|  | //===-- ThreadSanitizer.cpp - race detector -------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file is a part of ThreadSanitizer, a race detector. | 
|  | // | 
|  | // The tool is under development, for the details about previous versions see | 
|  | // http://code.google.com/p/data-race-test | 
|  | // | 
|  | // The instrumentation phase is quite simple: | 
|  | //   - Insert calls to run-time library before every memory access. | 
|  | //      - Optimizations may apply to avoid instrumenting some of the accesses. | 
|  | //   - Insert calls at function entry/exit. | 
|  | // The rest is handled by the run-time library. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/Analysis/CaptureTracking.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/Utils/Local.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/ProfileData/InstrProf.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Instrumentation.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/EscapeEnumerator.h" | 
|  | #include "llvm/Transforms/Utils/ModuleUtils.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "tsan" | 
|  |  | 
|  | static cl::opt<bool>  ClInstrumentMemoryAccesses( | 
|  | "tsan-instrument-memory-accesses", cl::init(true), | 
|  | cl::desc("Instrument memory accesses"), cl::Hidden); | 
|  | static cl::opt<bool>  ClInstrumentFuncEntryExit( | 
|  | "tsan-instrument-func-entry-exit", cl::init(true), | 
|  | cl::desc("Instrument function entry and exit"), cl::Hidden); | 
|  | static cl::opt<bool>  ClHandleCxxExceptions( | 
|  | "tsan-handle-cxx-exceptions", cl::init(true), | 
|  | cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"), | 
|  | cl::Hidden); | 
|  | static cl::opt<bool>  ClInstrumentAtomics( | 
|  | "tsan-instrument-atomics", cl::init(true), | 
|  | cl::desc("Instrument atomics"), cl::Hidden); | 
|  | static cl::opt<bool>  ClInstrumentMemIntrinsics( | 
|  | "tsan-instrument-memintrinsics", cl::init(true), | 
|  | cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); | 
|  |  | 
|  | STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); | 
|  | STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); | 
|  | STATISTIC(NumOmittedReadsBeforeWrite, | 
|  | "Number of reads ignored due to following writes"); | 
|  | STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); | 
|  | STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); | 
|  | STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); | 
|  | STATISTIC(NumOmittedReadsFromConstantGlobals, | 
|  | "Number of reads from constant globals"); | 
|  | STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); | 
|  | STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing"); | 
|  |  | 
|  | static const char *const kTsanModuleCtorName = "tsan.module_ctor"; | 
|  | static const char *const kTsanInitName = "__tsan_init"; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// ThreadSanitizer: instrument the code in module to find races. | 
|  | struct ThreadSanitizer : public FunctionPass { | 
|  | ThreadSanitizer() : FunctionPass(ID) {} | 
|  | StringRef getPassName() const override; | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override; | 
|  | bool runOnFunction(Function &F) override; | 
|  | bool doInitialization(Module &M) override; | 
|  | static char ID;  // Pass identification, replacement for typeid. | 
|  |  | 
|  | private: | 
|  | void initializeCallbacks(Module &M); | 
|  | bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL); | 
|  | bool instrumentAtomic(Instruction *I, const DataLayout &DL); | 
|  | bool instrumentMemIntrinsic(Instruction *I); | 
|  | void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, | 
|  | SmallVectorImpl<Instruction *> &All, | 
|  | const DataLayout &DL); | 
|  | bool addrPointsToConstantData(Value *Addr); | 
|  | int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL); | 
|  | void InsertRuntimeIgnores(Function &F); | 
|  |  | 
|  | Type *IntptrTy; | 
|  | IntegerType *OrdTy; | 
|  | // Callbacks to run-time library are computed in doInitialization. | 
|  | Function *TsanFuncEntry; | 
|  | Function *TsanFuncExit; | 
|  | Function *TsanIgnoreBegin; | 
|  | Function *TsanIgnoreEnd; | 
|  | // Accesses sizes are powers of two: 1, 2, 4, 8, 16. | 
|  | static const size_t kNumberOfAccessSizes = 5; | 
|  | Function *TsanRead[kNumberOfAccessSizes]; | 
|  | Function *TsanWrite[kNumberOfAccessSizes]; | 
|  | Function *TsanUnalignedRead[kNumberOfAccessSizes]; | 
|  | Function *TsanUnalignedWrite[kNumberOfAccessSizes]; | 
|  | Function *TsanAtomicLoad[kNumberOfAccessSizes]; | 
|  | Function *TsanAtomicStore[kNumberOfAccessSizes]; | 
|  | Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes]; | 
|  | Function *TsanAtomicCAS[kNumberOfAccessSizes]; | 
|  | Function *TsanAtomicThreadFence; | 
|  | Function *TsanAtomicSignalFence; | 
|  | Function *TsanVptrUpdate; | 
|  | Function *TsanVptrLoad; | 
|  | Function *MemmoveFn, *MemcpyFn, *MemsetFn; | 
|  | Function *TsanCtorFunction; | 
|  | }; | 
|  | }  // namespace | 
|  |  | 
|  | char ThreadSanitizer::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN( | 
|  | ThreadSanitizer, "tsan", | 
|  | "ThreadSanitizer: detects data races.", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END( | 
|  | ThreadSanitizer, "tsan", | 
|  | "ThreadSanitizer: detects data races.", | 
|  | false, false) | 
|  |  | 
|  | StringRef ThreadSanitizer::getPassName() const { return "ThreadSanitizer"; } | 
|  |  | 
|  | void ThreadSanitizer::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createThreadSanitizerPass() { | 
|  | return new ThreadSanitizer(); | 
|  | } | 
|  |  | 
|  | void ThreadSanitizer::initializeCallbacks(Module &M) { | 
|  | IRBuilder<> IRB(M.getContext()); | 
|  | AttributeList Attr; | 
|  | Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex, | 
|  | Attribute::NoUnwind); | 
|  | // Initialize the callbacks. | 
|  | TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | "__tsan_func_entry", Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); | 
|  | TsanFuncExit = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy())); | 
|  | TsanIgnoreBegin = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | "__tsan_ignore_thread_begin", Attr, IRB.getVoidTy())); | 
|  | TsanIgnoreEnd = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | "__tsan_ignore_thread_end", Attr, IRB.getVoidTy())); | 
|  | OrdTy = IRB.getInt32Ty(); | 
|  | for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { | 
|  | const unsigned ByteSize = 1U << i; | 
|  | const unsigned BitSize = ByteSize * 8; | 
|  | std::string ByteSizeStr = utostr(ByteSize); | 
|  | std::string BitSizeStr = utostr(BitSize); | 
|  | SmallString<32> ReadName("__tsan_read" + ByteSizeStr); | 
|  | TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | ReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); | 
|  |  | 
|  | SmallString<32> WriteName("__tsan_write" + ByteSizeStr); | 
|  | TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | WriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); | 
|  |  | 
|  | SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); | 
|  | TsanUnalignedRead[i] = | 
|  | checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); | 
|  |  | 
|  | SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); | 
|  | TsanUnalignedWrite[i] = | 
|  | checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); | 
|  |  | 
|  | Type *Ty = Type::getIntNTy(M.getContext(), BitSize); | 
|  | Type *PtrTy = Ty->getPointerTo(); | 
|  | SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load"); | 
|  | TsanAtomicLoad[i] = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy)); | 
|  |  | 
|  | SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store"); | 
|  | TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy)); | 
|  |  | 
|  | for (int op = AtomicRMWInst::FIRST_BINOP; | 
|  | op <= AtomicRMWInst::LAST_BINOP; ++op) { | 
|  | TsanAtomicRMW[op][i] = nullptr; | 
|  | const char *NamePart = nullptr; | 
|  | if (op == AtomicRMWInst::Xchg) | 
|  | NamePart = "_exchange"; | 
|  | else if (op == AtomicRMWInst::Add) | 
|  | NamePart = "_fetch_add"; | 
|  | else if (op == AtomicRMWInst::Sub) | 
|  | NamePart = "_fetch_sub"; | 
|  | else if (op == AtomicRMWInst::And) | 
|  | NamePart = "_fetch_and"; | 
|  | else if (op == AtomicRMWInst::Or) | 
|  | NamePart = "_fetch_or"; | 
|  | else if (op == AtomicRMWInst::Xor) | 
|  | NamePart = "_fetch_xor"; | 
|  | else if (op == AtomicRMWInst::Nand) | 
|  | NamePart = "_fetch_nand"; | 
|  | else | 
|  | continue; | 
|  | SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); | 
|  | TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy)); | 
|  | } | 
|  |  | 
|  | SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + | 
|  | "_compare_exchange_val"); | 
|  | TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | AtomicCASName, Attr, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy)); | 
|  | } | 
|  | TsanVptrUpdate = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(), | 
|  | IRB.getInt8PtrTy(), IRB.getInt8PtrTy())); | 
|  | TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | "__tsan_vptr_read", Attr, IRB.getVoidTy(), IRB.getInt8PtrTy())); | 
|  | TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | "__tsan_atomic_thread_fence", Attr, IRB.getVoidTy(), OrdTy)); | 
|  | TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | "__tsan_atomic_signal_fence", Attr, IRB.getVoidTy(), OrdTy)); | 
|  |  | 
|  | MemmoveFn = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), | 
|  | IRB.getInt8PtrTy(), IntptrTy)); | 
|  | MemcpyFn = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), | 
|  | IRB.getInt8PtrTy(), IntptrTy)); | 
|  | MemsetFn = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), | 
|  | IRB.getInt32Ty(), IntptrTy)); | 
|  | } | 
|  |  | 
|  | bool ThreadSanitizer::doInitialization(Module &M) { | 
|  | const DataLayout &DL = M.getDataLayout(); | 
|  | IntptrTy = DL.getIntPtrType(M.getContext()); | 
|  | std::tie(TsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( | 
|  | M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{}, | 
|  | /*InitArgs=*/{}); | 
|  |  | 
|  | appendToGlobalCtors(M, TsanCtorFunction, 0); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isVtableAccess(Instruction *I) { | 
|  | if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) | 
|  | return Tag->isTBAAVtableAccess(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Do not instrument known races/"benign races" that come from compiler | 
|  | // instrumentatin. The user has no way of suppressing them. | 
|  | static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) { | 
|  | // Peel off GEPs and BitCasts. | 
|  | Addr = Addr->stripInBoundsOffsets(); | 
|  |  | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { | 
|  | if (GV->hasSection()) { | 
|  | StringRef SectionName = GV->getSection(); | 
|  | // Check if the global is in the PGO counters section. | 
|  | auto OF = Triple(M->getTargetTriple()).getObjectFormat(); | 
|  | if (SectionName.endswith( | 
|  | getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if the global is private gcov data. | 
|  | if (GV->getName().startswith("__llvm_gcov") || | 
|  | GV->getName().startswith("__llvm_gcda")) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Do not instrument acesses from different address spaces; we cannot deal | 
|  | // with them. | 
|  | if (Addr) { | 
|  | Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); | 
|  | if (PtrTy->getPointerAddressSpace() != 0) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { | 
|  | // If this is a GEP, just analyze its pointer operand. | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) | 
|  | Addr = GEP->getPointerOperand(); | 
|  |  | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { | 
|  | if (GV->isConstant()) { | 
|  | // Reads from constant globals can not race with any writes. | 
|  | NumOmittedReadsFromConstantGlobals++; | 
|  | return true; | 
|  | } | 
|  | } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { | 
|  | if (isVtableAccess(L)) { | 
|  | // Reads from a vtable pointer can not race with any writes. | 
|  | NumOmittedReadsFromVtable++; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Instrumenting some of the accesses may be proven redundant. | 
|  | // Currently handled: | 
|  | //  - read-before-write (within same BB, no calls between) | 
|  | //  - not captured variables | 
|  | // | 
|  | // We do not handle some of the patterns that should not survive | 
|  | // after the classic compiler optimizations. | 
|  | // E.g. two reads from the same temp should be eliminated by CSE, | 
|  | // two writes should be eliminated by DSE, etc. | 
|  | // | 
|  | // 'Local' is a vector of insns within the same BB (no calls between). | 
|  | // 'All' is a vector of insns that will be instrumented. | 
|  | void ThreadSanitizer::chooseInstructionsToInstrument( | 
|  | SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All, | 
|  | const DataLayout &DL) { | 
|  | SmallSet<Value*, 8> WriteTargets; | 
|  | // Iterate from the end. | 
|  | for (Instruction *I : reverse(Local)) { | 
|  | if (StoreInst *Store = dyn_cast<StoreInst>(I)) { | 
|  | Value *Addr = Store->getPointerOperand(); | 
|  | if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr)) | 
|  | continue; | 
|  | WriteTargets.insert(Addr); | 
|  | } else { | 
|  | LoadInst *Load = cast<LoadInst>(I); | 
|  | Value *Addr = Load->getPointerOperand(); | 
|  | if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr)) | 
|  | continue; | 
|  | if (WriteTargets.count(Addr)) { | 
|  | // We will write to this temp, so no reason to analyze the read. | 
|  | NumOmittedReadsBeforeWrite++; | 
|  | continue; | 
|  | } | 
|  | if (addrPointsToConstantData(Addr)) { | 
|  | // Addr points to some constant data -- it can not race with any writes. | 
|  | continue; | 
|  | } | 
|  | } | 
|  | Value *Addr = isa<StoreInst>(*I) | 
|  | ? cast<StoreInst>(I)->getPointerOperand() | 
|  | : cast<LoadInst>(I)->getPointerOperand(); | 
|  | if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && | 
|  | !PointerMayBeCaptured(Addr, true, true)) { | 
|  | // The variable is addressable but not captured, so it cannot be | 
|  | // referenced from a different thread and participate in a data race | 
|  | // (see llvm/Analysis/CaptureTracking.h for details). | 
|  | NumOmittedNonCaptured++; | 
|  | continue; | 
|  | } | 
|  | All.push_back(I); | 
|  | } | 
|  | Local.clear(); | 
|  | } | 
|  |  | 
|  | static bool isAtomic(Instruction *I) { | 
|  | // TODO: Ask TTI whether synchronization scope is between threads. | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) | 
|  | return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread; | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(I)) | 
|  | return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread; | 
|  | if (isa<AtomicRMWInst>(I)) | 
|  | return true; | 
|  | if (isa<AtomicCmpXchgInst>(I)) | 
|  | return true; | 
|  | if (isa<FenceInst>(I)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void ThreadSanitizer::InsertRuntimeIgnores(Function &F) { | 
|  | IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); | 
|  | IRB.CreateCall(TsanIgnoreBegin); | 
|  | EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions); | 
|  | while (IRBuilder<> *AtExit = EE.Next()) { | 
|  | AtExit->CreateCall(TsanIgnoreEnd); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ThreadSanitizer::runOnFunction(Function &F) { | 
|  | // This is required to prevent instrumenting call to __tsan_init from within | 
|  | // the module constructor. | 
|  | if (&F == TsanCtorFunction) | 
|  | return false; | 
|  | initializeCallbacks(*F.getParent()); | 
|  | SmallVector<Instruction*, 8> AllLoadsAndStores; | 
|  | SmallVector<Instruction*, 8> LocalLoadsAndStores; | 
|  | SmallVector<Instruction*, 8> AtomicAccesses; | 
|  | SmallVector<Instruction*, 8> MemIntrinCalls; | 
|  | bool Res = false; | 
|  | bool HasCalls = false; | 
|  | bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | const TargetLibraryInfo *TLI = | 
|  | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  |  | 
|  | // Traverse all instructions, collect loads/stores/returns, check for calls. | 
|  | for (auto &BB : F) { | 
|  | for (auto &Inst : BB) { | 
|  | if (isAtomic(&Inst)) | 
|  | AtomicAccesses.push_back(&Inst); | 
|  | else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) | 
|  | LocalLoadsAndStores.push_back(&Inst); | 
|  | else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { | 
|  | if (CallInst *CI = dyn_cast<CallInst>(&Inst)) | 
|  | maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); | 
|  | if (isa<MemIntrinsic>(Inst)) | 
|  | MemIntrinCalls.push_back(&Inst); | 
|  | HasCalls = true; | 
|  | chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, | 
|  | DL); | 
|  | } | 
|  | } | 
|  | chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL); | 
|  | } | 
|  |  | 
|  | // We have collected all loads and stores. | 
|  | // FIXME: many of these accesses do not need to be checked for races | 
|  | // (e.g. variables that do not escape, etc). | 
|  |  | 
|  | // Instrument memory accesses only if we want to report bugs in the function. | 
|  | if (ClInstrumentMemoryAccesses && SanitizeFunction) | 
|  | for (auto Inst : AllLoadsAndStores) { | 
|  | Res |= instrumentLoadOrStore(Inst, DL); | 
|  | } | 
|  |  | 
|  | // Instrument atomic memory accesses in any case (they can be used to | 
|  | // implement synchronization). | 
|  | if (ClInstrumentAtomics) | 
|  | for (auto Inst : AtomicAccesses) { | 
|  | Res |= instrumentAtomic(Inst, DL); | 
|  | } | 
|  |  | 
|  | if (ClInstrumentMemIntrinsics && SanitizeFunction) | 
|  | for (auto Inst : MemIntrinCalls) { | 
|  | Res |= instrumentMemIntrinsic(Inst); | 
|  | } | 
|  |  | 
|  | if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) { | 
|  | assert(!F.hasFnAttribute(Attribute::SanitizeThread)); | 
|  | if (HasCalls) | 
|  | InsertRuntimeIgnores(F); | 
|  | } | 
|  |  | 
|  | // Instrument function entry/exit points if there were instrumented accesses. | 
|  | if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { | 
|  | IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); | 
|  | Value *ReturnAddress = IRB.CreateCall( | 
|  | Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), | 
|  | IRB.getInt32(0)); | 
|  | IRB.CreateCall(TsanFuncEntry, ReturnAddress); | 
|  |  | 
|  | EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions); | 
|  | while (IRBuilder<> *AtExit = EE.Next()) { | 
|  | AtExit->CreateCall(TsanFuncExit, {}); | 
|  | } | 
|  | Res = true; | 
|  | } | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I, | 
|  | const DataLayout &DL) { | 
|  | IRBuilder<> IRB(I); | 
|  | bool IsWrite = isa<StoreInst>(*I); | 
|  | Value *Addr = IsWrite | 
|  | ? cast<StoreInst>(I)->getPointerOperand() | 
|  | : cast<LoadInst>(I)->getPointerOperand(); | 
|  |  | 
|  | // swifterror memory addresses are mem2reg promoted by instruction selection. | 
|  | // As such they cannot have regular uses like an instrumentation function and | 
|  | // it makes no sense to track them as memory. | 
|  | if (Addr->isSwiftError()) | 
|  | return false; | 
|  |  | 
|  | int Idx = getMemoryAccessFuncIndex(Addr, DL); | 
|  | if (Idx < 0) | 
|  | return false; | 
|  | if (IsWrite && isVtableAccess(I)) { | 
|  | DEBUG(dbgs() << "  VPTR : " << *I << "\n"); | 
|  | Value *StoredValue = cast<StoreInst>(I)->getValueOperand(); | 
|  | // StoredValue may be a vector type if we are storing several vptrs at once. | 
|  | // In this case, just take the first element of the vector since this is | 
|  | // enough to find vptr races. | 
|  | if (isa<VectorType>(StoredValue->getType())) | 
|  | StoredValue = IRB.CreateExtractElement( | 
|  | StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); | 
|  | if (StoredValue->getType()->isIntegerTy()) | 
|  | StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); | 
|  | // Call TsanVptrUpdate. | 
|  | IRB.CreateCall(TsanVptrUpdate, | 
|  | {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), | 
|  | IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())}); | 
|  | NumInstrumentedVtableWrites++; | 
|  | return true; | 
|  | } | 
|  | if (!IsWrite && isVtableAccess(I)) { | 
|  | IRB.CreateCall(TsanVptrLoad, | 
|  | IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); | 
|  | NumInstrumentedVtableReads++; | 
|  | return true; | 
|  | } | 
|  | const unsigned Alignment = IsWrite | 
|  | ? cast<StoreInst>(I)->getAlignment() | 
|  | : cast<LoadInst>(I)->getAlignment(); | 
|  | Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); | 
|  | const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); | 
|  | Value *OnAccessFunc = nullptr; | 
|  | if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) | 
|  | OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; | 
|  | else | 
|  | OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; | 
|  | IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); | 
|  | if (IsWrite) NumInstrumentedWrites++; | 
|  | else         NumInstrumentedReads++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { | 
|  | uint32_t v = 0; | 
|  | switch (ord) { | 
|  | case AtomicOrdering::NotAtomic: | 
|  | llvm_unreachable("unexpected atomic ordering!"); | 
|  | case AtomicOrdering::Unordered:              LLVM_FALLTHROUGH; | 
|  | case AtomicOrdering::Monotonic:              v = 0; break; | 
|  | // Not specified yet: | 
|  | // case AtomicOrdering::Consume:                v = 1; break; | 
|  | case AtomicOrdering::Acquire:                v = 2; break; | 
|  | case AtomicOrdering::Release:                v = 3; break; | 
|  | case AtomicOrdering::AcquireRelease:         v = 4; break; | 
|  | case AtomicOrdering::SequentiallyConsistent: v = 5; break; | 
|  | } | 
|  | return IRB->getInt32(v); | 
|  | } | 
|  |  | 
|  | // If a memset intrinsic gets inlined by the code gen, we will miss races on it. | 
|  | // So, we either need to ensure the intrinsic is not inlined, or instrument it. | 
|  | // We do not instrument memset/memmove/memcpy intrinsics (too complicated), | 
|  | // instead we simply replace them with regular function calls, which are then | 
|  | // intercepted by the run-time. | 
|  | // Since tsan is running after everyone else, the calls should not be | 
|  | // replaced back with intrinsics. If that becomes wrong at some point, | 
|  | // we will need to call e.g. __tsan_memset to avoid the intrinsics. | 
|  | bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { | 
|  | IRBuilder<> IRB(I); | 
|  | if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { | 
|  | IRB.CreateCall( | 
|  | MemsetFn, | 
|  | {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), | 
|  | IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), | 
|  | IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); | 
|  | I->eraseFromParent(); | 
|  | } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { | 
|  | IRB.CreateCall( | 
|  | isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, | 
|  | {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), | 
|  | IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), | 
|  | IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); | 
|  | I->eraseFromParent(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x | 
|  | // standards.  For background see C++11 standard.  A slightly older, publicly | 
|  | // available draft of the standard (not entirely up-to-date, but close enough | 
|  | // for casual browsing) is available here: | 
|  | // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf | 
|  | // The following page contains more background information: | 
|  | // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ | 
|  |  | 
|  | bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { | 
|  | IRBuilder<> IRB(I); | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | Value *Addr = LI->getPointerOperand(); | 
|  | int Idx = getMemoryAccessFuncIndex(Addr, DL); | 
|  | if (Idx < 0) | 
|  | return false; | 
|  | const unsigned ByteSize = 1U << Idx; | 
|  | const unsigned BitSize = ByteSize * 8; | 
|  | Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); | 
|  | Type *PtrTy = Ty->getPointerTo(); | 
|  | Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), | 
|  | createOrdering(&IRB, LI->getOrdering())}; | 
|  | Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); | 
|  | Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args); | 
|  | Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy); | 
|  | I->replaceAllUsesWith(Cast); | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { | 
|  | Value *Addr = SI->getPointerOperand(); | 
|  | int Idx = getMemoryAccessFuncIndex(Addr, DL); | 
|  | if (Idx < 0) | 
|  | return false; | 
|  | const unsigned ByteSize = 1U << Idx; | 
|  | const unsigned BitSize = ByteSize * 8; | 
|  | Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); | 
|  | Type *PtrTy = Ty->getPointerTo(); | 
|  | Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), | 
|  | IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty), | 
|  | createOrdering(&IRB, SI->getOrdering())}; | 
|  | CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); | 
|  | ReplaceInstWithInst(I, C); | 
|  | } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { | 
|  | Value *Addr = RMWI->getPointerOperand(); | 
|  | int Idx = getMemoryAccessFuncIndex(Addr, DL); | 
|  | if (Idx < 0) | 
|  | return false; | 
|  | Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx]; | 
|  | if (!F) | 
|  | return false; | 
|  | const unsigned ByteSize = 1U << Idx; | 
|  | const unsigned BitSize = ByteSize * 8; | 
|  | Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); | 
|  | Type *PtrTy = Ty->getPointerTo(); | 
|  | Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), | 
|  | IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), | 
|  | createOrdering(&IRB, RMWI->getOrdering())}; | 
|  | CallInst *C = CallInst::Create(F, Args); | 
|  | ReplaceInstWithInst(I, C); | 
|  | } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { | 
|  | Value *Addr = CASI->getPointerOperand(); | 
|  | int Idx = getMemoryAccessFuncIndex(Addr, DL); | 
|  | if (Idx < 0) | 
|  | return false; | 
|  | const unsigned ByteSize = 1U << Idx; | 
|  | const unsigned BitSize = ByteSize * 8; | 
|  | Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); | 
|  | Type *PtrTy = Ty->getPointerTo(); | 
|  | Value *CmpOperand = | 
|  | IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty); | 
|  | Value *NewOperand = | 
|  | IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty); | 
|  | Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), | 
|  | CmpOperand, | 
|  | NewOperand, | 
|  | createOrdering(&IRB, CASI->getSuccessOrdering()), | 
|  | createOrdering(&IRB, CASI->getFailureOrdering())}; | 
|  | CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); | 
|  | Value *Success = IRB.CreateICmpEQ(C, CmpOperand); | 
|  | Value *OldVal = C; | 
|  | Type *OrigOldValTy = CASI->getNewValOperand()->getType(); | 
|  | if (Ty != OrigOldValTy) { | 
|  | // The value is a pointer, so we need to cast the return value. | 
|  | OldVal = IRB.CreateIntToPtr(C, OrigOldValTy); | 
|  | } | 
|  |  | 
|  | Value *Res = | 
|  | IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0); | 
|  | Res = IRB.CreateInsertValue(Res, Success, 1); | 
|  |  | 
|  | I->replaceAllUsesWith(Res); | 
|  | I->eraseFromParent(); | 
|  | } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { | 
|  | Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; | 
|  | Function *F = FI->getSyncScopeID() == SyncScope::SingleThread ? | 
|  | TsanAtomicSignalFence : TsanAtomicThreadFence; | 
|  | CallInst *C = CallInst::Create(F, Args); | 
|  | ReplaceInstWithInst(I, C); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr, | 
|  | const DataLayout &DL) { | 
|  | Type *OrigPtrTy = Addr->getType(); | 
|  | Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); | 
|  | assert(OrigTy->isSized()); | 
|  | uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); | 
|  | if (TypeSize != 8  && TypeSize != 16 && | 
|  | TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { | 
|  | NumAccessesWithBadSize++; | 
|  | // Ignore all unusual sizes. | 
|  | return -1; | 
|  | } | 
|  | size_t Idx = countTrailingZeros(TypeSize / 8); | 
|  | assert(Idx < kNumberOfAccessSizes); | 
|  | return Idx; | 
|  | } |