|  | //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the pass which converts floating point instructions from | 
|  | // pseudo registers into register stack instructions.  This pass uses live | 
|  | // variable information to indicate where the FPn registers are used and their | 
|  | // lifetimes. | 
|  | // | 
|  | // The x87 hardware tracks liveness of the stack registers, so it is necessary | 
|  | // to implement exact liveness tracking between basic blocks. The CFG edges are | 
|  | // partitioned into bundles where the same FP registers must be live in | 
|  | // identical stack positions. Instructions are inserted at the end of each basic | 
|  | // block to rearrange the live registers to match the outgoing bundle. | 
|  | // | 
|  | // This approach avoids splitting critical edges at the potential cost of more | 
|  | // live register shuffling instructions when critical edges are present. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86.h" | 
|  | #include "X86InstrInfo.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/EdgeBundles.h" | 
|  | #include "llvm/CodeGen/LivePhysRegs.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <algorithm> | 
|  | #include <bitset> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "x86-codegen" | 
|  |  | 
|  | STATISTIC(NumFXCH, "Number of fxch instructions inserted"); | 
|  | STATISTIC(NumFP  , "Number of floating point instructions"); | 
|  |  | 
|  | namespace { | 
|  | const unsigned ScratchFPReg = 7; | 
|  |  | 
|  | struct FPS : public MachineFunctionPass { | 
|  | static char ID; | 
|  | FPS() : MachineFunctionPass(ID) { | 
|  | // This is really only to keep valgrind quiet. | 
|  | // The logic in isLive() is too much for it. | 
|  | memset(Stack, 0, sizeof(Stack)); | 
|  | memset(RegMap, 0, sizeof(RegMap)); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<EdgeBundles>(); | 
|  | AU.addPreservedID(MachineLoopInfoID); | 
|  | AU.addPreservedID(MachineDominatorsID); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | MachineFunctionProperties getRequiredProperties() const override { | 
|  | return MachineFunctionProperties().set( | 
|  | MachineFunctionProperties::Property::NoVRegs); | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { return "X86 FP Stackifier"; } | 
|  |  | 
|  | private: | 
|  | const TargetInstrInfo *TII; // Machine instruction info. | 
|  |  | 
|  | // Two CFG edges are related if they leave the same block, or enter the same | 
|  | // block. The transitive closure of an edge under this relation is a | 
|  | // LiveBundle. It represents a set of CFG edges where the live FP stack | 
|  | // registers must be allocated identically in the x87 stack. | 
|  | // | 
|  | // A LiveBundle is usually all the edges leaving a block, or all the edges | 
|  | // entering a block, but it can contain more edges if critical edges are | 
|  | // present. | 
|  | // | 
|  | // The set of live FP registers in a LiveBundle is calculated by bundleCFG, | 
|  | // but the exact mapping of FP registers to stack slots is fixed later. | 
|  | struct LiveBundle { | 
|  | // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c. | 
|  | unsigned Mask; | 
|  |  | 
|  | // Number of pre-assigned live registers in FixStack. This is 0 when the | 
|  | // stack order has not yet been fixed. | 
|  | unsigned FixCount; | 
|  |  | 
|  | // Assigned stack order for live-in registers. | 
|  | // FixStack[i] == getStackEntry(i) for all i < FixCount. | 
|  | unsigned char FixStack[8]; | 
|  |  | 
|  | LiveBundle() : Mask(0), FixCount(0) {} | 
|  |  | 
|  | // Have the live registers been assigned a stack order yet? | 
|  | bool isFixed() const { return !Mask || FixCount; } | 
|  | }; | 
|  |  | 
|  | // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges | 
|  | // with no live FP registers. | 
|  | SmallVector<LiveBundle, 8> LiveBundles; | 
|  |  | 
|  | // The edge bundle analysis provides indices into the LiveBundles vector. | 
|  | EdgeBundles *Bundles; | 
|  |  | 
|  | // Return a bitmask of FP registers in block's live-in list. | 
|  | static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) { | 
|  | unsigned Mask = 0; | 
|  | for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(); | 
|  | I != MBB->livein_end(); ) { | 
|  | MCPhysReg Reg = I->PhysReg; | 
|  | static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums"); | 
|  | if (Reg >= X86::FP0 && Reg <= X86::FP6) { | 
|  | Mask |= 1 << (Reg - X86::FP0); | 
|  | if (RemoveFPs) { | 
|  | I = MBB->removeLiveIn(I); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | ++I; | 
|  | } | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | // Partition all the CFG edges into LiveBundles. | 
|  | void bundleCFGRecomputeKillFlags(MachineFunction &MF); | 
|  |  | 
|  | MachineBasicBlock *MBB;     // Current basic block | 
|  |  | 
|  | // The hardware keeps track of how many FP registers are live, so we have | 
|  | // to model that exactly. Usually, each live register corresponds to an | 
|  | // FP<n> register, but when dealing with calls, returns, and inline | 
|  | // assembly, it is sometimes necessary to have live scratch registers. | 
|  | unsigned Stack[8];          // FP<n> Registers in each stack slot... | 
|  | unsigned StackTop;          // The current top of the FP stack. | 
|  |  | 
|  | enum { | 
|  | NumFPRegs = 8             // Including scratch pseudo-registers. | 
|  | }; | 
|  |  | 
|  | // For each live FP<n> register, point to its Stack[] entry. | 
|  | // The first entries correspond to FP0-FP6, the rest are scratch registers | 
|  | // used when we need slightly different live registers than what the | 
|  | // register allocator thinks. | 
|  | unsigned RegMap[NumFPRegs]; | 
|  |  | 
|  | // Set up our stack model to match the incoming registers to MBB. | 
|  | void setupBlockStack(); | 
|  |  | 
|  | // Shuffle live registers to match the expectations of successor blocks. | 
|  | void finishBlockStack(); | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void dumpStack() const { | 
|  | dbgs() << "Stack contents:"; | 
|  | for (unsigned i = 0; i != StackTop; ++i) { | 
|  | dbgs() << " FP" << Stack[i]; | 
|  | assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// getSlot - Return the stack slot number a particular register number is | 
|  | /// in. | 
|  | unsigned getSlot(unsigned RegNo) const { | 
|  | assert(RegNo < NumFPRegs && "Regno out of range!"); | 
|  | return RegMap[RegNo]; | 
|  | } | 
|  |  | 
|  | /// isLive - Is RegNo currently live in the stack? | 
|  | bool isLive(unsigned RegNo) const { | 
|  | unsigned Slot = getSlot(RegNo); | 
|  | return Slot < StackTop && Stack[Slot] == RegNo; | 
|  | } | 
|  |  | 
|  | /// getStackEntry - Return the X86::FP<n> register in register ST(i). | 
|  | unsigned getStackEntry(unsigned STi) const { | 
|  | if (STi >= StackTop) | 
|  | report_fatal_error("Access past stack top!"); | 
|  | return Stack[StackTop-1-STi]; | 
|  | } | 
|  |  | 
|  | /// getSTReg - Return the X86::ST(i) register which contains the specified | 
|  | /// FP<RegNo> register. | 
|  | unsigned getSTReg(unsigned RegNo) const { | 
|  | return StackTop - 1 - getSlot(RegNo) + X86::ST0; | 
|  | } | 
|  |  | 
|  | // pushReg - Push the specified FP<n> register onto the stack. | 
|  | void pushReg(unsigned Reg) { | 
|  | assert(Reg < NumFPRegs && "Register number out of range!"); | 
|  | if (StackTop >= 8) | 
|  | report_fatal_error("Stack overflow!"); | 
|  | Stack[StackTop] = Reg; | 
|  | RegMap[Reg] = StackTop++; | 
|  | } | 
|  |  | 
|  | // popReg - Pop a register from the stack. | 
|  | void popReg() { | 
|  | if (StackTop == 0) | 
|  | report_fatal_error("Cannot pop empty stack!"); | 
|  | RegMap[Stack[--StackTop]] = ~0;     // Update state | 
|  | } | 
|  |  | 
|  | bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } | 
|  | void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) { | 
|  | DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); | 
|  | if (isAtTop(RegNo)) return; | 
|  |  | 
|  | unsigned STReg = getSTReg(RegNo); | 
|  | unsigned RegOnTop = getStackEntry(0); | 
|  |  | 
|  | // Swap the slots the regs are in. | 
|  | std::swap(RegMap[RegNo], RegMap[RegOnTop]); | 
|  |  | 
|  | // Swap stack slot contents. | 
|  | if (RegMap[RegOnTop] >= StackTop) | 
|  | report_fatal_error("Access past stack top!"); | 
|  | std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); | 
|  |  | 
|  | // Emit an fxch to update the runtime processors version of the state. | 
|  | BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg); | 
|  | ++NumFXCH; | 
|  | } | 
|  |  | 
|  | void duplicateToTop(unsigned RegNo, unsigned AsReg, | 
|  | MachineBasicBlock::iterator I) { | 
|  | DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); | 
|  | unsigned STReg = getSTReg(RegNo); | 
|  | pushReg(AsReg);   // New register on top of stack | 
|  |  | 
|  | BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg); | 
|  | } | 
|  |  | 
|  | /// popStackAfter - Pop the current value off of the top of the FP stack | 
|  | /// after the specified instruction. | 
|  | void popStackAfter(MachineBasicBlock::iterator &I); | 
|  |  | 
|  | /// freeStackSlotAfter - Free the specified register from the register | 
|  | /// stack, so that it is no longer in a register.  If the register is | 
|  | /// currently at the top of the stack, we just pop the current instruction, | 
|  | /// otherwise we store the current top-of-stack into the specified slot, | 
|  | /// then pop the top of stack. | 
|  | void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); | 
|  |  | 
|  | /// freeStackSlotBefore - Just the pop, no folding. Return the inserted | 
|  | /// instruction. | 
|  | MachineBasicBlock::iterator | 
|  | freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo); | 
|  |  | 
|  | /// Adjust the live registers to be the set in Mask. | 
|  | void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I); | 
|  |  | 
|  | /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is | 
|  | /// st(0), FP reg FixStack[1] is st(1) etc. | 
|  | void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount, | 
|  | MachineBasicBlock::iterator I); | 
|  |  | 
|  | bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); | 
|  |  | 
|  | void handleCall(MachineBasicBlock::iterator &I); | 
|  | void handleReturn(MachineBasicBlock::iterator &I); | 
|  | void handleZeroArgFP(MachineBasicBlock::iterator &I); | 
|  | void handleOneArgFP(MachineBasicBlock::iterator &I); | 
|  | void handleOneArgFPRW(MachineBasicBlock::iterator &I); | 
|  | void handleTwoArgFP(MachineBasicBlock::iterator &I); | 
|  | void handleCompareFP(MachineBasicBlock::iterator &I); | 
|  | void handleCondMovFP(MachineBasicBlock::iterator &I); | 
|  | void handleSpecialFP(MachineBasicBlock::iterator &I); | 
|  |  | 
|  | // Check if a COPY instruction is using FP registers. | 
|  | static bool isFPCopy(MachineInstr &MI) { | 
|  | unsigned DstReg = MI.getOperand(0).getReg(); | 
|  | unsigned SrcReg = MI.getOperand(1).getReg(); | 
|  |  | 
|  | return X86::RFP80RegClass.contains(DstReg) || | 
|  | X86::RFP80RegClass.contains(SrcReg); | 
|  | } | 
|  |  | 
|  | void setKillFlags(MachineBasicBlock &MBB) const; | 
|  | }; | 
|  | } | 
|  |  | 
|  | char FPS::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(FPS, DEBUG_TYPE, "X86 FP Stackifier", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(EdgeBundles) | 
|  | INITIALIZE_PASS_END(FPS, DEBUG_TYPE, "X86 FP Stackifier", | 
|  | false, false) | 
|  |  | 
|  | FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } | 
|  |  | 
|  | /// getFPReg - Return the X86::FPx register number for the specified operand. | 
|  | /// For example, this returns 3 for X86::FP3. | 
|  | static unsigned getFPReg(const MachineOperand &MO) { | 
|  | assert(MO.isReg() && "Expected an FP register!"); | 
|  | unsigned Reg = MO.getReg(); | 
|  | assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); | 
|  | return Reg - X86::FP0; | 
|  | } | 
|  |  | 
|  | /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP | 
|  | /// register references into FP stack references. | 
|  | /// | 
|  | bool FPS::runOnMachineFunction(MachineFunction &MF) { | 
|  | // We only need to run this pass if there are any FP registers used in this | 
|  | // function.  If it is all integer, there is nothing for us to do! | 
|  | bool FPIsUsed = false; | 
|  |  | 
|  | static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!"); | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | for (unsigned i = 0; i <= 6; ++i) | 
|  | if (!MRI.reg_nodbg_empty(X86::FP0 + i)) { | 
|  | FPIsUsed = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Early exit. | 
|  | if (!FPIsUsed) return false; | 
|  |  | 
|  | Bundles = &getAnalysis<EdgeBundles>(); | 
|  | TII = MF.getSubtarget().getInstrInfo(); | 
|  |  | 
|  | // Prepare cross-MBB liveness. | 
|  | bundleCFGRecomputeKillFlags(MF); | 
|  |  | 
|  | StackTop = 0; | 
|  |  | 
|  | // Process the function in depth first order so that we process at least one | 
|  | // of the predecessors for every reachable block in the function. | 
|  | df_iterator_default_set<MachineBasicBlock*> Processed; | 
|  | MachineBasicBlock *Entry = &MF.front(); | 
|  |  | 
|  | LiveBundle &Bundle = | 
|  | LiveBundles[Bundles->getBundle(Entry->getNumber(), false)]; | 
|  |  | 
|  | // In regcall convention, some FP registers may not be passed through | 
|  | // the stack, so they will need to be assigned to the stack first | 
|  | if ((Entry->getParent()->getFunction().getCallingConv() == | 
|  | CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) { | 
|  | // In the register calling convention, up to one FP argument could be | 
|  | // saved in the first FP register. | 
|  | // If bundle.mask is non-zero and Bundle.FixCount is zero, it means | 
|  | // that the FP registers contain arguments. | 
|  | // The actual value is passed in FP0. | 
|  | // Here we fix the stack and mark FP0 as pre-assigned register. | 
|  | assert((Bundle.Mask & 0xFE) == 0 && | 
|  | "Only FP0 could be passed as an argument"); | 
|  | Bundle.FixCount = 1; | 
|  | Bundle.FixStack[0] = 0; | 
|  | } | 
|  |  | 
|  | bool Changed = false; | 
|  | for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed)) | 
|  | Changed |= processBasicBlock(MF, *BB); | 
|  |  | 
|  | // Process any unreachable blocks in arbitrary order now. | 
|  | if (MF.size() != Processed.size()) | 
|  | for (MachineBasicBlock &BB : MF) | 
|  | if (Processed.insert(&BB).second) | 
|  | Changed |= processBasicBlock(MF, BB); | 
|  |  | 
|  | LiveBundles.clear(); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// bundleCFG - Scan all the basic blocks to determine consistent live-in and | 
|  | /// live-out sets for the FP registers. Consistent means that the set of | 
|  | /// registers live-out from a block is identical to the live-in set of all | 
|  | /// successors. This is not enforced by the normal live-in lists since | 
|  | /// registers may be implicitly defined, or not used by all successors. | 
|  | void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) { | 
|  | assert(LiveBundles.empty() && "Stale data in LiveBundles"); | 
|  | LiveBundles.resize(Bundles->getNumBundles()); | 
|  |  | 
|  | // Gather the actual live-in masks for all MBBs. | 
|  | for (MachineBasicBlock &MBB : MF) { | 
|  | setKillFlags(MBB); | 
|  |  | 
|  | const unsigned Mask = calcLiveInMask(&MBB, false); | 
|  | if (!Mask) | 
|  | continue; | 
|  | // Update MBB ingoing bundle mask. | 
|  | LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// processBasicBlock - Loop over all of the instructions in the basic block, | 
|  | /// transforming FP instructions into their stack form. | 
|  | /// | 
|  | bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { | 
|  | bool Changed = false; | 
|  | MBB = &BB; | 
|  |  | 
|  | setupBlockStack(); | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { | 
|  | MachineInstr &MI = *I; | 
|  | uint64_t Flags = MI.getDesc().TSFlags; | 
|  |  | 
|  | unsigned FPInstClass = Flags & X86II::FPTypeMask; | 
|  | if (MI.isInlineAsm()) | 
|  | FPInstClass = X86II::SpecialFP; | 
|  |  | 
|  | if (MI.isCopy() && isFPCopy(MI)) | 
|  | FPInstClass = X86II::SpecialFP; | 
|  |  | 
|  | if (MI.isImplicitDef() && | 
|  | X86::RFP80RegClass.contains(MI.getOperand(0).getReg())) | 
|  | FPInstClass = X86II::SpecialFP; | 
|  |  | 
|  | if (MI.isCall()) | 
|  | FPInstClass = X86II::SpecialFP; | 
|  |  | 
|  | if (FPInstClass == X86II::NotFP) | 
|  | continue;  // Efficiently ignore non-fp insts! | 
|  |  | 
|  | MachineInstr *PrevMI = nullptr; | 
|  | if (I != BB.begin()) | 
|  | PrevMI = &*std::prev(I); | 
|  |  | 
|  | ++NumFP;  // Keep track of # of pseudo instrs | 
|  | LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI); | 
|  |  | 
|  | // Get dead variables list now because the MI pointer may be deleted as part | 
|  | // of processing! | 
|  | SmallVector<unsigned, 8> DeadRegs; | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | if (MO.isReg() && MO.isDead()) | 
|  | DeadRegs.push_back(MO.getReg()); | 
|  | } | 
|  |  | 
|  | switch (FPInstClass) { | 
|  | case X86II::ZeroArgFP:  handleZeroArgFP(I); break; | 
|  | case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0) | 
|  | case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) | 
|  | case X86II::TwoArgFP:   handleTwoArgFP(I);  break; | 
|  | case X86II::CompareFP:  handleCompareFP(I); break; | 
|  | case X86II::CondMovFP:  handleCondMovFP(I); break; | 
|  | case X86II::SpecialFP:  handleSpecialFP(I); break; | 
|  | default: llvm_unreachable("Unknown FP Type!"); | 
|  | } | 
|  |  | 
|  | // Check to see if any of the values defined by this instruction are dead | 
|  | // after definition.  If so, pop them. | 
|  | for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) { | 
|  | unsigned Reg = DeadRegs[i]; | 
|  | // Check if Reg is live on the stack. An inline-asm register operand that | 
|  | // is in the clobber list and marked dead might not be live on the stack. | 
|  | static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers"); | 
|  | if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) { | 
|  | LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n"); | 
|  | freeStackSlotAfter(I, Reg-X86::FP0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Print out all of the instructions expanded to if -debug | 
|  | LLVM_DEBUG({ | 
|  | MachineBasicBlock::iterator PrevI = PrevMI; | 
|  | if (I == PrevI) { | 
|  | dbgs() << "Just deleted pseudo instruction\n"; | 
|  | } else { | 
|  | MachineBasicBlock::iterator Start = I; | 
|  | // Rewind to first instruction newly inserted. | 
|  | while (Start != BB.begin() && std::prev(Start) != PrevI) | 
|  | --Start; | 
|  | dbgs() << "Inserted instructions:\n\t"; | 
|  | Start->print(dbgs()); | 
|  | while (++Start != std::next(I)) { | 
|  | } | 
|  | } | 
|  | dumpStack(); | 
|  | }); | 
|  | (void)PrevMI; | 
|  |  | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | finishBlockStack(); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// setupBlockStack - Use the live bundles to set up our model of the stack | 
|  | /// to match predecessors' live out stack. | 
|  | void FPS::setupBlockStack() { | 
|  | LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB) | 
|  | << " derived from " << MBB->getName() << ".\n"); | 
|  | StackTop = 0; | 
|  | // Get the live-in bundle for MBB. | 
|  | const LiveBundle &Bundle = | 
|  | LiveBundles[Bundles->getBundle(MBB->getNumber(), false)]; | 
|  |  | 
|  | if (!Bundle.Mask) { | 
|  | LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Depth-first iteration should ensure that we always have an assigned stack. | 
|  | assert(Bundle.isFixed() && "Reached block before any predecessors"); | 
|  |  | 
|  | // Push the fixed live-in registers. | 
|  | for (unsigned i = Bundle.FixCount; i > 0; --i) { | 
|  | LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp" | 
|  | << unsigned(Bundle.FixStack[i - 1]) << '\n'); | 
|  | pushReg(Bundle.FixStack[i-1]); | 
|  | } | 
|  |  | 
|  | // Kill off unwanted live-ins. This can happen with a critical edge. | 
|  | // FIXME: We could keep these live registers around as zombies. They may need | 
|  | // to be revived at the end of a short block. It might save a few instrs. | 
|  | unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true); | 
|  | adjustLiveRegs(Mask, MBB->begin()); | 
|  | LLVM_DEBUG(MBB->dump()); | 
|  | } | 
|  |  | 
|  | /// finishBlockStack - Revive live-outs that are implicitly defined out of | 
|  | /// MBB. Shuffle live registers to match the expected fixed stack of any | 
|  | /// predecessors, and ensure that all predecessors are expecting the same | 
|  | /// stack. | 
|  | void FPS::finishBlockStack() { | 
|  | // The RET handling below takes care of return blocks for us. | 
|  | if (MBB->succ_empty()) | 
|  | return; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB) | 
|  | << " derived from " << MBB->getName() << ".\n"); | 
|  |  | 
|  | // Get MBB's live-out bundle. | 
|  | unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true); | 
|  | LiveBundle &Bundle = LiveBundles[BundleIdx]; | 
|  |  | 
|  | // We may need to kill and define some registers to match successors. | 
|  | // FIXME: This can probably be combined with the shuffle below. | 
|  | MachineBasicBlock::iterator Term = MBB->getFirstTerminator(); | 
|  | adjustLiveRegs(Bundle.Mask, Term); | 
|  |  | 
|  | if (!Bundle.Mask) { | 
|  | LLVM_DEBUG(dbgs() << "No live-outs.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Has the stack order been fixed yet? | 
|  | LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": "); | 
|  | if (Bundle.isFixed()) { | 
|  | LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n"); | 
|  | shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term); | 
|  | } else { | 
|  | // Not fixed yet, we get to choose. | 
|  | LLVM_DEBUG(dbgs() << "Fixing stack order now.\n"); | 
|  | Bundle.FixCount = StackTop; | 
|  | for (unsigned i = 0; i < StackTop; ++i) | 
|  | Bundle.FixStack[i] = getStackEntry(i); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Efficient Lookup Table Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | struct TableEntry { | 
|  | uint16_t from; | 
|  | uint16_t to; | 
|  | bool operator<(const TableEntry &TE) const { return from < TE.from; } | 
|  | friend bool operator<(const TableEntry &TE, unsigned V) { | 
|  | return TE.from < V; | 
|  | } | 
|  | friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V, | 
|  | const TableEntry &TE) { | 
|  | return V < TE.from; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) { | 
|  | const TableEntry *I = llvm::lower_bound(Table, Opcode); | 
|  | if (I != Table.end() && I->from == Opcode) | 
|  | return I->to; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | #ifdef NDEBUG | 
|  | #define ASSERT_SORTED(TABLE) | 
|  | #else | 
|  | #define ASSERT_SORTED(TABLE)                                                   \ | 
|  | {                                                                            \ | 
|  | static std::atomic<bool> TABLE##Checked(false);                            \ | 
|  | if (!TABLE##Checked.load(std::memory_order_relaxed)) {                     \ | 
|  | assert(std::is_sorted(std::begin(TABLE), std::end(TABLE)) &&             \ | 
|  | "All lookup tables must be sorted for efficient access!");        \ | 
|  | TABLE##Checked.store(true, std::memory_order_relaxed);                   \ | 
|  | }                                                                          \ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Register File -> Register Stack Mapping Methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // OpcodeTable - Sorted map of register instructions to their stack version. | 
|  | // The first element is an register file pseudo instruction, the second is the | 
|  | // concrete X86 instruction which uses the register stack. | 
|  | // | 
|  | static const TableEntry OpcodeTable[] = { | 
|  | { X86::ABS_Fp32     , X86::ABS_F     }, | 
|  | { X86::ABS_Fp64     , X86::ABS_F     }, | 
|  | { X86::ABS_Fp80     , X86::ABS_F     }, | 
|  | { X86::ADD_Fp32m    , X86::ADD_F32m  }, | 
|  | { X86::ADD_Fp64m    , X86::ADD_F64m  }, | 
|  | { X86::ADD_Fp64m32  , X86::ADD_F32m  }, | 
|  | { X86::ADD_Fp80m32  , X86::ADD_F32m  }, | 
|  | { X86::ADD_Fp80m64  , X86::ADD_F64m  }, | 
|  | { X86::ADD_FpI16m32 , X86::ADD_FI16m }, | 
|  | { X86::ADD_FpI16m64 , X86::ADD_FI16m }, | 
|  | { X86::ADD_FpI16m80 , X86::ADD_FI16m }, | 
|  | { X86::ADD_FpI32m32 , X86::ADD_FI32m }, | 
|  | { X86::ADD_FpI32m64 , X86::ADD_FI32m }, | 
|  | { X86::ADD_FpI32m80 , X86::ADD_FI32m }, | 
|  | { X86::CHS_Fp32     , X86::CHS_F     }, | 
|  | { X86::CHS_Fp64     , X86::CHS_F     }, | 
|  | { X86::CHS_Fp80     , X86::CHS_F     }, | 
|  | { X86::CMOVBE_Fp32  , X86::CMOVBE_F  }, | 
|  | { X86::CMOVBE_Fp64  , X86::CMOVBE_F  }, | 
|  | { X86::CMOVBE_Fp80  , X86::CMOVBE_F  }, | 
|  | { X86::CMOVB_Fp32   , X86::CMOVB_F   }, | 
|  | { X86::CMOVB_Fp64   , X86::CMOVB_F  }, | 
|  | { X86::CMOVB_Fp80   , X86::CMOVB_F  }, | 
|  | { X86::CMOVE_Fp32   , X86::CMOVE_F  }, | 
|  | { X86::CMOVE_Fp64   , X86::CMOVE_F   }, | 
|  | { X86::CMOVE_Fp80   , X86::CMOVE_F   }, | 
|  | { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F }, | 
|  | { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F }, | 
|  | { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F }, | 
|  | { X86::CMOVNB_Fp32  , X86::CMOVNB_F  }, | 
|  | { X86::CMOVNB_Fp64  , X86::CMOVNB_F  }, | 
|  | { X86::CMOVNB_Fp80  , X86::CMOVNB_F  }, | 
|  | { X86::CMOVNE_Fp32  , X86::CMOVNE_F  }, | 
|  | { X86::CMOVNE_Fp64  , X86::CMOVNE_F  }, | 
|  | { X86::CMOVNE_Fp80  , X86::CMOVNE_F  }, | 
|  | { X86::CMOVNP_Fp32  , X86::CMOVNP_F  }, | 
|  | { X86::CMOVNP_Fp64  , X86::CMOVNP_F  }, | 
|  | { X86::CMOVNP_Fp80  , X86::CMOVNP_F  }, | 
|  | { X86::CMOVP_Fp32   , X86::CMOVP_F   }, | 
|  | { X86::CMOVP_Fp64   , X86::CMOVP_F   }, | 
|  | { X86::CMOVP_Fp80   , X86::CMOVP_F   }, | 
|  | { X86::COS_Fp32     , X86::COS_F     }, | 
|  | { X86::COS_Fp64     , X86::COS_F     }, | 
|  | { X86::COS_Fp80     , X86::COS_F     }, | 
|  | { X86::DIVR_Fp32m   , X86::DIVR_F32m }, | 
|  | { X86::DIVR_Fp64m   , X86::DIVR_F64m }, | 
|  | { X86::DIVR_Fp64m32 , X86::DIVR_F32m }, | 
|  | { X86::DIVR_Fp80m32 , X86::DIVR_F32m }, | 
|  | { X86::DIVR_Fp80m64 , X86::DIVR_F64m }, | 
|  | { X86::DIVR_FpI16m32, X86::DIVR_FI16m}, | 
|  | { X86::DIVR_FpI16m64, X86::DIVR_FI16m}, | 
|  | { X86::DIVR_FpI16m80, X86::DIVR_FI16m}, | 
|  | { X86::DIVR_FpI32m32, X86::DIVR_FI32m}, | 
|  | { X86::DIVR_FpI32m64, X86::DIVR_FI32m}, | 
|  | { X86::DIVR_FpI32m80, X86::DIVR_FI32m}, | 
|  | { X86::DIV_Fp32m    , X86::DIV_F32m  }, | 
|  | { X86::DIV_Fp64m    , X86::DIV_F64m  }, | 
|  | { X86::DIV_Fp64m32  , X86::DIV_F32m  }, | 
|  | { X86::DIV_Fp80m32  , X86::DIV_F32m  }, | 
|  | { X86::DIV_Fp80m64  , X86::DIV_F64m  }, | 
|  | { X86::DIV_FpI16m32 , X86::DIV_FI16m }, | 
|  | { X86::DIV_FpI16m64 , X86::DIV_FI16m }, | 
|  | { X86::DIV_FpI16m80 , X86::DIV_FI16m }, | 
|  | { X86::DIV_FpI32m32 , X86::DIV_FI32m }, | 
|  | { X86::DIV_FpI32m64 , X86::DIV_FI32m }, | 
|  | { X86::DIV_FpI32m80 , X86::DIV_FI32m }, | 
|  | { X86::ILD_Fp16m32  , X86::ILD_F16m  }, | 
|  | { X86::ILD_Fp16m64  , X86::ILD_F16m  }, | 
|  | { X86::ILD_Fp16m80  , X86::ILD_F16m  }, | 
|  | { X86::ILD_Fp32m32  , X86::ILD_F32m  }, | 
|  | { X86::ILD_Fp32m64  , X86::ILD_F32m  }, | 
|  | { X86::ILD_Fp32m80  , X86::ILD_F32m  }, | 
|  | { X86::ILD_Fp64m32  , X86::ILD_F64m  }, | 
|  | { X86::ILD_Fp64m64  , X86::ILD_F64m  }, | 
|  | { X86::ILD_Fp64m80  , X86::ILD_F64m  }, | 
|  | { X86::ISTT_Fp16m32 , X86::ISTT_FP16m}, | 
|  | { X86::ISTT_Fp16m64 , X86::ISTT_FP16m}, | 
|  | { X86::ISTT_Fp16m80 , X86::ISTT_FP16m}, | 
|  | { X86::ISTT_Fp32m32 , X86::ISTT_FP32m}, | 
|  | { X86::ISTT_Fp32m64 , X86::ISTT_FP32m}, | 
|  | { X86::ISTT_Fp32m80 , X86::ISTT_FP32m}, | 
|  | { X86::ISTT_Fp64m32 , X86::ISTT_FP64m}, | 
|  | { X86::ISTT_Fp64m64 , X86::ISTT_FP64m}, | 
|  | { X86::ISTT_Fp64m80 , X86::ISTT_FP64m}, | 
|  | { X86::IST_Fp16m32  , X86::IST_F16m  }, | 
|  | { X86::IST_Fp16m64  , X86::IST_F16m  }, | 
|  | { X86::IST_Fp16m80  , X86::IST_F16m  }, | 
|  | { X86::IST_Fp32m32  , X86::IST_F32m  }, | 
|  | { X86::IST_Fp32m64  , X86::IST_F32m  }, | 
|  | { X86::IST_Fp32m80  , X86::IST_F32m  }, | 
|  | { X86::IST_Fp64m32  , X86::IST_FP64m }, | 
|  | { X86::IST_Fp64m64  , X86::IST_FP64m }, | 
|  | { X86::IST_Fp64m80  , X86::IST_FP64m }, | 
|  | { X86::LD_Fp032     , X86::LD_F0     }, | 
|  | { X86::LD_Fp064     , X86::LD_F0     }, | 
|  | { X86::LD_Fp080     , X86::LD_F0     }, | 
|  | { X86::LD_Fp132     , X86::LD_F1     }, | 
|  | { X86::LD_Fp164     , X86::LD_F1     }, | 
|  | { X86::LD_Fp180     , X86::LD_F1     }, | 
|  | { X86::LD_Fp32m     , X86::LD_F32m   }, | 
|  | { X86::LD_Fp32m64   , X86::LD_F32m   }, | 
|  | { X86::LD_Fp32m80   , X86::LD_F32m   }, | 
|  | { X86::LD_Fp64m     , X86::LD_F64m   }, | 
|  | { X86::LD_Fp64m80   , X86::LD_F64m   }, | 
|  | { X86::LD_Fp80m     , X86::LD_F80m   }, | 
|  | { X86::MUL_Fp32m    , X86::MUL_F32m  }, | 
|  | { X86::MUL_Fp64m    , X86::MUL_F64m  }, | 
|  | { X86::MUL_Fp64m32  , X86::MUL_F32m  }, | 
|  | { X86::MUL_Fp80m32  , X86::MUL_F32m  }, | 
|  | { X86::MUL_Fp80m64  , X86::MUL_F64m  }, | 
|  | { X86::MUL_FpI16m32 , X86::MUL_FI16m }, | 
|  | { X86::MUL_FpI16m64 , X86::MUL_FI16m }, | 
|  | { X86::MUL_FpI16m80 , X86::MUL_FI16m }, | 
|  | { X86::MUL_FpI32m32 , X86::MUL_FI32m }, | 
|  | { X86::MUL_FpI32m64 , X86::MUL_FI32m }, | 
|  | { X86::MUL_FpI32m80 , X86::MUL_FI32m }, | 
|  | { X86::SIN_Fp32     , X86::SIN_F     }, | 
|  | { X86::SIN_Fp64     , X86::SIN_F     }, | 
|  | { X86::SIN_Fp80     , X86::SIN_F     }, | 
|  | { X86::SQRT_Fp32    , X86::SQRT_F    }, | 
|  | { X86::SQRT_Fp64    , X86::SQRT_F    }, | 
|  | { X86::SQRT_Fp80    , X86::SQRT_F    }, | 
|  | { X86::ST_Fp32m     , X86::ST_F32m   }, | 
|  | { X86::ST_Fp64m     , X86::ST_F64m   }, | 
|  | { X86::ST_Fp64m32   , X86::ST_F32m   }, | 
|  | { X86::ST_Fp80m32   , X86::ST_F32m   }, | 
|  | { X86::ST_Fp80m64   , X86::ST_F64m   }, | 
|  | { X86::ST_FpP80m    , X86::ST_FP80m  }, | 
|  | { X86::SUBR_Fp32m   , X86::SUBR_F32m }, | 
|  | { X86::SUBR_Fp64m   , X86::SUBR_F64m }, | 
|  | { X86::SUBR_Fp64m32 , X86::SUBR_F32m }, | 
|  | { X86::SUBR_Fp80m32 , X86::SUBR_F32m }, | 
|  | { X86::SUBR_Fp80m64 , X86::SUBR_F64m }, | 
|  | { X86::SUBR_FpI16m32, X86::SUBR_FI16m}, | 
|  | { X86::SUBR_FpI16m64, X86::SUBR_FI16m}, | 
|  | { X86::SUBR_FpI16m80, X86::SUBR_FI16m}, | 
|  | { X86::SUBR_FpI32m32, X86::SUBR_FI32m}, | 
|  | { X86::SUBR_FpI32m64, X86::SUBR_FI32m}, | 
|  | { X86::SUBR_FpI32m80, X86::SUBR_FI32m}, | 
|  | { X86::SUB_Fp32m    , X86::SUB_F32m  }, | 
|  | { X86::SUB_Fp64m    , X86::SUB_F64m  }, | 
|  | { X86::SUB_Fp64m32  , X86::SUB_F32m  }, | 
|  | { X86::SUB_Fp80m32  , X86::SUB_F32m  }, | 
|  | { X86::SUB_Fp80m64  , X86::SUB_F64m  }, | 
|  | { X86::SUB_FpI16m32 , X86::SUB_FI16m }, | 
|  | { X86::SUB_FpI16m64 , X86::SUB_FI16m }, | 
|  | { X86::SUB_FpI16m80 , X86::SUB_FI16m }, | 
|  | { X86::SUB_FpI32m32 , X86::SUB_FI32m }, | 
|  | { X86::SUB_FpI32m64 , X86::SUB_FI32m }, | 
|  | { X86::SUB_FpI32m80 , X86::SUB_FI32m }, | 
|  | { X86::TST_Fp32     , X86::TST_F     }, | 
|  | { X86::TST_Fp64     , X86::TST_F     }, | 
|  | { X86::TST_Fp80     , X86::TST_F     }, | 
|  | { X86::UCOM_FpIr32  , X86::UCOM_FIr  }, | 
|  | { X86::UCOM_FpIr64  , X86::UCOM_FIr  }, | 
|  | { X86::UCOM_FpIr80  , X86::UCOM_FIr  }, | 
|  | { X86::UCOM_Fpr32   , X86::UCOM_Fr   }, | 
|  | { X86::UCOM_Fpr64   , X86::UCOM_Fr   }, | 
|  | { X86::UCOM_Fpr80   , X86::UCOM_Fr   }, | 
|  | }; | 
|  |  | 
|  | static unsigned getConcreteOpcode(unsigned Opcode) { | 
|  | ASSERT_SORTED(OpcodeTable); | 
|  | int Opc = Lookup(OpcodeTable, Opcode); | 
|  | assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!"); | 
|  | return Opc; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper Methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // PopTable - Sorted map of instructions to their popping version.  The first | 
|  | // element is an instruction, the second is the version which pops. | 
|  | // | 
|  | static const TableEntry PopTable[] = { | 
|  | { X86::ADD_FrST0 , X86::ADD_FPrST0  }, | 
|  |  | 
|  | { X86::DIVR_FrST0, X86::DIVR_FPrST0 }, | 
|  | { X86::DIV_FrST0 , X86::DIV_FPrST0  }, | 
|  |  | 
|  | { X86::IST_F16m  , X86::IST_FP16m   }, | 
|  | { X86::IST_F32m  , X86::IST_FP32m   }, | 
|  |  | 
|  | { X86::MUL_FrST0 , X86::MUL_FPrST0  }, | 
|  |  | 
|  | { X86::ST_F32m   , X86::ST_FP32m    }, | 
|  | { X86::ST_F64m   , X86::ST_FP64m    }, | 
|  | { X86::ST_Frr    , X86::ST_FPrr     }, | 
|  |  | 
|  | { X86::SUBR_FrST0, X86::SUBR_FPrST0 }, | 
|  | { X86::SUB_FrST0 , X86::SUB_FPrST0  }, | 
|  |  | 
|  | { X86::UCOM_FIr  , X86::UCOM_FIPr   }, | 
|  |  | 
|  | { X86::UCOM_FPr  , X86::UCOM_FPPr   }, | 
|  | { X86::UCOM_Fr   , X86::UCOM_FPr    }, | 
|  | }; | 
|  |  | 
|  | /// popStackAfter - Pop the current value off of the top of the FP stack after | 
|  | /// the specified instruction.  This attempts to be sneaky and combine the pop | 
|  | /// into the instruction itself if possible.  The iterator is left pointing to | 
|  | /// the last instruction, be it a new pop instruction inserted, or the old | 
|  | /// instruction if it was modified in place. | 
|  | /// | 
|  | void FPS::popStackAfter(MachineBasicBlock::iterator &I) { | 
|  | MachineInstr &MI = *I; | 
|  | const DebugLoc &dl = MI.getDebugLoc(); | 
|  | ASSERT_SORTED(PopTable); | 
|  |  | 
|  | popReg(); | 
|  |  | 
|  | // Check to see if there is a popping version of this instruction... | 
|  | int Opcode = Lookup(PopTable, I->getOpcode()); | 
|  | if (Opcode != -1) { | 
|  | I->setDesc(TII->get(Opcode)); | 
|  | if (Opcode == X86::UCOM_FPPr) | 
|  | I->RemoveOperand(0); | 
|  | } else {    // Insert an explicit pop | 
|  | I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// freeStackSlotAfter - Free the specified register from the register stack, so | 
|  | /// that it is no longer in a register.  If the register is currently at the top | 
|  | /// of the stack, we just pop the current instruction, otherwise we store the | 
|  | /// current top-of-stack into the specified slot, then pop the top of stack. | 
|  | void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { | 
|  | if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy. | 
|  | popStackAfter(I); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, store the top of stack into the dead slot, killing the operand | 
|  | // without having to add in an explicit xchg then pop. | 
|  | // | 
|  | I = freeStackSlotBefore(++I, FPRegNo); | 
|  | } | 
|  |  | 
|  | /// freeStackSlotBefore - Free the specified register without trying any | 
|  | /// folding. | 
|  | MachineBasicBlock::iterator | 
|  | FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) { | 
|  | unsigned STReg    = getSTReg(FPRegNo); | 
|  | unsigned OldSlot  = getSlot(FPRegNo); | 
|  | unsigned TopReg   = Stack[StackTop-1]; | 
|  | Stack[OldSlot]    = TopReg; | 
|  | RegMap[TopReg]    = OldSlot; | 
|  | RegMap[FPRegNo]   = ~0; | 
|  | Stack[--StackTop] = ~0; | 
|  | return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)) | 
|  | .addReg(STReg) | 
|  | .getInstr(); | 
|  | } | 
|  |  | 
|  | /// adjustLiveRegs - Kill and revive registers such that exactly the FP | 
|  | /// registers with a bit in Mask are live. | 
|  | void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) { | 
|  | unsigned Defs = Mask; | 
|  | unsigned Kills = 0; | 
|  | for (unsigned i = 0; i < StackTop; ++i) { | 
|  | unsigned RegNo = Stack[i]; | 
|  | if (!(Defs & (1 << RegNo))) | 
|  | // This register is live, but we don't want it. | 
|  | Kills |= (1 << RegNo); | 
|  | else | 
|  | // We don't need to imp-def this live register. | 
|  | Defs &= ~(1 << RegNo); | 
|  | } | 
|  | assert((Kills & Defs) == 0 && "Register needs killing and def'ing?"); | 
|  |  | 
|  | // Produce implicit-defs for free by using killed registers. | 
|  | while (Kills && Defs) { | 
|  | unsigned KReg = countTrailingZeros(Kills); | 
|  | unsigned DReg = countTrailingZeros(Defs); | 
|  | LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg | 
|  | << "\n"); | 
|  | std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]); | 
|  | std::swap(RegMap[KReg], RegMap[DReg]); | 
|  | Kills &= ~(1 << KReg); | 
|  | Defs &= ~(1 << DReg); | 
|  | } | 
|  |  | 
|  | // Kill registers by popping. | 
|  | if (Kills && I != MBB->begin()) { | 
|  | MachineBasicBlock::iterator I2 = std::prev(I); | 
|  | while (StackTop) { | 
|  | unsigned KReg = getStackEntry(0); | 
|  | if (!(Kills & (1 << KReg))) | 
|  | break; | 
|  | LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n"); | 
|  | popStackAfter(I2); | 
|  | Kills &= ~(1 << KReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Manually kill the rest. | 
|  | while (Kills) { | 
|  | unsigned KReg = countTrailingZeros(Kills); | 
|  | LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n"); | 
|  | freeStackSlotBefore(I, KReg); | 
|  | Kills &= ~(1 << KReg); | 
|  | } | 
|  |  | 
|  | // Load zeros for all the imp-defs. | 
|  | while(Defs) { | 
|  | unsigned DReg = countTrailingZeros(Defs); | 
|  | LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n"); | 
|  | BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0)); | 
|  | pushReg(DReg); | 
|  | Defs &= ~(1 << DReg); | 
|  | } | 
|  |  | 
|  | // Now we should have the correct registers live. | 
|  | LLVM_DEBUG(dumpStack()); | 
|  | assert(StackTop == countPopulation(Mask) && "Live count mismatch"); | 
|  | } | 
|  |  | 
|  | /// shuffleStackTop - emit fxch instructions before I to shuffle the top | 
|  | /// FixCount entries into the order given by FixStack. | 
|  | /// FIXME: Is there a better algorithm than insertion sort? | 
|  | void FPS::shuffleStackTop(const unsigned char *FixStack, | 
|  | unsigned FixCount, | 
|  | MachineBasicBlock::iterator I) { | 
|  | // Move items into place, starting from the desired stack bottom. | 
|  | while (FixCount--) { | 
|  | // Old register at position FixCount. | 
|  | unsigned OldReg = getStackEntry(FixCount); | 
|  | // Desired register at position FixCount. | 
|  | unsigned Reg = FixStack[FixCount]; | 
|  | if (Reg == OldReg) | 
|  | continue; | 
|  | // (Reg st0) (OldReg st0) = (Reg OldReg st0) | 
|  | moveToTop(Reg, I); | 
|  | if (FixCount > 0) | 
|  | moveToTop(OldReg, I); | 
|  | } | 
|  | LLVM_DEBUG(dumpStack()); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Instruction transformation implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void FPS::handleCall(MachineBasicBlock::iterator &I) { | 
|  | unsigned STReturns = 0; | 
|  | const MachineFunction* MF = I->getParent()->getParent(); | 
|  |  | 
|  | for (const auto &MO : I->operands()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  |  | 
|  | unsigned R = MO.getReg() - X86::FP0; | 
|  |  | 
|  | if (R < 8) { | 
|  | if (MF->getFunction().getCallingConv() != CallingConv::X86_RegCall) { | 
|  | assert(MO.isDef() && MO.isImplicit()); | 
|  | } | 
|  |  | 
|  | STReturns |= 1 << R; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned N = countTrailingOnes(STReturns); | 
|  |  | 
|  | // FP registers used for function return must be consecutive starting at | 
|  | // FP0 | 
|  | assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2)); | 
|  |  | 
|  | // Reset the FP Stack - It is required because of possible leftovers from | 
|  | // passed arguments. The caller should assume that the FP stack is | 
|  | // returned empty (unless the callee returns values on FP stack). | 
|  | while (StackTop > 0) | 
|  | popReg(); | 
|  |  | 
|  | for (unsigned I = 0; I < N; ++I) | 
|  | pushReg(N - I - 1); | 
|  | } | 
|  |  | 
|  | /// If RET has an FP register use operand, pass the first one in ST(0) and | 
|  | /// the second one in ST(1). | 
|  | void FPS::handleReturn(MachineBasicBlock::iterator &I) { | 
|  | MachineInstr &MI = *I; | 
|  |  | 
|  | // Find the register operands. | 
|  | unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U; | 
|  | unsigned LiveMask = 0; | 
|  |  | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &Op = MI.getOperand(i); | 
|  | if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) | 
|  | continue; | 
|  | // FP Register uses must be kills unless there are two uses of the same | 
|  | // register, in which case only one will be a kill. | 
|  | assert(Op.isUse() && | 
|  | (Op.isKill() ||                    // Marked kill. | 
|  | getFPReg(Op) == FirstFPRegOp ||   // Second instance. | 
|  | MI.killsRegister(Op.getReg())) && // Later use is marked kill. | 
|  | "Ret only defs operands, and values aren't live beyond it"); | 
|  |  | 
|  | if (FirstFPRegOp == ~0U) | 
|  | FirstFPRegOp = getFPReg(Op); | 
|  | else { | 
|  | assert(SecondFPRegOp == ~0U && "More than two fp operands!"); | 
|  | SecondFPRegOp = getFPReg(Op); | 
|  | } | 
|  | LiveMask |= (1 << getFPReg(Op)); | 
|  |  | 
|  | // Remove the operand so that later passes don't see it. | 
|  | MI.RemoveOperand(i); | 
|  | --i; | 
|  | --e; | 
|  | } | 
|  |  | 
|  | // We may have been carrying spurious live-ins, so make sure only the | 
|  | // returned registers are left live. | 
|  | adjustLiveRegs(LiveMask, MI); | 
|  | if (!LiveMask) return;  // Quick check to see if any are possible. | 
|  |  | 
|  | // There are only four possibilities here: | 
|  | // 1) we are returning a single FP value.  In this case, it has to be in | 
|  | //    ST(0) already, so just declare success by removing the value from the | 
|  | //    FP Stack. | 
|  | if (SecondFPRegOp == ~0U) { | 
|  | // Assert that the top of stack contains the right FP register. | 
|  | assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) && | 
|  | "Top of stack not the right register for RET!"); | 
|  |  | 
|  | // Ok, everything is good, mark the value as not being on the stack | 
|  | // anymore so that our assertion about the stack being empty at end of | 
|  | // block doesn't fire. | 
|  | StackTop = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, we are returning two values: | 
|  | // 2) If returning the same value for both, we only have one thing in the FP | 
|  | //    stack.  Consider:  RET FP1, FP1 | 
|  | if (StackTop == 1) { | 
|  | assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&& | 
|  | "Stack misconfiguration for RET!"); | 
|  |  | 
|  | // Duplicate the TOS so that we return it twice.  Just pick some other FPx | 
|  | // register to hold it. | 
|  | unsigned NewReg = ScratchFPReg; | 
|  | duplicateToTop(FirstFPRegOp, NewReg, MI); | 
|  | FirstFPRegOp = NewReg; | 
|  | } | 
|  |  | 
|  | /// Okay we know we have two different FPx operands now: | 
|  | assert(StackTop == 2 && "Must have two values live!"); | 
|  |  | 
|  | /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently | 
|  | ///    in ST(1).  In this case, emit an fxch. | 
|  | if (getStackEntry(0) == SecondFPRegOp) { | 
|  | assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live"); | 
|  | moveToTop(FirstFPRegOp, MI); | 
|  | } | 
|  |  | 
|  | /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in | 
|  | /// ST(1).  Just remove both from our understanding of the stack and return. | 
|  | assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live"); | 
|  | assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live"); | 
|  | StackTop = 0; | 
|  | } | 
|  |  | 
|  | /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem> | 
|  | /// | 
|  | void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { | 
|  | MachineInstr &MI = *I; | 
|  | unsigned DestReg = getFPReg(MI.getOperand(0)); | 
|  |  | 
|  | // Change from the pseudo instruction to the concrete instruction. | 
|  | MI.RemoveOperand(0); // Remove the explicit ST(0) operand | 
|  | MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); | 
|  | MI.addOperand( | 
|  | MachineOperand::CreateReg(X86::ST0, /*isDef*/ true, /*isImp*/ true)); | 
|  |  | 
|  | // Result gets pushed on the stack. | 
|  | pushReg(DestReg); | 
|  | } | 
|  |  | 
|  | /// handleOneArgFP - fst <mem>, ST(0) | 
|  | /// | 
|  | void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { | 
|  | MachineInstr &MI = *I; | 
|  | unsigned NumOps = MI.getDesc().getNumOperands(); | 
|  | assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) && | 
|  | "Can only handle fst* & ftst instructions!"); | 
|  |  | 
|  | // Is this the last use of the source register? | 
|  | unsigned Reg = getFPReg(MI.getOperand(NumOps - 1)); | 
|  | bool KillsSrc = MI.killsRegister(X86::FP0 + Reg); | 
|  |  | 
|  | // FISTP64m is strange because there isn't a non-popping versions. | 
|  | // If we have one _and_ we don't want to pop the operand, duplicate the value | 
|  | // on the stack instead of moving it.  This ensure that popping the value is | 
|  | // always ok. | 
|  | // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. | 
|  | // | 
|  | if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 || | 
|  | MI.getOpcode() == X86::ISTT_Fp16m32 || | 
|  | MI.getOpcode() == X86::ISTT_Fp32m32 || | 
|  | MI.getOpcode() == X86::ISTT_Fp64m32 || | 
|  | MI.getOpcode() == X86::IST_Fp64m64 || | 
|  | MI.getOpcode() == X86::ISTT_Fp16m64 || | 
|  | MI.getOpcode() == X86::ISTT_Fp32m64 || | 
|  | MI.getOpcode() == X86::ISTT_Fp64m64 || | 
|  | MI.getOpcode() == X86::IST_Fp64m80 || | 
|  | MI.getOpcode() == X86::ISTT_Fp16m80 || | 
|  | MI.getOpcode() == X86::ISTT_Fp32m80 || | 
|  | MI.getOpcode() == X86::ISTT_Fp64m80 || | 
|  | MI.getOpcode() == X86::ST_FpP80m)) { | 
|  | duplicateToTop(Reg, ScratchFPReg, I); | 
|  | } else { | 
|  | moveToTop(Reg, I);            // Move to the top of the stack... | 
|  | } | 
|  |  | 
|  | // Convert from the pseudo instruction to the concrete instruction. | 
|  | MI.RemoveOperand(NumOps - 1); // Remove explicit ST(0) operand | 
|  | MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); | 
|  | MI.addOperand( | 
|  | MachineOperand::CreateReg(X86::ST0, /*isDef*/ false, /*isImp*/ true)); | 
|  |  | 
|  | if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m || | 
|  | MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m || | 
|  | MI.getOpcode() == X86::ST_FP80m) { | 
|  | if (StackTop == 0) | 
|  | report_fatal_error("Stack empty??"); | 
|  | --StackTop; | 
|  | } else if (KillsSrc) { // Last use of operand? | 
|  | popStackAfter(I); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// handleOneArgFPRW: Handle instructions that read from the top of stack and | 
|  | /// replace the value with a newly computed value.  These instructions may have | 
|  | /// non-fp operands after their FP operands. | 
|  | /// | 
|  | ///  Examples: | 
|  | ///     R1 = fchs R2 | 
|  | ///     R1 = fadd R2, [mem] | 
|  | /// | 
|  | void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { | 
|  | MachineInstr &MI = *I; | 
|  | #ifndef NDEBUG | 
|  | unsigned NumOps = MI.getDesc().getNumOperands(); | 
|  | assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!"); | 
|  | #endif | 
|  |  | 
|  | // Is this the last use of the source register? | 
|  | unsigned Reg = getFPReg(MI.getOperand(1)); | 
|  | bool KillsSrc = MI.killsRegister(X86::FP0 + Reg); | 
|  |  | 
|  | if (KillsSrc) { | 
|  | // If this is the last use of the source register, just make sure it's on | 
|  | // the top of the stack. | 
|  | moveToTop(Reg, I); | 
|  | if (StackTop == 0) | 
|  | report_fatal_error("Stack cannot be empty!"); | 
|  | --StackTop; | 
|  | pushReg(getFPReg(MI.getOperand(0))); | 
|  | } else { | 
|  | // If this is not the last use of the source register, _copy_ it to the top | 
|  | // of the stack. | 
|  | duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I); | 
|  | } | 
|  |  | 
|  | // Change from the pseudo instruction to the concrete instruction. | 
|  | MI.RemoveOperand(1); // Drop the source operand. | 
|  | MI.RemoveOperand(0); // Drop the destination operand. | 
|  | MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Define tables of various ways to map pseudo instructions | 
|  | // | 
|  |  | 
|  | // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i) | 
|  | static const TableEntry ForwardST0Table[] = { | 
|  | { X86::ADD_Fp32  , X86::ADD_FST0r }, | 
|  | { X86::ADD_Fp64  , X86::ADD_FST0r }, | 
|  | { X86::ADD_Fp80  , X86::ADD_FST0r }, | 
|  | { X86::DIV_Fp32  , X86::DIV_FST0r }, | 
|  | { X86::DIV_Fp64  , X86::DIV_FST0r }, | 
|  | { X86::DIV_Fp80  , X86::DIV_FST0r }, | 
|  | { X86::MUL_Fp32  , X86::MUL_FST0r }, | 
|  | { X86::MUL_Fp64  , X86::MUL_FST0r }, | 
|  | { X86::MUL_Fp80  , X86::MUL_FST0r }, | 
|  | { X86::SUB_Fp32  , X86::SUB_FST0r }, | 
|  | { X86::SUB_Fp64  , X86::SUB_FST0r }, | 
|  | { X86::SUB_Fp80  , X86::SUB_FST0r }, | 
|  | }; | 
|  |  | 
|  | // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0) | 
|  | static const TableEntry ReverseST0Table[] = { | 
|  | { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative | 
|  | { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative | 
|  | { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative | 
|  | { X86::DIV_Fp32  , X86::DIVR_FST0r }, | 
|  | { X86::DIV_Fp64  , X86::DIVR_FST0r }, | 
|  | { X86::DIV_Fp80  , X86::DIVR_FST0r }, | 
|  | { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative | 
|  | { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative | 
|  | { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative | 
|  | { X86::SUB_Fp32  , X86::SUBR_FST0r }, | 
|  | { X86::SUB_Fp64  , X86::SUBR_FST0r }, | 
|  | { X86::SUB_Fp80  , X86::SUBR_FST0r }, | 
|  | }; | 
|  |  | 
|  | // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i) | 
|  | static const TableEntry ForwardSTiTable[] = { | 
|  | { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative | 
|  | { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative | 
|  | { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative | 
|  | { X86::DIV_Fp32  , X86::DIVR_FrST0 }, | 
|  | { X86::DIV_Fp64  , X86::DIVR_FrST0 }, | 
|  | { X86::DIV_Fp80  , X86::DIVR_FrST0 }, | 
|  | { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative | 
|  | { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative | 
|  | { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative | 
|  | { X86::SUB_Fp32  , X86::SUBR_FrST0 }, | 
|  | { X86::SUB_Fp64  , X86::SUBR_FrST0 }, | 
|  | { X86::SUB_Fp80  , X86::SUBR_FrST0 }, | 
|  | }; | 
|  |  | 
|  | // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0) | 
|  | static const TableEntry ReverseSTiTable[] = { | 
|  | { X86::ADD_Fp32  , X86::ADD_FrST0 }, | 
|  | { X86::ADD_Fp64  , X86::ADD_FrST0 }, | 
|  | { X86::ADD_Fp80  , X86::ADD_FrST0 }, | 
|  | { X86::DIV_Fp32  , X86::DIV_FrST0 }, | 
|  | { X86::DIV_Fp64  , X86::DIV_FrST0 }, | 
|  | { X86::DIV_Fp80  , X86::DIV_FrST0 }, | 
|  | { X86::MUL_Fp32  , X86::MUL_FrST0 }, | 
|  | { X86::MUL_Fp64  , X86::MUL_FrST0 }, | 
|  | { X86::MUL_Fp80  , X86::MUL_FrST0 }, | 
|  | { X86::SUB_Fp32  , X86::SUB_FrST0 }, | 
|  | { X86::SUB_Fp64  , X86::SUB_FrST0 }, | 
|  | { X86::SUB_Fp80  , X86::SUB_FrST0 }, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual | 
|  | /// instructions which need to be simplified and possibly transformed. | 
|  | /// | 
|  | /// Result: ST(0) = fsub  ST(0), ST(i) | 
|  | ///         ST(i) = fsub  ST(0), ST(i) | 
|  | ///         ST(0) = fsubr ST(0), ST(i) | 
|  | ///         ST(i) = fsubr ST(0), ST(i) | 
|  | /// | 
|  | void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { | 
|  | ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); | 
|  | ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); | 
|  | MachineInstr &MI = *I; | 
|  |  | 
|  | unsigned NumOperands = MI.getDesc().getNumOperands(); | 
|  | assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); | 
|  | unsigned Dest = getFPReg(MI.getOperand(0)); | 
|  | unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2)); | 
|  | unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1)); | 
|  | bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0); | 
|  | bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); | 
|  | DebugLoc dl = MI.getDebugLoc(); | 
|  |  | 
|  | unsigned TOS = getStackEntry(0); | 
|  |  | 
|  | // One of our operands must be on the top of the stack.  If neither is yet, we | 
|  | // need to move one. | 
|  | if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS? | 
|  | // We can choose to move either operand to the top of the stack.  If one of | 
|  | // the operands is killed by this instruction, we want that one so that we | 
|  | // can update right on top of the old version. | 
|  | if (KillsOp0) { | 
|  | moveToTop(Op0, I);         // Move dead operand to TOS. | 
|  | TOS = Op0; | 
|  | } else if (KillsOp1) { | 
|  | moveToTop(Op1, I); | 
|  | TOS = Op1; | 
|  | } else { | 
|  | // All of the operands are live after this instruction executes, so we | 
|  | // cannot update on top of any operand.  Because of this, we must | 
|  | // duplicate one of the stack elements to the top.  It doesn't matter | 
|  | // which one we pick. | 
|  | // | 
|  | duplicateToTop(Op0, Dest, I); | 
|  | Op0 = TOS = Dest; | 
|  | KillsOp0 = true; | 
|  | } | 
|  | } else if (!KillsOp0 && !KillsOp1) { | 
|  | // If we DO have one of our operands at the top of the stack, but we don't | 
|  | // have a dead operand, we must duplicate one of the operands to a new slot | 
|  | // on the stack. | 
|  | duplicateToTop(Op0, Dest, I); | 
|  | Op0 = TOS = Dest; | 
|  | KillsOp0 = true; | 
|  | } | 
|  |  | 
|  | // Now we know that one of our operands is on the top of the stack, and at | 
|  | // least one of our operands is killed by this instruction. | 
|  | assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && | 
|  | "Stack conditions not set up right!"); | 
|  |  | 
|  | // We decide which form to use based on what is on the top of the stack, and | 
|  | // which operand is killed by this instruction. | 
|  | ArrayRef<TableEntry> InstTable; | 
|  | bool isForward = TOS == Op0; | 
|  | bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); | 
|  | if (updateST0) { | 
|  | if (isForward) | 
|  | InstTable = ForwardST0Table; | 
|  | else | 
|  | InstTable = ReverseST0Table; | 
|  | } else { | 
|  | if (isForward) | 
|  | InstTable = ForwardSTiTable; | 
|  | else | 
|  | InstTable = ReverseSTiTable; | 
|  | } | 
|  |  | 
|  | int Opcode = Lookup(InstTable, MI.getOpcode()); | 
|  | assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); | 
|  |  | 
|  | // NotTOS - The register which is not on the top of stack... | 
|  | unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; | 
|  |  | 
|  | // Replace the old instruction with a new instruction | 
|  | MBB->remove(&*I++); | 
|  | I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS)); | 
|  |  | 
|  | // If both operands are killed, pop one off of the stack in addition to | 
|  | // overwriting the other one. | 
|  | if (KillsOp0 && KillsOp1 && Op0 != Op1) { | 
|  | assert(!updateST0 && "Should have updated other operand!"); | 
|  | popStackAfter(I);   // Pop the top of stack | 
|  | } | 
|  |  | 
|  | // Update stack information so that we know the destination register is now on | 
|  | // the stack. | 
|  | unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); | 
|  | assert(UpdatedSlot < StackTop && Dest < 7); | 
|  | Stack[UpdatedSlot]   = Dest; | 
|  | RegMap[Dest]         = UpdatedSlot; | 
|  | MBB->getParent()->DeleteMachineInstr(&MI); // Remove the old instruction | 
|  | } | 
|  |  | 
|  | /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP | 
|  | /// register arguments and no explicit destinations. | 
|  | /// | 
|  | void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { | 
|  | MachineInstr &MI = *I; | 
|  |  | 
|  | unsigned NumOperands = MI.getDesc().getNumOperands(); | 
|  | assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); | 
|  | unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2)); | 
|  | unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1)); | 
|  | bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0); | 
|  | bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); | 
|  |  | 
|  | // Make sure the first operand is on the top of stack, the other one can be | 
|  | // anywhere. | 
|  | moveToTop(Op0, I); | 
|  |  | 
|  | // Change from the pseudo instruction to the concrete instruction. | 
|  | MI.getOperand(0).setReg(getSTReg(Op1)); | 
|  | MI.RemoveOperand(1); | 
|  | MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); | 
|  |  | 
|  | // If any of the operands are killed by this instruction, free them. | 
|  | if (KillsOp0) freeStackSlotAfter(I, Op0); | 
|  | if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); | 
|  | } | 
|  |  | 
|  | /// handleCondMovFP - Handle two address conditional move instructions.  These | 
|  | /// instructions move a st(i) register to st(0) iff a condition is true.  These | 
|  | /// instructions require that the first operand is at the top of the stack, but | 
|  | /// otherwise don't modify the stack at all. | 
|  | void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { | 
|  | MachineInstr &MI = *I; | 
|  |  | 
|  | unsigned Op0 = getFPReg(MI.getOperand(0)); | 
|  | unsigned Op1 = getFPReg(MI.getOperand(2)); | 
|  | bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); | 
|  |  | 
|  | // The first operand *must* be on the top of the stack. | 
|  | moveToTop(Op0, I); | 
|  |  | 
|  | // Change the second operand to the stack register that the operand is in. | 
|  | // Change from the pseudo instruction to the concrete instruction. | 
|  | MI.RemoveOperand(0); | 
|  | MI.RemoveOperand(1); | 
|  | MI.getOperand(0).setReg(getSTReg(Op1)); | 
|  | MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); | 
|  |  | 
|  | // If we kill the second operand, make sure to pop it from the stack. | 
|  | if (Op0 != Op1 && KillsOp1) { | 
|  | // Get this value off of the register stack. | 
|  | freeStackSlotAfter(I, Op1); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// handleSpecialFP - Handle special instructions which behave unlike other | 
|  | /// floating point instructions.  This is primarily intended for use by pseudo | 
|  | /// instructions. | 
|  | /// | 
|  | void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) { | 
|  | MachineInstr &MI = *Inst; | 
|  |  | 
|  | if (MI.isCall()) { | 
|  | handleCall(Inst); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (MI.isReturn()) { | 
|  | handleReturn(Inst); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | default: llvm_unreachable("Unknown SpecialFP instruction!"); | 
|  | case TargetOpcode::COPY: { | 
|  | // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP. | 
|  | const MachineOperand &MO1 = MI.getOperand(1); | 
|  | const MachineOperand &MO0 = MI.getOperand(0); | 
|  | bool KillsSrc = MI.killsRegister(MO1.getReg()); | 
|  |  | 
|  | // FP <- FP copy. | 
|  | unsigned DstFP = getFPReg(MO0); | 
|  | unsigned SrcFP = getFPReg(MO1); | 
|  | assert(isLive(SrcFP) && "Cannot copy dead register"); | 
|  | if (KillsSrc) { | 
|  | // If the input operand is killed, we can just change the owner of the | 
|  | // incoming stack slot into the result. | 
|  | unsigned Slot = getSlot(SrcFP); | 
|  | Stack[Slot] = DstFP; | 
|  | RegMap[DstFP] = Slot; | 
|  | } else { | 
|  | // For COPY we just duplicate the specified value to a new stack slot. | 
|  | // This could be made better, but would require substantial changes. | 
|  | duplicateToTop(SrcFP, DstFP, Inst); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TargetOpcode::IMPLICIT_DEF: { | 
|  | // All FP registers must be explicitly defined, so load a 0 instead. | 
|  | unsigned Reg = MI.getOperand(0).getReg() - X86::FP0; | 
|  | LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n'); | 
|  | BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0)); | 
|  | pushReg(Reg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TargetOpcode::INLINEASM: | 
|  | case TargetOpcode::INLINEASM_BR: { | 
|  | // The inline asm MachineInstr currently only *uses* FP registers for the | 
|  | // 'f' constraint.  These should be turned into the current ST(x) register | 
|  | // in the machine instr. | 
|  | // | 
|  | // There are special rules for x87 inline assembly. The compiler must know | 
|  | // exactly how many registers are popped and pushed implicitly by the asm. | 
|  | // Otherwise it is not possible to restore the stack state after the inline | 
|  | // asm. | 
|  | // | 
|  | // There are 3 kinds of input operands: | 
|  | // | 
|  | // 1. Popped inputs. These must appear at the stack top in ST0-STn. A | 
|  | //    popped input operand must be in a fixed stack slot, and it is either | 
|  | //    tied to an output operand, or in the clobber list. The MI has ST use | 
|  | //    and def operands for these inputs. | 
|  | // | 
|  | // 2. Fixed inputs. These inputs appear in fixed stack slots, but are | 
|  | //    preserved by the inline asm. The fixed stack slots must be STn-STm | 
|  | //    following the popped inputs. A fixed input operand cannot be tied to | 
|  | //    an output or appear in the clobber list. The MI has ST use operands | 
|  | //    and no defs for these inputs. | 
|  | // | 
|  | // 3. Preserved inputs. These inputs use the "f" constraint which is | 
|  | //    represented as an FP register. The inline asm won't change these | 
|  | //    stack slots. | 
|  | // | 
|  | // Outputs must be in ST registers, FP outputs are not allowed. Clobbered | 
|  | // registers do not count as output operands. The inline asm changes the | 
|  | // stack as if it popped all the popped inputs and then pushed all the | 
|  | // output operands. | 
|  |  | 
|  | // Scan the assembly for ST registers used, defined and clobbered. We can | 
|  | // only tell clobbers from defs by looking at the asm descriptor. | 
|  | unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0; | 
|  | unsigned NumOps = 0; | 
|  | SmallSet<unsigned, 1> FRegIdx; | 
|  | unsigned RCID; | 
|  |  | 
|  | for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands(); | 
|  | i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) { | 
|  | unsigned Flags = MI.getOperand(i).getImm(); | 
|  |  | 
|  | NumOps = InlineAsm::getNumOperandRegisters(Flags); | 
|  | if (NumOps != 1) | 
|  | continue; | 
|  | const MachineOperand &MO = MI.getOperand(i + 1); | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned STReg = MO.getReg() - X86::FP0; | 
|  | if (STReg >= 8) | 
|  | continue; | 
|  |  | 
|  | // If the flag has a register class constraint, this must be an operand | 
|  | // with constraint "f". Record its index and continue. | 
|  | if (InlineAsm::hasRegClassConstraint(Flags, RCID)) { | 
|  | FRegIdx.insert(i + 1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (InlineAsm::getKind(Flags)) { | 
|  | case InlineAsm::Kind_RegUse: | 
|  | STUses |= (1u << STReg); | 
|  | break; | 
|  | case InlineAsm::Kind_RegDef: | 
|  | case InlineAsm::Kind_RegDefEarlyClobber: | 
|  | STDefs |= (1u << STReg); | 
|  | if (MO.isDead()) | 
|  | STDeadDefs |= (1u << STReg); | 
|  | break; | 
|  | case InlineAsm::Kind_Clobber: | 
|  | STClobbers |= (1u << STReg); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (STUses && !isMask_32(STUses)) | 
|  | MI.emitError("fixed input regs must be last on the x87 stack"); | 
|  | unsigned NumSTUses = countTrailingOnes(STUses); | 
|  |  | 
|  | // Defs must be contiguous from the stack top. ST0-STn. | 
|  | if (STDefs && !isMask_32(STDefs)) { | 
|  | MI.emitError("output regs must be last on the x87 stack"); | 
|  | STDefs = NextPowerOf2(STDefs) - 1; | 
|  | } | 
|  | unsigned NumSTDefs = countTrailingOnes(STDefs); | 
|  |  | 
|  | // So must the clobbered stack slots. ST0-STm, m >= n. | 
|  | if (STClobbers && !isMask_32(STDefs | STClobbers)) | 
|  | MI.emitError("clobbers must be last on the x87 stack"); | 
|  |  | 
|  | // Popped inputs are the ones that are also clobbered or defined. | 
|  | unsigned STPopped = STUses & (STDefs | STClobbers); | 
|  | if (STPopped && !isMask_32(STPopped)) | 
|  | MI.emitError("implicitly popped regs must be last on the x87 stack"); | 
|  | unsigned NumSTPopped = countTrailingOnes(STPopped); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops " | 
|  | << NumSTPopped << ", and defines " << NumSTDefs | 
|  | << " regs.\n"); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // If any input operand uses constraint "f", all output register | 
|  | // constraints must be early-clobber defs. | 
|  | for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) | 
|  | if (FRegIdx.count(I)) { | 
|  | assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 && | 
|  | "Operands with constraint \"f\" cannot overlap with defs"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Collect all FP registers (register operands with constraints "t", "u", | 
|  | // and "f") to kill afer the instruction. | 
|  | unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff; | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &Op = MI.getOperand(i); | 
|  | if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) | 
|  | continue; | 
|  | unsigned FPReg = getFPReg(Op); | 
|  |  | 
|  | // If we kill this operand, make sure to pop it from the stack after the | 
|  | // asm.  We just remember it for now, and pop them all off at the end in | 
|  | // a batch. | 
|  | if (Op.isUse() && Op.isKill()) | 
|  | FPKills |= 1U << FPReg; | 
|  | } | 
|  |  | 
|  | // Do not include registers that are implicitly popped by defs/clobbers. | 
|  | FPKills &= ~(STDefs | STClobbers); | 
|  |  | 
|  | // Now we can rearrange the live registers to match what was requested. | 
|  | unsigned char STUsesArray[8]; | 
|  |  | 
|  | for (unsigned I = 0; I < NumSTUses; ++I) | 
|  | STUsesArray[I] = I; | 
|  |  | 
|  | shuffleStackTop(STUsesArray, NumSTUses, Inst); | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Before asm: "; | 
|  | dumpStack(); | 
|  | }); | 
|  |  | 
|  | // With the stack layout fixed, rewrite the FP registers. | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &Op = MI.getOperand(i); | 
|  | if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) | 
|  | continue; | 
|  |  | 
|  | unsigned FPReg = getFPReg(Op); | 
|  |  | 
|  | if (FRegIdx.count(i)) | 
|  | // Operand with constraint "f". | 
|  | Op.setReg(getSTReg(FPReg)); | 
|  | else | 
|  | // Operand with a single register class constraint ("t" or "u"). | 
|  | Op.setReg(X86::ST0 + FPReg); | 
|  | } | 
|  |  | 
|  | // Simulate the inline asm popping its inputs and pushing its outputs. | 
|  | StackTop -= NumSTPopped; | 
|  |  | 
|  | for (unsigned i = 0; i < NumSTDefs; ++i) | 
|  | pushReg(NumSTDefs - i - 1); | 
|  |  | 
|  | // If this asm kills any FP registers (is the last use of them) we must | 
|  | // explicitly emit pop instructions for them.  Do this now after the asm has | 
|  | // executed so that the ST(x) numbers are not off (which would happen if we | 
|  | // did this inline with operand rewriting). | 
|  | // | 
|  | // Note: this might be a non-optimal pop sequence.  We might be able to do | 
|  | // better by trying to pop in stack order or something. | 
|  | while (FPKills) { | 
|  | unsigned FPReg = countTrailingZeros(FPKills); | 
|  | if (isLive(FPReg)) | 
|  | freeStackSlotAfter(Inst, FPReg); | 
|  | FPKills &= ~(1U << FPReg); | 
|  | } | 
|  |  | 
|  | // Don't delete the inline asm! | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | Inst = MBB->erase(Inst);  // Remove the pseudo instruction | 
|  |  | 
|  | // We want to leave I pointing to the previous instruction, but what if we | 
|  | // just erased the first instruction? | 
|  | if (Inst == MBB->begin()) { | 
|  | LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n"); | 
|  | Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL)); | 
|  | } else | 
|  | --Inst; | 
|  | } | 
|  |  | 
|  | void FPS::setKillFlags(MachineBasicBlock &MBB) const { | 
|  | const TargetRegisterInfo &TRI = | 
|  | *MBB.getParent()->getSubtarget().getRegisterInfo(); | 
|  | LivePhysRegs LPR(TRI); | 
|  |  | 
|  | LPR.addLiveOuts(MBB); | 
|  |  | 
|  | for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend(); | 
|  | I != E; ++I) { | 
|  | if (I->isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | std::bitset<8> Defs; | 
|  | SmallVector<MachineOperand *, 2> Uses; | 
|  | MachineInstr &MI = *I; | 
|  |  | 
|  | for (auto &MO : I->operands()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  |  | 
|  | unsigned Reg = MO.getReg() - X86::FP0; | 
|  |  | 
|  | if (Reg >= 8) | 
|  | continue; | 
|  |  | 
|  | if (MO.isDef()) { | 
|  | Defs.set(Reg); | 
|  | if (!LPR.contains(MO.getReg())) | 
|  | MO.setIsDead(); | 
|  | } else | 
|  | Uses.push_back(&MO); | 
|  | } | 
|  |  | 
|  | for (auto *MO : Uses) | 
|  | if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg())) | 
|  | MO->setIsKill(); | 
|  |  | 
|  | LPR.stepBackward(MI); | 
|  | } | 
|  | } |