | // so round up the size to make sure the offsets are correct. | 
|  | if (H.p_type == PT_TLS) { | 
|  | Out<ELFT>::TlsPhdr = &H; | 
|  | if (H.p_memsz) | 
|  | H.p_memsz = alignTo(H.p_memsz, H.p_align); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The entry point address is chosen in the following ways. | 
|  | // | 
|  | // 1. the '-e' entry command-line option; | 
|  | // 2. the ENTRY(symbol) command in a linker control script; | 
|  | // 3. the value of the symbol start, if present; | 
|  | // 4. the address of the first byte of the .text section, if present; | 
|  | // 5. the address 0. | 
|  | template <class ELFT> typename ELFT::uint Writer<ELFT>::getEntryAddr() { | 
|  | // Case 1, 2 or 3 | 
|  | if (Config->Entry.empty()) | 
|  | return Config->EntryAddr; | 
|  | if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Entry)) | 
|  | return B->getVA<ELFT>(); | 
|  |  | 
|  | // Case 4 | 
|  | if (OutputSectionBase *Sec = findSection(".text")) { | 
|  | warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + | 
|  | utohexstr(Sec->Addr)); | 
|  | return Sec->Addr; | 
|  | } | 
|  |  | 
|  | // Case 5 | 
|  | warn("cannot find entry symbol " + Config->Entry + | 
|  | "; not setting start address"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static uint8_t getELFEncoding() { | 
|  | if (ELFT::TargetEndianness == llvm::support::little) | 
|  | return ELFDATA2LSB; | 
|  | return ELFDATA2MSB; | 
|  | } | 
|  |  | 
|  | static uint16_t getELFType() { | 
|  | if (Config->Pic) | 
|  | return ET_DYN; | 
|  | if (Config->Relocatable) | 
|  | return ET_REL; | 
|  | return ET_EXEC; | 
|  | } | 
|  |  | 
|  | // This function is called after we have assigned address and size | 
|  | // to each section. This function fixes some predefined absolute | 
|  | // symbol values that depend on section address and size. | 
|  | template <class ELFT> void Writer<ELFT>::fixAbsoluteSymbols() { | 
|  | // __ehdr_start is the location of program headers. | 
|  | if (ElfSym<ELFT>::EhdrStart) | 
|  | ElfSym<ELFT>::EhdrStart->Value = Out<ELFT>::ProgramHeaders->Addr; | 
|  |  | 
|  | auto Set = [](DefinedRegular<ELFT> *S1, DefinedRegular<ELFT> *S2, uintX_t V) { | 
|  | if (S1) | 
|  | S1->Value = V; | 
|  | if (S2) | 
|  | S2->Value = V; | 
|  | }; | 
|  |  | 
|  | // _etext is the first location after the last read-only loadable segment. | 
|  | // _edata is the first location after the last read-write loadable segment. | 
|  | // _end is the first location after the uninitialized data region. | 
|  | for (Phdr &P : Phdrs) { | 
|  | Elf_Phdr &H = P.H; | 
|  | if (H.p_type != PT_LOAD) | 
|  | continue; | 
|  | Set(ElfSym<ELFT>::End, ElfSym<ELFT>::End2, H.p_vaddr + H.p_memsz); | 
|  |  | 
|  | uintX_t Val = H.p_vaddr + H.p_filesz; | 
|  | if (H.p_flags & PF_W) | 
|  | Set(ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2, Val); | 
|  | else | 
|  | Set(ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2, Val); | 
|  | } | 
|  |  | 
|  | // Setup MIPS _gp_disp/__gnu_local_gp symbols which should | 
|  | // be equal to the _gp symbol's value. | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | uintX_t GpDisp = In<ELFT>::MipsGot->getGp() - In<ELFT>::MipsGot->getVA(); | 
|  | if (ElfSym<ELFT>::MipsGpDisp) | 
|  | ElfSym<ELFT>::MipsGpDisp->Value = GpDisp; | 
|  | if (ElfSym<ELFT>::MipsLocalGp) | 
|  | ElfSym<ELFT>::MipsLocalGp->Value = GpDisp; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::writeHeader() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  | memcpy(Buf, "\177ELF", 4); | 
|  |  | 
|  | // Write the ELF header. | 
|  | auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); | 
|  | EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; | 
|  | EHdr->e_ident[EI_DATA] = getELFEncoding<ELFT>(); | 
|  | EHdr->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | EHdr->e_ident[EI_OSABI] = Config->OSABI; | 
|  | EHdr->e_type = getELFType(); | 
|  | EHdr->e_machine = Config->EMachine; | 
|  | EHdr->e_version = EV_CURRENT; | 
|  | EHdr->e_entry = getEntryAddr(); | 
|  | EHdr->e_shoff = SectionHeaderOff; | 
|  | EHdr->e_ehsize = sizeof(Elf_Ehdr); | 
|  | EHdr->e_phnum = Phdrs.size(); | 
|  | EHdr->e_shentsize = sizeof(Elf_Shdr); | 
|  | EHdr->e_shnum = OutputSections.size() + 1; | 
|  | EHdr->e_shstrndx = In<ELFT>::ShStrTab->OutSec->SectionIndex; | 
|  |  | 
|  | if (Config->EMachine == EM_ARM) | 
|  | // We don't currently use any features incompatible with EF_ARM_EABI_VER5, | 
|  | // but we don't have any firm guarantees of conformance. Linux AArch64 | 
|  | // kernels (as of 2016) require an EABI version to be set. | 
|  | EHdr->e_flags = EF_ARM_EABI_VER5; | 
|  | else if (Config->EMachine == EM_MIPS) | 
|  | EHdr->e_flags = getMipsEFlags<ELFT>(); | 
|  |  | 
|  | if (!Config->Relocatable) { | 
|  | EHdr->e_phoff = sizeof(Elf_Ehdr); | 
|  | EHdr->e_phentsize = sizeof(Elf_Phdr); | 
|  | } | 
|  |  | 
|  | // Write the program header table. | 
|  | auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); | 
|  | for (Phdr &P : Phdrs) | 
|  | *HBuf++ = P.H; | 
|  |  | 
|  | // Write the section header table. Note that the first table entry is null. | 
|  | auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); | 
|  | for (OutputSectionBase *Sec : OutputSections) | 
|  | Sec->writeHeaderTo<ELFT>(++SHdrs); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::openFile() { | 
|  | ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr = | 
|  | FileOutputBuffer::create(Config->OutputFile, FileSize, | 
|  | FileOutputBuffer::F_executable); | 
|  | if (auto EC = BufferOrErr.getError()) | 
|  | error(EC, "failed to open " + Config->OutputFile); | 
|  | else | 
|  | Buffer = std::move(*BufferOrErr); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  | for (OutputSectionBase *Sec : OutputSections) | 
|  | if (Sec->Flags & SHF_ALLOC) | 
|  | Sec->writeTo(Buf + Sec->Offset); | 
|  | } | 
|  |  | 
|  | // Write section contents to a mmap'ed file. | 
|  | template <class ELFT> void Writer<ELFT>::writeSections() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  |  | 
|  | // PPC64 needs to process relocations in the .opd section | 
|  | // before processing relocations in code-containing sections. | 
|  | Out<ELFT>::Opd = findSection(".opd"); | 
|  | if (Out<ELFT>::Opd) { | 
|  | Out<ELFT>::OpdBuf = Buf + Out<ELFT>::Opd->Offset; | 
|  | Out<ELFT>::Opd->writeTo(Buf + Out<ELFT>::Opd->Offset); | 
|  | } | 
|  |  | 
|  | OutputSectionBase *EhFrameHdr = | 
|  | In<ELFT>::EhFrameHdr ? In<ELFT>::EhFrameHdr->OutSec : nullptr; | 
|  | for (OutputSectionBase *Sec : OutputSections) | 
|  | if (Sec != Out<ELFT>::Opd && Sec != EhFrameHdr) | 
|  | Sec->writeTo(Buf + Sec->Offset); | 
|  |  | 
|  | // The .eh_frame_hdr depends on .eh_frame section contents, therefore | 
|  | // it should be written after .eh_frame is written. | 
|  | if (!Out<ELFT>::EhFrame->empty() && EhFrameHdr) | 
|  | EhFrameHdr->writeTo(Buf + EhFrameHdr->Offset); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::writeBuildId() { | 
|  | if (!In<ELFT>::BuildId || !In<ELFT>::BuildId->OutSec) | 
|  | return; | 
|  |  | 
|  | // Compute a hash of all sections of the output file. | 
|  | uint8_t *Start = Buffer->getBufferStart(); | 
|  | uint8_t *End = Start + FileSize; | 
|  | In<ELFT>::BuildId->writeBuildId({Start, End}); | 
|  | } | 
|  |  | 
|  | template void elf::writeResult<ELF32LE>(); | 
|  | template void elf::writeResult<ELF32BE>(); | 
|  | template void elf::writeResult<ELF64LE>(); | 
|  | template void elf::writeResult<ELF64BE>(); | 
|  |  | 
|  | template struct elf::PhdrEntry<ELF32LE>; | 
|  | template struct elf::PhdrEntry<ELF32BE>; | 
|  | template struct elf::PhdrEntry<ELF64LE>; | 
|  | template struct elf::PhdrEntry<ELF64BE>; | 
|  |  | 
|  | template bool elf::isRelroSection<ELF32LE>(const OutputSectionBase *); | 
|  | template bool elf::isRelroSection<ELF32BE>(const OutputSectionBase *); | 
|  | template bool elf::isRelroSection<ELF64LE>(const OutputSectionBase *); | 
|  | template bool elf::isRelroSection<ELF64BE>(const OutputSectionBase *); | 
|  |  | 
|  | template void elf::reportDiscarded<ELF32LE>(InputSectionBase<ELF32LE> *); | 
|  | template void elf::reportDiscarded<ELF32BE>(InputSectionBase<ELF32BE> *); | 
|  | template void elf::reportDiscarded<ELF64LE>(InputSectionBase<ELF64LE> *); | 
|  | template void elf::reportDiscarded<ELF64BE>(InputSectionBase<ELF64BE> *); |