| //===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines an implementation of Andersen's interprocedural alias |
| // analysis |
| // |
| // In pointer analysis terms, this is a subset-based, flow-insensitive, |
| // field-sensitive, and context-insensitive algorithm pointer algorithm. |
| // |
| // This algorithm is implemented as three stages: |
| // 1. Object identification. |
| // 2. Inclusion constraint identification. |
| // 3. Inclusion constraint solving. |
| // |
| // The object identification stage identifies all of the memory objects in the |
| // program, which includes globals, heap allocated objects, and stack allocated |
| // objects. |
| // |
| // The inclusion constraint identification stage finds all inclusion constraints |
| // in the program by scanning the program, looking for pointer assignments and |
| // other statements that effect the points-to graph. For a statement like "A = |
| // B", this statement is processed to indicate that A can point to anything that |
| // B can point to. Constraints can handle copies, loads, and stores, and |
| // address taking. |
| // |
| // The inclusion constraint solving phase iteratively propagates the inclusion |
| // constraints until a fixed point is reached. This is an O(N^3) algorithm. |
| // |
| // Function constraints are handled as if they were structs with X fields. |
| // Thus, an access to argument X of function Y is an access to node index |
| // getNode(Y) + X. This representation allows handling of indirect calls |
| // without any issues. To wit, an indirect call Y(a,b) is equivalence to |
| // *(Y + 1) = a, *(Y + 2) = b. |
| // The return node for a function is always located at getNode(F) + |
| // CallReturnPos. The arguments start at getNode(F) + CallArgPos. |
| // |
| // Future Improvements: |
| // Offline variable substitution, offline detection of online |
| // cycles. Use of BDD's. |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "anders-aa" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/InstIterator.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/Passes.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/SparseBitVector.h" |
| #include <algorithm> |
| #include <set> |
| #include <list> |
| #include <stack> |
| #include <vector> |
| |
| using namespace llvm; |
| STATISTIC(NumIters , "Number of iterations to reach convergence"); |
| STATISTIC(NumConstraints , "Number of constraints"); |
| STATISTIC(NumNodes , "Number of nodes"); |
| STATISTIC(NumUnified , "Number of variables unified"); |
| |
| namespace { |
| const unsigned SelfRep = (unsigned)-1; |
| const unsigned Unvisited = (unsigned)-1; |
| // Position of the function return node relative to the function node. |
| const unsigned CallReturnPos = 2; |
| // Position of the function call node relative to the function node. |
| const unsigned CallFirstArgPos = 3; |
| |
| class VISIBILITY_HIDDEN Andersens : public ModulePass, public AliasAnalysis, |
| private InstVisitor<Andersens> { |
| class Node; |
| |
| /// Constraint - Objects of this structure are used to represent the various |
| /// constraints identified by the algorithm. The constraints are 'copy', |
| /// for statements like "A = B", 'load' for statements like "A = *B", |
| /// 'store' for statements like "*A = B", and AddressOf for statements like |
| /// A = alloca; The Offset is applied as *(A + K) = B for stores, |
| /// A = *(B + K) for loads, and A = B + K for copies. It is |
| /// illegal on addressof constraints (Because it is statically |
| /// resolvable to A = &C where C = B + K) |
| |
| struct Constraint { |
| enum ConstraintType { Copy, Load, Store, AddressOf } Type; |
| unsigned Dest; |
| unsigned Src; |
| unsigned Offset; |
| |
| Constraint(ConstraintType Ty, unsigned D, unsigned S, unsigned O = 0) |
| : Type(Ty), Dest(D), Src(S), Offset(O) { |
| assert(Offset == 0 || Ty != AddressOf && |
| "Offset is illegal on addressof constraints"); |
| } |
| }; |
| |
| // Node class - This class is used to represent a node |
| // in the constraint graph. Due to various optimizations, |
| // not always the case that there is a mapping from a Node to a |
| // Value. In particular, we add artificial |
| // Node's that represent the set of pointed-to variables |
| // shared for each location equivalent Node. |
| struct Node { |
| Value *Val; |
| SparseBitVector<> *Edges; |
| SparseBitVector<> *PointsTo; |
| SparseBitVector<> *OldPointsTo; |
| bool Changed; |
| std::list<Constraint> Constraints; |
| |
| // Nodes in cycles (or in equivalence classes) are united |
| // together using a standard union-find representation with path |
| // compression. NodeRep gives the index into GraphNodes |
| // representative for this one. |
| unsigned NodeRep; public: |
| |
| Node() : Val(0), Edges(0), PointsTo(0), OldPointsTo(0), Changed(false), |
| NodeRep(SelfRep) { |
| } |
| |
| Node *setValue(Value *V) { |
| assert(Val == 0 && "Value already set for this node!"); |
| Val = V; |
| return this; |
| } |
| |
| /// getValue - Return the LLVM value corresponding to this node. |
| /// |
| Value *getValue() const { return Val; } |
| |
| /// addPointerTo - Add a pointer to the list of pointees of this node, |
| /// returning true if this caused a new pointer to be added, or false if |
| /// we already knew about the points-to relation. |
| bool addPointerTo(unsigned Node) { |
| return PointsTo->test_and_set(Node); |
| } |
| |
| /// intersects - Return true if the points-to set of this node intersects |
| /// with the points-to set of the specified node. |
| bool intersects(Node *N) const; |
| |
| /// intersectsIgnoring - Return true if the points-to set of this node |
| /// intersects with the points-to set of the specified node on any nodes |
| /// except for the specified node to ignore. |
| bool intersectsIgnoring(Node *N, unsigned) const; |
| }; |
| |
| /// GraphNodes - This vector is populated as part of the object |
| /// identification stage of the analysis, which populates this vector with a |
| /// node for each memory object and fills in the ValueNodes map. |
| std::vector<Node> GraphNodes; |
| |
| /// ValueNodes - This map indicates the Node that a particular Value* is |
| /// represented by. This contains entries for all pointers. |
| std::map<Value*, unsigned> ValueNodes; |
| |
| /// ObjectNodes - This map contains entries for each memory object in the |
| /// program: globals, alloca's and mallocs. |
| std::map<Value*, unsigned> ObjectNodes; |
| |
| /// ReturnNodes - This map contains an entry for each function in the |
| /// program that returns a value. |
| std::map<Function*, unsigned> ReturnNodes; |
| |
| /// VarargNodes - This map contains the entry used to represent all pointers |
| /// passed through the varargs portion of a function call for a particular |
| /// function. An entry is not present in this map for functions that do not |
| /// take variable arguments. |
| std::map<Function*, unsigned> VarargNodes; |
| |
| |
| /// Constraints - This vector contains a list of all of the constraints |
| /// identified by the program. |
| std::vector<Constraint> Constraints; |
| |
| // Map from graph node to maximum K value that is allowed (For functions, |
| // this is equivalent to the number of arguments + CallFirstArgPos) |
| std::map<unsigned, unsigned> MaxK; |
| |
| /// This enum defines the GraphNodes indices that correspond to important |
| /// fixed sets. |
| enum { |
| UniversalSet = 0, |
| NullPtr = 1, |
| NullObject = 2 |
| }; |
| // Stack for Tarjans |
| std::stack<unsigned> SCCStack; |
| // Topological Index -> Graph node |
| std::vector<unsigned> Topo2Node; |
| // Graph Node -> Topological Index; |
| std::vector<unsigned> Node2Topo; |
| // Map from Graph Node to DFS number |
| std::vector<unsigned> Node2DFS; |
| // Map from Graph Node to Deleted from graph. |
| std::vector<bool> Node2Deleted; |
| // Current DFS and RPO numbers |
| unsigned DFSNumber; |
| unsigned RPONumber; |
| |
| public: |
| static char ID; |
| Andersens() : ModulePass((intptr_t)&ID) {} |
| |
| bool runOnModule(Module &M) { |
| InitializeAliasAnalysis(this); |
| IdentifyObjects(M); |
| CollectConstraints(M); |
| DEBUG(PrintConstraints()); |
| SolveConstraints(); |
| DEBUG(PrintPointsToGraph()); |
| |
| // Free the constraints list, as we don't need it to respond to alias |
| // requests. |
| ObjectNodes.clear(); |
| ReturnNodes.clear(); |
| VarargNodes.clear(); |
| std::vector<Constraint>().swap(Constraints); |
| return false; |
| } |
| |
| void releaseMemory() { |
| // FIXME: Until we have transitively required passes working correctly, |
| // this cannot be enabled! Otherwise, using -count-aa with the pass |
| // causes memory to be freed too early. :( |
| #if 0 |
| // The memory objects and ValueNodes data structures at the only ones that |
| // are still live after construction. |
| std::vector<Node>().swap(GraphNodes); |
| ValueNodes.clear(); |
| #endif |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AliasAnalysis::getAnalysisUsage(AU); |
| AU.setPreservesAll(); // Does not transform code |
| } |
| |
| //------------------------------------------------ |
| // Implement the AliasAnalysis API |
| // |
| AliasResult alias(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size); |
| virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size); |
| virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2); |
| void getMustAliases(Value *P, std::vector<Value*> &RetVals); |
| bool pointsToConstantMemory(const Value *P); |
| |
| virtual void deleteValue(Value *V) { |
| ValueNodes.erase(V); |
| getAnalysis<AliasAnalysis>().deleteValue(V); |
| } |
| |
| virtual void copyValue(Value *From, Value *To) { |
| ValueNodes[To] = ValueNodes[From]; |
| getAnalysis<AliasAnalysis>().copyValue(From, To); |
| } |
| |
| private: |
| /// getNode - Return the node corresponding to the specified pointer scalar. |
| /// |
| unsigned getNode(Value *V) { |
| if (Constant *C = dyn_cast<Constant>(V)) |
| if (!isa<GlobalValue>(C)) |
| return getNodeForConstantPointer(C); |
| |
| std::map<Value*, unsigned>::iterator I = ValueNodes.find(V); |
| if (I == ValueNodes.end()) { |
| #ifndef NDEBUG |
| V->dump(); |
| #endif |
| assert(0 && "Value does not have a node in the points-to graph!"); |
| } |
| return I->second; |
| } |
| |
| /// getObject - Return the node corresponding to the memory object for the |
| /// specified global or allocation instruction. |
| unsigned getObject(Value *V) { |
| std::map<Value*, unsigned>::iterator I = ObjectNodes.find(V); |
| assert(I != ObjectNodes.end() && |
| "Value does not have an object in the points-to graph!"); |
| return I->second; |
| } |
| |
| /// getReturnNode - Return the node representing the return value for the |
| /// specified function. |
| unsigned getReturnNode(Function *F) { |
| std::map<Function*, unsigned>::iterator I = ReturnNodes.find(F); |
| assert(I != ReturnNodes.end() && "Function does not return a value!"); |
| return I->second; |
| } |
| |
| /// getVarargNode - Return the node representing the variable arguments |
| /// formal for the specified function. |
| unsigned getVarargNode(Function *F) { |
| std::map<Function*, unsigned>::iterator I = VarargNodes.find(F); |
| assert(I != VarargNodes.end() && "Function does not take var args!"); |
| return I->second; |
| } |
| |
| /// getNodeValue - Get the node for the specified LLVM value and set the |
| /// value for it to be the specified value. |
| unsigned getNodeValue(Value &V) { |
| unsigned Index = getNode(&V); |
| GraphNodes[Index].setValue(&V); |
| return Index; |
| } |
| |
| unsigned UniteNodes(unsigned First, unsigned Second); |
| unsigned FindNode(unsigned Node); |
| |
| void IdentifyObjects(Module &M); |
| void CollectConstraints(Module &M); |
| bool AnalyzeUsesOfFunction(Value *); |
| void CreateConstraintGraph(); |
| void SolveConstraints(); |
| void QueryNode(unsigned Node); |
| |
| unsigned getNodeForConstantPointer(Constant *C); |
| unsigned getNodeForConstantPointerTarget(Constant *C); |
| void AddGlobalInitializerConstraints(unsigned, Constant *C); |
| |
| void AddConstraintsForNonInternalLinkage(Function *F); |
| void AddConstraintsForCall(CallSite CS, Function *F); |
| bool AddConstraintsForExternalCall(CallSite CS, Function *F); |
| |
| |
| void PrintNode(Node *N); |
| void PrintConstraints(); |
| void PrintPointsToGraph(); |
| |
| //===------------------------------------------------------------------===// |
| // Instruction visitation methods for adding constraints |
| // |
| friend class InstVisitor<Andersens>; |
| void visitReturnInst(ReturnInst &RI); |
| void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); } |
| void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); } |
| void visitCallSite(CallSite CS); |
| void visitAllocationInst(AllocationInst &AI); |
| void visitLoadInst(LoadInst &LI); |
| void visitStoreInst(StoreInst &SI); |
| void visitGetElementPtrInst(GetElementPtrInst &GEP); |
| void visitPHINode(PHINode &PN); |
| void visitCastInst(CastInst &CI); |
| void visitICmpInst(ICmpInst &ICI) {} // NOOP! |
| void visitFCmpInst(FCmpInst &ICI) {} // NOOP! |
| void visitSelectInst(SelectInst &SI); |
| void visitVAArg(VAArgInst &I); |
| void visitInstruction(Instruction &I); |
| |
| }; |
| |
| char Andersens::ID = 0; |
| RegisterPass<Andersens> X("anders-aa", |
| "Andersen's Interprocedural Alias Analysis"); |
| RegisterAnalysisGroup<AliasAnalysis> Y(X); |
| } |
| |
| ModulePass *llvm::createAndersensPass() { return new Andersens(); } |
| |
| //===----------------------------------------------------------------------===// |
| // AliasAnalysis Interface Implementation |
| //===----------------------------------------------------------------------===// |
| |
| AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size) { |
| Node *N1 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V1)))]; |
| Node *N2 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V2)))]; |
| |
| // Check to see if the two pointers are known to not alias. They don't alias |
| // if their points-to sets do not intersect. |
| if (!N1->intersectsIgnoring(N2, NullObject)) |
| return NoAlias; |
| |
| return AliasAnalysis::alias(V1, V1Size, V2, V2Size); |
| } |
| |
| AliasAnalysis::ModRefResult |
| Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) { |
| // The only thing useful that we can contribute for mod/ref information is |
| // when calling external function calls: if we know that memory never escapes |
| // from the program, it cannot be modified by an external call. |
| // |
| // NOTE: This is not really safe, at least not when the entire program is not |
| // available. The deal is that the external function could call back into the |
| // program and modify stuff. We ignore this technical niggle for now. This |
| // is, after all, a "research quality" implementation of Andersen's analysis. |
| if (Function *F = CS.getCalledFunction()) |
| if (F->isDeclaration()) { |
| Node *N1 = &GraphNodes[FindNode(getNode(P))]; |
| |
| if (N1->PointsTo->empty()) |
| return NoModRef; |
| |
| if (!N1->PointsTo->test(UniversalSet)) |
| return NoModRef; // P doesn't point to the universal set. |
| } |
| |
| return AliasAnalysis::getModRefInfo(CS, P, Size); |
| } |
| |
| AliasAnalysis::ModRefResult |
| Andersens::getModRefInfo(CallSite CS1, CallSite CS2) { |
| return AliasAnalysis::getModRefInfo(CS1,CS2); |
| } |
| |
| /// getMustAlias - We can provide must alias information if we know that a |
| /// pointer can only point to a specific function or the null pointer. |
| /// Unfortunately we cannot determine must-alias information for global |
| /// variables or any other memory memory objects because we do not track whether |
| /// a pointer points to the beginning of an object or a field of it. |
| void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) { |
| Node *N = &GraphNodes[FindNode(getNode(P))]; |
| if (N->PointsTo->count() == 1) { |
| Node *Pointee = &GraphNodes[N->PointsTo->find_first()]; |
| // If a function is the only object in the points-to set, then it must be |
| // the destination. Note that we can't handle global variables here, |
| // because we don't know if the pointer is actually pointing to a field of |
| // the global or to the beginning of it. |
| if (Value *V = Pointee->getValue()) { |
| if (Function *F = dyn_cast<Function>(V)) |
| RetVals.push_back(F); |
| } else { |
| // If the object in the points-to set is the null object, then the null |
| // pointer is a must alias. |
| if (Pointee == &GraphNodes[NullObject]) |
| RetVals.push_back(Constant::getNullValue(P->getType())); |
| } |
| } |
| AliasAnalysis::getMustAliases(P, RetVals); |
| } |
| |
| /// pointsToConstantMemory - If we can determine that this pointer only points |
| /// to constant memory, return true. In practice, this means that if the |
| /// pointer can only point to constant globals, functions, or the null pointer, |
| /// return true. |
| /// |
| bool Andersens::pointsToConstantMemory(const Value *P) { |
| Node *N = &GraphNodes[FindNode(getNode((Value*)P))]; |
| unsigned i; |
| |
| for (SparseBitVector<>::iterator bi = N->PointsTo->begin(); |
| bi != N->PointsTo->end(); |
| ++bi) { |
| i = *bi; |
| Node *Pointee = &GraphNodes[i]; |
| if (Value *V = Pointee->getValue()) { |
| if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) && |
| !cast<GlobalVariable>(V)->isConstant())) |
| return AliasAnalysis::pointsToConstantMemory(P); |
| } else { |
| if (i != NullObject) |
| return AliasAnalysis::pointsToConstantMemory(P); |
| } |
| } |
| |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Object Identification Phase |
| //===----------------------------------------------------------------------===// |
| |
| /// IdentifyObjects - This stage scans the program, adding an entry to the |
| /// GraphNodes list for each memory object in the program (global stack or |
| /// heap), and populates the ValueNodes and ObjectNodes maps for these objects. |
| /// |
| void Andersens::IdentifyObjects(Module &M) { |
| unsigned NumObjects = 0; |
| |
| // Object #0 is always the universal set: the object that we don't know |
| // anything about. |
| assert(NumObjects == UniversalSet && "Something changed!"); |
| ++NumObjects; |
| |
| // Object #1 always represents the null pointer. |
| assert(NumObjects == NullPtr && "Something changed!"); |
| ++NumObjects; |
| |
| // Object #2 always represents the null object (the object pointed to by null) |
| assert(NumObjects == NullObject && "Something changed!"); |
| ++NumObjects; |
| |
| // Add all the globals first. |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) { |
| ObjectNodes[I] = NumObjects++; |
| ValueNodes[I] = NumObjects++; |
| } |
| |
| // Add nodes for all of the functions and the instructions inside of them. |
| for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { |
| // The function itself is a memory object. |
| unsigned First = NumObjects; |
| ValueNodes[F] = NumObjects++; |
| ObjectNodes[F] = NumObjects++; |
| if (isa<PointerType>(F->getFunctionType()->getReturnType())) |
| ReturnNodes[F] = NumObjects++; |
| if (F->getFunctionType()->isVarArg()) |
| VarargNodes[F] = NumObjects++; |
| |
| |
| // Add nodes for all of the incoming pointer arguments. |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| I != E; ++I) |
| if (isa<PointerType>(I->getType())) |
| ValueNodes[I] = NumObjects++; |
| MaxK[First] = NumObjects - First; |
| MaxK[First + 1] = NumObjects - First - 1; |
| |
| // Scan the function body, creating a memory object for each heap/stack |
| // allocation in the body of the function and a node to represent all |
| // pointer values defined by instructions and used as operands. |
| for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { |
| // If this is an heap or stack allocation, create a node for the memory |
| // object. |
| if (isa<PointerType>(II->getType())) { |
| ValueNodes[&*II] = NumObjects++; |
| if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II)) |
| ObjectNodes[AI] = NumObjects++; |
| } |
| } |
| } |
| |
| // Now that we know how many objects to create, make them all now! |
| GraphNodes.resize(NumObjects); |
| NumNodes += NumObjects; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constraint Identification Phase |
| //===----------------------------------------------------------------------===// |
| |
| /// getNodeForConstantPointer - Return the node corresponding to the constant |
| /// pointer itself. |
| unsigned Andersens::getNodeForConstantPointer(Constant *C) { |
| assert(isa<PointerType>(C->getType()) && "Not a constant pointer!"); |
| |
| if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C)) |
| return NullPtr; |
| else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| return getNode(GV); |
| else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: |
| return getNodeForConstantPointer(CE->getOperand(0)); |
| case Instruction::IntToPtr: |
| return UniversalSet; |
| case Instruction::BitCast: |
| return getNodeForConstantPointer(CE->getOperand(0)); |
| default: |
| cerr << "Constant Expr not yet handled: " << *CE << "\n"; |
| assert(0); |
| } |
| } else { |
| assert(0 && "Unknown constant pointer!"); |
| } |
| return 0; |
| } |
| |
| /// getNodeForConstantPointerTarget - Return the node POINTED TO by the |
| /// specified constant pointer. |
| unsigned Andersens::getNodeForConstantPointerTarget(Constant *C) { |
| assert(isa<PointerType>(C->getType()) && "Not a constant pointer!"); |
| |
| if (isa<ConstantPointerNull>(C)) |
| return NullObject; |
| else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| return getObject(GV); |
| else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: |
| return getNodeForConstantPointerTarget(CE->getOperand(0)); |
| case Instruction::IntToPtr: |
| return UniversalSet; |
| case Instruction::BitCast: |
| return getNodeForConstantPointerTarget(CE->getOperand(0)); |
| default: |
| cerr << "Constant Expr not yet handled: " << *CE << "\n"; |
| assert(0); |
| } |
| } else { |
| assert(0 && "Unknown constant pointer!"); |
| } |
| return 0; |
| } |
| |
| /// AddGlobalInitializerConstraints - Add inclusion constraints for the memory |
| /// object N, which contains values indicated by C. |
| void Andersens::AddGlobalInitializerConstraints(unsigned NodeIndex, |
| Constant *C) { |
| if (C->getType()->isFirstClassType()) { |
| if (isa<PointerType>(C->getType())) |
| Constraints.push_back(Constraint(Constraint::Copy, NodeIndex, |
| getNodeForConstantPointer(C))); |
| } else if (C->isNullValue()) { |
| Constraints.push_back(Constraint(Constraint::Copy, NodeIndex, |
| NullObject)); |
| return; |
| } else if (!isa<UndefValue>(C)) { |
| // If this is an array or struct, include constraints for each element. |
| assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C)); |
| for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) |
| AddGlobalInitializerConstraints(NodeIndex, |
| cast<Constant>(C->getOperand(i))); |
| } |
| } |
| |
| /// AddConstraintsForNonInternalLinkage - If this function does not have |
| /// internal linkage, realize that we can't trust anything passed into or |
| /// returned by this function. |
| void Andersens::AddConstraintsForNonInternalLinkage(Function *F) { |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) |
| if (isa<PointerType>(I->getType())) |
| // If this is an argument of an externally accessible function, the |
| // incoming pointer might point to anything. |
| Constraints.push_back(Constraint(Constraint::Copy, getNode(I), |
| UniversalSet)); |
| } |
| |
| /// AddConstraintsForCall - If this is a call to a "known" function, add the |
| /// constraints and return true. If this is a call to an unknown function, |
| /// return false. |
| bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) { |
| assert(F->isDeclaration() && "Not an external function!"); |
| |
| // These functions don't induce any points-to constraints. |
| if (F->getName() == "atoi" || F->getName() == "atof" || |
| F->getName() == "atol" || F->getName() == "atoll" || |
| F->getName() == "remove" || F->getName() == "unlink" || |
| F->getName() == "rename" || F->getName() == "memcmp" || |
| F->getName() == "llvm.memset.i32" || |
| F->getName() == "llvm.memset.i64" || |
| F->getName() == "strcmp" || F->getName() == "strncmp" || |
| F->getName() == "execl" || F->getName() == "execlp" || |
| F->getName() == "execle" || F->getName() == "execv" || |
| F->getName() == "execvp" || F->getName() == "chmod" || |
| F->getName() == "puts" || F->getName() == "write" || |
| F->getName() == "open" || F->getName() == "create" || |
| F->getName() == "truncate" || F->getName() == "chdir" || |
| F->getName() == "mkdir" || F->getName() == "rmdir" || |
| F->getName() == "read" || F->getName() == "pipe" || |
| F->getName() == "wait" || F->getName() == "time" || |
| F->getName() == "stat" || F->getName() == "fstat" || |
| F->getName() == "lstat" || F->getName() == "strtod" || |
| F->getName() == "strtof" || F->getName() == "strtold" || |
| F->getName() == "fopen" || F->getName() == "fdopen" || |
| F->getName() == "freopen" || |
| F->getName() == "fflush" || F->getName() == "feof" || |
| F->getName() == "fileno" || F->getName() == "clearerr" || |
| F->getName() == "rewind" || F->getName() == "ftell" || |
| F->getName() == "ferror" || F->getName() == "fgetc" || |
| F->getName() == "fgetc" || F->getName() == "_IO_getc" || |
| F->getName() == "fwrite" || F->getName() == "fread" || |
| F->getName() == "fgets" || F->getName() == "ungetc" || |
| F->getName() == "fputc" || |
| F->getName() == "fputs" || F->getName() == "putc" || |
| F->getName() == "ftell" || F->getName() == "rewind" || |
| F->getName() == "_IO_putc" || F->getName() == "fseek" || |
| F->getName() == "fgetpos" || F->getName() == "fsetpos" || |
| F->getName() == "printf" || F->getName() == "fprintf" || |
| F->getName() == "sprintf" || F->getName() == "vprintf" || |
| F->getName() == "vfprintf" || F->getName() == "vsprintf" || |
| F->getName() == "scanf" || F->getName() == "fscanf" || |
| F->getName() == "sscanf" || F->getName() == "__assert_fail" || |
| F->getName() == "modf") |
| return true; |
| |
| |
| // These functions do induce points-to edges. |
| if (F->getName() == "llvm.memcpy.i32" || F->getName() == "llvm.memcpy.i64" || |
| F->getName() == "llvm.memmove.i32" ||F->getName() == "llvm.memmove.i64" || |
| F->getName() == "memmove") { |
| |
| // *Dest = *Src, which requires an artificial graph node to represent the |
| // constraint. It is broken up into *Dest = temp, temp = *Src |
| unsigned FirstArg = getNode(CS.getArgument(0)); |
| unsigned SecondArg = getNode(CS.getArgument(1)); |
| unsigned TempArg = GraphNodes.size(); |
| GraphNodes.push_back(Node()); |
| Constraints.push_back(Constraint(Constraint::Store, |
| FirstArg, TempArg)); |
| Constraints.push_back(Constraint(Constraint::Load, |
| TempArg, SecondArg)); |
| return true; |
| } |
| |
| // Result = Arg0 |
| if (F->getName() == "realloc" || F->getName() == "strchr" || |
| F->getName() == "strrchr" || F->getName() == "strstr" || |
| F->getName() == "strtok") { |
| Constraints.push_back(Constraint(Constraint::Copy, |
| getNode(CS.getInstruction()), |
| getNode(CS.getArgument(0)))); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| |
| /// AnalyzeUsesOfFunction - Look at all of the users of the specified function. |
| /// If this is used by anything complex (i.e., the address escapes), return |
| /// true. |
| bool Andersens::AnalyzeUsesOfFunction(Value *V) { |
| |
| if (!isa<PointerType>(V->getType())) return true; |
| |
| for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) |
| if (dyn_cast<LoadInst>(*UI)) { |
| return false; |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { |
| if (V == SI->getOperand(1)) { |
| return false; |
| } else if (SI->getOperand(1)) { |
| return true; // Storing the pointer |
| } |
| } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) { |
| if (AnalyzeUsesOfFunction(GEP)) return true; |
| } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) { |
| // Make sure that this is just the function being called, not that it is |
| // passing into the function. |
| for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) |
| if (CI->getOperand(i) == V) return true; |
| } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) { |
| // Make sure that this is just the function being called, not that it is |
| // passing into the function. |
| for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i) |
| if (II->getOperand(i) == V) return true; |
| } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) { |
| if (CE->getOpcode() == Instruction::GetElementPtr || |
| CE->getOpcode() == Instruction::BitCast) { |
| if (AnalyzeUsesOfFunction(CE)) |
| return true; |
| } else { |
| return true; |
| } |
| } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) { |
| if (!isa<ConstantPointerNull>(ICI->getOperand(1))) |
| return true; // Allow comparison against null. |
| } else if (dyn_cast<FreeInst>(*UI)) { |
| return false; |
| } else { |
| return true; |
| } |
| return false; |
| } |
| |
| /// CollectConstraints - This stage scans the program, adding a constraint to |
| /// the Constraints list for each instruction in the program that induces a |
| /// constraint, and setting up the initial points-to graph. |
| /// |
| void Andersens::CollectConstraints(Module &M) { |
| // First, the universal set points to itself. |
| Constraints.push_back(Constraint(Constraint::AddressOf, UniversalSet, |
| UniversalSet)); |
| Constraints.push_back(Constraint(Constraint::Store, UniversalSet, |
| UniversalSet)); |
| |
| // Next, the null pointer points to the null object. |
| Constraints.push_back(Constraint(Constraint::AddressOf, NullPtr, NullObject)); |
| |
| // Next, add any constraints on global variables and their initializers. |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) { |
| // Associate the address of the global object as pointing to the memory for |
| // the global: &G = <G memory> |
| unsigned ObjectIndex = getObject(I); |
| Node *Object = &GraphNodes[ObjectIndex]; |
| Object->setValue(I); |
| Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(*I), |
| ObjectIndex)); |
| |
| if (I->hasInitializer()) { |
| AddGlobalInitializerConstraints(ObjectIndex, I->getInitializer()); |
| } else { |
| // If it doesn't have an initializer (i.e. it's defined in another |
| // translation unit), it points to the universal set. |
| Constraints.push_back(Constraint(Constraint::Copy, ObjectIndex, |
| UniversalSet)); |
| } |
| } |
| |
| for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { |
| // Make the function address point to the function object. |
| unsigned ObjectIndex = getObject(F); |
| GraphNodes[ObjectIndex].setValue(F); |
| Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(*F), |
| ObjectIndex)); |
| // Set up the return value node. |
| if (isa<PointerType>(F->getFunctionType()->getReturnType())) |
| GraphNodes[getReturnNode(F)].setValue(F); |
| if (F->getFunctionType()->isVarArg()) |
| GraphNodes[getVarargNode(F)].setValue(F); |
| |
| // Set up incoming argument nodes. |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| I != E; ++I) |
| if (isa<PointerType>(I->getType())) |
| getNodeValue(*I); |
| |
| // At some point we should just add constraints for the escaping functions |
| // at solve time, but this slows down solving. For now, we simply mark |
| // address taken functions as escaping and treat them as external. |
| if (!F->hasInternalLinkage() || AnalyzeUsesOfFunction(F)) |
| AddConstraintsForNonInternalLinkage(F); |
| |
| if (!F->isDeclaration()) { |
| // Scan the function body, creating a memory object for each heap/stack |
| // allocation in the body of the function and a node to represent all |
| // pointer values defined by instructions and used as operands. |
| visit(F); |
| } else { |
| // External functions that return pointers return the universal set. |
| if (isa<PointerType>(F->getFunctionType()->getReturnType())) |
| Constraints.push_back(Constraint(Constraint::Copy, |
| getReturnNode(F), |
| UniversalSet)); |
| |
| // Any pointers that are passed into the function have the universal set |
| // stored into them. |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| I != E; ++I) |
| if (isa<PointerType>(I->getType())) { |
| // Pointers passed into external functions could have anything stored |
| // through them. |
| Constraints.push_back(Constraint(Constraint::Store, getNode(I), |
| UniversalSet)); |
| // Memory objects passed into external function calls can have the |
| // universal set point to them. |
| Constraints.push_back(Constraint(Constraint::Copy, |
| UniversalSet, |
| getNode(I))); |
| } |
| |
| // If this is an external varargs function, it can also store pointers |
| // into any pointers passed through the varargs section. |
| if (F->getFunctionType()->isVarArg()) |
| Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F), |
| UniversalSet)); |
| } |
| } |
| NumConstraints += Constraints.size(); |
| } |
| |
| |
| void Andersens::visitInstruction(Instruction &I) { |
| #ifdef NDEBUG |
| return; // This function is just a big assert. |
| #endif |
| if (isa<BinaryOperator>(I)) |
| return; |
| // Most instructions don't have any effect on pointer values. |
| switch (I.getOpcode()) { |
| case Instruction::Br: |
| case Instruction::Switch: |
| case Instruction::Unwind: |
| case Instruction::Unreachable: |
| case Instruction::Free: |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| return; |
| default: |
| // Is this something we aren't handling yet? |
| cerr << "Unknown instruction: " << I; |
| abort(); |
| } |
| } |
| |
| void Andersens::visitAllocationInst(AllocationInst &AI) { |
| unsigned ObjectIndex = getObject(&AI); |
| GraphNodes[ObjectIndex].setValue(&AI); |
| Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(AI), |
| ObjectIndex)); |
| } |
| |
| void Andersens::visitReturnInst(ReturnInst &RI) { |
| if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType())) |
| // return V --> <Copy/retval{F}/v> |
| Constraints.push_back(Constraint(Constraint::Copy, |
| getReturnNode(RI.getParent()->getParent()), |
| getNode(RI.getOperand(0)))); |
| } |
| |
| void Andersens::visitLoadInst(LoadInst &LI) { |
| if (isa<PointerType>(LI.getType())) |
| // P1 = load P2 --> <Load/P1/P2> |
| Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI), |
| getNode(LI.getOperand(0)))); |
| } |
| |
| void Andersens::visitStoreInst(StoreInst &SI) { |
| if (isa<PointerType>(SI.getOperand(0)->getType())) |
| // store P1, P2 --> <Store/P2/P1> |
| Constraints.push_back(Constraint(Constraint::Store, |
| getNode(SI.getOperand(1)), |
| getNode(SI.getOperand(0)))); |
| } |
| |
| void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) { |
| // P1 = getelementptr P2, ... --> <Copy/P1/P2> |
| Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP), |
| getNode(GEP.getOperand(0)))); |
| } |
| |
| void Andersens::visitPHINode(PHINode &PN) { |
| if (isa<PointerType>(PN.getType())) { |
| unsigned PNN = getNodeValue(PN); |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) |
| // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ... |
| Constraints.push_back(Constraint(Constraint::Copy, PNN, |
| getNode(PN.getIncomingValue(i)))); |
| } |
| } |
| |
| void Andersens::visitCastInst(CastInst &CI) { |
| Value *Op = CI.getOperand(0); |
| if (isa<PointerType>(CI.getType())) { |
| if (isa<PointerType>(Op->getType())) { |
| // P1 = cast P2 --> <Copy/P1/P2> |
| Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI), |
| getNode(CI.getOperand(0)))); |
| } else { |
| // P1 = cast int --> <Copy/P1/Univ> |
| #if 0 |
| Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI), |
| UniversalSet)); |
| #else |
| getNodeValue(CI); |
| #endif |
| } |
| } else if (isa<PointerType>(Op->getType())) { |
| // int = cast P1 --> <Copy/Univ/P1> |
| #if 0 |
| Constraints.push_back(Constraint(Constraint::Copy, |
| UniversalSet, |
| getNode(CI.getOperand(0)))); |
| #else |
| getNode(CI.getOperand(0)); |
| #endif |
| } |
| } |
| |
| void Andersens::visitSelectInst(SelectInst &SI) { |
| if (isa<PointerType>(SI.getType())) { |
| unsigned SIN = getNodeValue(SI); |
| // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3> |
| Constraints.push_back(Constraint(Constraint::Copy, SIN, |
| getNode(SI.getOperand(1)))); |
| Constraints.push_back(Constraint(Constraint::Copy, SIN, |
| getNode(SI.getOperand(2)))); |
| } |
| } |
| |
| void Andersens::visitVAArg(VAArgInst &I) { |
| assert(0 && "vaarg not handled yet!"); |
| } |
| |
| /// AddConstraintsForCall - Add constraints for a call with actual arguments |
| /// specified by CS to the function specified by F. Note that the types of |
| /// arguments might not match up in the case where this is an indirect call and |
| /// the function pointer has been casted. If this is the case, do something |
| /// reasonable. |
| void Andersens::AddConstraintsForCall(CallSite CS, Function *F) { |
| Value *CallValue = CS.getCalledValue(); |
| bool IsDeref = F == NULL; |
| |
| // If this is a call to an external function, try to handle it directly to get |
| // some taste of context sensitivity. |
| if (F && F->isDeclaration() && AddConstraintsForExternalCall(CS, F)) |
| return; |
| |
| if (isa<PointerType>(CS.getType())) { |
| unsigned CSN = getNode(CS.getInstruction()); |
| if (!F || isa<PointerType>(F->getFunctionType()->getReturnType())) { |
| if (IsDeref) |
| Constraints.push_back(Constraint(Constraint::Load, CSN, |
| getNode(CallValue), CallReturnPos)); |
| else |
| Constraints.push_back(Constraint(Constraint::Copy, CSN, |
| getNode(CallValue) + CallReturnPos)); |
| } else { |
| // If the function returns a non-pointer value, handle this just like we |
| // treat a nonpointer cast to pointer. |
| Constraints.push_back(Constraint(Constraint::Copy, CSN, |
| UniversalSet)); |
| } |
| } else if (F && isa<PointerType>(F->getFunctionType()->getReturnType())) { |
| Constraints.push_back(Constraint(Constraint::Copy, |
| UniversalSet, |
| getNode(CallValue) + CallReturnPos)); |
| } |
| |
| CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end(); |
| if (F) { |
| // Direct Call |
| Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end(); |
| for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI) |
| if (isa<PointerType>(AI->getType())) { |
| if (isa<PointerType>((*ArgI)->getType())) { |
| // Copy the actual argument into the formal argument. |
| Constraints.push_back(Constraint(Constraint::Copy, getNode(AI), |
| getNode(*ArgI))); |
| } else { |
| Constraints.push_back(Constraint(Constraint::Copy, getNode(AI), |
| UniversalSet)); |
| } |
| } else if (isa<PointerType>((*ArgI)->getType())) { |
| Constraints.push_back(Constraint(Constraint::Copy, |
| UniversalSet, |
| getNode(*ArgI))); |
| } |
| } else { |
| //Indirect Call |
| unsigned ArgPos = CallFirstArgPos; |
| for (; ArgI != ArgE; ++ArgI) { |
| if (isa<PointerType>((*ArgI)->getType())) { |
| // Copy the actual argument into the formal argument. |
| Constraints.push_back(Constraint(Constraint::Store, |
| getNode(CallValue), |
| getNode(*ArgI), ArgPos++)); |
| } else { |
| Constraints.push_back(Constraint(Constraint::Store, |
| getNode (CallValue), |
| UniversalSet, ArgPos++)); |
| } |
| } |
| } |
| // Copy all pointers passed through the varargs section to the varargs node. |
| if (F && F->getFunctionType()->isVarArg()) |
| for (; ArgI != ArgE; ++ArgI) |
| if (isa<PointerType>((*ArgI)->getType())) |
| Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F), |
| getNode(*ArgI))); |
| // If more arguments are passed in than we track, just drop them on the floor. |
| } |
| |
| void Andersens::visitCallSite(CallSite CS) { |
| if (isa<PointerType>(CS.getType())) |
| getNodeValue(*CS.getInstruction()); |
| |
| if (Function *F = CS.getCalledFunction()) { |
| AddConstraintsForCall(CS, F); |
| } else { |
| AddConstraintsForCall(CS, NULL); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constraint Solving Phase |
| //===----------------------------------------------------------------------===// |
| |
| /// intersects - Return true if the points-to set of this node intersects |
| /// with the points-to set of the specified node. |
| bool Andersens::Node::intersects(Node *N) const { |
| return PointsTo->intersects(N->PointsTo); |
| } |
| |
| /// intersectsIgnoring - Return true if the points-to set of this node |
| /// intersects with the points-to set of the specified node on any nodes |
| /// except for the specified node to ignore. |
| bool Andersens::Node::intersectsIgnoring(Node *N, unsigned Ignoring) const { |
| // TODO: If we are only going to call this with the same value for Ignoring, |
| // we should move the special values out of the points-to bitmap. |
| bool WeHadIt = PointsTo->test(Ignoring); |
| bool NHadIt = N->PointsTo->test(Ignoring); |
| bool Result = false; |
| if (WeHadIt) |
| PointsTo->reset(Ignoring); |
| if (NHadIt) |
| N->PointsTo->reset(Ignoring); |
| Result = PointsTo->intersects(N->PointsTo); |
| if (WeHadIt) |
| PointsTo->set(Ignoring); |
| if (NHadIt) |
| N->PointsTo->set(Ignoring); |
| return Result; |
| } |
| |
| // Create the constraint graph used for solving points-to analysis. |
| // |
| void Andersens::CreateConstraintGraph() { |
| for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| Constraint &C = Constraints[i]; |
| assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size()); |
| if (C.Type == Constraint::AddressOf) |
| GraphNodes[C.Dest].PointsTo->set(C.Src); |
| else if (C.Type == Constraint::Load) |
| GraphNodes[C.Src].Constraints.push_back(C); |
| else if (C.Type == Constraint::Store) |
| GraphNodes[C.Dest].Constraints.push_back(C); |
| else if (C.Offset != 0) |
| GraphNodes[C.Src].Constraints.push_back(C); |
| else |
| GraphNodes[C.Src].Edges->set(C.Dest); |
| } |
| } |
| |
| // Perform cycle detection, DFS, and RPO finding. |
| void Andersens::QueryNode(unsigned Node) { |
| assert(GraphNodes[Node].NodeRep == SelfRep && "Querying a non-rep node"); |
| unsigned OurDFS = ++DFSNumber; |
| SparseBitVector<> ToErase; |
| SparseBitVector<> NewEdges; |
| Node2DFS[Node] = OurDFS; |
| |
| for (SparseBitVector<>::iterator bi = GraphNodes[Node].Edges->begin(); |
| bi != GraphNodes[Node].Edges->end(); |
| ++bi) { |
| unsigned RepNode = FindNode(*bi); |
| // If we are going to add an edge to repnode, we have no need for the edge |
| // to e anymore. |
| if (RepNode != *bi && NewEdges.test(RepNode)){ |
| ToErase.set(*bi); |
| continue; |
| } |
| |
| // Continue about our DFS. |
| if (!Node2Deleted[RepNode]){ |
| if (Node2DFS[RepNode] == 0) { |
| QueryNode(RepNode); |
| // May have been changed by query |
| RepNode = FindNode(RepNode); |
| } |
| if (Node2DFS[RepNode] < Node2DFS[Node]) |
| Node2DFS[Node] = Node2DFS[RepNode]; |
| } |
| // We may have just discovered that e belongs to a cycle, in which case we |
| // can also erase it. |
| if (RepNode != *bi) { |
| ToErase.set(*bi); |
| NewEdges.set(RepNode); |
| } |
| } |
| |
| GraphNodes[Node].Edges->intersectWithComplement(ToErase); |
| GraphNodes[Node].Edges |= NewEdges; |
| |
| // If this node is a root of a non-trivial SCC, place it on our worklist to be |
| // processed |
| if (OurDFS == Node2DFS[Node]) { |
| bool Changed = false; |
| while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= OurDFS) { |
| Node = UniteNodes(Node, FindNode(SCCStack.top())); |
| |
| SCCStack.pop(); |
| Changed = true; |
| } |
| Node2Deleted[Node] = true; |
| RPONumber++; |
| |
| Topo2Node.at(GraphNodes.size() - RPONumber) = Node; |
| Node2Topo[Node] = GraphNodes.size() - RPONumber; |
| if (Changed) |
| GraphNodes[Node].Changed = true; |
| } else { |
| SCCStack.push(Node); |
| } |
| } |
| |
| |
| /// SolveConstraints - This stage iteratively processes the constraints list |
| /// propagating constraints (adding edges to the Nodes in the points-to graph) |
| /// until a fixed point is reached. |
| /// |
| void Andersens::SolveConstraints() { |
| bool Changed = true; |
| unsigned Iteration = 0; |
| |
| // We create the bitmaps here to avoid getting jerked around by the compiler |
| // creating objects behind our back and wasting lots of memory. |
| for (unsigned i = 0; i < GraphNodes.size(); ++i) { |
| Node *N = &GraphNodes[i]; |
| N->PointsTo = new SparseBitVector<>; |
| N->OldPointsTo = new SparseBitVector<>; |
| N->Edges = new SparseBitVector<>; |
| } |
| CreateConstraintGraph(); |
| |
| Topo2Node.insert(Topo2Node.begin(), GraphNodes.size(), Unvisited); |
| Node2Topo.insert(Node2Topo.begin(), GraphNodes.size(), Unvisited); |
| Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0); |
| Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false); |
| DFSNumber = 0; |
| RPONumber = 0; |
| // Order graph and mark starting nodes as changed. |
| for (unsigned i = 0; i < GraphNodes.size(); ++i) { |
| unsigned N = FindNode(i); |
| Node *INode = &GraphNodes[i]; |
| if (Node2DFS[N] == 0) { |
| QueryNode(N); |
| // Mark as changed if it's a representation and can contribute to the |
| // calculation right now. |
| if (INode->NodeRep == SelfRep && !INode->PointsTo->empty() |
| && (!INode->Edges->empty() || !INode->Constraints.empty())) |
| INode->Changed = true; |
| } |
| } |
| |
| do { |
| Changed = false; |
| ++NumIters; |
| DOUT << "Starting iteration #" << Iteration++; |
| // TODO: In the microoptimization category, we could just make Topo2Node |
| // a fast map and thus only contain the visited nodes. |
| for (unsigned i = 0; i < GraphNodes.size(); ++i) { |
| unsigned CurrNodeIndex = Topo2Node[i]; |
| Node *CurrNode; |
| |
| // We may not revisit all nodes on every iteration |
| if (CurrNodeIndex == Unvisited) |
| continue; |
| CurrNode = &GraphNodes[CurrNodeIndex]; |
| // See if this is a node we need to process on this iteration |
| if (!CurrNode->Changed || CurrNode->NodeRep != SelfRep) |
| continue; |
| CurrNode->Changed = false; |
| |
| // Figure out the changed points to bits |
| SparseBitVector<> CurrPointsTo; |
| CurrPointsTo.intersectWithComplement(CurrNode->PointsTo, |
| CurrNode->OldPointsTo); |
| if (CurrPointsTo.empty()){ |
| continue; |
| } |
| *(CurrNode->OldPointsTo) |= CurrPointsTo; |
| |
| /* Now process the constraints for this node. */ |
| for (std::list<Constraint>::iterator li = CurrNode->Constraints.begin(); |
| li != CurrNode->Constraints.end(); ) { |
| li->Src = FindNode(li->Src); |
| li->Dest = FindNode(li->Dest); |
| |
| // TODO: We could delete redundant constraints here. |
| // Src and Dest will be the vars we are going to process. |
| // This may look a bit ugly, but what it does is allow us to process |
| // both store and load constraints with the same function. |
| // Load constraints say that every member of our RHS solution has K |
| // added to it, and that variable gets an edge to LHS. We also union |
| // RHS+K's solution into the LHS solution. |
| // Store constraints say that every member of our LHS solution has K |
| // added to it, and that variable gets an edge from RHS. We also union |
| // RHS's solution into the LHS+K solution. |
| unsigned *Src; |
| unsigned *Dest; |
| unsigned K = li->Offset; |
| unsigned CurrMember; |
| if (li->Type == Constraint::Load) { |
| Src = &CurrMember; |
| Dest = &li->Dest; |
| } else if (li->Type == Constraint::Store) { |
| Src = &li->Src; |
| Dest = &CurrMember; |
| } else { |
| // TODO Handle offseted copy constraint |
| li++; |
| continue; |
| } |
| // TODO: hybrid cycle detection would go here, we should check |
| // if it was a statically detected offline equivalence that |
| // involves pointers , and if so, remove the redundant constraints. |
| |
| const SparseBitVector<> &Solution = CurrPointsTo; |
| |
| for (SparseBitVector<>::iterator bi = Solution.begin(); |
| bi != Solution.end(); |
| ++bi) { |
| CurrMember = *bi; |
| |
| // Need to increment the member by K since that is where we are |
| // supposed to copy to/from |
| // Node that in positive weight cycles, which occur in address taking |
| // of fields, K can go past |
| // MaxK[CurrMember] elements, even though that is all it could |
| // point to. |
| if (K > 0 && K > MaxK[CurrMember]) |
| continue; |
| else |
| CurrMember = FindNode(CurrMember + K); |
| |
| // Add an edge to the graph, so we can just do regular bitmap ior next |
| // time. It may also let us notice a cycle. |
| if (GraphNodes[*Src].Edges->test_and_set(*Dest)) { |
| if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo)) { |
| GraphNodes[*Dest].Changed = true; |
| // If we changed a node we've already processed, we need another |
| // iteration. |
| if (Node2Topo[*Dest] <= i) |
| Changed = true; |
| } |
| } |
| } |
| li++; |
| } |
| SparseBitVector<> NewEdges; |
| SparseBitVector<> ToErase; |
| |
| // Now all we have left to do is propagate points-to info along the |
| // edges, erasing the redundant edges. |
| |
| |
| for (SparseBitVector<>::iterator bi = CurrNode->Edges->begin(); |
| bi != CurrNode->Edges->end(); |
| ++bi) { |
| |
| unsigned DestVar = *bi; |
| unsigned Rep = FindNode(DestVar); |
| |
| // If we ended up with this node as our destination, or we've already |
| // got an edge for the representative, delete the current edge. |
| if (Rep == CurrNodeIndex || |
| (Rep != DestVar && NewEdges.test(Rep))) { |
| ToErase.set(DestVar); |
| continue; |
| } |
| // Union the points-to sets into the dest |
| if (GraphNodes[Rep].PointsTo |= CurrPointsTo) { |
| GraphNodes[Rep].Changed = true; |
| if (Node2Topo[Rep] <= i) |
| Changed = true; |
| } |
| // If this edge's destination was collapsed, rewrite the edge. |
| if (Rep != DestVar) { |
| ToErase.set(DestVar); |
| NewEdges.set(Rep); |
| } |
| } |
| CurrNode->Edges->intersectWithComplement(ToErase); |
| CurrNode->Edges |= NewEdges; |
| } |
| if (Changed) { |
| DFSNumber = RPONumber = 0; |
| Node2Deleted.clear(); |
| Topo2Node.clear(); |
| Node2Topo.clear(); |
| Node2DFS.clear(); |
| Topo2Node.insert(Topo2Node.begin(), GraphNodes.size(), Unvisited); |
| Node2Topo.insert(Node2Topo.begin(), GraphNodes.size(), Unvisited); |
| Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0); |
| Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false); |
| // Rediscover the DFS/Topo ordering, and cycle detect. |
| for (unsigned j = 0; j < GraphNodes.size(); j++) { |
| unsigned JRep = FindNode(j); |
| if (Node2DFS[JRep] == 0) |
| QueryNode(JRep); |
| } |
| } |
| |
| } while (Changed); |
| |
| Node2Topo.clear(); |
| Topo2Node.clear(); |
| Node2DFS.clear(); |
| Node2Deleted.clear(); |
| for (unsigned i = 0; i < GraphNodes.size(); ++i) { |
| Node *N = &GraphNodes[i]; |
| delete N->OldPointsTo; |
| delete N->Edges; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Union-Find |
| //===----------------------------------------------------------------------===// |
| |
| // Unite nodes First and Second, returning the one which is now the |
| // representative node. First and Second are indexes into GraphNodes |
| unsigned Andersens::UniteNodes(unsigned First, unsigned Second) { |
| assert (First < GraphNodes.size() && Second < GraphNodes.size() && |
| "Attempting to merge nodes that don't exist"); |
| // TODO: implement union by rank |
| Node *FirstNode = &GraphNodes[First]; |
| Node *SecondNode = &GraphNodes[Second]; |
| |
| assert (SecondNode->NodeRep == SelfRep && FirstNode->NodeRep == SelfRep && |
| "Trying to unite two non-representative nodes!"); |
| if (First == Second) |
| return First; |
| |
| SecondNode->NodeRep = First; |
| FirstNode->Changed |= SecondNode->Changed; |
| FirstNode->PointsTo |= *(SecondNode->PointsTo); |
| FirstNode->Edges |= *(SecondNode->Edges); |
| FirstNode->Constraints.splice(FirstNode->Constraints.begin(), |
| SecondNode->Constraints); |
| delete FirstNode->OldPointsTo; |
| FirstNode->OldPointsTo = new SparseBitVector<>; |
| |
| // Destroy interesting parts of the merged-from node. |
| delete SecondNode->OldPointsTo; |
| delete SecondNode->Edges; |
| delete SecondNode->PointsTo; |
| SecondNode->Edges = NULL; |
| SecondNode->PointsTo = NULL; |
| SecondNode->OldPointsTo = NULL; |
| |
| NumUnified++; |
| DOUT << "Unified Node "; |
| DEBUG(PrintNode(FirstNode)); |
| DOUT << " and Node "; |
| DEBUG(PrintNode(SecondNode)); |
| DOUT << "\n"; |
| |
| // TODO: Handle SDT |
| return First; |
| } |
| |
| // Find the index into GraphNodes of the node representing Node, performing |
| // path compression along the way |
| unsigned Andersens::FindNode(unsigned NodeIndex) { |
| assert (NodeIndex < GraphNodes.size() |
| && "Attempting to find a node that can't exist"); |
| Node *N = &GraphNodes[NodeIndex]; |
| if (N->NodeRep == SelfRep) |
| return NodeIndex; |
| else |
| return (N->NodeRep = FindNode(N->NodeRep)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Debugging Output |
| //===----------------------------------------------------------------------===// |
| |
| void Andersens::PrintNode(Node *N) { |
| if (N == &GraphNodes[UniversalSet]) { |
| cerr << "<universal>"; |
| return; |
| } else if (N == &GraphNodes[NullPtr]) { |
| cerr << "<nullptr>"; |
| return; |
| } else if (N == &GraphNodes[NullObject]) { |
| cerr << "<null>"; |
| return; |
| } |
| if (!N->getValue()) { |
| cerr << "artificial" << (intptr_t) N; |
| return; |
| } |
| |
| assert(N->getValue() != 0 && "Never set node label!"); |
| Value *V = N->getValue(); |
| if (Function *F = dyn_cast<Function>(V)) { |
| if (isa<PointerType>(F->getFunctionType()->getReturnType()) && |
| N == &GraphNodes[getReturnNode(F)]) { |
| cerr << F->getName() << ":retval"; |
| return; |
| } else if (F->getFunctionType()->isVarArg() && |
| N == &GraphNodes[getVarargNode(F)]) { |
| cerr << F->getName() << ":vararg"; |
| return; |
| } |
| } |
| |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| cerr << I->getParent()->getParent()->getName() << ":"; |
| else if (Argument *Arg = dyn_cast<Argument>(V)) |
| cerr << Arg->getParent()->getName() << ":"; |
| |
| if (V->hasName()) |
| cerr << V->getName(); |
| else |
| cerr << "(unnamed)"; |
| |
| if (isa<GlobalValue>(V) || isa<AllocationInst>(V)) |
| if (N == &GraphNodes[getObject(V)]) |
| cerr << "<mem>"; |
| } |
| |
| void Andersens::PrintConstraints() { |
| cerr << "Constraints:\n"; |
| |
| for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| const Constraint &C = Constraints[i]; |
| if (C.Type == Constraint::Store) { |
| cerr << "*"; |
| if (C.Offset != 0) |
| cerr << "("; |
| } |
| PrintNode(&GraphNodes[C.Dest]); |
| if (C.Type == Constraint::Store && C.Offset != 0) |
| cerr << " + " << C.Offset << ")"; |
| cerr << " = "; |
| if (C.Type == Constraint::Load) { |
| cerr << "*"; |
| if (C.Offset != 0) |
| cerr << "("; |
| } |
| else if (C.Type == Constraint::AddressOf) |
| cerr << "&"; |
| PrintNode(&GraphNodes[C.Src]); |
| if (C.Offset != 0 && C.Type != Constraint::Store) |
| cerr << " + " << C.Offset; |
| if (C.Type == Constraint::Load && C.Offset != 0) |
| cerr << ")"; |
| cerr << "\n"; |
| } |
| } |
| |
| void Andersens::PrintPointsToGraph() { |
| cerr << "Points-to graph:\n"; |
| for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) { |
| Node *N = &GraphNodes[i]; |
| if (FindNode (i) != i) { |
| PrintNode(N); |
| cerr << "\t--> same as "; |
| PrintNode(&GraphNodes[FindNode(i)]); |
| cerr << "\n"; |
| } else { |
| cerr << "[" << (N->PointsTo->count()) << "] "; |
| PrintNode(N); |
| cerr << "\t--> "; |
| |
| bool first = true; |
| for (SparseBitVector<>::iterator bi = N->PointsTo->begin(); |
| bi != N->PointsTo->end(); |
| ++bi) { |
| if (!first) |
| cerr << ", "; |
| PrintNode(&GraphNodes[*bi]); |
| first = false; |
| } |
| cerr << "\n"; |
| } |
| } |
| } |