|  | //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the SelectionDAG::Legalize method. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/DwarfWriter.h" | 
|  | #include "llvm/Analysis/DebugInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/Target/TargetFrameInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Target/TargetSubtarget.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include <map> | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and | 
|  | /// hacks on it until the target machine can handle it.  This involves | 
|  | /// eliminating value sizes the machine cannot handle (promoting small sizes to | 
|  | /// large sizes or splitting up large values into small values) as well as | 
|  | /// eliminating operations the machine cannot handle. | 
|  | /// | 
|  | /// This code also does a small amount of optimization and recognition of idioms | 
|  | /// as part of its processing.  For example, if a target does not support a | 
|  | /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this | 
|  | /// will attempt merge setcc and brc instructions into brcc's. | 
|  | /// | 
|  | namespace { | 
|  | class VISIBILITY_HIDDEN SelectionDAGLegalize { | 
|  | TargetLowering &TLI; | 
|  | SelectionDAG &DAG; | 
|  | CodeGenOpt::Level OptLevel; | 
|  | bool TypesNeedLegalizing; | 
|  |  | 
|  | // Libcall insertion helpers. | 
|  |  | 
|  | /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been | 
|  | /// legalized.  We use this to ensure that calls are properly serialized | 
|  | /// against each other, including inserted libcalls. | 
|  | SDValue LastCALLSEQ_END; | 
|  |  | 
|  | /// IsLegalizingCall - This member is used *only* for purposes of providing | 
|  | /// helpful assertions that a libcall isn't created while another call is | 
|  | /// being legalized (which could lead to non-serialized call sequences). | 
|  | bool IsLegalizingCall; | 
|  |  | 
|  | /// IsLegalizingCallArguments - This member is used only for the purpose | 
|  | /// of providing assert to check for LegalizeTypes because legalizing an | 
|  | /// operation might introduce call nodes that might need type legalization. | 
|  | bool IsLegalizingCallArgs; | 
|  |  | 
|  | enum LegalizeAction { | 
|  | Legal,      // The target natively supports this operation. | 
|  | Promote,    // This operation should be executed in a larger type. | 
|  | Expand      // Try to expand this to other ops, otherwise use a libcall. | 
|  | }; | 
|  |  | 
|  | /// ValueTypeActions - This is a bitvector that contains two bits for each | 
|  | /// value type, where the two bits correspond to the LegalizeAction enum. | 
|  | /// This can be queried with "getTypeAction(VT)". | 
|  | TargetLowering::ValueTypeActionImpl ValueTypeActions; | 
|  |  | 
|  | /// LegalizedNodes - For nodes that are of legal width, and that have more | 
|  | /// than one use, this map indicates what regularized operand to use.  This | 
|  | /// allows us to avoid legalizing the same thing more than once. | 
|  | DenseMap<SDValue, SDValue> LegalizedNodes; | 
|  |  | 
|  | /// PromotedNodes - For nodes that are below legal width, and that have more | 
|  | /// than one use, this map indicates what promoted value to use.  This allows | 
|  | /// us to avoid promoting the same thing more than once. | 
|  | DenseMap<SDValue, SDValue> PromotedNodes; | 
|  |  | 
|  | /// ExpandedNodes - For nodes that need to be expanded this map indicates | 
|  | /// which operands are the expanded version of the input.  This allows | 
|  | /// us to avoid expanding the same node more than once. | 
|  | DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedNodes; | 
|  |  | 
|  | /// SplitNodes - For vector nodes that need to be split, this map indicates | 
|  | /// which operands are the split version of the input.  This allows us | 
|  | /// to avoid splitting the same node more than once. | 
|  | std::map<SDValue, std::pair<SDValue, SDValue> > SplitNodes; | 
|  |  | 
|  | /// ScalarizedNodes - For nodes that need to be converted from vector types to | 
|  | /// scalar types, this contains the mapping of ones we have already | 
|  | /// processed to the result. | 
|  | std::map<SDValue, SDValue> ScalarizedNodes; | 
|  |  | 
|  | /// WidenNodes - For nodes that need to be widened from one vector type to | 
|  | /// another, this contains the mapping of those that we have already widen. | 
|  | /// This allows us to avoid widening more than once. | 
|  | std::map<SDValue, SDValue> WidenNodes; | 
|  |  | 
|  | void AddLegalizedOperand(SDValue From, SDValue To) { | 
|  | LegalizedNodes.insert(std::make_pair(From, To)); | 
|  | // If someone requests legalization of the new node, return itself. | 
|  | if (From != To) | 
|  | LegalizedNodes.insert(std::make_pair(To, To)); | 
|  | } | 
|  | void AddPromotedOperand(SDValue From, SDValue To) { | 
|  | bool isNew = PromotedNodes.insert(std::make_pair(From, To)).second; | 
|  | assert(isNew && "Got into the map somehow?"); | 
|  | isNew = isNew; | 
|  | // If someone requests legalization of the new node, return itself. | 
|  | LegalizedNodes.insert(std::make_pair(To, To)); | 
|  | } | 
|  | void AddWidenedOperand(SDValue From, SDValue To) { | 
|  | bool isNew = WidenNodes.insert(std::make_pair(From, To)).second; | 
|  | assert(isNew && "Got into the map somehow?"); | 
|  | isNew = isNew; | 
|  | // If someone requests legalization of the new node, return itself. | 
|  | LegalizedNodes.insert(std::make_pair(To, To)); | 
|  | } | 
|  |  | 
|  | public: | 
|  | explicit SelectionDAGLegalize(SelectionDAG &DAG, bool TypesNeedLegalizing, | 
|  | CodeGenOpt::Level ol); | 
|  |  | 
|  | /// getTypeAction - Return how we should legalize values of this type, either | 
|  | /// it is already legal or we need to expand it into multiple registers of | 
|  | /// smaller integer type, or we need to promote it to a larger type. | 
|  | LegalizeAction getTypeAction(MVT VT) const { | 
|  | return (LegalizeAction)ValueTypeActions.getTypeAction(VT); | 
|  | } | 
|  |  | 
|  | /// isTypeLegal - Return true if this type is legal on this target. | 
|  | /// | 
|  | bool isTypeLegal(MVT VT) const { | 
|  | return getTypeAction(VT) == Legal; | 
|  | } | 
|  |  | 
|  | void LegalizeDAG(); | 
|  |  | 
|  | private: | 
|  | /// HandleOp - Legalize, Promote, or Expand the specified operand as | 
|  | /// appropriate for its type. | 
|  | void HandleOp(SDValue Op); | 
|  |  | 
|  | /// LegalizeOp - We know that the specified value has a legal type. | 
|  | /// Recursively ensure that the operands have legal types, then return the | 
|  | /// result. | 
|  | SDValue LegalizeOp(SDValue O); | 
|  |  | 
|  | /// UnrollVectorOp - We know that the given vector has a legal type, however | 
|  | /// the operation it performs is not legal and is an operation that we have | 
|  | /// no way of lowering.  "Unroll" the vector, splitting out the scalars and | 
|  | /// operating on each element individually. | 
|  | SDValue UnrollVectorOp(SDValue O); | 
|  |  | 
|  | /// PerformInsertVectorEltInMemory - Some target cannot handle a variable | 
|  | /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it | 
|  | /// is necessary to spill the vector being inserted into to memory, perform | 
|  | /// the insert there, and then read the result back. | 
|  | SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, | 
|  | SDValue Idx, DebugLoc dl); | 
|  |  | 
|  | /// PromoteOp - Given an operation that produces a value in an invalid type, | 
|  | /// promote it to compute the value into a larger type.  The produced value | 
|  | /// will have the correct bits for the low portion of the register, but no | 
|  | /// guarantee is made about the top bits: it may be zero, sign-extended, or | 
|  | /// garbage. | 
|  | SDValue PromoteOp(SDValue O); | 
|  |  | 
|  | /// ExpandOp - Expand the specified SDValue into its two component pieces | 
|  | /// Lo&Hi.  Note that the Op MUST be an expanded type.  As a result of this, | 
|  | /// the LegalizedNodes map is filled in for any results that are not expanded, | 
|  | /// the ExpandedNodes map is filled in for any results that are expanded, and | 
|  | /// the Lo/Hi values are returned.   This applies to integer types and Vector | 
|  | /// types. | 
|  | void ExpandOp(SDValue O, SDValue &Lo, SDValue &Hi); | 
|  |  | 
|  | /// WidenVectorOp - Widen a vector operation to a wider type given by WidenVT | 
|  | /// (e.g., v3i32 to v4i32).  The produced value will have the correct value | 
|  | /// for the existing elements but no guarantee is made about the new elements | 
|  | /// at the end of the vector: it may be zero, ones, or garbage. This is useful | 
|  | /// when we have an instruction operating on an illegal vector type and we | 
|  | /// want to widen it to do the computation on a legal wider vector type. | 
|  | SDValue WidenVectorOp(SDValue Op, MVT WidenVT); | 
|  |  | 
|  | /// SplitVectorOp - Given an operand of vector type, break it down into | 
|  | /// two smaller values. | 
|  | void SplitVectorOp(SDValue O, SDValue &Lo, SDValue &Hi); | 
|  |  | 
|  | /// ScalarizeVectorOp - Given an operand of single-element vector type | 
|  | /// (e.g. v1f32), convert it into the equivalent operation that returns a | 
|  | /// scalar (e.g. f32) value. | 
|  | SDValue ScalarizeVectorOp(SDValue O); | 
|  |  | 
|  | /// Useful 16 element vector type that is used to pass operands for widening. | 
|  | typedef SmallVector<SDValue, 16> SDValueVector; | 
|  |  | 
|  | /// LoadWidenVectorOp - Load a vector for a wider type. Returns true if | 
|  | /// the LdChain contains a single load and false if it contains a token | 
|  | /// factor for multiple loads. It takes | 
|  | ///   Result:  location to return the result | 
|  | ///   LdChain: location to return the load chain | 
|  | ///   Op:      load operation to widen | 
|  | ///   NVT:     widen vector result type we want for the load | 
|  | bool LoadWidenVectorOp(SDValue& Result, SDValue& LdChain, | 
|  | SDValue Op, MVT NVT); | 
|  |  | 
|  | /// Helper genWidenVectorLoads - Helper function to generate a set of | 
|  | /// loads to load a vector with a resulting wider type. It takes | 
|  | ///   LdChain: list of chains for the load we have generated | 
|  | ///   Chain:   incoming chain for the ld vector | 
|  | ///   BasePtr: base pointer to load from | 
|  | ///   SV:      memory disambiguation source value | 
|  | ///   SVOffset:  memory disambiugation offset | 
|  | ///   Alignment: alignment of the memory | 
|  | ///   isVolatile: volatile load | 
|  | ///   LdWidth:    width of memory that we want to load | 
|  | ///   ResType:    the wider result result type for the resulting loaded vector | 
|  | SDValue genWidenVectorLoads(SDValueVector& LdChain, SDValue Chain, | 
|  | SDValue BasePtr, const Value *SV, | 
|  | int SVOffset, unsigned Alignment, | 
|  | bool isVolatile, unsigned LdWidth, | 
|  | MVT ResType, DebugLoc dl); | 
|  |  | 
|  | /// StoreWidenVectorOp - Stores a widen vector into non widen memory | 
|  | /// location. It takes | 
|  | ///     ST:      store node that we want to replace | 
|  | ///     Chain:   incoming store chain | 
|  | ///     BasePtr: base address of where we want to store into | 
|  | SDValue StoreWidenVectorOp(StoreSDNode *ST, SDValue Chain, | 
|  | SDValue BasePtr); | 
|  |  | 
|  | /// Helper genWidenVectorStores - Helper function to generate a set of | 
|  | /// stores to store a widen vector into non widen memory | 
|  | // It takes | 
|  | //   StChain: list of chains for the stores we have generated | 
|  | //   Chain:   incoming chain for the ld vector | 
|  | //   BasePtr: base pointer to load from | 
|  | //   SV:      memory disambiguation source value | 
|  | //   SVOffset:   memory disambiugation offset | 
|  | //   Alignment:  alignment of the memory | 
|  | //   isVolatile: volatile lod | 
|  | //   ValOp:   value to store | 
|  | //   StWidth: width of memory that we want to store | 
|  | void genWidenVectorStores(SDValueVector& StChain, SDValue Chain, | 
|  | SDValue BasePtr, const Value *SV, | 
|  | int SVOffset, unsigned Alignment, | 
|  | bool isVolatile, SDValue ValOp, | 
|  | unsigned StWidth, DebugLoc dl); | 
|  |  | 
|  | /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which | 
|  | /// performs the same shuffe in terms of order or result bytes, but on a type | 
|  | /// whose vector element type is narrower than the original shuffle type. | 
|  | /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> | 
|  | SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl, | 
|  | SDValue N1, SDValue N2, | 
|  | SmallVectorImpl<int> &Mask) const; | 
|  |  | 
|  | bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, | 
|  | SmallPtrSet<SDNode*, 32> &NodesLeadingTo); | 
|  |  | 
|  | void LegalizeSetCCOperands(SDValue &LHS, SDValue &RHS, SDValue &CC, | 
|  | DebugLoc dl); | 
|  | void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, | 
|  | DebugLoc dl); | 
|  | void LegalizeSetCC(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, | 
|  | DebugLoc dl) { | 
|  | LegalizeSetCCOperands(LHS, RHS, CC, dl); | 
|  | LegalizeSetCCCondCode(VT, LHS, RHS, CC, dl); | 
|  | } | 
|  |  | 
|  | SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned, | 
|  | SDValue &Hi); | 
|  | SDValue ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source, DebugLoc dl); | 
|  |  | 
|  | SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl); | 
|  | SDValue ExpandBUILD_VECTOR(SDNode *Node); | 
|  | SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); | 
|  | SDValue LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, | 
|  | SDValue Op, DebugLoc dl); | 
|  | SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT, | 
|  | DebugLoc dl); | 
|  | SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned, | 
|  | DebugLoc dl); | 
|  | SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned, | 
|  | DebugLoc dl); | 
|  |  | 
|  | SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); | 
|  | SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); | 
|  | bool ExpandShift(unsigned Opc, SDValue Op, SDValue Amt, | 
|  | SDValue &Lo, SDValue &Hi, DebugLoc dl); | 
|  | void ExpandShiftParts(unsigned NodeOp, SDValue Op, SDValue Amt, | 
|  | SDValue &Lo, SDValue &Hi, DebugLoc dl); | 
|  |  | 
|  | SDValue ExpandEXTRACT_SUBVECTOR(SDValue Op); | 
|  | SDValue ExpandEXTRACT_VECTOR_ELT(SDValue Op); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which | 
|  | /// performs the same shuffe in terms of order or result bytes, but on a type | 
|  | /// whose vector element type is narrower than the original shuffle type. | 
|  | /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> | 
|  | SDValue | 
|  | SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT,  DebugLoc dl, | 
|  | SDValue N1, SDValue N2, | 
|  | SmallVectorImpl<int> &Mask) const { | 
|  | MVT EltVT = NVT.getVectorElementType(); | 
|  | unsigned NumMaskElts = VT.getVectorNumElements(); | 
|  | unsigned NumDestElts = NVT.getVectorNumElements(); | 
|  | unsigned NumEltsGrowth = NumDestElts / NumMaskElts; | 
|  |  | 
|  | assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); | 
|  |  | 
|  | if (NumEltsGrowth == 1) | 
|  | return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); | 
|  |  | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (unsigned i = 0; i != NumMaskElts; ++i) { | 
|  | int Idx = Mask[i]; | 
|  | for (unsigned j = 0; j != NumEltsGrowth; ++j) { | 
|  | if (Idx < 0) | 
|  | NewMask.push_back(-1); | 
|  | else | 
|  | NewMask.push_back(Idx * NumEltsGrowth + j); | 
|  | } | 
|  | } | 
|  | assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); | 
|  | assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); | 
|  | return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); | 
|  | } | 
|  |  | 
|  | SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag, | 
|  | bool types, CodeGenOpt::Level ol) | 
|  | : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol), | 
|  | TypesNeedLegalizing(types), ValueTypeActions(TLI.getValueTypeActions()) { | 
|  | assert(MVT::LAST_VALUETYPE <= 32 && | 
|  | "Too many value types for ValueTypeActions to hold!"); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLegalize::LegalizeDAG() { | 
|  | LastCALLSEQ_END = DAG.getEntryNode(); | 
|  | IsLegalizingCall = false; | 
|  | IsLegalizingCallArgs = false; | 
|  |  | 
|  | // The legalize process is inherently a bottom-up recursive process (users | 
|  | // legalize their uses before themselves).  Given infinite stack space, we | 
|  | // could just start legalizing on the root and traverse the whole graph.  In | 
|  | // practice however, this causes us to run out of stack space on large basic | 
|  | // blocks.  To avoid this problem, compute an ordering of the nodes where each | 
|  | // node is only legalized after all of its operands are legalized. | 
|  | DAG.AssignTopologicalOrder(); | 
|  | for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), | 
|  | E = prior(DAG.allnodes_end()); I != next(E); ++I) | 
|  | HandleOp(SDValue(I, 0)); | 
|  |  | 
|  | // Finally, it's possible the root changed.  Get the new root. | 
|  | SDValue OldRoot = DAG.getRoot(); | 
|  | assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); | 
|  | DAG.setRoot(LegalizedNodes[OldRoot]); | 
|  |  | 
|  | ExpandedNodes.clear(); | 
|  | LegalizedNodes.clear(); | 
|  | PromotedNodes.clear(); | 
|  | SplitNodes.clear(); | 
|  | ScalarizedNodes.clear(); | 
|  | WidenNodes.clear(); | 
|  |  | 
|  | // Remove dead nodes now. | 
|  | DAG.RemoveDeadNodes(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// FindCallEndFromCallStart - Given a chained node that is part of a call | 
|  | /// sequence, find the CALLSEQ_END node that terminates the call sequence. | 
|  | static SDNode *FindCallEndFromCallStart(SDNode *Node) { | 
|  | if (Node->getOpcode() == ISD::CALLSEQ_END) | 
|  | return Node; | 
|  | if (Node->use_empty()) | 
|  | return 0;   // No CallSeqEnd | 
|  |  | 
|  | // The chain is usually at the end. | 
|  | SDValue TheChain(Node, Node->getNumValues()-1); | 
|  | if (TheChain.getValueType() != MVT::Other) { | 
|  | // Sometimes it's at the beginning. | 
|  | TheChain = SDValue(Node, 0); | 
|  | if (TheChain.getValueType() != MVT::Other) { | 
|  | // Otherwise, hunt for it. | 
|  | for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) | 
|  | if (Node->getValueType(i) == MVT::Other) { | 
|  | TheChain = SDValue(Node, i); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, we walked into a node without a chain. | 
|  | if (TheChain.getValueType() != MVT::Other) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (SDNode::use_iterator UI = Node->use_begin(), | 
|  | E = Node->use_end(); UI != E; ++UI) { | 
|  |  | 
|  | // Make sure to only follow users of our token chain. | 
|  | SDNode *User = *UI; | 
|  | for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) | 
|  | if (User->getOperand(i) == TheChain) | 
|  | if (SDNode *Result = FindCallEndFromCallStart(User)) | 
|  | return Result; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// FindCallStartFromCallEnd - Given a chained node that is part of a call | 
|  | /// sequence, find the CALLSEQ_START node that initiates the call sequence. | 
|  | static SDNode *FindCallStartFromCallEnd(SDNode *Node) { | 
|  | assert(Node && "Didn't find callseq_start for a call??"); | 
|  | if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; | 
|  |  | 
|  | assert(Node->getOperand(0).getValueType() == MVT::Other && | 
|  | "Node doesn't have a token chain argument!"); | 
|  | return FindCallStartFromCallEnd(Node->getOperand(0).getNode()); | 
|  | } | 
|  |  | 
|  | /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to | 
|  | /// see if any uses can reach Dest.  If no dest operands can get to dest, | 
|  | /// legalize them, legalize ourself, and return false, otherwise, return true. | 
|  | /// | 
|  | /// Keep track of the nodes we fine that actually do lead to Dest in | 
|  | /// NodesLeadingTo.  This avoids retraversing them exponential number of times. | 
|  | /// | 
|  | bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, | 
|  | SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { | 
|  | if (N == Dest) return true;  // N certainly leads to Dest :) | 
|  |  | 
|  | // If we've already processed this node and it does lead to Dest, there is no | 
|  | // need to reprocess it. | 
|  | if (NodesLeadingTo.count(N)) return true; | 
|  |  | 
|  | // If the first result of this node has been already legalized, then it cannot | 
|  | // reach N. | 
|  | switch (getTypeAction(N->getValueType(0))) { | 
|  | case Legal: | 
|  | if (LegalizedNodes.count(SDValue(N, 0))) return false; | 
|  | break; | 
|  | case Promote: | 
|  | if (PromotedNodes.count(SDValue(N, 0))) return false; | 
|  | break; | 
|  | case Expand: | 
|  | if (ExpandedNodes.count(SDValue(N, 0))) return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Okay, this node has not already been legalized.  Check and legalize all | 
|  | // operands.  If none lead to Dest, then we can legalize this node. | 
|  | bool OperandsLeadToDest = false; | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | OperandsLeadToDest |=     // If an operand leads to Dest, so do we. | 
|  | LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo); | 
|  |  | 
|  | if (OperandsLeadToDest) { | 
|  | NodesLeadingTo.insert(N); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Okay, this node looks safe, legalize it and return false. | 
|  | HandleOp(SDValue(N, 0)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// HandleOp - Legalize, Promote, Widen, or Expand the specified operand as | 
|  | /// appropriate for its type. | 
|  | void SelectionDAGLegalize::HandleOp(SDValue Op) { | 
|  | MVT VT = Op.getValueType(); | 
|  | // If the type legalizer was run then we should never see any illegal result | 
|  | // types here except for target constants (the type legalizer does not touch | 
|  | // those) or for build vector used as a mask for a vector shuffle. | 
|  | assert((TypesNeedLegalizing || getTypeAction(VT) == Legal || | 
|  | IsLegalizingCallArgs || Op.getOpcode() == ISD::TargetConstant) && | 
|  | "Illegal type introduced after type legalization?"); | 
|  | switch (getTypeAction(VT)) { | 
|  | default: assert(0 && "Bad type action!"); | 
|  | case Legal:   (void)LegalizeOp(Op); break; | 
|  | case Promote: | 
|  | if (!VT.isVector()) { | 
|  | (void)PromoteOp(Op); | 
|  | break; | 
|  | } | 
|  | else  { | 
|  | // See if we can widen otherwise use Expand to either scalarize or split | 
|  | MVT WidenVT = TLI.getWidenVectorType(VT); | 
|  | if (WidenVT != MVT::Other) { | 
|  | (void) WidenVectorOp(Op, WidenVT); | 
|  | break; | 
|  | } | 
|  | // else fall thru to expand since we can't widen the vector | 
|  | } | 
|  | case Expand: | 
|  | if (!VT.isVector()) { | 
|  | // If this is an illegal scalar, expand it into its two component | 
|  | // pieces. | 
|  | SDValue X, Y; | 
|  | if (Op.getOpcode() == ISD::TargetConstant) | 
|  | break;  // Allow illegal target nodes. | 
|  | ExpandOp(Op, X, Y); | 
|  | } else if (VT.getVectorNumElements() == 1) { | 
|  | // If this is an illegal single element vector, convert it to a | 
|  | // scalar operation. | 
|  | (void)ScalarizeVectorOp(Op); | 
|  | } else { | 
|  | // This is an illegal multiple element vector. | 
|  | // Split it in half and legalize both parts. | 
|  | SDValue X, Y; | 
|  | SplitVectorOp(Op, X, Y); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or | 
|  | /// a load from the constant pool. | 
|  | static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, | 
|  | SelectionDAG &DAG, const TargetLowering &TLI) { | 
|  | bool Extend = false; | 
|  | DebugLoc dl = CFP->getDebugLoc(); | 
|  |  | 
|  | // If a FP immediate is precise when represented as a float and if the | 
|  | // target can do an extending load from float to double, we put it into | 
|  | // the constant pool as a float, even if it's is statically typed as a | 
|  | // double.  This shrinks FP constants and canonicalizes them for targets where | 
|  | // an FP extending load is the same cost as a normal load (such as on the x87 | 
|  | // fp stack or PPC FP unit). | 
|  | MVT VT = CFP->getValueType(0); | 
|  | ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); | 
|  | if (!UseCP) { | 
|  | assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); | 
|  | return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), | 
|  | (VT == MVT::f64) ? MVT::i64 : MVT::i32); | 
|  | } | 
|  |  | 
|  | MVT OrigVT = VT; | 
|  | MVT SVT = VT; | 
|  | while (SVT != MVT::f32) { | 
|  | SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1); | 
|  | if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) && | 
|  | // Only do this if the target has a native EXTLOAD instruction from | 
|  | // smaller type. | 
|  | TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && | 
|  | TLI.ShouldShrinkFPConstant(OrigVT)) { | 
|  | const Type *SType = SVT.getTypeForMVT(); | 
|  | LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); | 
|  | VT = SVT; | 
|  | Extend = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  | if (Extend) | 
|  | return DAG.getExtLoad(ISD::EXTLOAD, dl, | 
|  | OrigVT, DAG.getEntryNode(), | 
|  | CPIdx, PseudoSourceValue::getConstantPool(), | 
|  | 0, VT, false, Alignment); | 
|  | return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, | 
|  | PseudoSourceValue::getConstantPool(), 0, false, Alignment); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise | 
|  | /// operations. | 
|  | static | 
|  | SDValue ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT NVT, | 
|  | SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | MVT VT = Node->getValueType(0); | 
|  | MVT SrcVT = Node->getOperand(1).getValueType(); | 
|  | assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && | 
|  | "fcopysign expansion only supported for f32 and f64"); | 
|  | MVT SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; | 
|  |  | 
|  | // First get the sign bit of second operand. | 
|  | SDValue Mask1 = (SrcVT == MVT::f64) | 
|  | ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) | 
|  | : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); | 
|  | Mask1 = DAG.getNode(ISD::BIT_CONVERT, dl, SrcNVT, Mask1); | 
|  | SDValue SignBit= DAG.getNode(ISD::BIT_CONVERT, dl, SrcNVT, | 
|  | Node->getOperand(1)); | 
|  | SignBit = DAG.getNode(ISD::AND, dl, SrcNVT, SignBit, Mask1); | 
|  | // Shift right or sign-extend it if the two operands have different types. | 
|  | int SizeDiff = SrcNVT.getSizeInBits() - NVT.getSizeInBits(); | 
|  | if (SizeDiff > 0) { | 
|  | SignBit = DAG.getNode(ISD::SRL, dl, SrcNVT, SignBit, | 
|  | DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); | 
|  | SignBit = DAG.getNode(ISD::TRUNCATE, dl, NVT, SignBit); | 
|  | } else if (SizeDiff < 0) { | 
|  | SignBit = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, SignBit); | 
|  | SignBit = DAG.getNode(ISD::SHL, dl, NVT, SignBit, | 
|  | DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy())); | 
|  | } | 
|  |  | 
|  | // Clear the sign bit of first operand. | 
|  | SDValue Mask2 = (VT == MVT::f64) | 
|  | ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) | 
|  | : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); | 
|  | Mask2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask2); | 
|  | SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); | 
|  | Result = DAG.getNode(ISD::AND, dl, NVT, Result, Mask2); | 
|  |  | 
|  | // Or the value with the sign bit. | 
|  | Result = DAG.getNode(ISD::OR, dl, NVT, Result, SignBit); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. | 
|  | static | 
|  | SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Ptr = ST->getBasePtr(); | 
|  | SDValue Val = ST->getValue(); | 
|  | MVT VT = Val.getValueType(); | 
|  | int Alignment = ST->getAlignment(); | 
|  | int SVOffset = ST->getSrcValueOffset(); | 
|  | DebugLoc dl = ST->getDebugLoc(); | 
|  | if (ST->getMemoryVT().isFloatingPoint() || | 
|  | ST->getMemoryVT().isVector()) { | 
|  | MVT intVT = MVT::getIntegerVT(VT.getSizeInBits()); | 
|  | if (TLI.isTypeLegal(intVT)) { | 
|  | // Expand to a bitconvert of the value to the integer type of the | 
|  | // same size, then a (misaligned) int store. | 
|  | // FIXME: Does not handle truncating floating point stores! | 
|  | SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val); | 
|  | return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(), | 
|  | SVOffset, ST->isVolatile(), Alignment); | 
|  | } else { | 
|  | // Do a (aligned) store to a stack slot, then copy from the stack slot | 
|  | // to the final destination using (unaligned) integer loads and stores. | 
|  | MVT StoredVT = ST->getMemoryVT(); | 
|  | MVT RegVT = | 
|  | TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits())); | 
|  | unsigned StoredBytes = StoredVT.getSizeInBits() / 8; | 
|  | unsigned RegBytes = RegVT.getSizeInBits() / 8; | 
|  | unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; | 
|  |  | 
|  | // Make sure the stack slot is also aligned for the register type. | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); | 
|  |  | 
|  | // Perform the original store, only redirected to the stack slot. | 
|  | SDValue Store = DAG.getTruncStore(Chain, dl, | 
|  | Val, StackPtr, NULL, 0, StoredVT); | 
|  | SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); | 
|  | SmallVector<SDValue, 8> Stores; | 
|  | unsigned Offset = 0; | 
|  |  | 
|  | // Do all but one copies using the full register width. | 
|  | for (unsigned i = 1; i < NumRegs; i++) { | 
|  | // Load one integer register's worth from the stack slot. | 
|  | SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0); | 
|  | // Store it to the final location.  Remember the store. | 
|  | Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, | 
|  | ST->getSrcValue(), SVOffset + Offset, | 
|  | ST->isVolatile(), | 
|  | MinAlign(ST->getAlignment(), Offset))); | 
|  | // Increment the pointers. | 
|  | Offset += RegBytes; | 
|  | StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, | 
|  | Increment); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); | 
|  | } | 
|  |  | 
|  | // The last store may be partial.  Do a truncating store.  On big-endian | 
|  | // machines this requires an extending load from the stack slot to ensure | 
|  | // that the bits are in the right place. | 
|  | MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset)); | 
|  |  | 
|  | // Load from the stack slot. | 
|  | SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, | 
|  | NULL, 0, MemVT); | 
|  |  | 
|  | Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, | 
|  | ST->getSrcValue(), SVOffset + Offset, | 
|  | MemVT, ST->isVolatile(), | 
|  | MinAlign(ST->getAlignment(), Offset))); | 
|  | // The order of the stores doesn't matter - say it with a TokenFactor. | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], | 
|  | Stores.size()); | 
|  | } | 
|  | } | 
|  | assert(ST->getMemoryVT().isInteger() && | 
|  | !ST->getMemoryVT().isVector() && | 
|  | "Unaligned store of unknown type."); | 
|  | // Get the half-size VT | 
|  | MVT NewStoredVT = | 
|  | (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1); | 
|  | int NumBits = NewStoredVT.getSizeInBits(); | 
|  | int IncrementSize = NumBits / 8; | 
|  |  | 
|  | // Divide the stored value in two parts. | 
|  | SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); | 
|  | SDValue Lo = Val; | 
|  | SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); | 
|  |  | 
|  | // Store the two parts | 
|  | SDValue Store1, Store2; | 
|  | Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, | 
|  | ST->getSrcValue(), SVOffset, NewStoredVT, | 
|  | ST->isVolatile(), Alignment); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(IncrementSize, TLI.getPointerTy())); | 
|  | Alignment = MinAlign(Alignment, IncrementSize); | 
|  | Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, | 
|  | ST->getSrcValue(), SVOffset + IncrementSize, | 
|  | NewStoredVT, ST->isVolatile(), Alignment); | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); | 
|  | } | 
|  |  | 
|  | /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. | 
|  | static | 
|  | SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | int SVOffset = LD->getSrcValueOffset(); | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Ptr = LD->getBasePtr(); | 
|  | MVT VT = LD->getValueType(0); | 
|  | MVT LoadedVT = LD->getMemoryVT(); | 
|  | DebugLoc dl = LD->getDebugLoc(); | 
|  | if (VT.isFloatingPoint() || VT.isVector()) { | 
|  | MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits()); | 
|  | if (TLI.isTypeLegal(intVT)) { | 
|  | // Expand to a (misaligned) integer load of the same size, | 
|  | // then bitconvert to floating point or vector. | 
|  | SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(), | 
|  | SVOffset, LD->isVolatile(), | 
|  | LD->getAlignment()); | 
|  | SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad); | 
|  | if (VT.isFloatingPoint() && LoadedVT != VT) | 
|  | Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result); | 
|  |  | 
|  | SDValue Ops[] = { Result, Chain }; | 
|  | return DAG.getMergeValues(Ops, 2, dl); | 
|  | } else { | 
|  | // Copy the value to a (aligned) stack slot using (unaligned) integer | 
|  | // loads and stores, then do a (aligned) load from the stack slot. | 
|  | MVT RegVT = TLI.getRegisterType(intVT); | 
|  | unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; | 
|  | unsigned RegBytes = RegVT.getSizeInBits() / 8; | 
|  | unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; | 
|  |  | 
|  | // Make sure the stack slot is also aligned for the register type. | 
|  | SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); | 
|  |  | 
|  | SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); | 
|  | SmallVector<SDValue, 8> Stores; | 
|  | SDValue StackPtr = StackBase; | 
|  | unsigned Offset = 0; | 
|  |  | 
|  | // Do all but one copies using the full register width. | 
|  | for (unsigned i = 1; i < NumRegs; i++) { | 
|  | // Load one integer register's worth from the original location. | 
|  | SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(), | 
|  | SVOffset + Offset, LD->isVolatile(), | 
|  | MinAlign(LD->getAlignment(), Offset)); | 
|  | // Follow the load with a store to the stack slot.  Remember the store. | 
|  | Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, | 
|  | NULL, 0)); | 
|  | // Increment the pointers. | 
|  | Offset += RegBytes; | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); | 
|  | StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, | 
|  | Increment); | 
|  | } | 
|  |  | 
|  | // The last copy may be partial.  Do an extending load. | 
|  | MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset)); | 
|  | SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, | 
|  | LD->getSrcValue(), SVOffset + Offset, | 
|  | MemVT, LD->isVolatile(), | 
|  | MinAlign(LD->getAlignment(), Offset)); | 
|  | // Follow the load with a store to the stack slot.  Remember the store. | 
|  | // On big-endian machines this requires a truncating store to ensure | 
|  | // that the bits end up in the right place. | 
|  | Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, | 
|  | NULL, 0, MemVT)); | 
|  |  | 
|  | // The order of the stores doesn't matter - say it with a TokenFactor. | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], | 
|  | Stores.size()); | 
|  |  | 
|  | // Finally, perform the original load only redirected to the stack slot. | 
|  | Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, | 
|  | NULL, 0, LoadedVT); | 
|  |  | 
|  | // Callers expect a MERGE_VALUES node. | 
|  | SDValue Ops[] = { Load, TF }; | 
|  | return DAG.getMergeValues(Ops, 2, dl); | 
|  | } | 
|  | } | 
|  | assert(LoadedVT.isInteger() && !LoadedVT.isVector() && | 
|  | "Unaligned load of unsupported type."); | 
|  |  | 
|  | // Compute the new VT that is half the size of the old one.  This is an | 
|  | // integer MVT. | 
|  | unsigned NumBits = LoadedVT.getSizeInBits(); | 
|  | MVT NewLoadedVT; | 
|  | NewLoadedVT = MVT::getIntegerVT(NumBits/2); | 
|  | NumBits >>= 1; | 
|  |  | 
|  | unsigned Alignment = LD->getAlignment(); | 
|  | unsigned IncrementSize = NumBits / 8; | 
|  | ISD::LoadExtType HiExtType = LD->getExtensionType(); | 
|  |  | 
|  | // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. | 
|  | if (HiExtType == ISD::NON_EXTLOAD) | 
|  | HiExtType = ISD::ZEXTLOAD; | 
|  |  | 
|  | // Load the value in two parts | 
|  | SDValue Lo, Hi; | 
|  | if (TLI.isLittleEndian()) { | 
|  | Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(), | 
|  | SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(IncrementSize, TLI.getPointerTy())); | 
|  | Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(), | 
|  | SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), | 
|  | MinAlign(Alignment, IncrementSize)); | 
|  | } else { | 
|  | Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(), | 
|  | SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(IncrementSize, TLI.getPointerTy())); | 
|  | Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(), | 
|  | SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), | 
|  | MinAlign(Alignment, IncrementSize)); | 
|  | } | 
|  |  | 
|  | // aggregate the two parts | 
|  | SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); | 
|  | SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); | 
|  | Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); | 
|  |  | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | SDValue Ops[] = { Result, TF }; | 
|  | return DAG.getMergeValues(Ops, 2, dl); | 
|  | } | 
|  |  | 
|  | /// UnrollVectorOp - We know that the given vector has a legal type, however | 
|  | /// the operation it performs is not legal and is an operation that we have | 
|  | /// no way of lowering.  "Unroll" the vector, splitting out the scalars and | 
|  | /// operating on each element individually. | 
|  | SDValue SelectionDAGLegalize::UnrollVectorOp(SDValue Op) { | 
|  | MVT VT = Op.getValueType(); | 
|  | assert(isTypeLegal(VT) && | 
|  | "Caller should expand or promote operands that are not legal!"); | 
|  | assert(Op.getNode()->getNumValues() == 1 && | 
|  | "Can't unroll a vector with multiple results!"); | 
|  | unsigned NE = VT.getVectorNumElements(); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | SmallVector<SDValue, 8> Scalars; | 
|  | SmallVector<SDValue, 4> Operands(Op.getNumOperands()); | 
|  | for (unsigned i = 0; i != NE; ++i) { | 
|  | for (unsigned j = 0; j != Op.getNumOperands(); ++j) { | 
|  | SDValue Operand = Op.getOperand(j); | 
|  | MVT OperandVT = Operand.getValueType(); | 
|  | if (OperandVT.isVector()) { | 
|  | // A vector operand; extract a single element. | 
|  | MVT OperandEltVT = OperandVT.getVectorElementType(); | 
|  | Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | 
|  | OperandEltVT, | 
|  | Operand, | 
|  | DAG.getConstant(i, MVT::i32)); | 
|  | } else { | 
|  | // A scalar operand; just use it as is. | 
|  | Operands[j] = Operand; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | Scalars.push_back(DAG.getNode(Op.getOpcode(), dl, EltVT, | 
|  | &Operands[0], Operands.size())); | 
|  | break; | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | case ISD::ROTL: | 
|  | case ISD::ROTR: | 
|  | Scalars.push_back(DAG.getNode(Op.getOpcode(), dl, EltVT, Operands[0], | 
|  | DAG.getShiftAmountOperand(Operands[1]))); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Scalars[0], Scalars.size()); | 
|  | } | 
|  |  | 
|  | /// GetFPLibCall - Return the right libcall for the given floating point type. | 
|  | static RTLIB::Libcall GetFPLibCall(MVT VT, | 
|  | RTLIB::Libcall Call_F32, | 
|  | RTLIB::Libcall Call_F64, | 
|  | RTLIB::Libcall Call_F80, | 
|  | RTLIB::Libcall Call_PPCF128) { | 
|  | return | 
|  | VT == MVT::f32 ? Call_F32 : | 
|  | VT == MVT::f64 ? Call_F64 : | 
|  | VT == MVT::f80 ? Call_F80 : | 
|  | VT == MVT::ppcf128 ? Call_PPCF128 : | 
|  | RTLIB::UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// PerformInsertVectorEltInMemory - Some target cannot handle a variable | 
|  | /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it | 
|  | /// is necessary to spill the vector being inserted into to memory, perform | 
|  | /// the insert there, and then read the result back. | 
|  | SDValue SelectionDAGLegalize:: | 
|  | PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, | 
|  | DebugLoc dl) { | 
|  | SDValue Tmp1 = Vec; | 
|  | SDValue Tmp2 = Val; | 
|  | SDValue Tmp3 = Idx; | 
|  |  | 
|  | // If the target doesn't support this, we have to spill the input vector | 
|  | // to a temporary stack slot, update the element, then reload it.  This is | 
|  | // badness.  We could also load the value into a vector register (either | 
|  | // with a "move to register" or "extload into register" instruction, then | 
|  | // permute it into place, if the idx is a constant and if the idx is | 
|  | // supported by the target. | 
|  | MVT VT    = Tmp1.getValueType(); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | MVT IdxVT = Tmp3.getValueType(); | 
|  | MVT PtrVT = TLI.getPointerTy(); | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(VT); | 
|  |  | 
|  | int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); | 
|  |  | 
|  | // Store the vector. | 
|  | SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, | 
|  | PseudoSourceValue::getFixedStack(SPFI), 0); | 
|  |  | 
|  | // Truncate or zero extend offset to target pointer type. | 
|  | unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; | 
|  | Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); | 
|  | // Add the offset to the index. | 
|  | unsigned EltSize = EltVT.getSizeInBits()/8; | 
|  | Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); | 
|  | SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); | 
|  | // Store the scalar value. | 
|  | Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, | 
|  | PseudoSourceValue::getFixedStack(SPFI), 0, EltVT); | 
|  | // Load the updated vector. | 
|  | return DAG.getLoad(VT, dl, Ch, StackPtr, | 
|  | PseudoSourceValue::getFixedStack(SPFI), 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// LegalizeOp - We know that the specified value has a legal type, and | 
|  | /// that its operands are legal.  Now ensure that the operation itself | 
|  | /// is legal, recursively ensuring that the operands' operations remain | 
|  | /// legal. | 
|  | SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) { | 
|  | if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. | 
|  | return Op; | 
|  |  | 
|  | assert(isTypeLegal(Op.getValueType()) && | 
|  | "Caller should expand or promote operands that are not legal!"); | 
|  | SDNode *Node = Op.getNode(); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  |  | 
|  | // If this operation defines any values that cannot be represented in a | 
|  | // register on this target, make sure to expand or promote them. | 
|  | if (Node->getNumValues() > 1) { | 
|  | for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) | 
|  | if (getTypeAction(Node->getValueType(i)) != Legal) { | 
|  | HandleOp(Op.getValue(i)); | 
|  | assert(LegalizedNodes.count(Op) && | 
|  | "Handling didn't add legal operands!"); | 
|  | return LegalizedNodes[Op]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note that LegalizeOp may be reentered even from single-use nodes, which | 
|  | // means that we always must cache transformed nodes. | 
|  | DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); | 
|  | if (I != LegalizedNodes.end()) return I->second; | 
|  |  | 
|  | SDValue Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | SDValue Result = Op; | 
|  | bool isCustom = false; | 
|  |  | 
|  | switch (Node->getOpcode()) { | 
|  | case ISD::FrameIndex: | 
|  | case ISD::EntryToken: | 
|  | case ISD::Register: | 
|  | case ISD::BasicBlock: | 
|  | case ISD::TargetFrameIndex: | 
|  | case ISD::TargetJumpTable: | 
|  | case ISD::TargetConstant: | 
|  | case ISD::TargetConstantFP: | 
|  | case ISD::TargetConstantPool: | 
|  | case ISD::TargetGlobalAddress: | 
|  | case ISD::TargetGlobalTLSAddress: | 
|  | case ISD::TargetExternalSymbol: | 
|  | case ISD::VALUETYPE: | 
|  | case ISD::SRCVALUE: | 
|  | case ISD::MEMOPERAND: | 
|  | case ISD::CONDCODE: | 
|  | case ISD::ARG_FLAGS: | 
|  | // Primitives must all be legal. | 
|  | assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && | 
|  | "This must be legal!"); | 
|  | break; | 
|  | default: | 
|  | if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { | 
|  | // If this is a target node, legalize it by legalizing the operands then | 
|  | // passing it through. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) | 
|  | Ops.push_back(LegalizeOp(Node->getOperand(i))); | 
|  |  | 
|  | Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); | 
|  |  | 
|  | for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) | 
|  | AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); | 
|  | return Result.getValue(Op.getResNo()); | 
|  | } | 
|  | // Otherwise this is an unhandled builtin node.  splat. | 
|  | #ifndef NDEBUG | 
|  | cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; | 
|  | #endif | 
|  | assert(0 && "Do not know how to legalize this operator!"); | 
|  | abort(); | 
|  | case ISD::GLOBAL_OFFSET_TABLE: | 
|  | case ISD::GlobalAddress: | 
|  | case ISD::GlobalTLSAddress: | 
|  | case ISD::ExternalSymbol: | 
|  | case ISD::ConstantPool: | 
|  | case ISD::JumpTable: // Nothing to do. | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Op, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | // FALLTHROUGH if the target doesn't want to lower this op after all. | 
|  | case TargetLowering::Legal: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ISD::FRAMEADDR: | 
|  | case ISD::RETURNADDR: | 
|  | // The only option for these nodes is to custom lower them.  If the target | 
|  | // does not custom lower them, then return zero. | 
|  | Tmp1 = TLI.LowerOperation(Op, DAG); | 
|  | if (Tmp1.getNode()) | 
|  | Result = Tmp1; | 
|  | else | 
|  | Result = DAG.getConstant(0, TLI.getPointerTy()); | 
|  | break; | 
|  | case ISD::FRAME_TO_ARGS_OFFSET: { | 
|  | MVT VT = Node->getValueType(0); | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), VT)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Custom: | 
|  | Result = TLI.LowerOperation(Op, DAG); | 
|  | if (Result.getNode()) break; | 
|  | // Fall Thru | 
|  | case TargetLowering::Legal: | 
|  | Result = DAG.getConstant(0, VT); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::EXCEPTIONADDR: { | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | MVT VT = Node->getValueType(0); | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), VT)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Expand: { | 
|  | unsigned Reg = TLI.getExceptionAddressRegister(); | 
|  | Result = DAG.getCopyFromReg(Tmp1, dl, Reg, VT); | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Result = TLI.LowerOperation(Op, DAG); | 
|  | if (Result.getNode()) break; | 
|  | // Fall Thru | 
|  | case TargetLowering::Legal: { | 
|  | SDValue Ops[] = { DAG.getConstant(0, VT), Tmp1 }; | 
|  | Result = DAG.getMergeValues(Ops, 2, dl); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Result.getNode()->getNumValues() == 1) break; | 
|  |  | 
|  | assert(Result.getNode()->getNumValues() == 2 && | 
|  | "Cannot return more than two values!"); | 
|  |  | 
|  | // Since we produced two values, make sure to remember that we | 
|  | // legalized both of them. | 
|  | Tmp1 = LegalizeOp(Result); | 
|  | Tmp2 = LegalizeOp(Result.getValue(1)); | 
|  | AddLegalizedOperand(Op.getValue(0), Tmp1); | 
|  | AddLegalizedOperand(Op.getValue(1), Tmp2); | 
|  | return Op.getResNo() ? Tmp2 : Tmp1; | 
|  | case ISD::EHSELECTION: { | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1)); | 
|  | MVT VT = Node->getValueType(0); | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), VT)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Expand: { | 
|  | unsigned Reg = TLI.getExceptionSelectorRegister(); | 
|  | Result = DAG.getCopyFromReg(Tmp2, dl, Reg, VT); | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Result = TLI.LowerOperation(Op, DAG); | 
|  | if (Result.getNode()) break; | 
|  | // Fall Thru | 
|  | case TargetLowering::Legal: { | 
|  | SDValue Ops[] = { DAG.getConstant(0, VT), Tmp2 }; | 
|  | Result = DAG.getMergeValues(Ops, 2, dl); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Result.getNode()->getNumValues() == 1) break; | 
|  |  | 
|  | assert(Result.getNode()->getNumValues() == 2 && | 
|  | "Cannot return more than two values!"); | 
|  |  | 
|  | // Since we produced two values, make sure to remember that we | 
|  | // legalized both of them. | 
|  | Tmp1 = LegalizeOp(Result); | 
|  | Tmp2 = LegalizeOp(Result.getValue(1)); | 
|  | AddLegalizedOperand(Op.getValue(0), Tmp1); | 
|  | AddLegalizedOperand(Op.getValue(1), Tmp2); | 
|  | return Op.getResNo() ? Tmp2 : Tmp1; | 
|  | case ISD::EH_RETURN: { | 
|  | MVT VT = Node->getValueType(0); | 
|  | // The only "good" option for this node is to custom lower it. | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), VT)) { | 
|  | default: assert(0 && "This action is not supported at all!"); | 
|  | case TargetLowering::Custom: | 
|  | Result = TLI.LowerOperation(Op, DAG); | 
|  | if (Result.getNode()) break; | 
|  | // Fall Thru | 
|  | case TargetLowering::Legal: | 
|  | // Target does not know, how to lower this, lower to noop | 
|  | Result = LegalizeOp(Node->getOperand(0)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::AssertSext: | 
|  | case ISD::AssertZext: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); | 
|  | break; | 
|  | case ISD::MERGE_VALUES: | 
|  | // Legalize eliminates MERGE_VALUES nodes. | 
|  | Result = Node->getOperand(Op.getResNo()); | 
|  | break; | 
|  | case ISD::CopyFromReg: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | Result = Op.getValue(0); | 
|  | if (Node->getNumValues() == 2) { | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); | 
|  | } else { | 
|  | assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); | 
|  | if (Node->getNumOperands() == 3) { | 
|  | Tmp2 = LegalizeOp(Node->getOperand(2)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); | 
|  | } else { | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); | 
|  | } | 
|  | AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); | 
|  | } | 
|  | // Since CopyFromReg produces two values, make sure to remember that we | 
|  | // legalized both of them. | 
|  | AddLegalizedOperand(Op.getValue(0), Result); | 
|  | AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); | 
|  | return Result.getValue(Op.getResNo()); | 
|  | case ISD::UNDEF: { | 
|  | MVT VT = Op.getValueType(); | 
|  | switch (TLI.getOperationAction(ISD::UNDEF, VT)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Expand: | 
|  | if (VT.isInteger()) | 
|  | Result = DAG.getConstant(0, VT); | 
|  | else if (VT.isFloatingPoint()) | 
|  | Result = DAG.getConstantFP(APFloat(APInt(VT.getSizeInBits(), 0)), | 
|  | VT); | 
|  | else | 
|  | assert(0 && "Unknown value type!"); | 
|  | break; | 
|  | case TargetLowering::Legal: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::INTRINSIC_W_CHAIN: | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | case ISD::INTRINSIC_VOID: { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) | 
|  | Ops.push_back(LegalizeOp(Node->getOperand(i))); | 
|  | Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); | 
|  |  | 
|  | // Allow the target to custom lower its intrinsics if it wants to. | 
|  | if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == | 
|  | TargetLowering::Custom) { | 
|  | Tmp3 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp3.getNode()) Result = Tmp3; | 
|  | } | 
|  |  | 
|  | if (Result.getNode()->getNumValues() == 1) break; | 
|  |  | 
|  | // Must have return value and chain result. | 
|  | assert(Result.getNode()->getNumValues() == 2 && | 
|  | "Cannot return more than two values!"); | 
|  |  | 
|  | // Since loads produce two values, make sure to remember that we | 
|  | // legalized both of them. | 
|  | AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); | 
|  | AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); | 
|  | return Result.getValue(Op.getResNo()); | 
|  | } | 
|  |  | 
|  | case ISD::DBG_STOPPOINT: | 
|  | assert(Node->getNumOperands() == 1 && "Invalid DBG_STOPPOINT node!"); | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the input chain. | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::DBG_STOPPOINT, MVT::Other)) { | 
|  | case TargetLowering::Promote: | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Expand: { | 
|  | DwarfWriter *DW = DAG.getDwarfWriter(); | 
|  | bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC, | 
|  | MVT::Other); | 
|  | bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other); | 
|  |  | 
|  | const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node); | 
|  | GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit()); | 
|  | if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) { | 
|  | DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit())); | 
|  |  | 
|  | unsigned Line = DSP->getLine(); | 
|  | unsigned Col = DSP->getColumn(); | 
|  |  | 
|  | if (OptLevel == CodeGenOpt::None) { | 
|  | // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it | 
|  | // won't hurt anything. | 
|  | if (useDEBUG_LOC) { | 
|  | SDValue Ops[] = { Tmp1, DAG.getConstant(Line, MVT::i32), | 
|  | DAG.getConstant(Col, MVT::i32), | 
|  | DAG.getSrcValue(CU.getGV()) }; | 
|  | Result = DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Ops, 4); | 
|  | } else { | 
|  | unsigned ID = DW->RecordSourceLine(Line, Col, CU); | 
|  | Result = DAG.getLabel(ISD::DBG_LABEL, dl, Tmp1, ID); | 
|  | } | 
|  | } else { | 
|  | Result = Tmp1;  // chain | 
|  | } | 
|  | } else { | 
|  | Result = Tmp1;  // chain | 
|  | } | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Custom: | 
|  | Result = TLI.LowerOperation(Op, DAG); | 
|  | if (Result.getNode()) | 
|  | break; | 
|  | case TargetLowering::Legal: { | 
|  | LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType()); | 
|  | if (Action == Legal && Tmp1 == Node->getOperand(0)) | 
|  | break; | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.push_back(Tmp1); | 
|  | if (Action == Legal) { | 
|  | Ops.push_back(Node->getOperand(1));  // line # must be legal. | 
|  | Ops.push_back(Node->getOperand(2));  // col # must be legal. | 
|  | } else { | 
|  | // Otherwise promote them. | 
|  | Ops.push_back(PromoteOp(Node->getOperand(1))); | 
|  | Ops.push_back(PromoteOp(Node->getOperand(2))); | 
|  | } | 
|  | Ops.push_back(Node->getOperand(3));  // filename must be legal. | 
|  | Ops.push_back(Node->getOperand(4));  // working dir # must be legal. | 
|  | Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::DECLARE: | 
|  | assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!"); | 
|  | switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the address. | 
|  | Tmp3 = LegalizeOp(Node->getOperand(2));  // Legalize the variable. | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | Result = LegalizeOp(Node->getOperand(0)); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::DEBUG_LOC: | 
|  | assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); | 
|  | switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: { | 
|  | LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType()); | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | if (Action == Legal && Tmp1 == Node->getOperand(0)) | 
|  | break; | 
|  | if (Action == Legal) { | 
|  | Tmp2 = Node->getOperand(1); | 
|  | Tmp3 = Node->getOperand(2); | 
|  | Tmp4 = Node->getOperand(3); | 
|  | } else { | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the line #. | 
|  | Tmp3 = LegalizeOp(Node->getOperand(2));  // Legalize the col #. | 
|  | Tmp4 = LegalizeOp(Node->getOperand(3));  // Legalize the source file id. | 
|  | } | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::DBG_LABEL: | 
|  | case ISD::EH_LABEL: | 
|  | assert(Node->getNumOperands() == 1 && "Invalid LABEL node!"); | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | Result = LegalizeOp(Node->getOperand(0)); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::PREFETCH: | 
|  | assert(Node->getNumOperands() == 4 && "Invalid Prefetch node!"); | 
|  | switch (TLI.getOperationAction(ISD::PREFETCH, MVT::Other)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the address. | 
|  | Tmp3 = LegalizeOp(Node->getOperand(2));  // Legalize the rw specifier. | 
|  | Tmp4 = LegalizeOp(Node->getOperand(3));  // Legalize locality specifier. | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | // It's a noop. | 
|  | Result = LegalizeOp(Node->getOperand(0)); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::MEMBARRIER: { | 
|  | assert(Node->getNumOperands() == 6 && "Invalid MemBarrier node!"); | 
|  | switch (TLI.getOperationAction(ISD::MEMBARRIER, MVT::Other)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: { | 
|  | SDValue Ops[6]; | 
|  | Ops[0] = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | for (int x = 1; x < 6; ++x) { | 
|  | Ops[x] = Node->getOperand(x); | 
|  | if (!isTypeLegal(Ops[x].getValueType())) | 
|  | Ops[x] = PromoteOp(Ops[x]); | 
|  | } | 
|  | Result = DAG.UpdateNodeOperands(Result, &Ops[0], 6); | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | //There is no libgcc call for this op | 
|  | Result = Node->getOperand(0);  // Noop | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::ATOMIC_CMP_SWAP: { | 
|  | unsigned int num_operands = 4; | 
|  | assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!"); | 
|  | SDValue Ops[4]; | 
|  | for (unsigned int x = 0; x < num_operands; ++x) | 
|  | Ops[x] = LegalizeOp(Node->getOperand(x)); | 
|  | Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands); | 
|  |  | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Custom: | 
|  | Result = TLI.LowerOperation(Result, DAG); | 
|  | break; | 
|  | case TargetLowering::Legal: | 
|  | break; | 
|  | } | 
|  | AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); | 
|  | AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); | 
|  | return Result.getValue(Op.getResNo()); | 
|  | } | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | case ISD::ATOMIC_SWAP: { | 
|  | unsigned int num_operands = 3; | 
|  | assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!"); | 
|  | SDValue Ops[3]; | 
|  | for (unsigned int x = 0; x < num_operands; ++x) | 
|  | Ops[x] = LegalizeOp(Node->getOperand(x)); | 
|  | Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands); | 
|  |  | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Custom: | 
|  | Result = TLI.LowerOperation(Result, DAG); | 
|  | break; | 
|  | case TargetLowering::Legal: | 
|  | break; | 
|  | } | 
|  | AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); | 
|  | AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); | 
|  | return Result.getValue(Op.getResNo()); | 
|  | } | 
|  | case ISD::Constant: { | 
|  | ConstantSDNode *CN = cast<ConstantSDNode>(Node); | 
|  | unsigned opAction = | 
|  | TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); | 
|  |  | 
|  | // We know we don't need to expand constants here, constants only have one | 
|  | // value and we check that it is fine above. | 
|  |  | 
|  | if (opAction == TargetLowering::Custom) { | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) | 
|  | Result = Tmp1; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::ConstantFP: { | 
|  | // Spill FP immediates to the constant pool if the target cannot directly | 
|  | // codegen them.  Targets often have some immediate values that can be | 
|  | // efficiently generated into an FP register without a load.  We explicitly | 
|  | // leave these constants as ConstantFP nodes for the target to deal with. | 
|  | ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp3 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp3.getNode()) { | 
|  | Result = Tmp3; | 
|  | break; | 
|  | } | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Expand: { | 
|  | // Check to see if this FP immediate is already legal. | 
|  | bool isLegal = false; | 
|  | for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), | 
|  | E = TLI.legal_fpimm_end(); I != E; ++I) { | 
|  | if (CFP->isExactlyValue(*I)) { | 
|  | isLegal = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If this is a legal constant, turn it into a TargetConstantFP node. | 
|  | if (isLegal) | 
|  | break; | 
|  | Result = ExpandConstantFP(CFP, true, DAG, TLI); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::TokenFactor: | 
|  | if (Node->getNumOperands() == 2) { | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); | 
|  | } else if (Node->getNumOperands() == 3) { | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1)); | 
|  | Tmp3 = LegalizeOp(Node->getOperand(2)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); | 
|  | } else { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | // Legalize the operands. | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) | 
|  | Ops.push_back(LegalizeOp(Node->getOperand(i))); | 
|  | Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::FORMAL_ARGUMENTS: | 
|  | case ISD::CALL: | 
|  | // The only option for this is to custom lower it. | 
|  | Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); | 
|  | assert(Tmp3.getNode() && "Target didn't custom lower this node!"); | 
|  | // A call within a calling sequence must be legalized to something | 
|  | // other than the normal CALLSEQ_END.  Violating this gets Legalize | 
|  | // into an infinite loop. | 
|  | assert ((!IsLegalizingCall || | 
|  | Node->getOpcode() != ISD::CALL || | 
|  | Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) && | 
|  | "Nested CALLSEQ_START..CALLSEQ_END not supported."); | 
|  |  | 
|  | // The number of incoming and outgoing values should match; unless the final | 
|  | // outgoing value is a flag. | 
|  | assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() || | 
|  | (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 && | 
|  | Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) == | 
|  | MVT::Flag)) && | 
|  | "Lowering call/formal_arguments produced unexpected # results!"); | 
|  |  | 
|  | // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to | 
|  | // remember that we legalized all of them, so it doesn't get relegalized. | 
|  | for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) { | 
|  | if (Tmp3.getNode()->getValueType(i) == MVT::Flag) | 
|  | continue; | 
|  | Tmp1 = LegalizeOp(Tmp3.getValue(i)); | 
|  | if (Op.getResNo() == i) | 
|  | Tmp2 = Tmp1; | 
|  | AddLegalizedOperand(SDValue(Node, i), Tmp1); | 
|  | } | 
|  | return Tmp2; | 
|  | case ISD::BUILD_VECTOR: | 
|  | switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Custom: | 
|  | Tmp3 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp3.getNode()) { | 
|  | Result = Tmp3; | 
|  | break; | 
|  | } | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Expand: | 
|  | Result = ExpandBUILD_VECTOR(Result.getNode()); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // InVec | 
|  | Tmp3 = LegalizeOp(Node->getOperand(2));  // InEltNo | 
|  |  | 
|  | // The type of the value to insert may not be legal, even though the vector | 
|  | // type is legal.  Legalize/Promote accordingly.  We do not handle Expand | 
|  | // here. | 
|  | switch (getTypeAction(Node->getOperand(1).getValueType())) { | 
|  | default: assert(0 && "Cannot expand insert element operand"); | 
|  | case Legal:   Tmp2 = LegalizeOp(Node->getOperand(1)); break; | 
|  | case Promote: Tmp2 = PromoteOp(Node->getOperand(1));  break; | 
|  | case Expand: | 
|  | // FIXME: An alternative would be to check to see if the target is not | 
|  | // going to custom lower this operation, we could bitcast to half elt | 
|  | // width and perform two inserts at that width, if that is legal. | 
|  | Tmp2 = Node->getOperand(1); | 
|  | break; | 
|  | } | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, | 
|  | Node->getValueType(0))) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp4 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp4.getNode()) { | 
|  | Result = Tmp4; | 
|  | break; | 
|  | } | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Promote: | 
|  | // Fall thru for vector case | 
|  | case TargetLowering::Expand: { | 
|  | // If the insert index is a constant, codegen this as a scalar_to_vector, | 
|  | // then a shuffle that inserts it into the right position in the vector. | 
|  | if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { | 
|  | // SCALAR_TO_VECTOR requires that the type of the value being inserted | 
|  | // match the element type of the vector being created, except for | 
|  | // integers in which case the inserted value can be over width. | 
|  | MVT EltVT = Op.getValueType().getVectorElementType(); | 
|  | if (Tmp2.getValueType() == EltVT || | 
|  | (EltVT.isInteger() && Tmp2.getValueType().bitsGE(EltVT))) { | 
|  | SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | Tmp1.getValueType(), Tmp2); | 
|  |  | 
|  | unsigned NumElts = Tmp1.getValueType().getVectorNumElements(); | 
|  | // We generate a shuffle of InVec and ScVec, so the shuffle mask | 
|  | // should be 0,1,2,3,4,5... with the appropriate element replaced with | 
|  | // elt 0 of the RHS. | 
|  | SmallVector<int, 8> ShufOps; | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); | 
|  |  | 
|  | Result = DAG.getVectorShuffle(Tmp1.getValueType(), dl, Tmp1, ScVec, | 
|  | &ShufOps[0]); | 
|  | Result = LegalizeOp(Result); | 
|  | break; | 
|  | } | 
|  | } | 
|  | Result = PerformInsertVectorEltInMemory(Tmp1, Tmp2, Tmp3, dl); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::SCALAR_TO_VECTOR: | 
|  | if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { | 
|  | Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // InVal | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, | 
|  | Node->getValueType(0))) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp3 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp3.getNode()) { | 
|  | Result = Tmp3; | 
|  | break; | 
|  | } | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Expand: | 
|  | Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ISD::VECTOR_SHUFFLE: { | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));   // Legalize the input vectors, | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));   // but not the shuffle mask. | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); | 
|  | MVT VT = Result.getValueType(); | 
|  |  | 
|  | // Copy the Mask to a local SmallVector for use with isShuffleMaskLegal. | 
|  | SmallVector<int, 8> Mask; | 
|  | cast<ShuffleVectorSDNode>(Result)->getMask(Mask); | 
|  |  | 
|  | // Allow targets to custom lower the SHUFFLEs they support. | 
|  | switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { | 
|  | default: assert(0 && "Unknown operation action!"); | 
|  | case TargetLowering::Legal: | 
|  | assert(TLI.isShuffleMaskLegal(Mask, VT) && | 
|  | "vector shuffle should not be created if not legal!"); | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp3 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp3.getNode()) { | 
|  | Result = Tmp3; | 
|  | break; | 
|  | } | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Expand: { | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | if (Mask[i] < 0) { | 
|  | Ops.push_back(DAG.getUNDEF(EltVT)); | 
|  | continue; | 
|  | } | 
|  | unsigned Idx = Mask[i]; | 
|  | if (Idx < NumElems) | 
|  | Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Tmp1, | 
|  | DAG.getIntPtrConstant(Idx))); | 
|  | else | 
|  | Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Tmp2, | 
|  | DAG.getIntPtrConstant(Idx - NumElems))); | 
|  | } | 
|  | Result = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Promote: { | 
|  | // Change base type to a different vector type. | 
|  | MVT OVT = Node->getValueType(0); | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); | 
|  |  | 
|  | // Cast the two input vectors. | 
|  | Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp1); | 
|  | Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp2); | 
|  |  | 
|  | // Convert the shuffle mask to the right # elements. | 
|  | Result = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); | 
|  | Result = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Result); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | Tmp1 = Node->getOperand(0); | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); | 
|  | Result = ExpandEXTRACT_VECTOR_ELT(Result); | 
|  | break; | 
|  |  | 
|  | case ISD::EXTRACT_SUBVECTOR: | 
|  | Tmp1 = Node->getOperand(0); | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); | 
|  | Result = ExpandEXTRACT_SUBVECTOR(Result); | 
|  | break; | 
|  |  | 
|  | case ISD::CONCAT_VECTORS: { | 
|  | // Legalize the operands. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) | 
|  | Ops.push_back(LegalizeOp(Node->getOperand(i))); | 
|  | Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::CONCAT_VECTORS, | 
|  | Node->getValueType(0))) { | 
|  | default: assert(0 && "Unknown operation action!"); | 
|  | case TargetLowering::Legal: | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp3 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp3.getNode()) { | 
|  | Result = Tmp3; | 
|  | break; | 
|  | } | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Expand: { | 
|  | // Use extract/insert/build vector for now. We might try to be | 
|  | // more clever later. | 
|  | MVT PtrVT = TLI.getPointerTy(); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | unsigned NumOperands = Node->getNumOperands(); | 
|  | for (unsigned i=0; i < NumOperands; ++i) { | 
|  | SDValue SubOp = Node->getOperand(i); | 
|  | MVT VVT = SubOp.getNode()->getValueType(0); | 
|  | MVT EltVT = VVT.getVectorElementType(); | 
|  | unsigned NumSubElem = VVT.getVectorNumElements(); | 
|  | for (unsigned j=0; j < NumSubElem; ++j) { | 
|  | Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp, | 
|  | DAG.getConstant(j, PtrVT))); | 
|  | } | 
|  | } | 
|  | return LegalizeOp(DAG.getNode(ISD::BUILD_VECTOR, dl, | 
|  | Node->getValueType(0), | 
|  | &Ops[0], Ops.size())); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::CALLSEQ_START: { | 
|  | SDNode *CallEnd = FindCallEndFromCallStart(Node); | 
|  |  | 
|  | // Recursively Legalize all of the inputs of the call end that do not lead | 
|  | // to this call start.  This ensures that any libcalls that need be inserted | 
|  | // are inserted *before* the CALLSEQ_START. | 
|  | IsLegalizingCallArgs = true; | 
|  | {SmallPtrSet<SDNode*, 32> NodesLeadingTo; | 
|  | for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) | 
|  | LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node, | 
|  | NodesLeadingTo); | 
|  | } | 
|  | IsLegalizingCallArgs = false; | 
|  |  | 
|  | // Now that we legalized all of the inputs (which may have inserted | 
|  | // libcalls) create the new CALLSEQ_START node. | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  |  | 
|  | // Merge in the last call, to ensure that this call start after the last | 
|  | // call ended. | 
|  | if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { | 
|  | Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | Tmp1, LastCALLSEQ_END); | 
|  | Tmp1 = LegalizeOp(Tmp1); | 
|  | } | 
|  |  | 
|  | // Do not try to legalize the target-specific arguments (#1+). | 
|  | if (Tmp1 != Node->getOperand(0)) { | 
|  | SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); | 
|  | Ops[0] = Tmp1; | 
|  | Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | // Remember that the CALLSEQ_START is legalized. | 
|  | AddLegalizedOperand(Op.getValue(0), Result); | 
|  | if (Node->getNumValues() == 2)    // If this has a flag result, remember it. | 
|  | AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); | 
|  |  | 
|  | // Now that the callseq_start and all of the non-call nodes above this call | 
|  | // sequence have been legalized, legalize the call itself.  During this | 
|  | // process, no libcalls can/will be inserted, guaranteeing that no calls | 
|  | // can overlap. | 
|  | assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); | 
|  | // Note that we are selecting this call! | 
|  | LastCALLSEQ_END = SDValue(CallEnd, 0); | 
|  | IsLegalizingCall = true; | 
|  |  | 
|  | // Legalize the call, starting from the CALLSEQ_END. | 
|  | LegalizeOp(LastCALLSEQ_END); | 
|  | assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); | 
|  | return Result; | 
|  | } | 
|  | case ISD::CALLSEQ_END: | 
|  | // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This | 
|  | // will cause this node to be legalized as well as handling libcalls right. | 
|  | if (LastCALLSEQ_END.getNode() != Node) { | 
|  | LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0)); | 
|  | DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); | 
|  | assert(I != LegalizedNodes.end() && | 
|  | "Legalizing the call start should have legalized this node!"); | 
|  | return I->second; | 
|  | } | 
|  |  | 
|  | // Otherwise, the call start has been legalized and everything is going | 
|  | // according to plan.  Just legalize ourselves normally here. | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | // Do not try to legalize the target-specific arguments (#1+), except for | 
|  | // an optional flag input. | 
|  | if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ | 
|  | if (Tmp1 != Node->getOperand(0)) { | 
|  | SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); | 
|  | Ops[0] = Tmp1; | 
|  | Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); | 
|  | } | 
|  | } else { | 
|  | Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); | 
|  | if (Tmp1 != Node->getOperand(0) || | 
|  | Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { | 
|  | SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); | 
|  | Ops[0] = Tmp1; | 
|  | Ops.back() = Tmp2; | 
|  | Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); | 
|  | } | 
|  | } | 
|  | assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); | 
|  | // This finishes up call legalization. | 
|  | IsLegalizingCall = false; | 
|  |  | 
|  | // If the CALLSEQ_END node has a flag, remember that we legalized it. | 
|  | AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); | 
|  | if (Node->getNumValues() == 2) | 
|  | AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); | 
|  | return Result.getValue(Op.getResNo()); | 
|  | case ISD::DYNAMIC_STACKALLOC: { | 
|  | MVT VT = Node->getValueType(0); | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the size. | 
|  | Tmp3 = LegalizeOp(Node->getOperand(2));  // Legalize the alignment. | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); | 
|  |  | 
|  | Tmp1 = Result.getValue(0); | 
|  | Tmp2 = Result.getValue(1); | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), VT)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Expand: { | 
|  | unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); | 
|  | assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" | 
|  | " not tell us which reg is the stack pointer!"); | 
|  | SDValue Chain = Tmp1.getOperand(0); | 
|  |  | 
|  | // Chain the dynamic stack allocation so that it doesn't modify the stack | 
|  | // pointer when other instructions are using the stack. | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); | 
|  |  | 
|  | SDValue Size  = Tmp2.getOperand(1); | 
|  | SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); | 
|  | Chain = SP.getValue(1); | 
|  | unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); | 
|  | unsigned StackAlign = | 
|  | TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); | 
|  | if (Align > StackAlign) | 
|  | SP = DAG.getNode(ISD::AND, dl, VT, SP, | 
|  | DAG.getConstant(-(uint64_t)Align, VT)); | 
|  | Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value | 
|  | Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain | 
|  |  | 
|  | Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true), | 
|  | DAG.getIntPtrConstant(0, true), SDValue()); | 
|  |  | 
|  | Tmp1 = LegalizeOp(Tmp1); | 
|  | Tmp2 = LegalizeOp(Tmp2); | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Custom: | 
|  | Tmp3 = TLI.LowerOperation(Tmp1, DAG); | 
|  | if (Tmp3.getNode()) { | 
|  | Tmp1 = LegalizeOp(Tmp3); | 
|  | Tmp2 = LegalizeOp(Tmp3.getValue(1)); | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Legal: | 
|  | break; | 
|  | } | 
|  | // Since this op produce two values, make sure to remember that we | 
|  | // legalized both of them. | 
|  | AddLegalizedOperand(SDValue(Node, 0), Tmp1); | 
|  | AddLegalizedOperand(SDValue(Node, 1), Tmp2); | 
|  | return Op.getResNo() ? Tmp2 : Tmp1; | 
|  | } | 
|  | case ISD::INLINEASM: { | 
|  | SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); | 
|  | bool Changed = false; | 
|  | // Legalize all of the operands of the inline asm, in case they are nodes | 
|  | // that need to be expanded or something.  Note we skip the asm string and | 
|  | // all of the TargetConstant flags. | 
|  | SDValue Op = LegalizeOp(Ops[0]); | 
|  | Changed = Op != Ops[0]; | 
|  | Ops[0] = Op; | 
|  |  | 
|  | bool HasInFlag = Ops.back().getValueType() == MVT::Flag; | 
|  | for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { | 
|  | unsigned NumVals = InlineAsm:: | 
|  | getNumOperandRegisters(cast<ConstantSDNode>(Ops[i])->getZExtValue()); | 
|  | for (++i; NumVals; ++i, --NumVals) { | 
|  | SDValue Op = LegalizeOp(Ops[i]); | 
|  | if (Op != Ops[i]) { | 
|  | Changed = true; | 
|  | Ops[i] = Op; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HasInFlag) { | 
|  | Op = LegalizeOp(Ops.back()); | 
|  | Changed |= Op != Ops.back(); | 
|  | Ops.back() = Op; | 
|  | } | 
|  |  | 
|  | if (Changed) | 
|  | Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); | 
|  |  | 
|  | // INLINE asm returns a chain and flag, make sure to add both to the map. | 
|  | AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); | 
|  | AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); | 
|  | return Result.getValue(Op.getResNo()); | 
|  | } | 
|  | case ISD::BR: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | // Ensure that libcalls are emitted before a branch. | 
|  | Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); | 
|  | Tmp1 = LegalizeOp(Tmp1); | 
|  | LastCALLSEQ_END = DAG.getEntryNode(); | 
|  |  | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); | 
|  | break; | 
|  | case ISD::BRIND: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | // Ensure that libcalls are emitted before a branch. | 
|  | Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); | 
|  | Tmp1 = LegalizeOp(Tmp1); | 
|  | LastCALLSEQ_END = DAG.getEntryNode(); | 
|  |  | 
|  | switch (getTypeAction(Node->getOperand(1).getValueType())) { | 
|  | default: assert(0 && "Indirect target must be legal type (pointer)!"); | 
|  | case Legal: | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. | 
|  | break; | 
|  | } | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); | 
|  | break; | 
|  | case ISD::BR_JT: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | // Ensure that libcalls are emitted before a branch. | 
|  | Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); | 
|  | Tmp1 = LegalizeOp(Tmp1); | 
|  | LastCALLSEQ_END = DAG.getEntryNode(); | 
|  |  | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the jumptable node. | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | break; | 
|  | case TargetLowering::Expand: { | 
|  | SDValue Chain = Result.getOperand(0); | 
|  | SDValue Table = Result.getOperand(1); | 
|  | SDValue Index = Result.getOperand(2); | 
|  |  | 
|  | MVT PTy = TLI.getPointerTy(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); | 
|  | Index= DAG.getNode(ISD::MUL, dl, PTy, | 
|  | Index, DAG.getConstant(EntrySize, PTy)); | 
|  | SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); | 
|  |  | 
|  | MVT MemVT = MVT::getIntegerVT(EntrySize * 8); | 
|  | SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, | 
|  | PseudoSourceValue::getJumpTable(), 0, MemVT); | 
|  | Addr = LD; | 
|  | if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { | 
|  | // For PIC, the sequence is: | 
|  | // BRIND(load(Jumptable + index) + RelocBase) | 
|  | // RelocBase can be JumpTable, GOT or some sort of global base. | 
|  | Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, | 
|  | TLI.getPICJumpTableRelocBase(Table, DAG)); | 
|  | } | 
|  | Result = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::BRCOND: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | // Ensure that libcalls are emitted before a return. | 
|  | Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); | 
|  | Tmp1 = LegalizeOp(Tmp1); | 
|  | LastCALLSEQ_END = DAG.getEntryNode(); | 
|  |  | 
|  | switch (getTypeAction(Node->getOperand(1).getValueType())) { | 
|  | case Expand: assert(0 && "It's impossible to expand bools"); | 
|  | case Legal: | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. | 
|  | break; | 
|  | case Promote: { | 
|  | Tmp2 = PromoteOp(Node->getOperand(1));  // Promote the condition. | 
|  |  | 
|  | // The top bits of the promoted condition are not necessarily zero, ensure | 
|  | // that the value is properly zero extended. | 
|  | unsigned BitWidth = Tmp2.getValueSizeInBits(); | 
|  | if (!DAG.MaskedValueIsZero(Tmp2, | 
|  | APInt::getHighBitsSet(BitWidth, BitWidth-1))) | 
|  | Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, MVT::i1); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Basic block destination (Op#2) is always legal. | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | // Expand brcond's setcc into its constituent parts and create a BR_CC | 
|  | // Node. | 
|  | if (Tmp2.getOpcode() == ISD::SETCC) { | 
|  | Result = DAG.getNode(ISD::BR_CC, dl, MVT::Other, | 
|  | Tmp1, Tmp2.getOperand(2), | 
|  | Tmp2.getOperand(0), Tmp2.getOperand(1), | 
|  | Node->getOperand(2)); | 
|  | } else { | 
|  | Result = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, | 
|  | DAG.getCondCode(ISD::SETNE), Tmp2, | 
|  | DAG.getConstant(0, Tmp2.getValueType()), | 
|  | Node->getOperand(2)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ISD::BR_CC: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | // Ensure that libcalls are emitted before a branch. | 
|  | Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); | 
|  | Tmp1 = LegalizeOp(Tmp1); | 
|  | Tmp2 = Node->getOperand(2);              // LHS | 
|  | Tmp3 = Node->getOperand(3);              // RHS | 
|  | Tmp4 = Node->getOperand(1);              // CC | 
|  |  | 
|  | LegalizeSetCC(TLI.getSetCCResultType(Tmp2.getValueType()), | 
|  | Tmp2, Tmp3, Tmp4, dl); | 
|  | LastCALLSEQ_END = DAG.getEntryNode(); | 
|  |  | 
|  | // If we didn't get both a LHS and RHS back from LegalizeSetCC, | 
|  | // the LHS is a legal SETCC itself.  In this case, we need to compare | 
|  | // the result against zero to select between true and false values. | 
|  | if (Tmp3.getNode() == 0) { | 
|  | Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); | 
|  | Tmp4 = DAG.getCondCode(ISD::SETNE); | 
|  | } | 
|  |  | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, | 
|  | Node->getOperand(4)); | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { | 
|  | default: assert(0 && "Unexpected action for BR_CC!"); | 
|  | case TargetLowering::Legal: break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp4 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp4.getNode()) Result = Tmp4; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ISD::LOAD: { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Node); | 
|  | Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain. | 
|  | Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. | 
|  |  | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  | if (ExtType == ISD::NON_EXTLOAD) { | 
|  | MVT VT = Node->getValueType(0); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); | 
|  | Tmp3 = Result.getValue(0); | 
|  | Tmp4 = Result.getValue(1); | 
|  |  | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), VT)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | // If this is an unaligned load and the target doesn't support it, | 
|  | // expand it. | 
|  | if (!TLI.allowsUnalignedMemoryAccesses()) { | 
|  | unsigned ABIAlignment = TLI.getTargetData()-> | 
|  | getABITypeAlignment(LD->getMemoryVT().getTypeForMVT()); | 
|  | if (LD->getAlignment() < ABIAlignment){ | 
|  | Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG, | 
|  | TLI); | 
|  | Tmp3 = Result.getOperand(0); | 
|  | Tmp4 = Result.getOperand(1); | 
|  | Tmp3 = LegalizeOp(Tmp3); | 
|  | Tmp4 = LegalizeOp(Tmp4); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Tmp3, DAG); | 
|  | if (Tmp1.getNode()) { | 
|  | Tmp3 = LegalizeOp(Tmp1); | 
|  | Tmp4 = LegalizeOp(Tmp1.getValue(1)); | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Promote: { | 
|  | // Only promote a load of vector type to another. | 
|  | assert(VT.isVector() && "Cannot promote this load!"); | 
|  | // Change base type to a different vector type. | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); | 
|  |  | 
|  | Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(), | 
|  | LD->getSrcValueOffset(), | 
|  | LD->isVolatile(), LD->getAlignment()); | 
|  | Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1)); | 
|  | Tmp4 = LegalizeOp(Tmp1.getValue(1)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Since loads produce two values, make sure to remember that we | 
|  | // legalized both of them. | 
|  | AddLegalizedOperand(SDValue(Node, 0), Tmp3); | 
|  | AddLegalizedOperand(SDValue(Node, 1), Tmp4); | 
|  | return Op.getResNo() ? Tmp4 : Tmp3; | 
|  | } else { | 
|  | MVT SrcVT = LD->getMemoryVT(); | 
|  | unsigned SrcWidth = SrcVT.getSizeInBits(); | 
|  | int SVOffset = LD->getSrcValueOffset(); | 
|  | unsigned Alignment = LD->getAlignment(); | 
|  | bool isVolatile = LD->isVolatile(); | 
|  |  | 
|  | if (SrcWidth != SrcVT.getStoreSizeInBits() && | 
|  | // Some targets pretend to have an i1 loading operation, and actually | 
|  | // load an i8.  This trick is correct for ZEXTLOAD because the top 7 | 
|  | // bits are guaranteed to be zero; it helps the optimizers understand | 
|  | // that these bits are zero.  It is also useful for EXTLOAD, since it | 
|  | // tells the optimizers that those bits are undefined.  It would be | 
|  | // nice to have an effective generic way of getting these benefits... | 
|  | // Until such a way is found, don't insist on promoting i1 here. | 
|  | (SrcVT != MVT::i1 || | 
|  | TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { | 
|  | // Promote to a byte-sized load if not loading an integral number of | 
|  | // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24. | 
|  | unsigned NewWidth = SrcVT.getStoreSizeInBits(); | 
|  | MVT NVT = MVT::getIntegerVT(NewWidth); | 
|  | SDValue Ch; | 
|  |  | 
|  | // The extra bits are guaranteed to be zero, since we stored them that | 
|  | // way.  A zext load from NVT thus automatically gives zext from SrcVT. | 
|  |  | 
|  | ISD::LoadExtType NewExtType = | 
|  | ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; | 
|  |  | 
|  | Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), | 
|  | Tmp1, Tmp2, LD->getSrcValue(), SVOffset, | 
|  | NVT, isVolatile, Alignment); | 
|  |  | 
|  | Ch = Result.getValue(1); // The chain. | 
|  |  | 
|  | if (ExtType == ISD::SEXTLOAD) | 
|  | // Having the top bits zero doesn't help when sign extending. | 
|  | Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, | 
|  | Result.getValueType(), | 
|  | Result, DAG.getValueType(SrcVT)); | 
|  | else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) | 
|  | // All the top bits are guaranteed to be zero - inform the optimizers. | 
|  | Result = DAG.getNode(ISD::AssertZext, dl, | 
|  | Result.getValueType(), Result, | 
|  | DAG.getValueType(SrcVT)); | 
|  |  | 
|  | Tmp1 = LegalizeOp(Result); | 
|  | Tmp2 = LegalizeOp(Ch); | 
|  | } else if (SrcWidth & (SrcWidth - 1)) { | 
|  | // If not loading a power-of-2 number of bits, expand as two loads. | 
|  | assert(SrcVT.isExtended() && !SrcVT.isVector() && | 
|  | "Unsupported extload!"); | 
|  | unsigned RoundWidth = 1 << Log2_32(SrcWidth); | 
|  | assert(RoundWidth < SrcWidth); | 
|  | unsigned ExtraWidth = SrcWidth - RoundWidth; | 
|  | assert(ExtraWidth < RoundWidth); | 
|  | assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && | 
|  | "Load size not an integral number of bytes!"); | 
|  | MVT RoundVT = MVT::getIntegerVT(RoundWidth); | 
|  | MVT ExtraVT = MVT::getIntegerVT(ExtraWidth); | 
|  | SDValue Lo, Hi, Ch; | 
|  | unsigned IncrementSize; | 
|  |  | 
|  | if (TLI.isLittleEndian()) { | 
|  | // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) | 
|  | // Load the bottom RoundWidth bits. | 
|  | Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, | 
|  | Node->getValueType(0), Tmp1, Tmp2, | 
|  | LD->getSrcValue(), SVOffset, RoundVT, isVolatile, | 
|  | Alignment); | 
|  |  | 
|  | // Load the remaining ExtraWidth bits. | 
|  | IncrementSize = RoundWidth / 8; | 
|  | Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, | 
|  | DAG.getIntPtrConstant(IncrementSize)); | 
|  | Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, | 
|  | LD->getSrcValue(), SVOffset + IncrementSize, | 
|  | ExtraVT, isVolatile, | 
|  | MinAlign(Alignment, IncrementSize)); | 
|  |  | 
|  | // Build a factor node to remember that this load is independent of the | 
|  | // other one. | 
|  | Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | // Move the top bits to the right place. | 
|  | Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, | 
|  | DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); | 
|  |  | 
|  | // Join the hi and lo parts. | 
|  | Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); | 
|  | } else { | 
|  | // Big endian - avoid unaligned loads. | 
|  | // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 | 
|  | // Load the top RoundWidth bits. | 
|  | Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, | 
|  | LD->getSrcValue(), SVOffset, RoundVT, isVolatile, | 
|  | Alignment); | 
|  |  | 
|  | // Load the remaining ExtraWidth bits. | 
|  | IncrementSize = RoundWidth / 8; | 
|  | Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, | 
|  | DAG.getIntPtrConstant(IncrementSize)); | 
|  | Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, | 
|  | Node->getValueType(0), Tmp1, Tmp2, | 
|  | LD->getSrcValue(), SVOffset + IncrementSize, | 
|  | ExtraVT, isVolatile, | 
|  | MinAlign(Alignment, IncrementSize)); | 
|  |  | 
|  | // Build a factor node to remember that this load is independent of the | 
|  | // other one. | 
|  | Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | // Move the top bits to the right place. | 
|  | Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, | 
|  | DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); | 
|  |  | 
|  | // Join the hi and lo parts. | 
|  | Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); | 
|  | } | 
|  |  | 
|  | Tmp1 = LegalizeOp(Result); | 
|  | Tmp2 = LegalizeOp(Ch); | 
|  | } else { | 
|  | switch (TLI.getLoadExtAction(ExtType, SrcVT)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Custom: | 
|  | isCustom = true; | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Legal: | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); | 
|  | Tmp1 = Result.getValue(0); | 
|  | Tmp2 = Result.getValue(1); | 
|  |  | 
|  | if (isCustom) { | 
|  | Tmp3 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp3.getNode()) { | 
|  | Tmp1 = LegalizeOp(Tmp3); | 
|  | Tmp2 = LegalizeOp(Tmp3.getValue(1)); | 
|  | } | 
|  | } else { | 
|  | // If this is an unaligned load and the target doesn't support it, | 
|  | // expand it. | 
|  | if (!TLI.allowsUnalignedMemoryAccesses()) { | 
|  | unsigned ABIAlignment = TLI.getTargetData()-> | 
|  | getABITypeAlignment(LD->getMemoryVT().getTypeForMVT()); | 
|  | if (LD->getAlignment() < ABIAlignment){ | 
|  | Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG, | 
|  | TLI); | 
|  | Tmp1 = Result.getOperand(0); | 
|  | Tmp2 = Result.getOperand(1); | 
|  | Tmp1 = LegalizeOp(Tmp1); | 
|  | Tmp2 = LegalizeOp(Tmp2); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND | 
|  | if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { | 
|  | SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(), | 
|  | LD->getSrcValueOffset(), | 
|  | LD->isVolatile(), LD->getAlignment()); | 
|  | Result = DAG.getNode(ISD::FP_EXTEND, dl, | 
|  | Node->getValueType(0), Load); | 
|  | Tmp1 = LegalizeOp(Result);  // Relegalize new nodes. | 
|  | Tmp2 = LegalizeOp(Load.getValue(1)); | 
|  | break; | 
|  | } | 
|  | assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); | 
|  | // Turn the unsupported load into an EXTLOAD followed by an explicit | 
|  | // zero/sign extend inreg. | 
|  | Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), | 
|  | Tmp1, Tmp2, LD->getSrcValue(), | 
|  | LD->getSrcValueOffset(), SrcVT, | 
|  | LD->isVolatile(), LD->getAlignment()); | 
|  | SDValue ValRes; | 
|  | if (ExtType == ISD::SEXTLOAD) | 
|  | ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, | 
|  | Result.getValueType(), | 
|  | Result, DAG.getValueType(SrcVT)); | 
|  | else | 
|  | ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); | 
|  | Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes. | 
|  | Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since loads produce two values, make sure to remember that we legalized | 
|  | // both of them. | 
|  | AddLegalizedOperand(SDValue(Node, 0), Tmp1); | 
|  | AddLegalizedOperand(SDValue(Node, 1), Tmp2); | 
|  | return Op.getResNo() ? Tmp2 : Tmp1; | 
|  | } | 
|  | } | 
|  | case ISD::EXTRACT_ELEMENT: { | 
|  | MVT OpTy = Node->getOperand(0).getValueType(); | 
|  | switch (getTypeAction(OpTy)) { | 
|  | default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); | 
|  | case Legal: | 
|  | if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { | 
|  | // 1 -> Hi | 
|  | Result = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), | 
|  | DAG.getConstant(OpTy.getSizeInBits()/2, | 
|  | TLI.getShiftAmountTy())); | 
|  | Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); | 
|  | } else { | 
|  | // 0 -> Lo | 
|  | Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), | 
|  | Node->getOperand(0)); | 
|  | } | 
|  | break; | 
|  | case Expand: | 
|  | // Get both the low and high parts. | 
|  | ExpandOp(Node->getOperand(0), Tmp1, Tmp2); | 
|  | if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) | 
|  | Result = Tmp2;  // 1 -> Hi | 
|  | else | 
|  | Result = Tmp1;  // 0 -> Lo | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::CopyToReg: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  |  | 
|  | assert(isTypeLegal(Node->getOperand(2).getValueType()) && | 
|  | "Register type must be legal!"); | 
|  | // Legalize the incoming value (must be a legal type). | 
|  | Tmp2 = LegalizeOp(Node->getOperand(2)); | 
|  | if (Node->getNumValues() == 1) { | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); | 
|  | } else { | 
|  | assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); | 
|  | if (Node->getNumOperands() == 4) { | 
|  | Tmp3 = LegalizeOp(Node->getOperand(3)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, | 
|  | Tmp3); | 
|  | } else { | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); | 
|  | } | 
|  |  | 
|  | // Since this produces two values, make sure to remember that we legalized | 
|  | // both of them. | 
|  | AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); | 
|  | AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); | 
|  | return Result; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::RET: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  |  | 
|  | // Ensure that libcalls are emitted before a return. | 
|  | Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); | 
|  | Tmp1 = LegalizeOp(Tmp1); | 
|  | LastCALLSEQ_END = DAG.getEntryNode(); | 
|  |  | 
|  | switch (Node->getNumOperands()) { | 
|  | case 3:  // ret val | 
|  | Tmp2 = Node->getOperand(1); | 
|  | Tmp3 = Node->getOperand(2);  // Signness | 
|  | switch (getTypeAction(Tmp2.getValueType())) { | 
|  | case Legal: | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); | 
|  | break; | 
|  | case Expand: | 
|  | if (!Tmp2.getValueType().isVector()) { | 
|  | SDValue Lo, Hi; | 
|  | ExpandOp(Tmp2, Lo, Hi); | 
|  |  | 
|  | // Big endian systems want the hi reg first. | 
|  | if (TLI.isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  |  | 
|  | if (Hi.getNode()) | 
|  | Result = DAG.getNode(ISD::RET, dl, MVT::Other, | 
|  | Tmp1, Lo, Tmp3, Hi, Tmp3); | 
|  | else | 
|  | Result = DAG.getNode(ISD::RET, dl, MVT::Other, Tmp1, Lo, Tmp3); | 
|  | Result = LegalizeOp(Result); | 
|  | } else { | 
|  | SDNode *InVal = Tmp2.getNode(); | 
|  | int InIx = Tmp2.getResNo(); | 
|  | unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements(); | 
|  | MVT EVT = InVal->getValueType(InIx).getVectorElementType(); | 
|  |  | 
|  | // Figure out if there is a simple type corresponding to this Vector | 
|  | // type.  If so, convert to the vector type. | 
|  | MVT TVT = MVT::getVectorVT(EVT, NumElems); | 
|  | if (TLI.isTypeLegal(TVT)) { | 
|  | // Turn this into a return of the vector type. | 
|  | Tmp2 = LegalizeOp(Tmp2); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); | 
|  | } else if (NumElems == 1) { | 
|  | // Turn this into a return of the scalar type. | 
|  | Tmp2 = ScalarizeVectorOp(Tmp2); | 
|  | Tmp2 = LegalizeOp(Tmp2); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); | 
|  |  | 
|  | // FIXME: Returns of gcc generic vectors smaller than a legal type | 
|  | // should be returned in integer registers! | 
|  |  | 
|  | // The scalarized value type may not be legal, e.g. it might require | 
|  | // promotion or expansion.  Relegalize the return. | 
|  | Result = LegalizeOp(Result); | 
|  | } else { | 
|  | // FIXME: Returns of gcc generic vectors larger than a legal vector | 
|  | // type should be returned by reference! | 
|  | SDValue Lo, Hi; | 
|  | SplitVectorOp(Tmp2, Lo, Hi); | 
|  | Result = DAG.getNode(ISD::RET, dl, MVT::Other, | 
|  | Tmp1, Lo, Tmp3, Hi, Tmp3); | 
|  | Result = LegalizeOp(Result); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Promote: | 
|  | Tmp2 = PromoteOp(Node->getOperand(1)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); | 
|  | Result = LegalizeOp(Result); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 1:  // ret void | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | break; | 
|  | default: { // ret <values> | 
|  | SmallVector<SDValue, 8> NewValues; | 
|  | NewValues.push_back(Tmp1); | 
|  | for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) | 
|  | switch (getTypeAction(Node->getOperand(i).getValueType())) { | 
|  | case Legal: | 
|  | NewValues.push_back(LegalizeOp(Node->getOperand(i))); | 
|  | NewValues.push_back(Node->getOperand(i+1)); | 
|  | break; | 
|  | case Expand: { | 
|  | SDValue Lo, Hi; | 
|  | assert(!Node->getOperand(i).getValueType().isExtended() && | 
|  | "FIXME: TODO: implement returning non-legal vector types!"); | 
|  | ExpandOp(Node->getOperand(i), Lo, Hi); | 
|  | NewValues.push_back(Lo); | 
|  | NewValues.push_back(Node->getOperand(i+1)); | 
|  | if (Hi.getNode()) { | 
|  | NewValues.push_back(Hi); | 
|  | NewValues.push_back(Node->getOperand(i+1)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Promote: | 
|  | assert(0 && "Can't promote multiple return value yet!"); | 
|  | } | 
|  |  | 
|  | if (NewValues.size() == Node->getNumOperands()) | 
|  | Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); | 
|  | else | 
|  | Result = DAG.getNode(ISD::RET, dl, MVT::Other, | 
|  | &NewValues[0], NewValues.size()); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Result.getOpcode() == ISD::RET) { | 
|  | switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::STORE: { | 
|  | StoreSDNode *ST = cast<StoreSDNode>(Node); | 
|  | Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain. | 
|  | Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer. | 
|  | int SVOffset = ST->getSrcValueOffset(); | 
|  | unsigned Alignment = ST->getAlignment(); | 
|  | bool isVolatile = ST->isVolatile(); | 
|  |  | 
|  | if (!ST->isTruncatingStore()) { | 
|  | // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' | 
|  | // FIXME: We shouldn't do this for TargetConstantFP's. | 
|  | // FIXME: move this to the DAG Combiner!  Note that we can't regress due | 
|  | // to phase ordering between legalized code and the dag combiner.  This | 
|  | // probably means that we need to integrate dag combiner and legalizer | 
|  | // together. | 
|  | // We generally can't do this one for long doubles. | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { | 
|  | if (CFP->getValueType(0) == MVT::f32 && | 
|  | getTypeAction(MVT::i32) == Legal) { | 
|  | Tmp3 = DAG.getConstant(CFP->getValueAPF(). | 
|  | bitcastToAPInt().zextOrTrunc(32), | 
|  | MVT::i32); | 
|  | Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), | 
|  | SVOffset, isVolatile, Alignment); | 
|  | break; | 
|  | } else if (CFP->getValueType(0) == MVT::f64) { | 
|  | // If this target supports 64-bit registers, do a single 64-bit store. | 
|  | if (getTypeAction(MVT::i64) == Legal) { | 
|  | Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). | 
|  | zextOrTrunc(64), MVT::i64); | 
|  | Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), | 
|  | SVOffset, isVolatile, Alignment); | 
|  | break; | 
|  | } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) { | 
|  | // Otherwise, if the target supports 32-bit registers, use 2 32-bit | 
|  | // stores.  If the target supports neither 32- nor 64-bits, this | 
|  | // xform is certainly not worth it. | 
|  | const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); | 
|  | SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32); | 
|  | SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); | 
|  | if (TLI.isBigEndian()) std::swap(Lo, Hi); | 
|  |  | 
|  | Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(), | 
|  | SVOffset, isVolatile, Alignment); | 
|  | Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, | 
|  | DAG.getIntPtrConstant(4)); | 
|  | Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, | 
|  | isVolatile, MinAlign(Alignment, 4U)); | 
|  |  | 
|  | Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (getTypeAction(ST->getMemoryVT())) { | 
|  | case Legal: { | 
|  | Tmp3 = LegalizeOp(ST->getValue()); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, | 
|  | ST->getOffset()); | 
|  |  | 
|  | MVT VT = Tmp3.getValueType(); | 
|  | switch (TLI.getOperationAction(ISD::STORE, VT)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | // If this is an unaligned store and the target doesn't support it, | 
|  | // expand it. | 
|  | if (!TLI.allowsUnalignedMemoryAccesses()) { | 
|  | unsigned ABIAlignment = TLI.getTargetData()-> | 
|  | getABITypeAlignment(ST->getMemoryVT().getTypeForMVT()); | 
|  | if (ST->getAlignment() < ABIAlignment) | 
|  | Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG, | 
|  | TLI); | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | break; | 
|  | case TargetLowering::Promote: | 
|  | assert(VT.isVector() && "Unknown legal promote case!"); | 
|  | Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl, | 
|  | TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); | 
|  | Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, | 
|  | ST->getSrcValue(), SVOffset, isVolatile, | 
|  | Alignment); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Promote: | 
|  | if (!ST->getMemoryVT().isVector()) { | 
|  | // Truncate the value and store the result. | 
|  | Tmp3 = PromoteOp(ST->getValue()); | 
|  | Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), | 
|  | SVOffset, ST->getMemoryVT(), | 
|  | isVolatile, Alignment); | 
|  | break; | 
|  | } | 
|  | // Fall thru to expand for vector | 
|  | case Expand: { | 
|  | unsigned IncrementSize = 0; | 
|  | SDValue Lo, Hi; | 
|  |  | 
|  | // If this is a vector type, then we have to calculate the increment as | 
|  | // the product of the element size in bytes, and the number of elements | 
|  | // in the high half of the vector. | 
|  | if (ST->getValue().getValueType().isVector()) { | 
|  | SDNode *InVal = ST->getValue().getNode(); | 
|  | int InIx = ST->getValue().getResNo(); | 
|  | MVT InVT = InVal->getValueType(InIx); | 
|  | unsigned NumElems = InVT.getVectorNumElements(); | 
|  | MVT EVT = InVT.getVectorElementType(); | 
|  |  | 
|  | // Figure out if there is a simple type corresponding to this Vector | 
|  | // type.  If so, convert to the vector type. | 
|  | MVT TVT = MVT::getVectorVT(EVT, NumElems); | 
|  | if (TLI.isTypeLegal(TVT)) { | 
|  | // Turn this into a normal store of the vector type. | 
|  | Tmp3 = LegalizeOp(ST->getValue()); | 
|  | Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), | 
|  | SVOffset, isVolatile, Alignment); | 
|  | Result = LegalizeOp(Result); | 
|  | break; | 
|  | } else if (NumElems == 1) { | 
|  | // Turn this into a normal store of the scalar type. | 
|  | Tmp3 = ScalarizeVectorOp(ST->getValue()); | 
|  | Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), | 
|  | SVOffset, isVolatile, Alignment); | 
|  | // The scalarized value type may not be legal, e.g. it might require | 
|  | // promotion or expansion.  Relegalize the scalar store. | 
|  | Result = LegalizeOp(Result); | 
|  | break; | 
|  | } else { | 
|  | // Check if we have widen this node with another value | 
|  | std::map<SDValue, SDValue>::iterator I = | 
|  | WidenNodes.find(ST->getValue()); | 
|  | if (I != WidenNodes.end()) { | 
|  | Result = StoreWidenVectorOp(ST, Tmp1, Tmp2); | 
|  | break; | 
|  | } | 
|  | else { | 
|  | SplitVectorOp(ST->getValue(), Lo, Hi); | 
|  | IncrementSize = Lo.getNode()->getValueType(0).getVectorNumElements() * | 
|  | EVT.getSizeInBits()/8; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | ExpandOp(ST->getValue(), Lo, Hi); | 
|  | IncrementSize = Hi.getNode() ? Hi.getValueType().getSizeInBits()/8 : 0; | 
|  |  | 
|  | if (Hi.getNode() && TLI.isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  | } | 
|  |  | 
|  | Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(), | 
|  | SVOffset, isVolatile, Alignment); | 
|  |  | 
|  | if (Hi.getNode() == NULL) { | 
|  | // Must be int <-> float one-to-one expansion. | 
|  | Result = Lo; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, | 
|  | DAG.getIntPtrConstant(IncrementSize)); | 
|  | assert(isTypeLegal(Tmp2.getValueType()) && | 
|  | "Pointers must be legal!"); | 
|  | SVOffset += IncrementSize; | 
|  | Alignment = MinAlign(Alignment, IncrementSize); | 
|  | Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), | 
|  | SVOffset, isVolatile, Alignment); | 
|  | Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); | 
|  | break; | 
|  | }  // case Expand | 
|  | } | 
|  | } else { | 
|  | switch (getTypeAction(ST->getValue().getValueType())) { | 
|  | case Legal: | 
|  | Tmp3 = LegalizeOp(ST->getValue()); | 
|  | break; | 
|  | case Promote: | 
|  | if (!ST->getValue().getValueType().isVector()) { | 
|  | // We can promote the value, the truncstore will still take care of it. | 
|  | Tmp3 = PromoteOp(ST->getValue()); | 
|  | break; | 
|  | } | 
|  | // Vector case falls through to expand | 
|  | case Expand: | 
|  | // Just store the low part.  This may become a non-trunc store, so make | 
|  | // sure to use getTruncStore, not UpdateNodeOperands below. | 
|  | ExpandOp(ST->getValue(), Tmp3, Tmp4); | 
|  | return DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), | 
|  | SVOffset, MVT::i8, isVolatile, Alignment); | 
|  | } | 
|  |  | 
|  | MVT StVT = ST->getMemoryVT(); | 
|  | unsigned StWidth = StVT.getSizeInBits(); | 
|  |  | 
|  | if (StWidth != StVT.getStoreSizeInBits()) { | 
|  | // Promote to a byte-sized store with upper bits zero if not | 
|  | // storing an integral number of bytes.  For example, promote | 
|  | // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) | 
|  | MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits()); | 
|  | Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT); | 
|  | Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), | 
|  | SVOffset, NVT, isVolatile, Alignment); | 
|  | } else if (StWidth & (StWidth - 1)) { | 
|  | // If not storing a power-of-2 number of bits, expand as two stores. | 
|  | assert(StVT.isExtended() && !StVT.isVector() && | 
|  | "Unsupported truncstore!"); | 
|  | unsigned RoundWidth = 1 << Log2_32(StWidth); | 
|  | assert(RoundWidth < StWidth); | 
|  | unsigned ExtraWidth = StWidth - RoundWidth; | 
|  | assert(ExtraWidth < RoundWidth); | 
|  | assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && | 
|  | "Store size not an integral number of bytes!"); | 
|  | MVT RoundVT = MVT::getIntegerVT(RoundWidth); | 
|  | MVT ExtraVT = MVT::getIntegerVT(ExtraWidth); | 
|  | SDValue Lo, Hi; | 
|  | unsigned IncrementSize; | 
|  |  | 
|  | if (TLI.isLittleEndian()) { | 
|  | // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) | 
|  | // Store the bottom RoundWidth bits. | 
|  | Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), | 
|  | SVOffset, RoundVT, | 
|  | isVolatile, Alignment); | 
|  |  | 
|  | // Store the remaining ExtraWidth bits. | 
|  | IncrementSize = RoundWidth / 8; | 
|  | Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, | 
|  | DAG.getIntPtrConstant(IncrementSize)); | 
|  | Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, | 
|  | DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); | 
|  | Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), | 
|  | SVOffset + IncrementSize, ExtraVT, isVolatile, | 
|  | MinAlign(Alignment, IncrementSize)); | 
|  | } else { | 
|  | // Big endian - avoid unaligned stores. | 
|  | // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X | 
|  | // Store the top RoundWidth bits. | 
|  | Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, | 
|  | DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); | 
|  | Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), | 
|  | SVOffset, RoundVT, isVolatile, Alignment); | 
|  |  | 
|  | // Store the remaining ExtraWidth bits. | 
|  | IncrementSize = RoundWidth / 8; | 
|  | Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, | 
|  | DAG.getIntPtrConstant(IncrementSize)); | 
|  | Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), | 
|  | SVOffset + IncrementSize, ExtraVT, isVolatile, | 
|  | MinAlign(Alignment, IncrementSize)); | 
|  | } | 
|  |  | 
|  | // The order of the stores doesn't matter. | 
|  | Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); | 
|  | } else { | 
|  | if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || | 
|  | Tmp2 != ST->getBasePtr()) | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, | 
|  | ST->getOffset()); | 
|  |  | 
|  | switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | // If this is an unaligned store and the target doesn't support it, | 
|  | // expand it. | 
|  | if (!TLI.allowsUnalignedMemoryAccesses()) { | 
|  | unsigned ABIAlignment = TLI.getTargetData()-> | 
|  | getABITypeAlignment(ST->getMemoryVT().getTypeForMVT()); | 
|  | if (ST->getAlignment() < ABIAlignment) | 
|  | Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG, | 
|  | TLI); | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Result = TLI.LowerOperation(Result, DAG); | 
|  | break; | 
|  | case Expand: | 
|  | // TRUNCSTORE:i16 i32 -> STORE i16 | 
|  | assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); | 
|  | Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3); | 
|  | Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), | 
|  | SVOffset, isVolatile, Alignment); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::PCMARKER: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); | 
|  | break; | 
|  | case ISD::STACKSAVE: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | Tmp1 = Result.getValue(0); | 
|  | Tmp2 = Result.getValue(1); | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp3 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp3.getNode()) { | 
|  | Tmp1 = LegalizeOp(Tmp3); | 
|  | Tmp2 = LegalizeOp(Tmp3.getValue(1)); | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | // Expand to CopyFromReg if the target set | 
|  | // StackPointerRegisterToSaveRestore. | 
|  | if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { | 
|  | Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), dl, SP, | 
|  | Node->getValueType(0)); | 
|  | Tmp2 = Tmp1.getValue(1); | 
|  | } else { | 
|  | Tmp1 = DAG.getUNDEF(Node->getValueType(0)); | 
|  | Tmp2 = Node->getOperand(0); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Since stacksave produce two values, make sure to remember that we | 
|  | // legalized both of them. | 
|  | AddLegalizedOperand(SDValue(Node, 0), Tmp1); | 
|  | AddLegalizedOperand(SDValue(Node, 1), Tmp2); | 
|  | return Op.getResNo() ? Tmp2 : Tmp1; | 
|  |  | 
|  | case ISD::STACKRESTORE: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the pointer. | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | // Expand to CopyToReg if the target set | 
|  | // StackPointerRegisterToSaveRestore. | 
|  | if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { | 
|  | Result = DAG.getCopyToReg(Tmp1, dl, SP, Tmp2); | 
|  | } else { | 
|  | Result = Tmp1; | 
|  | } | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::READCYCLECOUNTER: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, | 
|  | Node->getValueType(0))) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | Tmp1 = Result.getValue(0); | 
|  | Tmp2 = Result.getValue(1); | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Result = TLI.LowerOperation(Result, DAG); | 
|  | Tmp1 = LegalizeOp(Result.getValue(0)); | 
|  | Tmp2 = LegalizeOp(Result.getValue(1)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Since rdcc produce two values, make sure to remember that we legalized | 
|  | // both of them. | 
|  | AddLegalizedOperand(SDValue(Node, 0), Tmp1); | 
|  | AddLegalizedOperand(SDValue(Node, 1), Tmp2); | 
|  | return Result; | 
|  |  | 
|  | case ISD::SELECT: | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Expand: assert(0 && "It's impossible to expand bools"); | 
|  | case Legal: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. | 
|  | break; | 
|  | case Promote: { | 
|  | assert(!Node->getOperand(0).getValueType().isVector() && "not possible"); | 
|  | Tmp1 = PromoteOp(Node->getOperand(0));  // Promote the condition. | 
|  | // Make sure the condition is either zero or one. | 
|  | unsigned BitWidth = Tmp1.getValueSizeInBits(); | 
|  | if (!DAG.MaskedValueIsZero(Tmp1, | 
|  | APInt::getHighBitsSet(BitWidth, BitWidth-1))) | 
|  | Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, MVT::i1); | 
|  | break; | 
|  | } | 
|  | } | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));   // TrueVal | 
|  | Tmp3 = LegalizeOp(Node->getOperand(2));   // FalseVal | 
|  |  | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: break; | 
|  | case TargetLowering::Custom: { | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | if (Tmp1.getOpcode() == ISD::SETCC) { | 
|  | Result = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), | 
|  | Tmp2, Tmp3, | 
|  | cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); | 
|  | } else { | 
|  | Result = DAG.getSelectCC(dl, Tmp1, | 
|  | DAG.getConstant(0, Tmp1.getValueType()), | 
|  | Tmp2, Tmp3, ISD::SETNE); | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Promote: { | 
|  | MVT NVT = | 
|  | TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); | 
|  | unsigned ExtOp, TruncOp; | 
|  | if (Tmp2.getValueType().isVector()) { | 
|  | ExtOp   = ISD::BIT_CONVERT; | 
|  | TruncOp = ISD::BIT_CONVERT; | 
|  | } else if (Tmp2.getValueType().isInteger()) { | 
|  | ExtOp   = ISD::ANY_EXTEND; | 
|  | TruncOp = ISD::TRUNCATE; | 
|  | } else { | 
|  | ExtOp   = ISD::FP_EXTEND; | 
|  | TruncOp = ISD::FP_ROUND; | 
|  | } | 
|  | // Promote each of the values to the new type. | 
|  | Tmp2 = DAG.getNode(ExtOp, dl, NVT, Tmp2); | 
|  | Tmp3 = DAG.getNode(ExtOp, dl, NVT, Tmp3); | 
|  | // Perform the larger operation, then round down. | 
|  | Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); | 
|  | if (TruncOp != ISD::FP_ROUND) | 
|  | Result = DAG.getNode(TruncOp, dl, Node->getValueType(0), Result); | 
|  | else | 
|  | Result = DAG.getNode(TruncOp, dl, Node->getValueType(0), Result, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::SELECT_CC: { | 
|  | Tmp1 = Node->getOperand(0);               // LHS | 
|  | Tmp2 = Node->getOperand(1);               // RHS | 
|  | Tmp3 = LegalizeOp(Node->getOperand(2));   // True | 
|  | Tmp4 = LegalizeOp(Node->getOperand(3));   // False | 
|  | SDValue CC = Node->getOperand(4); | 
|  |  | 
|  | LegalizeSetCC(TLI.getSetCCResultType(Tmp1.getValueType()), | 
|  | Tmp1, Tmp2, CC, dl); | 
|  |  | 
|  | // If we didn't get both a LHS and RHS back from LegalizeSetCC, | 
|  | // the LHS is a legal SETCC itself.  In this case, we need to compare | 
|  | // the result against zero to select between true and false values. | 
|  | if (Tmp2.getNode() == 0) { | 
|  | Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); | 
|  | CC = DAG.getCondCode(ISD::SETNE); | 
|  | } | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); | 
|  |  | 
|  | // Everything is legal, see if we should expand this op or something. | 
|  | switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::SETCC: | 
|  | Tmp1 = Node->getOperand(0); | 
|  | Tmp2 = Node->getOperand(1); | 
|  | Tmp3 = Node->getOperand(2); | 
|  | LegalizeSetCC(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); | 
|  |  | 
|  | // If we had to Expand the SetCC operands into a SELECT node, then it may | 
|  | // not always be possible to return a true LHS & RHS.  In this case, just | 
|  | // return the value we legalized, returned in the LHS | 
|  | if (Tmp2.getNode() == 0) { | 
|  | Result = Tmp1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { | 
|  | default: assert(0 && "Cannot handle this action for SETCC yet!"); | 
|  | case TargetLowering::Custom: | 
|  | isCustom = true; | 
|  | // FALLTHROUGH. | 
|  | case TargetLowering::Legal: | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); | 
|  | if (isCustom) { | 
|  | Tmp4 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp4.getNode()) Result = Tmp4; | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Promote: { | 
|  | // First step, figure out the appropriate operation to use. | 
|  | // Allow SETCC to not be supported for all legal data types | 
|  | // Mostly this targets FP | 
|  | MVT NewInTy = Node->getOperand(0).getValueType(); | 
|  | MVT OldVT = NewInTy; OldVT = OldVT; | 
|  |  | 
|  | // Scan for the appropriate larger type to use. | 
|  | while (1) { | 
|  | NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1); | 
|  |  | 
|  | assert(NewInTy.isInteger() == OldVT.isInteger() && | 
|  | "Fell off of the edge of the integer world"); | 
|  | assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() && | 
|  | "Fell off of the edge of the floating point world"); | 
|  |  | 
|  | // If the target supports SETCC of this type, use it. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::SETCC, NewInTy)) | 
|  | break; | 
|  | } | 
|  | if (NewInTy.isInteger()) | 
|  | assert(0 && "Cannot promote Legal Integer SETCC yet"); | 
|  | else { | 
|  | Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp1); | 
|  | Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp2); | 
|  | } | 
|  | Tmp1 = LegalizeOp(Tmp1); | 
|  | Tmp2 = LegalizeOp(Tmp2); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); | 
|  | Result = LegalizeOp(Result); | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | // Expand a setcc node into a select_cc of the same condition, lhs, and | 
|  | // rhs that selects between const 1 (true) and const 0 (false). | 
|  | MVT VT = Node->getValueType(0); | 
|  | Result = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, | 
|  | DAG.getConstant(1, VT), DAG.getConstant(0, VT), | 
|  | Tmp3); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ISD::VSETCC: { | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));   // LHS | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));   // RHS | 
|  | SDValue CC = Node->getOperand(2); | 
|  |  | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, CC); | 
|  |  | 
|  | // Everything is legal, see if we should expand this op or something. | 
|  | switch (TLI.getOperationAction(ISD::VSETCC, Tmp1.getValueType())) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | break; | 
|  | case TargetLowering::Expand: { | 
|  | // Unroll into a nasty set of scalar code for now. | 
|  | MVT VT = Node->getValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | MVT TmpEltVT = Tmp1.getValueType().getVectorElementType(); | 
|  | SmallVector<SDValue, 8> Ops(NumElems); | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue In1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, | 
|  | Tmp1, DAG.getIntPtrConstant(i)); | 
|  | Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(TmpEltVT), | 
|  | In1, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | 
|  | TmpEltVT, Tmp2, | 
|  | DAG.getIntPtrConstant(i)), | 
|  | CC); | 
|  | Ops[i] = DAG.getNode(ISD::SELECT, dl, EltVT, Ops[i], | 
|  | DAG.getConstant(APInt::getAllOnesValue | 
|  | (EltVT.getSizeInBits()), EltVT), | 
|  | DAG.getConstant(0, EltVT)); | 
|  | } | 
|  | Result = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElems); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SHL_PARTS: | 
|  | case ISD::SRA_PARTS: | 
|  | case ISD::SRL_PARTS: { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | bool Changed = false; | 
|  | unsigned N = Node->getNumOperands(); | 
|  | for (unsigned i = 0; i + 1 < N; ++i) { | 
|  | Ops.push_back(LegalizeOp(Node->getOperand(i))); | 
|  | Changed |= Ops.back() != Node->getOperand(i); | 
|  | } | 
|  | Ops.push_back(LegalizeOp(DAG.getShiftAmountOperand(Node->getOperand(N-1)))); | 
|  | Changed |= Ops.back() != Node->getOperand(N-1); | 
|  | if (Changed) | 
|  | Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); | 
|  |  | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), | 
|  | Node->getValueType(0))) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) { | 
|  | SDValue Tmp2, RetVal(0, 0); | 
|  | for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { | 
|  | Tmp2 = LegalizeOp(Tmp1.getValue(i)); | 
|  | AddLegalizedOperand(SDValue(Node, i), Tmp2); | 
|  | if (i == Op.getResNo()) | 
|  | RetVal = Tmp2; | 
|  | } | 
|  | assert(RetVal.getNode() && "Illegal result number"); | 
|  | return RetVal; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Since these produce multiple values, make sure to remember that we | 
|  | // legalized all of them. | 
|  | for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) | 
|  | AddLegalizedOperand(SDValue(Node, i), Result.getValue(i)); | 
|  | return Result.getValue(Op.getResNo()); | 
|  | } | 
|  |  | 
|  | // Binary operators | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | case ISD::MULHS: | 
|  | case ISD::MULHU: | 
|  | case ISD::UDIV: | 
|  | case ISD::SDIV: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: | 
|  | case ISD::SRA: | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | case ISD::FPOW: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));   // LHS | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));   // RHS | 
|  |  | 
|  | if ((Node->getOpcode() == ISD::SHL || | 
|  | Node->getOpcode() == ISD::SRL || | 
|  | Node->getOpcode() == ISD::SRA) && | 
|  | !Node->getValueType(0).isVector()) | 
|  | Tmp2 = DAG.getShiftAmountOperand(Tmp2); | 
|  |  | 
|  | switch (getTypeAction(Tmp2.getValueType())) { | 
|  | case Expand: assert(0 && "Not possible"); | 
|  | case Legal: | 
|  | Tmp2 = LegalizeOp(Tmp2); // Legalize the RHS. | 
|  | break; | 
|  | case Promote: | 
|  | Tmp2 = PromoteOp(Tmp2);  // Promote the RHS. | 
|  | break; | 
|  | } | 
|  |  | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); | 
|  |  | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { | 
|  | default: assert(0 && "BinOp legalize operation not supported"); | 
|  | case TargetLowering::Legal: break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) { | 
|  | Result = Tmp1; | 
|  | break; | 
|  | } | 
|  | // Fall through if the custom lower can't deal with the operation | 
|  | case TargetLowering::Expand: { | 
|  | MVT VT = Op.getValueType(); | 
|  |  | 
|  | // See if multiply or divide can be lowered using two-result operations. | 
|  | SDVTList VTs = DAG.getVTList(VT, VT); | 
|  | if (Node->getOpcode() == ISD::MUL) { | 
|  | // We just need the low half of the multiply; try both the signed | 
|  | // and unsigned forms. If the target supports both SMUL_LOHI and | 
|  | // UMUL_LOHI, form a preference by checking which forms of plain | 
|  | // MULH it supports. | 
|  | bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); | 
|  | bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); | 
|  | bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); | 
|  | bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); | 
|  | unsigned OpToUse = 0; | 
|  | if (HasSMUL_LOHI && !HasMULHS) { | 
|  | OpToUse = ISD::SMUL_LOHI; | 
|  | } else if (HasUMUL_LOHI && !HasMULHU) { | 
|  | OpToUse = ISD::UMUL_LOHI; | 
|  | } else if (HasSMUL_LOHI) { | 
|  | OpToUse = ISD::SMUL_LOHI; | 
|  | } else if (HasUMUL_LOHI) { | 
|  | OpToUse = ISD::UMUL_LOHI; | 
|  | } | 
|  | if (OpToUse) { | 
|  | Result = DAG.getNode(OpToUse, dl, VTs, Tmp1, Tmp2); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (Node->getOpcode() == ISD::MULHS && | 
|  | TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { | 
|  | Result = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, | 
|  | VTs, Tmp1, Tmp2).getNode(), | 
|  | 1); | 
|  | break; | 
|  | } | 
|  | if (Node->getOpcode() == ISD::MULHU && | 
|  | TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { | 
|  | Result = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, | 
|  | VTs, Tmp1, Tmp2).getNode(), | 
|  | 1); | 
|  | break; | 
|  | } | 
|  | if (Node->getOpcode() == ISD::SDIV && | 
|  | TLI.isOperationLegalOrCustom(ISD::SDIVREM, VT)) { | 
|  | Result = DAG.getNode(ISD::SDIVREM, dl, VTs, Tmp1, Tmp2); | 
|  | break; | 
|  | } | 
|  | if (Node->getOpcode() == ISD::UDIV && | 
|  | TLI.isOperationLegalOrCustom(ISD::UDIVREM, VT)) { | 
|  | Result = DAG.getNode(ISD::UDIVREM, dl, VTs, Tmp1, Tmp2); | 
|  | break; | 
|  | } | 
|  | if (Node->getOpcode() == ISD::SUB && | 
|  | TLI.isOperationLegalOrCustom(ISD::ADD, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::XOR, VT)) { | 
|  | Tmp2 = DAG.getNode(ISD::XOR, dl, VT, Tmp2, | 
|  | DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); | 
|  | Tmp2 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT)); | 
|  | Result = DAG.getNode(ISD::ADD, dl, VT, Tmp1, Tmp2); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check to see if we have a libcall for this operator. | 
|  | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; | 
|  | bool isSigned = false; | 
|  | switch (Node->getOpcode()) { | 
|  | case ISD::UDIV: | 
|  | case ISD::SDIV: | 
|  | isSigned = Node->getOpcode() == ISD::SDIV; | 
|  | if (VT == MVT::i16) | 
|  | LC = (isSigned ? RTLIB::SDIV_I16  : RTLIB::UDIV_I16); | 
|  | else if (VT == MVT::i32) | 
|  | LC = (isSigned ? RTLIB::SDIV_I32  : RTLIB::UDIV_I32); | 
|  | else if (VT == MVT::i64) | 
|  | LC = (isSigned ? RTLIB::SDIV_I64  : RTLIB::UDIV_I64); | 
|  | else if (VT == MVT::i128) | 
|  | LC = (isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128); | 
|  | break; | 
|  | case ISD::MUL: | 
|  | if (VT == MVT::i16) | 
|  | LC = RTLIB::MUL_I16; | 
|  | else if (VT == MVT::i32) | 
|  | LC = RTLIB::MUL_I32; | 
|  | else if (VT == MVT::i64) | 
|  | LC = RTLIB::MUL_I64; | 
|  | else if (VT == MVT::i128) | 
|  | LC = RTLIB::MUL_I128; | 
|  | break; | 
|  | case ISD::FPOW: | 
|  | LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, | 
|  | RTLIB::POW_PPCF128); | 
|  | break; | 
|  | case ISD::FDIV: | 
|  | LC = GetFPLibCall(VT, RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80, | 
|  | RTLIB::DIV_PPCF128); | 
|  | break; | 
|  | default: break; | 
|  | } | 
|  | if (LC != RTLIB::UNKNOWN_LIBCALL) { | 
|  | SDValue Dummy; | 
|  | Result = ExpandLibCall(LC, Node, isSigned, Dummy); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(Node->getValueType(0).isVector() && | 
|  | "Cannot expand this binary operator!"); | 
|  | // Expand the operation into a bunch of nasty scalar code. | 
|  | Result = LegalizeOp(UnrollVectorOp(Op)); | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Promote: { | 
|  | switch (Node->getOpcode()) { | 
|  | default:  assert(0 && "Do not know how to promote this BinOp!"); | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: { | 
|  | MVT OVT = Node->getValueType(0); | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); | 
|  | assert(OVT.isVector() && "Cannot promote this BinOp!"); | 
|  | // Bit convert each of the values to the new type. | 
|  | Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp1); | 
|  | Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp2); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); | 
|  | // Bit convert the result back the original type. | 
|  | Result = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Result); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SMUL_LOHI: | 
|  | case ISD::UMUL_LOHI: | 
|  | case ISD::SDIVREM: | 
|  | case ISD::UDIVREM: | 
|  | // These nodes will only be produced by target-specific lowering, so | 
|  | // they shouldn't be here if they aren't legal. | 
|  | assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && | 
|  | "This must be legal!"); | 
|  |  | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));   // LHS | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));   // RHS | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); | 
|  | break; | 
|  |  | 
|  | case ISD::FCOPYSIGN:  // FCOPYSIGN does not require LHS/RHS to match type! | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));   // LHS | 
|  | switch (getTypeAction(Node->getOperand(1).getValueType())) { | 
|  | case Expand: assert(0 && "Not possible"); | 
|  | case Legal: | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. | 
|  | break; | 
|  | case Promote: | 
|  | Tmp2 = PromoteOp(Node->getOperand(1));  // Promote the RHS. | 
|  | break; | 
|  | } | 
|  |  | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); | 
|  |  | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { | 
|  | default: assert(0 && "Operation not supported"); | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | break; | 
|  | case TargetLowering::Legal: break; | 
|  | case TargetLowering::Expand: { | 
|  | // If this target supports fabs/fneg natively and select is cheap, | 
|  | // do this efficiently. | 
|  | if (!TLI.isSelectExpensive() && | 
|  | TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == | 
|  | TargetLowering::Legal && | 
|  | TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == | 
|  | TargetLowering::Legal) { | 
|  | // Get the sign bit of the RHS. | 
|  | MVT IVT = | 
|  | Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; | 
|  | SDValue SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2); | 
|  | SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(IVT), | 
|  | SignBit, DAG.getConstant(0, IVT), ISD::SETLT); | 
|  | // Get the absolute value of the result. | 
|  | SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); | 
|  | // Select between the nabs and abs value based on the sign bit of | 
|  | // the input. | 
|  | Result = DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, | 
|  | DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), | 
|  | AbsVal), | 
|  | AbsVal); | 
|  | Result = LegalizeOp(Result); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, do bitwise ops! | 
|  | MVT NVT = | 
|  | Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; | 
|  | Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); | 
|  | Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), Result); | 
|  | Result = LegalizeOp(Result); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::ADDC: | 
|  | case ISD::SUBC: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); | 
|  | Tmp3 = Result.getValue(0); | 
|  | Tmp4 = Result.getValue(1); | 
|  |  | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Tmp3, DAG); | 
|  | if (Tmp1.getNode() != NULL) { | 
|  | Tmp3 = LegalizeOp(Tmp1); | 
|  | Tmp4 = LegalizeOp(Tmp1.getValue(1)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | // Since this produces two values, make sure to remember that we legalized | 
|  | // both of them. | 
|  | AddLegalizedOperand(SDValue(Node, 0), Tmp3); | 
|  | AddLegalizedOperand(SDValue(Node, 1), Tmp4); | 
|  | return Op.getResNo() ? Tmp4 : Tmp3; | 
|  |  | 
|  | case ISD::ADDE: | 
|  | case ISD::SUBE: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1)); | 
|  | Tmp3 = LegalizeOp(Node->getOperand(2)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); | 
|  | Tmp3 = Result.getValue(0); | 
|  | Tmp4 = Result.getValue(1); | 
|  |  | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Tmp3, DAG); | 
|  | if (Tmp1.getNode() != NULL) { | 
|  | Tmp3 = LegalizeOp(Tmp1); | 
|  | Tmp4 = LegalizeOp(Tmp1.getValue(1)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | // Since this produces two values, make sure to remember that we legalized | 
|  | // both of them. | 
|  | AddLegalizedOperand(SDValue(Node, 0), Tmp3); | 
|  | AddLegalizedOperand(SDValue(Node, 1), Tmp4); | 
|  | return Op.getResNo() ? Tmp4 : Tmp3; | 
|  |  | 
|  | case ISD::BUILD_PAIR: { | 
|  | MVT PairTy = Node->getValueType(0); | 
|  | // TODO: handle the case where the Lo and Hi operands are not of legal type | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));   // Lo | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));   // Hi | 
|  | switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { | 
|  | case TargetLowering::Promote: | 
|  | case TargetLowering::Custom: | 
|  | assert(0 && "Cannot promote/custom this yet!"); | 
|  | case TargetLowering::Legal: | 
|  | if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) | 
|  | Result = DAG.getNode(ISD::BUILD_PAIR, dl, PairTy, Tmp1, Tmp2); | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Tmp1); | 
|  | Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Tmp2); | 
|  | Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, | 
|  | DAG.getConstant(PairTy.getSizeInBits()/2, | 
|  | TLI.getShiftAmountTy())); | 
|  | Result = DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::UREM: | 
|  | case ISD::SREM: | 
|  | case ISD::FREM: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));   // LHS | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));   // RHS | 
|  |  | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { | 
|  | case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); | 
|  | case TargetLowering::Custom: | 
|  | isCustom = true; | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Legal: | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); | 
|  | if (isCustom) { | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Expand: { | 
|  | unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; | 
|  | bool isSigned = DivOpc == ISD::SDIV; | 
|  | MVT VT = Node->getValueType(0); | 
|  |  | 
|  | // See if remainder can be lowered using two-result operations. | 
|  | SDVTList VTs = DAG.getVTList(VT, VT); | 
|  | if (Node->getOpcode() == ISD::SREM && | 
|  | TLI.isOperationLegalOrCustom(ISD::SDIVREM, VT)) { | 
|  | Result = SDValue(DAG.getNode(ISD::SDIVREM, dl, | 
|  | VTs, Tmp1, Tmp2).getNode(), 1); | 
|  | break; | 
|  | } | 
|  | if (Node->getOpcode() == ISD::UREM && | 
|  | TLI.isOperationLegalOrCustom(ISD::UDIVREM, VT)) { | 
|  | Result = SDValue(DAG.getNode(ISD::UDIVREM, dl, | 
|  | VTs, Tmp1, Tmp2).getNode(), 1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (VT.isInteger() && | 
|  | TLI.getOperationAction(DivOpc, VT) == TargetLowering::Legal) { | 
|  | // X % Y -> X-X/Y*Y | 
|  | Result = DAG.getNode(DivOpc, dl, VT, Tmp1, Tmp2); | 
|  | Result = DAG.getNode(ISD::MUL, dl, VT, Result, Tmp2); | 
|  | Result = DAG.getNode(ISD::SUB, dl, VT, Tmp1, Result); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check to see if we have a libcall for this operator. | 
|  | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; | 
|  | switch (Node->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::UREM: | 
|  | case ISD::SREM: | 
|  | if (VT == MVT::i16) | 
|  | LC = (isSigned ? RTLIB::SREM_I16  : RTLIB::UREM_I16); | 
|  | else if (VT == MVT::i32) | 
|  | LC = (isSigned ? RTLIB::SREM_I32  : RTLIB::UREM_I32); | 
|  | else if (VT == MVT::i64) | 
|  | LC = (isSigned ? RTLIB::SREM_I64  : RTLIB::UREM_I64); | 
|  | else if (VT == MVT::i128) | 
|  | LC = (isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128); | 
|  | break; | 
|  | case ISD::FREM: | 
|  | // Floating point mod -> fmod libcall. | 
|  | LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64, | 
|  | RTLIB::REM_F80, RTLIB::REM_PPCF128); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (LC != RTLIB::UNKNOWN_LIBCALL) { | 
|  | SDValue Dummy; | 
|  | Result = ExpandLibCall(LC, Node, isSigned, Dummy); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(VT.isVector() && | 
|  | "Cannot expand this binary operator!"); | 
|  | // Expand the operation into a bunch of nasty scalar code. | 
|  | Result = LegalizeOp(UnrollVectorOp(Op)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::VAARG: { | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the pointer. | 
|  |  | 
|  | MVT VT = Node->getValueType(0); | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Custom: | 
|  | isCustom = true; | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Legal: | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); | 
|  | Result = Result.getValue(0); | 
|  | Tmp1 = Result.getValue(1); | 
|  |  | 
|  | if (isCustom) { | 
|  | Tmp2 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp2.getNode()) { | 
|  | Result = LegalizeOp(Tmp2); | 
|  | Tmp1 = LegalizeOp(Tmp2.getValue(1)); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Expand: { | 
|  | const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); | 
|  | SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0); | 
|  | // Increment the pointer, VAList, to the next vaarg | 
|  | Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, | 
|  | DAG.getConstant(TLI.getTargetData()-> | 
|  | getTypePaddedSize(VT.getTypeForMVT()), | 
|  | TLI.getPointerTy())); | 
|  | // Store the incremented VAList to the legalized pointer | 
|  | Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0); | 
|  | // Load the actual argument out of the pointer VAList | 
|  | Result = DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0); | 
|  | Tmp1 = LegalizeOp(Result.getValue(1)); | 
|  | Result = LegalizeOp(Result); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Since VAARG produces two values, make sure to remember that we | 
|  | // legalized both of them. | 
|  | AddLegalizedOperand(SDValue(Node, 0), Result); | 
|  | AddLegalizedOperand(SDValue(Node, 1), Tmp1); | 
|  | return Op.getResNo() ? Tmp1 : Result; | 
|  | } | 
|  |  | 
|  | case ISD::VACOPY: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the dest pointer. | 
|  | Tmp3 = LegalizeOp(Node->getOperand(2));  // Legalize the source pointer. | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Custom: | 
|  | isCustom = true; | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Legal: | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, | 
|  | Node->getOperand(3), Node->getOperand(4)); | 
|  | if (isCustom) { | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | // This defaults to loading a pointer from the input and storing it to the | 
|  | // output, returning the chain. | 
|  | const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); | 
|  | const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); | 
|  | Tmp4 = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp3, VS, 0); | 
|  | Result = DAG.getStore(Tmp4.getValue(1), dl, Tmp4, Tmp2, VD, 0); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::VAEND: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the pointer. | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Custom: | 
|  | isCustom = true; | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Legal: | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); | 
|  | if (isCustom) { | 
|  | Tmp1 = TLI.LowerOperation(Tmp1, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | Result = Tmp1; // Default to a no-op, return the chain | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::VASTART: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain. | 
|  | Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the pointer. | 
|  |  | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Legal: break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::ROTL: | 
|  | case ISD::ROTR: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));   // LHS | 
|  | Tmp2 = LegalizeOp(DAG.getShiftAmountOperand(Node->getOperand(1)));   // RHS | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { | 
|  | default: | 
|  | assert(0 && "ROTL/ROTR legalize operation not supported"); | 
|  | break; | 
|  | case TargetLowering::Legal: | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | break; | 
|  | case TargetLowering::Promote: | 
|  | assert(0 && "Do not know how to promote ROTL/ROTR"); | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | assert(0 && "Do not know how to expand ROTL/ROTR"); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::BSWAP: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));   // Op | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { | 
|  | case TargetLowering::Custom: | 
|  | assert(0 && "Cannot custom legalize this yet!"); | 
|  | case TargetLowering::Legal: | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | break; | 
|  | case TargetLowering::Promote: { | 
|  | MVT OVT = Tmp1.getValueType(); | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); | 
|  | unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); | 
|  |  | 
|  | Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1); | 
|  | Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); | 
|  | Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, | 
|  | DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | Result = ExpandBSWAP(Tmp1, dl); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::CTPOP: | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTLZ: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0));   // Op | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { | 
|  | case TargetLowering::Custom: | 
|  | case TargetLowering::Legal: | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == | 
|  | TargetLowering::Custom) { | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) { | 
|  | Result = Tmp1; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Promote: { | 
|  | MVT OVT = Tmp1.getValueType(); | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); | 
|  |  | 
|  | // Zero extend the argument. | 
|  | Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1); | 
|  | // Perform the larger operation, then subtract if needed. | 
|  | Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1); | 
|  | switch (Node->getOpcode()) { | 
|  | case ISD::CTPOP: | 
|  | Result = Tmp1; | 
|  | break; | 
|  | case ISD::CTTZ: | 
|  | //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) | 
|  | Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), | 
|  | Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), | 
|  | ISD::SETEQ); | 
|  | Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, | 
|  | DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); | 
|  | break; | 
|  | case ISD::CTLZ: | 
|  | // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) | 
|  | Result = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, | 
|  | DAG.getConstant(NVT.getSizeInBits() - | 
|  | OVT.getSizeInBits(), NVT)); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | Result = ExpandBitCount(Node->getOpcode(), Tmp1, dl); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // Unary operators | 
|  | case ISD::FABS: | 
|  | case ISD::FNEG: | 
|  | case ISD::FSQRT: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FLOG: | 
|  | case ISD::FLOG2: | 
|  | case ISD::FLOG10: | 
|  | case ISD::FEXP: | 
|  | case ISD::FEXP2: | 
|  | case ISD::FTRUNC: | 
|  | case ISD::FFLOOR: | 
|  | case ISD::FCEIL: | 
|  | case ISD::FRINT: | 
|  | case ISD::FNEARBYINT: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { | 
|  | case TargetLowering::Promote: | 
|  | case TargetLowering::Custom: | 
|  | isCustom = true; | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Legal: | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | if (isCustom) { | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | switch (Node->getOpcode()) { | 
|  | default: assert(0 && "Unreachable!"); | 
|  | case ISD::FNEG: | 
|  | // Expand Y = FNEG(X) ->  Y = SUB -0.0, X | 
|  | Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); | 
|  | Result = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp2, Tmp1); | 
|  | break; | 
|  | case ISD::FABS: { | 
|  | // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). | 
|  | MVT VT = Node->getValueType(0); | 
|  | Tmp2 = DAG.getConstantFP(0.0, VT); | 
|  | Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), | 
|  | Tmp1, Tmp2, ISD::SETUGT); | 
|  | Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); | 
|  | Result = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); | 
|  | break; | 
|  | } | 
|  | case ISD::FSQRT: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FLOG: | 
|  | case ISD::FLOG2: | 
|  | case ISD::FLOG10: | 
|  | case ISD::FEXP: | 
|  | case ISD::FEXP2: | 
|  | case ISD::FTRUNC: | 
|  | case ISD::FFLOOR: | 
|  | case ISD::FCEIL: | 
|  | case ISD::FRINT: | 
|  | case ISD::FNEARBYINT: { | 
|  | MVT VT = Node->getValueType(0); | 
|  |  | 
|  | // Expand unsupported unary vector operators by unrolling them. | 
|  | if (VT.isVector()) { | 
|  | Result = LegalizeOp(UnrollVectorOp(Op)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; | 
|  | switch(Node->getOpcode()) { | 
|  | case ISD::FSQRT: | 
|  | LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, | 
|  | RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); | 
|  | break; | 
|  | case ISD::FSIN: | 
|  | LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, | 
|  | RTLIB::SIN_F80, RTLIB::SIN_PPCF128); | 
|  | break; | 
|  | case ISD::FCOS: | 
|  | LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, | 
|  | RTLIB::COS_F80, RTLIB::COS_PPCF128); | 
|  | break; | 
|  | case ISD::FLOG: | 
|  | LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64, | 
|  | RTLIB::LOG_F80, RTLIB::LOG_PPCF128); | 
|  | break; | 
|  | case ISD::FLOG2: | 
|  | LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64, | 
|  | RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128); | 
|  | break; | 
|  | case ISD::FLOG10: | 
|  | LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64, | 
|  | RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128); | 
|  | break; | 
|  | case ISD::FEXP: | 
|  | LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64, | 
|  | RTLIB::EXP_F80, RTLIB::EXP_PPCF128); | 
|  | break; | 
|  | case ISD::FEXP2: | 
|  | LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64, | 
|  | RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128); | 
|  | break; | 
|  | case ISD::FTRUNC: | 
|  | LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, | 
|  | RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128); | 
|  | break; | 
|  | case ISD::FFLOOR: | 
|  | LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, | 
|  | RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128); | 
|  | break; | 
|  | case ISD::FCEIL: | 
|  | LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64, | 
|  | RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128); | 
|  | break; | 
|  | case ISD::FRINT: | 
|  | LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64, | 
|  | RTLIB::RINT_F80, RTLIB::RINT_PPCF128); | 
|  | break; | 
|  | case ISD::FNEARBYINT: | 
|  | LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, | 
|  | RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128); | 
|  | break; | 
|  | break; | 
|  | default: assert(0 && "Unreachable!"); | 
|  | } | 
|  | SDValue Dummy; | 
|  | Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ISD::FPOWI: { | 
|  | MVT VT = Node->getValueType(0); | 
|  |  | 
|  | // Expand unsupported unary vector operators by unrolling them. | 
|  | if (VT.isVector()) { | 
|  | Result = LegalizeOp(UnrollVectorOp(Op)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We always lower FPOWI into a libcall.  No target support for it yet. | 
|  | RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, | 
|  | RTLIB::POWI_F80, RTLIB::POWI_PPCF128); | 
|  | SDValue Dummy; | 
|  | Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); | 
|  | break; | 
|  | } | 
|  | case ISD::BIT_CONVERT: | 
|  | if (!isTypeLegal(Node->getOperand(0).getValueType())) { | 
|  | Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), | 
|  | Node->getValueType(0), dl); | 
|  | } else if (Op.getOperand(0).getValueType().isVector()) { | 
|  | // The input has to be a vector type, we have to either scalarize it, pack | 
|  | // it, or convert it based on whether the input vector type is legal. | 
|  | SDNode *InVal = Node->getOperand(0).getNode(); | 
|  | int InIx = Node->getOperand(0).getResNo(); | 
|  | unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements(); | 
|  | MVT EVT = InVal->getValueType(InIx).getVectorElementType(); | 
|  |  | 
|  | // Figure out if there is a simple type corresponding to this Vector | 
|  | // type.  If so, convert to the vector type. | 
|  | MVT TVT = MVT::getVectorVT(EVT, NumElems); | 
|  | if (TLI.isTypeLegal(TVT)) { | 
|  | // Turn this into a bit convert of the vector input. | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), Tmp1); | 
|  | break; | 
|  | } else if (NumElems == 1) { | 
|  | // Turn this into a bit convert of the scalar input. | 
|  | Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), | 
|  | ScalarizeVectorOp(Node->getOperand(0))); | 
|  | break; | 
|  | } else { | 
|  | // FIXME: UNIMP!  Store then reload | 
|  | assert(0 && "Cast from unsupported vector type not implemented yet!"); | 
|  | } | 
|  | } else { | 
|  | switch (TLI.getOperationAction(ISD::BIT_CONVERT, | 
|  | Node->getOperand(0).getValueType())) { | 
|  | default: assert(0 && "Unknown operation action!"); | 
|  | case TargetLowering::Expand: | 
|  | Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), | 
|  | Node->getValueType(0), dl); | 
|  | break; | 
|  | case TargetLowering::Legal: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::CONVERT_RNDSAT: { | 
|  | ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); | 
|  | switch (CvtCode) { | 
|  | default: assert(0 && "Unknown cvt code!"); | 
|  | case ISD::CVT_SF: | 
|  | case ISD::CVT_UF: | 
|  | case ISD::CVT_FF: | 
|  | break; | 
|  | case ISD::CVT_FS: | 
|  | case ISD::CVT_FU: | 
|  | case ISD::CVT_SS: | 
|  | case ISD::CVT_SU: | 
|  | case ISD::CVT_US: | 
|  | case ISD::CVT_UU: { | 
|  | SDValue DTyOp = Node->getOperand(1); | 
|  | SDValue STyOp = Node->getOperand(2); | 
|  | SDValue RndOp = Node->getOperand(3); | 
|  | SDValue SatOp = Node->getOperand(4); | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Expand: assert(0 && "Shouldn't need to expand other operators here!"); | 
|  | case Legal: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, DTyOp, STyOp, | 
|  | RndOp, SatOp); | 
|  | if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == | 
|  | TargetLowering::Custom) { | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | } | 
|  | break; | 
|  | case Promote: | 
|  | Result = PromoteOp(Node->getOperand(0)); | 
|  | // For FP, make Op1 a i32 | 
|  |  | 
|  | Result = DAG.getConvertRndSat(Op.getValueType(), dl, Result, | 
|  | DTyOp, STyOp, RndOp, SatOp, CvtCode); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } // end switch CvtCode | 
|  | break; | 
|  | } | 
|  | // Conversion operators.  The source and destination have different types. | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: { | 
|  | bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; | 
|  | Result = LegalizeINT_TO_FP(Result, isSigned, | 
|  | Node->getValueType(0), Node->getOperand(0), dl); | 
|  | break; | 
|  | } | 
|  | case ISD::TRUNCATE: | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Legal: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { | 
|  | default: assert(0 && "Unknown TRUNCATE legalization operation action!"); | 
|  | case TargetLowering::Custom: | 
|  | isCustom = true; | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Legal: | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | if (isCustom) { | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | assert(Result.getValueType().isVector() && "must be vector type"); | 
|  | // Unroll the truncate.  We should do better. | 
|  | Result = LegalizeOp(UnrollVectorOp(Result)); | 
|  | } | 
|  | break; | 
|  | case Expand: | 
|  | ExpandOp(Node->getOperand(0), Tmp1, Tmp2); | 
|  |  | 
|  | // Since the result is legal, we should just be able to truncate the low | 
|  | // part of the source. | 
|  | Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); | 
|  | break; | 
|  | case Promote: | 
|  | Result = PromoteOp(Node->getOperand(0)); | 
|  | Result = DAG.getNode(ISD::TRUNCATE, dl, Op.getValueType(), Result); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Legal: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  |  | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ | 
|  | default: assert(0 && "Unknown operation action!"); | 
|  | case TargetLowering::Custom: | 
|  | isCustom = true; | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Legal: | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | if (isCustom) { | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Promote: | 
|  | Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), | 
|  | Node->getOpcode() == ISD::FP_TO_SINT, | 
|  | dl); | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | if (Node->getOpcode() == ISD::FP_TO_UINT) { | 
|  | SDValue True, False; | 
|  | MVT VT =  Node->getOperand(0).getValueType(); | 
|  | MVT NVT = Node->getValueType(0); | 
|  | const uint64_t zero[] = {0, 0}; | 
|  | APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero)); | 
|  | APInt x = APInt::getSignBit(NVT.getSizeInBits()); | 
|  | (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); | 
|  | Tmp2 = DAG.getConstantFP(apf, VT); | 
|  | Tmp3 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), | 
|  | Node->getOperand(0), | 
|  | Tmp2, ISD::SETLT); | 
|  | True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); | 
|  | False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, | 
|  | DAG.getNode(ISD::FSUB, dl, VT, | 
|  | Node->getOperand(0), Tmp2)); | 
|  | False = DAG.getNode(ISD::XOR, dl, NVT, False, | 
|  | DAG.getConstant(x, NVT)); | 
|  | Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp3, True, False); | 
|  | break; | 
|  | } else { | 
|  | assert(0 && "Do not know how to expand FP_TO_SINT yet!"); | 
|  | } | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case Expand: { | 
|  | MVT VT = Op.getValueType(); | 
|  | MVT OVT = Node->getOperand(0).getValueType(); | 
|  | // Convert ppcf128 to i32 | 
|  | if (OVT == MVT::ppcf128 && VT == MVT::i32) { | 
|  | if (Node->getOpcode() == ISD::FP_TO_SINT) { | 
|  | Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, MVT::ppcf128, | 
|  | Node->getOperand(0), DAG.getValueType(MVT::f64)); | 
|  | Result = DAG.getNode(ISD::FP_ROUND, dl, MVT::f64, Result, | 
|  | DAG.getIntPtrConstant(1)); | 
|  | Result = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Result); | 
|  | } else { | 
|  | const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; | 
|  | APFloat apf = APFloat(APInt(128, 2, TwoE31)); | 
|  | Tmp2 = DAG.getConstantFP(apf, OVT); | 
|  | //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X | 
|  | // FIXME: generated code sucks. | 
|  | Result = DAG.getNode(ISD::SELECT_CC, dl, VT, Node->getOperand(0), | 
|  | Tmp2, | 
|  | DAG.getNode(ISD::ADD, dl, MVT::i32, | 
|  | DAG.getNode(ISD::FP_TO_SINT, dl, VT, | 
|  | DAG.getNode(ISD::FSUB, dl, OVT, | 
|  | Node->getOperand(0), Tmp2)), | 
|  | DAG.getConstant(0x80000000, MVT::i32)), | 
|  | DAG.getNode(ISD::FP_TO_SINT, dl, VT, | 
|  | Node->getOperand(0)), | 
|  | DAG.getCondCode(ISD::SETGE)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | // Convert f32 / f64 to i32 / i64 / i128. | 
|  | RTLIB::Libcall LC = (Node->getOpcode() == ISD::FP_TO_SINT) ? | 
|  | RTLIB::getFPTOSINT(OVT, VT) : RTLIB::getFPTOUINT(OVT, VT); | 
|  | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpectd fp-to-int conversion!"); | 
|  | SDValue Dummy; | 
|  | Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); | 
|  | break; | 
|  | } | 
|  | case Promote: | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); | 
|  | Result = LegalizeOp(Result); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::FP_EXTEND: { | 
|  | MVT DstVT = Op.getValueType(); | 
|  | MVT SrcVT = Op.getOperand(0).getValueType(); | 
|  | if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { | 
|  | // The only other way we can lower this is to turn it into a STORE, | 
|  | // LOAD pair, targetting a temporary location (a stack slot). | 
|  | Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT, dl); | 
|  | break; | 
|  | } | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Expand: assert(0 && "Shouldn't need to expand other operators here!"); | 
|  | case Legal: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | break; | 
|  | case Promote: | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | Result = DAG.getNode(ISD::FP_EXTEND, dl, Op.getValueType(), Tmp1); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::FP_ROUND: { | 
|  | MVT DstVT = Op.getValueType(); | 
|  | MVT SrcVT = Op.getOperand(0).getValueType(); | 
|  | if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { | 
|  | if (SrcVT == MVT::ppcf128) { | 
|  | SDValue Lo; | 
|  | ExpandOp(Node->getOperand(0), Lo, Result); | 
|  | // Round it the rest of the way (e.g. to f32) if needed. | 
|  | if (DstVT!=MVT::f64) | 
|  | Result = DAG.getNode(ISD::FP_ROUND, dl, | 
|  | DstVT, Result, Op.getOperand(1)); | 
|  | break; | 
|  | } | 
|  | // The only other way we can lower this is to turn it into a STORE, | 
|  | // LOAD pair, targetting a temporary location (a stack slot). | 
|  | Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT, dl); | 
|  | break; | 
|  | } | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Expand: assert(0 && "Shouldn't need to expand other operators here!"); | 
|  | case Legal: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); | 
|  | break; | 
|  | case Promote: | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | Result = DAG.getNode(ISD::FP_ROUND, dl, Op.getValueType(), Tmp1, | 
|  | Node->getOperand(1)); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::SIGN_EXTEND: | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Expand: assert(0 && "Shouldn't need to expand other operators here!"); | 
|  | case Legal: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == | 
|  | TargetLowering::Custom) { | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | } | 
|  | break; | 
|  | case Promote: | 
|  | switch (Node->getOpcode()) { | 
|  | case ISD::ANY_EXTEND: | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Tmp1); | 
|  | break; | 
|  | case ISD::ZERO_EXTEND: | 
|  | Result = PromoteOp(Node->getOperand(0)); | 
|  | Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Result); | 
|  | Result = DAG.getZeroExtendInReg(Result, dl, | 
|  | Node->getOperand(0).getValueType()); | 
|  | break; | 
|  | case ISD::SIGN_EXTEND: | 
|  | Result = PromoteOp(Node->getOperand(0)); | 
|  | Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Result); | 
|  | Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(), | 
|  | Result, | 
|  | DAG.getValueType(Node->getOperand(0).getValueType())); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::FP_ROUND_INREG: | 
|  | case ISD::SIGN_EXTEND_INREG: { | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); | 
|  |  | 
|  | // If this operation is not supported, convert it to a shl/shr or load/store | 
|  | // pair. | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { | 
|  | default: assert(0 && "This action not supported for this op yet!"); | 
|  | case TargetLowering::Legal: | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | // If this is an integer extend and shifts are supported, do that. | 
|  | if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { | 
|  | // NOTE: we could fall back on load/store here too for targets without | 
|  | // SAR.  However, it is doubtful that any exist. | 
|  | unsigned BitsDiff = Node->getValueType(0).getSizeInBits() - | 
|  | ExtraVT.getSizeInBits(); | 
|  | SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); | 
|  | Result = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), | 
|  | Node->getOperand(0), ShiftCst); | 
|  | Result = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), | 
|  | Result, ShiftCst); | 
|  | } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { | 
|  | // The only way we can lower this is to turn it into a TRUNCSTORE, | 
|  | // EXTLOAD pair, targetting a temporary location (a stack slot). | 
|  |  | 
|  | // NOTE: there is a choice here between constantly creating new stack | 
|  | // slots and always reusing the same one.  We currently always create | 
|  | // new ones, as reuse may inhibit scheduling. | 
|  | Result = EmitStackConvert(Node->getOperand(0), ExtraVT, | 
|  | Node->getValueType(0), dl); | 
|  | } else { | 
|  | assert(0 && "Unknown op"); | 
|  | } | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::TRAMPOLINE: { | 
|  | SDValue Ops[6]; | 
|  | for (unsigned i = 0; i != 6; ++i) | 
|  | Ops[i] = LegalizeOp(Node->getOperand(i)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Ops, 6); | 
|  | // The only option for this node is to custom lower it. | 
|  | Result = TLI.LowerOperation(Result, DAG); | 
|  | assert(Result.getNode() && "Should always custom lower!"); | 
|  |  | 
|  | // Since trampoline produces two values, make sure to remember that we | 
|  | // legalized both of them. | 
|  | Tmp1 = LegalizeOp(Result.getValue(1)); | 
|  | Result = LegalizeOp(Result); | 
|  | AddLegalizedOperand(SDValue(Node, 0), Result); | 
|  | AddLegalizedOperand(SDValue(Node, 1), Tmp1); | 
|  | return Op.getResNo() ? Tmp1 : Result; | 
|  | } | 
|  | case ISD::FLT_ROUNDS_: { | 
|  | MVT VT = Node->getValueType(0); | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), VT)) { | 
|  | default: assert(0 && "This action not supported for this op yet!"); | 
|  | case TargetLowering::Custom: | 
|  | Result = TLI.LowerOperation(Op, DAG); | 
|  | if (Result.getNode()) break; | 
|  | // Fall Thru | 
|  | case TargetLowering::Legal: | 
|  | // If this operation is not supported, lower it to constant 1 | 
|  | Result = DAG.getConstant(1, VT); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::TRAP: { | 
|  | MVT VT = Node->getValueType(0); | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), VT)) { | 
|  | default: assert(0 && "This action not supported for this op yet!"); | 
|  | case TargetLowering::Legal: | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | Result = TLI.LowerOperation(Op, DAG); | 
|  | if (Result.getNode()) break; | 
|  | // Fall Thru | 
|  | case TargetLowering::Expand: | 
|  | // If this operation is not supported, lower it to 'abort()' call | 
|  | Tmp1 = LegalizeOp(Node->getOperand(0)); | 
|  | TargetLowering::ArgListTy Args; | 
|  | std::pair<SDValue, SDValue> CallResult = | 
|  | TLI.LowerCallTo(Tmp1, Type::VoidTy, | 
|  | false, false, false, false, CallingConv::C, false, | 
|  | DAG.getExternalSymbol("abort", TLI.getPointerTy()), | 
|  | Args, DAG, dl); | 
|  | Result = CallResult.second; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SADDO: | 
|  | case ISD::SSUBO: { | 
|  | MVT VT = Node->getValueType(0); | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), VT)) { | 
|  | default: assert(0 && "This action not supported for this op yet!"); | 
|  | case TargetLowering::Custom: | 
|  | Result = TLI.LowerOperation(Op, DAG); | 
|  | if (Result.getNode()) break; | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Legal: { | 
|  | SDValue LHS = LegalizeOp(Node->getOperand(0)); | 
|  | SDValue RHS = LegalizeOp(Node->getOperand(1)); | 
|  |  | 
|  | SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? | 
|  | ISD::ADD : ISD::SUB, dl, LHS.getValueType(), | 
|  | LHS, RHS); | 
|  | MVT OType = Node->getValueType(1); | 
|  |  | 
|  | SDValue Zero = DAG.getConstant(0, LHS.getValueType()); | 
|  |  | 
|  | //   LHSSign -> LHS >= 0 | 
|  | //   RHSSign -> RHS >= 0 | 
|  | //   SumSign -> Sum >= 0 | 
|  | // | 
|  | //   Add: | 
|  | //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) | 
|  | //   Sub: | 
|  | //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) | 
|  | // | 
|  | SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); | 
|  | SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); | 
|  | SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, | 
|  | Node->getOpcode() == ISD::SADDO ? | 
|  | ISD::SETEQ : ISD::SETNE); | 
|  |  | 
|  | SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); | 
|  | SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); | 
|  |  | 
|  | SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); | 
|  |  | 
|  | MVT ValueVTs[] = { LHS.getValueType(), OType }; | 
|  | SDValue Ops[] = { Sum, Cmp }; | 
|  |  | 
|  | Result = DAG.getNode(ISD::MERGE_VALUES, dl, | 
|  | DAG.getVTList(&ValueVTs[0], 2), | 
|  | &Ops[0], 2); | 
|  | SDNode *RNode = Result.getNode(); | 
|  | DAG.ReplaceAllUsesWith(Node, RNode); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ISD::UADDO: | 
|  | case ISD::USUBO: { | 
|  | MVT VT = Node->getValueType(0); | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), VT)) { | 
|  | default: assert(0 && "This action not supported for this op yet!"); | 
|  | case TargetLowering::Custom: | 
|  | Result = TLI.LowerOperation(Op, DAG); | 
|  | if (Result.getNode()) break; | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Legal: { | 
|  | SDValue LHS = LegalizeOp(Node->getOperand(0)); | 
|  | SDValue RHS = LegalizeOp(Node->getOperand(1)); | 
|  |  | 
|  | SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? | 
|  | ISD::ADD : ISD::SUB, dl, LHS.getValueType(), | 
|  | LHS, RHS); | 
|  | MVT OType = Node->getValueType(1); | 
|  | SDValue Cmp = DAG.getSetCC(dl, OType, Sum, LHS, | 
|  | Node->getOpcode () == ISD::UADDO ? | 
|  | ISD::SETULT : ISD::SETUGT); | 
|  |  | 
|  | MVT ValueVTs[] = { LHS.getValueType(), OType }; | 
|  | SDValue Ops[] = { Sum, Cmp }; | 
|  |  | 
|  | Result = DAG.getNode(ISD::MERGE_VALUES, dl, | 
|  | DAG.getVTList(&ValueVTs[0], 2), | 
|  | &Ops[0], 2); | 
|  | SDNode *RNode = Result.getNode(); | 
|  | DAG.ReplaceAllUsesWith(Node, RNode); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ISD::SMULO: | 
|  | case ISD::UMULO: { | 
|  | MVT VT = Node->getValueType(0); | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), VT)) { | 
|  | default: assert(0 && "This action is not supported at all!"); | 
|  | case TargetLowering::Custom: | 
|  | Result = TLI.LowerOperation(Op, DAG); | 
|  | if (Result.getNode()) break; | 
|  | // Fall Thru | 
|  | case TargetLowering::Legal: | 
|  | // FIXME: According to Hacker's Delight, this can be implemented in | 
|  | // target independent lowering, but it would be inefficient, since it | 
|  | // requires a division + a branch. | 
|  | assert(0 && "Target independent lowering is not supported for SMULO/UMULO!"); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | assert(Result.getValueType() == Op.getValueType() && | 
|  | "Bad legalization!"); | 
|  |  | 
|  | // Make sure that the generated code is itself legal. | 
|  | if (Result != Op) | 
|  | Result = LegalizeOp(Result); | 
|  |  | 
|  | // Note that LegalizeOp may be reentered even from single-use nodes, which | 
|  | // means that we always must cache transformed nodes. | 
|  | AddLegalizedOperand(Op, Result); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// PromoteOp - Given an operation that produces a value in an invalid type, | 
|  | /// promote it to compute the value into a larger type.  The produced value will | 
|  | /// have the correct bits for the low portion of the register, but no guarantee | 
|  | /// is made about the top bits: it may be zero, sign-extended, or garbage. | 
|  | SDValue SelectionDAGLegalize::PromoteOp(SDValue Op) { | 
|  | MVT VT = Op.getValueType(); | 
|  | MVT NVT = TLI.getTypeToTransformTo(VT); | 
|  | assert(getTypeAction(VT) == Promote && | 
|  | "Caller should expand or legalize operands that are not promotable!"); | 
|  | assert(NVT.bitsGT(VT) && NVT.isInteger() == VT.isInteger() && | 
|  | "Cannot promote to smaller type!"); | 
|  |  | 
|  | SDValue Tmp1, Tmp2, Tmp3; | 
|  | SDValue Result; | 
|  | SDNode *Node = Op.getNode(); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  |  | 
|  | DenseMap<SDValue, SDValue>::iterator I = PromotedNodes.find(Op); | 
|  | if (I != PromotedNodes.end()) return I->second; | 
|  |  | 
|  | switch (Node->getOpcode()) { | 
|  | case ISD::CopyFromReg: | 
|  | assert(0 && "CopyFromReg must be legal!"); | 
|  | default: | 
|  | #ifndef NDEBUG | 
|  | cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; | 
|  | #endif | 
|  | assert(0 && "Do not know how to promote this operator!"); | 
|  | abort(); | 
|  | case ISD::UNDEF: | 
|  | Result = DAG.getUNDEF(NVT); | 
|  | break; | 
|  | case ISD::Constant: | 
|  | if (VT != MVT::i1) | 
|  | Result = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Op); | 
|  | else | 
|  | Result = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Op); | 
|  | assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); | 
|  | break; | 
|  | case ISD::ConstantFP: | 
|  | Result = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op); | 
|  | assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); | 
|  | break; | 
|  |  | 
|  | case ISD::SETCC: { | 
|  | MVT VT0 = Node->getOperand(0).getValueType(); | 
|  | assert(isTypeLegal(TLI.getSetCCResultType(VT0)) | 
|  | && "SetCC type is not legal??"); | 
|  | Result = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(VT0), | 
|  | Node->getOperand(0), Node->getOperand(1), | 
|  | Node->getOperand(2)); | 
|  | break; | 
|  | } | 
|  | case ISD::TRUNCATE: | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Legal: | 
|  | Result = LegalizeOp(Node->getOperand(0)); | 
|  | assert(Result.getValueType().bitsGE(NVT) && | 
|  | "This truncation doesn't make sense!"); | 
|  | if (Result.getValueType().bitsGT(NVT))    // Truncate to NVT instead of VT | 
|  | Result = DAG.getNode(ISD::TRUNCATE, dl, NVT, Result); | 
|  | break; | 
|  | case Promote: | 
|  | // The truncation is not required, because we don't guarantee anything | 
|  | // about high bits anyway. | 
|  | Result = PromoteOp(Node->getOperand(0)); | 
|  | break; | 
|  | case Expand: | 
|  | ExpandOp(Node->getOperand(0), Tmp1, Tmp2); | 
|  | // Truncate the low part of the expanded value to the result type | 
|  | Result = DAG.getNode(ISD::TRUNCATE, dl, NVT, Tmp1); | 
|  | } | 
|  | break; | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); | 
|  | case Legal: | 
|  | // Input is legal?  Just do extend all the way to the larger type. | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, NVT, Node->getOperand(0)); | 
|  | break; | 
|  | case Promote: | 
|  | // Promote the reg if it's smaller. | 
|  | Result = PromoteOp(Node->getOperand(0)); | 
|  | // The high bits are not guaranteed to be anything.  Insert an extend. | 
|  | if (Node->getOpcode() == ISD::SIGN_EXTEND) | 
|  | Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Result, | 
|  | DAG.getValueType(Node->getOperand(0).getValueType())); | 
|  | else if (Node->getOpcode() == ISD::ZERO_EXTEND) | 
|  | Result = DAG.getZeroExtendInReg(Result, dl, | 
|  | Node->getOperand(0).getValueType()); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ISD::CONVERT_RNDSAT: { | 
|  | ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); | 
|  | assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU || | 
|  | CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU || | 
|  | CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) && | 
|  | "can only promote integers"); | 
|  | Result = DAG.getConvertRndSat(NVT, dl, Node->getOperand(0), | 
|  | Node->getOperand(1), Node->getOperand(2), | 
|  | Node->getOperand(3), Node->getOperand(4), | 
|  | CvtCode); | 
|  | break; | 
|  |  | 
|  | } | 
|  | case ISD::BIT_CONVERT: | 
|  | Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), | 
|  | Node->getValueType(0), dl); | 
|  | Result = PromoteOp(Result); | 
|  | break; | 
|  |  | 
|  | case ISD::FP_EXTEND: | 
|  | assert(0 && "Case not implemented.  Dynamically dead with 2 FP types!"); | 
|  | case ISD::FP_ROUND: | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Expand: assert(0 && "BUG: Cannot expand FP regs!"); | 
|  | case Promote:  assert(0 && "Unreachable with 2 FP types!"); | 
|  | case Legal: | 
|  | if (Node->getConstantOperandVal(1) == 0) { | 
|  | // Input is legal?  Do an FP_ROUND_INREG. | 
|  | Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Node->getOperand(0), | 
|  | DAG.getValueType(VT)); | 
|  | } else { | 
|  | // Just remove the truncate, it isn't affecting the value. | 
|  | Result = DAG.getNode(ISD::FP_ROUND, dl, NVT, Node->getOperand(0), | 
|  | Node->getOperand(1)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Legal: | 
|  | // No extra round required here. | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, NVT, Node->getOperand(0)); | 
|  | break; | 
|  |  | 
|  | case Promote: | 
|  | Result = PromoteOp(Node->getOperand(0)); | 
|  | if (Node->getOpcode() == ISD::SINT_TO_FP) | 
|  | Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(), | 
|  | Result, | 
|  | DAG.getValueType(Node->getOperand(0).getValueType())); | 
|  | else | 
|  | Result = DAG.getZeroExtendInReg(Result, dl, | 
|  | Node->getOperand(0).getValueType()); | 
|  | // No extra round required here. | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, NVT, Result); | 
|  | break; | 
|  | case Expand: | 
|  | Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, | 
|  | Node->getOperand(0), dl); | 
|  | // Round if we cannot tolerate excess precision. | 
|  | if (NoExcessFPPrecision) | 
|  | Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, | 
|  | DAG.getValueType(VT)); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | Result = PromoteOp(Node->getOperand(0)); | 
|  | Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Result, | 
|  | Node->getOperand(1)); | 
|  | break; | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Legal: | 
|  | case Expand: | 
|  | Tmp1 = Node->getOperand(0); | 
|  | break; | 
|  | case Promote: | 
|  | // The input result is prerounded, so we don't have to do anything | 
|  | // special. | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | break; | 
|  | } | 
|  | // If we're promoting a UINT to a larger size, check to see if the new node | 
|  | // will be legal.  If it isn't, check to see if FP_TO_SINT is legal, since | 
|  | // we can use that instead.  This allows us to generate better code for | 
|  | // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not | 
|  | // legal, such as PowerPC. | 
|  | if (Node->getOpcode() == ISD::FP_TO_UINT && | 
|  | !TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NVT) && | 
|  | (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT) || | 
|  | TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ | 
|  | Result = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Tmp1); | 
|  | } else { | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::FABS: | 
|  | case ISD::FNEG: | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | assert(Tmp1.getValueType() == NVT); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); | 
|  | // NOTE: we do not have to do any extra rounding here for | 
|  | // NoExcessFPPrecision, because we know the input will have the appropriate | 
|  | // precision, and these operations don't modify precision at all. | 
|  | break; | 
|  |  | 
|  | case ISD::FLOG: | 
|  | case ISD::FLOG2: | 
|  | case ISD::FLOG10: | 
|  | case ISD::FEXP: | 
|  | case ISD::FEXP2: | 
|  | case ISD::FSQRT: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FTRUNC: | 
|  | case ISD::FFLOOR: | 
|  | case ISD::FCEIL: | 
|  | case ISD::FRINT: | 
|  | case ISD::FNEARBYINT: | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | assert(Tmp1.getValueType() == NVT); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); | 
|  | if (NoExcessFPPrecision) | 
|  | Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, | 
|  | DAG.getValueType(VT)); | 
|  | break; | 
|  |  | 
|  | case ISD::FPOW: | 
|  | case ISD::FPOWI: { | 
|  | // Promote f32 pow(i) to f64 pow(i).  Note that this could insert a libcall | 
|  | // directly as well, which may be better. | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | Tmp2 = Node->getOperand(1); | 
|  | if (Node->getOpcode() == ISD::FPOW) | 
|  | Tmp2 = PromoteOp(Tmp2); | 
|  | assert(Tmp1.getValueType() == NVT); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); | 
|  | if (NoExcessFPPrecision) | 
|  | Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, | 
|  | DAG.getValueType(VT)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::ATOMIC_CMP_SWAP: { | 
|  | AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node); | 
|  | Tmp2 = PromoteOp(Node->getOperand(2)); | 
|  | Tmp3 = PromoteOp(Node->getOperand(3)); | 
|  | Result = DAG.getAtomic(Node->getOpcode(), dl, AtomNode->getMemoryVT(), | 
|  | AtomNode->getChain(), | 
|  | AtomNode->getBasePtr(), Tmp2, Tmp3, | 
|  | AtomNode->getSrcValue(), | 
|  | AtomNode->getAlignment()); | 
|  | // Remember that we legalized the chain. | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); | 
|  | break; | 
|  | } | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | case ISD::ATOMIC_SWAP: { | 
|  | AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node); | 
|  | Tmp2 = PromoteOp(Node->getOperand(2)); | 
|  | Result = DAG.getAtomic(Node->getOpcode(), dl, AtomNode->getMemoryVT(), | 
|  | AtomNode->getChain(), | 
|  | AtomNode->getBasePtr(), Tmp2, | 
|  | AtomNode->getSrcValue(), | 
|  | AtomNode->getAlignment()); | 
|  | // Remember that we legalized the chain. | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | // The input may have strange things in the top bits of the registers, but | 
|  | // these operations don't care.  They may have weird bits going out, but | 
|  | // that too is okay if they are integer operations. | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | Tmp2 = PromoteOp(Node->getOperand(1)); | 
|  | assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); | 
|  | break; | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | Tmp2 = PromoteOp(Node->getOperand(1)); | 
|  | assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); | 
|  |  | 
|  | // Floating point operations will give excess precision that we may not be | 
|  | // able to tolerate.  If we DO allow excess precision, just leave it, | 
|  | // otherwise excise it. | 
|  | // FIXME: Why would we need to round FP ops more than integer ones? | 
|  | //     Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) | 
|  | if (NoExcessFPPrecision) | 
|  | Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, | 
|  | DAG.getValueType(VT)); | 
|  | break; | 
|  |  | 
|  | case ISD::SDIV: | 
|  | case ISD::SREM: | 
|  | // These operators require that their input be sign extended. | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | Tmp2 = PromoteOp(Node->getOperand(1)); | 
|  | if (NVT.isInteger()) { | 
|  | Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1, | 
|  | DAG.getValueType(VT)); | 
|  | Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp2, | 
|  | DAG.getValueType(VT)); | 
|  | } | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); | 
|  |  | 
|  | // Perform FP_ROUND: this is probably overly pessimistic. | 
|  | if (NVT.isFloatingPoint() && NoExcessFPPrecision) | 
|  | Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, | 
|  | DAG.getValueType(VT)); | 
|  | break; | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | case ISD::FCOPYSIGN: | 
|  | // These operators require that their input be fp extended. | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Expand: assert(0 && "not implemented"); | 
|  | case Legal:   Tmp1 = LegalizeOp(Node->getOperand(0)); break; | 
|  | case Promote: Tmp1 = PromoteOp(Node->getOperand(0));  break; | 
|  | } | 
|  | switch (getTypeAction(Node->getOperand(1).getValueType())) { | 
|  | case Expand: assert(0 && "not implemented"); | 
|  | case Legal:   Tmp2 = LegalizeOp(Node->getOperand(1)); break; | 
|  | case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; | 
|  | } | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); | 
|  |  | 
|  | // Perform FP_ROUND: this is probably overly pessimistic. | 
|  | if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) | 
|  | Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, | 
|  | DAG.getValueType(VT)); | 
|  | break; | 
|  |  | 
|  | case ISD::UDIV: | 
|  | case ISD::UREM: | 
|  | // These operators require that their input be zero extended. | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | Tmp2 = PromoteOp(Node->getOperand(1)); | 
|  | assert(NVT.isInteger() && "Operators don't apply to FP!"); | 
|  | Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT); | 
|  | Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, VT); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); | 
|  | break; | 
|  |  | 
|  | case ISD::SHL: | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | Result = DAG.getNode(ISD::SHL, dl, NVT, Tmp1, Node->getOperand(1)); | 
|  | break; | 
|  | case ISD::SRA: | 
|  | // The input value must be properly sign extended. | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1, | 
|  | DAG.getValueType(VT)); | 
|  | Result = DAG.getNode(ISD::SRA, dl, NVT, Tmp1, Node->getOperand(1)); | 
|  | break; | 
|  | case ISD::SRL: | 
|  | // The input value must be properly zero extended. | 
|  | Tmp1 = PromoteOp(Node->getOperand(0)); | 
|  | Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT); | 
|  | Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, Node->getOperand(1)); | 
|  | break; | 
|  |  | 
|  | case ISD::VAARG: | 
|  | Tmp1 = Node->getOperand(0);   // Get the chain. | 
|  | Tmp2 = Node->getOperand(1);   // Get the pointer. | 
|  | if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { | 
|  | Tmp3 = DAG.getVAArg(VT, dl, Tmp1, Tmp2, Node->getOperand(2)); | 
|  | Result = TLI.LowerOperation(Tmp3, DAG); | 
|  | } else { | 
|  | const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); | 
|  | SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0); | 
|  | // Increment the pointer, VAList, to the next vaarg | 
|  | Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, | 
|  | DAG.getConstant(VT.getSizeInBits()/8, | 
|  | TLI.getPointerTy())); | 
|  | // Store the incremented VAList to the legalized pointer | 
|  | Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0); | 
|  | // Load the actual argument out of the pointer VAList | 
|  | Result = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Tmp3, VAList, NULL, 0, VT); | 
|  | } | 
|  | // Remember that we legalized the chain. | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); | 
|  | break; | 
|  |  | 
|  | case ISD::LOAD: { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Node); | 
|  | ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) | 
|  | ? ISD::EXTLOAD : LD->getExtensionType(); | 
|  | Result = DAG.getExtLoad(ExtType, dl, NVT, | 
|  | LD->getChain(), LD->getBasePtr(), | 
|  | LD->getSrcValue(), LD->getSrcValueOffset(), | 
|  | LD->getMemoryVT(), | 
|  | LD->isVolatile(), | 
|  | LD->getAlignment()); | 
|  | // Remember that we legalized the chain. | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT: { | 
|  | Tmp2 = PromoteOp(Node->getOperand(1));   // Legalize the op0 | 
|  | Tmp3 = PromoteOp(Node->getOperand(2));   // Legalize the op1 | 
|  |  | 
|  | MVT VT2 = Tmp2.getValueType(); | 
|  | assert(VT2 == Tmp3.getValueType() | 
|  | && "PromoteOp SELECT: Operands 2 and 3 ValueTypes don't match"); | 
|  | // Ensure that the resulting node is at least the same size as the operands' | 
|  | // value types, because we cannot assume that TLI.getSetCCValueType() is | 
|  | // constant. | 
|  | Result = DAG.getNode(ISD::SELECT, dl, VT2, Node->getOperand(0), Tmp2, Tmp3); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT_CC: | 
|  | Tmp2 = PromoteOp(Node->getOperand(2));   // True | 
|  | Tmp3 = PromoteOp(Node->getOperand(3));   // False | 
|  | Result = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0), | 
|  | Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); | 
|  | break; | 
|  | case ISD::BSWAP: | 
|  | Tmp1 = Node->getOperand(0); | 
|  | Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1); | 
|  | Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); | 
|  | Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, | 
|  | DAG.getConstant(NVT.getSizeInBits() - | 
|  | VT.getSizeInBits(), | 
|  | TLI.getShiftAmountTy())); | 
|  | break; | 
|  | case ISD::CTPOP: | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTLZ: | 
|  | // Zero extend the argument | 
|  | Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); | 
|  | // Perform the larger operation, then subtract if needed. | 
|  | Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); | 
|  | switch(Node->getOpcode()) { | 
|  | case ISD::CTPOP: | 
|  | Result = Tmp1; | 
|  | break; | 
|  | case ISD::CTTZ: | 
|  | // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) | 
|  | Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1, | 
|  | DAG.getConstant(NVT.getSizeInBits(), NVT), | 
|  | ISD::SETEQ); | 
|  | Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, | 
|  | DAG.getConstant(VT.getSizeInBits(), NVT), Tmp1); | 
|  | break; | 
|  | case ISD::CTLZ: | 
|  | //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) | 
|  | Result = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, | 
|  | DAG.getConstant(NVT.getSizeInBits() - | 
|  | VT.getSizeInBits(), NVT)); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ISD::EXTRACT_SUBVECTOR: | 
|  | Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); | 
|  | break; | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(Result.getNode() && "Didn't set a result!"); | 
|  |  | 
|  | // Make sure the result is itself legal. | 
|  | Result = LegalizeOp(Result); | 
|  |  | 
|  | // Remember that we promoted this! | 
|  | AddPromotedOperand(Op, Result); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into | 
|  | /// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, | 
|  | /// based on the vector type. The return type of this matches the element type | 
|  | /// of the vector, which may not be legal for the target. | 
|  | SDValue SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDValue Op) { | 
|  | // We know that operand #0 is the Vec vector.  If the index is a constant | 
|  | // or if the invec is a supported hardware type, we can use it.  Otherwise, | 
|  | // lower to a store then an indexed load. | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue Idx = Op.getOperand(1); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | MVT TVT = Vec.getValueType(); | 
|  | unsigned NumElems = TVT.getVectorNumElements(); | 
|  |  | 
|  | switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { | 
|  | default: assert(0 && "This action is not supported yet!"); | 
|  | case TargetLowering::Custom: { | 
|  | Vec = LegalizeOp(Vec); | 
|  | Op = DAG.UpdateNodeOperands(Op, Vec, Idx); | 
|  | SDValue Tmp3 = TLI.LowerOperation(Op, DAG); | 
|  | if (Tmp3.getNode()) | 
|  | return Tmp3; | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Legal: | 
|  | if (isTypeLegal(TVT)) { | 
|  | Vec = LegalizeOp(Vec); | 
|  | Op = DAG.UpdateNodeOperands(Op, Vec, Idx); | 
|  | return Op; | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Promote: | 
|  | assert(TVT.isVector() && "not vector type"); | 
|  | // fall thru to expand since vectors are by default are promote | 
|  | case TargetLowering::Expand: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (NumElems == 1) { | 
|  | // This must be an access of the only element.  Return it. | 
|  | Op = ScalarizeVectorOp(Vec); | 
|  | } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { | 
|  | unsigned NumLoElts =  1 << Log2_32(NumElems-1); | 
|  | ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); | 
|  | SDValue Lo, Hi; | 
|  | SplitVectorOp(Vec, Lo, Hi); | 
|  | if (CIdx->getZExtValue() < NumLoElts) { | 
|  | Vec = Lo; | 
|  | } else { | 
|  | Vec = Hi; | 
|  | Idx = DAG.getConstant(CIdx->getZExtValue() - NumLoElts, | 
|  | Idx.getValueType()); | 
|  | } | 
|  |  | 
|  | // It's now an extract from the appropriate high or low part.  Recurse. | 
|  | Op = DAG.UpdateNodeOperands(Op, Vec, Idx); | 
|  | Op = ExpandEXTRACT_VECTOR_ELT(Op); | 
|  | } else { | 
|  | // Store the value to a temporary stack slot, then LOAD the scalar | 
|  | // element back out. | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); | 
|  | SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0); | 
|  |  | 
|  | // Add the offset to the index. | 
|  | unsigned EltSize = Op.getValueType().getSizeInBits()/8; | 
|  | Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, | 
|  | DAG.getConstant(EltSize, Idx.getValueType())); | 
|  |  | 
|  | if (Idx.getValueType().bitsGT(TLI.getPointerTy())) | 
|  | Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); | 
|  | else | 
|  | Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); | 
|  |  | 
|  | StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); | 
|  |  | 
|  | Op = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | /// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation.  For now | 
|  | /// we assume the operation can be split if it is not already legal. | 
|  | SDValue SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDValue Op) { | 
|  | // We know that operand #0 is the Vec vector.  For now we assume the index | 
|  | // is a constant and that the extracted result is a supported hardware type. | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue Idx = LegalizeOp(Op.getOperand(1)); | 
|  |  | 
|  | unsigned NumElems = Vec.getValueType().getVectorNumElements(); | 
|  |  | 
|  | if (NumElems == Op.getValueType().getVectorNumElements()) { | 
|  | // This must be an access of the desired vector length.  Return it. | 
|  | return Vec; | 
|  | } | 
|  |  | 
|  | ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); | 
|  | SDValue Lo, Hi; | 
|  | SplitVectorOp(Vec, Lo, Hi); | 
|  | if (CIdx->getZExtValue() < NumElems/2) { | 
|  | Vec = Lo; | 
|  | } else { | 
|  | Vec = Hi; | 
|  | Idx = DAG.getConstant(CIdx->getZExtValue() - NumElems/2, | 
|  | Idx.getValueType()); | 
|  | } | 
|  |  | 
|  | // It's now an extract from the appropriate high or low part.  Recurse. | 
|  | Op = DAG.UpdateNodeOperands(Op, Vec, Idx); | 
|  | return ExpandEXTRACT_SUBVECTOR(Op); | 
|  | } | 
|  |  | 
|  | /// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC | 
|  | /// with condition CC on the current target.  This usually involves legalizing | 
|  | /// or promoting the arguments.  In the case where LHS and RHS must be expanded, | 
|  | /// there may be no choice but to create a new SetCC node to represent the | 
|  | /// legalized value of setcc lhs, rhs.  In this case, the value is returned in | 
|  | /// LHS, and the SDValue returned in RHS has a nil SDNode value. | 
|  | void SelectionDAGLegalize::LegalizeSetCCOperands(SDValue &LHS, | 
|  | SDValue &RHS, | 
|  | SDValue &CC, | 
|  | DebugLoc dl) { | 
|  | SDValue Tmp1, Tmp2, Tmp3, Result; | 
|  |  | 
|  | switch (getTypeAction(LHS.getValueType())) { | 
|  | case Legal: | 
|  | Tmp1 = LegalizeOp(LHS);   // LHS | 
|  | Tmp2 = LegalizeOp(RHS);   // RHS | 
|  | break; | 
|  | case Promote: | 
|  | Tmp1 = PromoteOp(LHS);   // LHS | 
|  | Tmp2 = PromoteOp(RHS);   // RHS | 
|  |  | 
|  | // If this is an FP compare, the operands have already been extended. | 
|  | if (LHS.getValueType().isInteger()) { | 
|  | MVT VT = LHS.getValueType(); | 
|  | MVT NVT = TLI.getTypeToTransformTo(VT); | 
|  |  | 
|  | // Otherwise, we have to insert explicit sign or zero extends.  Note | 
|  | // that we could insert sign extends for ALL conditions, but zero extend | 
|  | // is cheaper on many machines (an AND instead of two shifts), so prefer | 
|  | // it. | 
|  | switch (cast<CondCodeSDNode>(CC)->get()) { | 
|  | default: assert(0 && "Unknown integer comparison!"); | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETNE: | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETULE: | 
|  | case ISD::SETULT: | 
|  | // ALL of these operations will work if we either sign or zero extend | 
|  | // the operands (including the unsigned comparisons!).  Zero extend is | 
|  | // usually a simpler/cheaper operation, so prefer it. | 
|  | Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT); | 
|  | Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, VT); | 
|  | break; | 
|  | case ISD::SETGE: | 
|  | case ISD::SETGT: | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1, | 
|  | DAG.getValueType(VT)); | 
|  | Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp2, | 
|  | DAG.getValueType(VT)); | 
|  | Tmp1 = LegalizeOp(Tmp1); // Relegalize new nodes. | 
|  | Tmp2 = LegalizeOp(Tmp2); // Relegalize new nodes. | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Expand: { | 
|  | MVT VT = LHS.getValueType(); | 
|  | if (VT == MVT::f32 || VT == MVT::f64) { | 
|  | // Expand into one or more soft-fp libcall(s). | 
|  | RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; | 
|  | switch (cast<CondCodeSDNode>(CC)->get()) { | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETOEQ: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; | 
|  | break; | 
|  | case ISD::SETNE: | 
|  | case ISD::SETUNE: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; | 
|  | break; | 
|  | case ISD::SETGE: | 
|  | case ISD::SETOGE: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; | 
|  | break; | 
|  | case ISD::SETLT: | 
|  | case ISD::SETOLT: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; | 
|  | break; | 
|  | case ISD::SETLE: | 
|  | case ISD::SETOLE: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; | 
|  | break; | 
|  | case ISD::SETGT: | 
|  | case ISD::SETOGT: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; | 
|  | break; | 
|  | case ISD::SETUO: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; | 
|  | break; | 
|  | case ISD::SETO: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; | 
|  | break; | 
|  | default: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; | 
|  | switch (cast<CondCodeSDNode>(CC)->get()) { | 
|  | case ISD::SETONE: | 
|  | // SETONE = SETOLT | SETOGT | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; | 
|  | // Fallthrough | 
|  | case ISD::SETUGT: | 
|  | LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; | 
|  | break; | 
|  | case ISD::SETUGE: | 
|  | LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; | 
|  | break; | 
|  | case ISD::SETULT: | 
|  | LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; | 
|  | break; | 
|  | case ISD::SETULE: | 
|  | LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; | 
|  | break; | 
|  | case ISD::SETUEQ: | 
|  | LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; | 
|  | break; | 
|  | default: assert(0 && "Unsupported FP setcc!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Dummy; | 
|  | SDValue Ops[2] = { LHS, RHS }; | 
|  | Tmp1 = ExpandLibCall(LC1, DAG.getMergeValues(Ops, 2, dl).getNode(), | 
|  | false /*sign irrelevant*/, Dummy); | 
|  | Tmp2 = DAG.getConstant(0, MVT::i32); | 
|  | CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); | 
|  | if (LC2 != RTLIB::UNKNOWN_LIBCALL) { | 
|  | Tmp1 = DAG.getNode(ISD::SETCC, dl, | 
|  | TLI.getSetCCResultType(Tmp1.getValueType()), | 
|  | Tmp1, Tmp2, CC); | 
|  | LHS = ExpandLibCall(LC2, DAG.getMergeValues(Ops, 2, dl).getNode(), | 
|  | false /*sign irrelevant*/, Dummy); | 
|  | Tmp2 = DAG.getNode(ISD::SETCC, dl, | 
|  | TLI.getSetCCResultType(LHS.getValueType()), LHS, | 
|  | Tmp2, DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); | 
|  | Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp2); | 
|  | Tmp2 = SDValue(); | 
|  | } | 
|  | LHS = LegalizeOp(Tmp1); | 
|  | RHS = Tmp2; | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue LHSLo, LHSHi, RHSLo, RHSHi; | 
|  | ExpandOp(LHS, LHSLo, LHSHi); | 
|  | ExpandOp(RHS, RHSLo, RHSHi); | 
|  | ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); | 
|  |  | 
|  | if (VT==MVT::ppcf128) { | 
|  | // FIXME:  This generated code sucks.  We want to generate | 
|  | //         FCMPU crN, hi1, hi2 | 
|  | //         BNE crN, L: | 
|  | //         FCMPU crN, lo1, lo2 | 
|  | // The following can be improved, but not that much. | 
|  | Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), | 
|  | LHSHi, RHSHi, ISD::SETOEQ); | 
|  | Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()), | 
|  | LHSLo, RHSLo, CCCode); | 
|  | Tmp3 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2); | 
|  | Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), | 
|  | LHSHi, RHSHi, ISD::SETUNE); | 
|  | Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), | 
|  | LHSHi, RHSHi, CCCode); | 
|  | Tmp1 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2); | 
|  | Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp3); | 
|  | Tmp2 = SDValue(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (CCCode) { | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETNE: | 
|  | if (RHSLo == RHSHi) | 
|  | if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) | 
|  | if (RHSCST->isAllOnesValue()) { | 
|  | // Comparison to -1. | 
|  | Tmp1 = DAG.getNode(ISD::AND, dl,LHSLo.getValueType(), LHSLo, LHSHi); | 
|  | Tmp2 = RHSLo; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Tmp1 = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo); | 
|  | Tmp2 = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi); | 
|  | Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp2); | 
|  | Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); | 
|  | break; | 
|  | default: | 
|  | // If this is a comparison of the sign bit, just look at the top part. | 
|  | // X > -1,  x < 0 | 
|  | if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) | 
|  | if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && | 
|  | CST->isNullValue()) ||               // X < 0 | 
|  | (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && | 
|  | CST->isAllOnesValue())) {            // X > -1 | 
|  | Tmp1 = LHSHi; | 
|  | Tmp2 = RHSHi; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // FIXME: This generated code sucks. | 
|  | ISD::CondCode LowCC; | 
|  | switch (CCCode) { | 
|  | default: assert(0 && "Unknown integer setcc!"); | 
|  | case ISD::SETLT: | 
|  | case ISD::SETULT: LowCC = ISD::SETULT; break; | 
|  | case ISD::SETGT: | 
|  | case ISD::SETUGT: LowCC = ISD::SETUGT; break; | 
|  | case ISD::SETLE: | 
|  | case ISD::SETULE: LowCC = ISD::SETULE; break; | 
|  | case ISD::SETGE: | 
|  | case ISD::SETUGE: LowCC = ISD::SETUGE; break; | 
|  | } | 
|  |  | 
|  | // Tmp1 = lo(op1) < lo(op2)   // Always unsigned comparison | 
|  | // Tmp2 = hi(op1) < hi(op2)   // Signedness depends on operands | 
|  | // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; | 
|  |  | 
|  | // NOTE: on targets without efficient SELECT of bools, we can always use | 
|  | // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) | 
|  | TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); | 
|  | Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()), | 
|  | LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl); | 
|  | if (!Tmp1.getNode()) | 
|  | Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()), | 
|  | LHSLo, RHSLo, LowCC); | 
|  | Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()), | 
|  | LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl); | 
|  | if (!Tmp2.getNode()) | 
|  | Tmp2 = DAG.getNode(ISD::SETCC, dl, | 
|  | TLI.getSetCCResultType(LHSHi.getValueType()), | 
|  | LHSHi, RHSHi, CC); | 
|  |  | 
|  | ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode()); | 
|  | ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode()); | 
|  | if ((Tmp1C && Tmp1C->isNullValue()) || | 
|  | (Tmp2C && Tmp2C->isNullValue() && | 
|  | (CCCode == ISD::SETLE || CCCode == ISD::SETGE || | 
|  | CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || | 
|  | (Tmp2C && Tmp2C->getAPIntValue() == 1 && | 
|  | (CCCode == ISD::SETLT || CCCode == ISD::SETGT || | 
|  | CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { | 
|  | // low part is known false, returns high part. | 
|  | // For LE / GE, if high part is known false, ignore the low part. | 
|  | // For LT / GT, if high part is known true, ignore the low part. | 
|  | Tmp1 = Tmp2; | 
|  | Tmp2 = SDValue(); | 
|  | } else { | 
|  | Result = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()), | 
|  | LHSHi, RHSHi, ISD::SETEQ, false, | 
|  | DagCombineInfo, dl); | 
|  | if (!Result.getNode()) | 
|  | Result=DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), | 
|  | LHSHi, RHSHi, ISD::SETEQ); | 
|  | Result = LegalizeOp(DAG.getNode(ISD::SELECT, dl, Tmp1.getValueType(), | 
|  | Result, Tmp1, Tmp2)); | 
|  | Tmp1 = Result; | 
|  | Tmp2 = SDValue(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | LHS = Tmp1; | 
|  | RHS = Tmp2; | 
|  | } | 
|  |  | 
|  | /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and | 
|  | /// condition code CC on the current target. This routine assumes LHS and rHS | 
|  | /// have already been legalized by LegalizeSetCCOperands. It expands SETCC with | 
|  | /// illegal condition code into AND / OR of multiple SETCC values. | 
|  | void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT, | 
|  | SDValue &LHS, SDValue &RHS, | 
|  | SDValue &CC, | 
|  | DebugLoc dl) { | 
|  | MVT OpVT = LHS.getValueType(); | 
|  | ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); | 
|  | switch (TLI.getCondCodeAction(CCCode, OpVT)) { | 
|  | default: assert(0 && "Unknown condition code action!"); | 
|  | case TargetLowering::Legal: | 
|  | // Nothing to do. | 
|  | break; | 
|  | case TargetLowering::Expand: { | 
|  | ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; | 
|  | unsigned Opc = 0; | 
|  | switch (CCCode) { | 
|  | default: assert(0 && "Don't know how to expand this condition!"); abort(); | 
|  | case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break; | 
|  | case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break; | 
|  | case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break; | 
|  | case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break; | 
|  | case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break; | 
|  | case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break; | 
|  | case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break; | 
|  | case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break; | 
|  | case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break; | 
|  | case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break; | 
|  | case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break; | 
|  | case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break; | 
|  | // FIXME: Implement more expansions. | 
|  | } | 
|  |  | 
|  | SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); | 
|  | SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); | 
|  | LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); | 
|  | RHS = SDValue(); | 
|  | CC  = SDValue(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EmitStackConvert - Emit a store/load combination to the stack.  This stores | 
|  | /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does | 
|  | /// a load from the stack slot to DestVT, extending it if needed. | 
|  | /// The resultant code need not be legal. | 
|  | SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, | 
|  | MVT SlotVT, | 
|  | MVT DestVT, | 
|  | DebugLoc dl) { | 
|  | // Create the stack frame object. | 
|  | unsigned SrcAlign = | 
|  | TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType(). | 
|  | getTypeForMVT()); | 
|  | SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); | 
|  |  | 
|  | FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); | 
|  | int SPFI = StackPtrFI->getIndex(); | 
|  | const Value *SV = PseudoSourceValue::getFixedStack(SPFI); | 
|  |  | 
|  | unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); | 
|  | unsigned SlotSize = SlotVT.getSizeInBits(); | 
|  | unsigned DestSize = DestVT.getSizeInBits(); | 
|  | unsigned DestAlign = | 
|  | TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT()); | 
|  |  | 
|  | // Emit a store to the stack slot.  Use a truncstore if the input value is | 
|  | // later than DestVT. | 
|  | SDValue Store; | 
|  |  | 
|  | if (SrcSize > SlotSize) | 
|  | Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, | 
|  | SV, 0, SlotVT, false, SrcAlign); | 
|  | else { | 
|  | assert(SrcSize == SlotSize && "Invalid store"); | 
|  | Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, | 
|  | SV, 0, false, SrcAlign); | 
|  | } | 
|  |  | 
|  | // Result is a load from the stack slot. | 
|  | if (SlotSize == DestSize) | 
|  | return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign); | 
|  |  | 
|  | assert(SlotSize < DestSize && "Unknown extension!"); | 
|  | return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT, | 
|  | false, DestAlign); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | // Create a vector sized/aligned stack slot, store the value to element #0, | 
|  | // then load the whole vector back out. | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); | 
|  |  | 
|  | FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); | 
|  | int SPFI = StackPtrFI->getIndex(); | 
|  |  | 
|  | SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), | 
|  | StackPtr, | 
|  | PseudoSourceValue::getFixedStack(SPFI), 0, | 
|  | Node->getValueType(0).getVectorElementType()); | 
|  | return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, | 
|  | PseudoSourceValue::getFixedStack(SPFI), 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't | 
|  | /// support the operation, but do support the resultant vector type. | 
|  | SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { | 
|  | unsigned NumElems = Node->getNumOperands(); | 
|  | SDValue SplatValue = Node->getOperand(0); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | MVT VT = Node->getValueType(0); | 
|  | MVT OpVT = SplatValue.getValueType(); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  |  | 
|  | // If the only non-undef value is the low element, turn this into a | 
|  | // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X. | 
|  | bool isOnlyLowElement = true; | 
|  |  | 
|  | // FIXME: it would be far nicer to change this into map<SDValue,uint64_t> | 
|  | // and use a bitmask instead of a list of elements. | 
|  | // FIXME: this doesn't treat <0, u, 0, u> for example, as a splat. | 
|  | std::map<SDValue, std::vector<unsigned> > Values; | 
|  | Values[SplatValue].push_back(0); | 
|  | bool isConstant = true; | 
|  | if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && | 
|  | SplatValue.getOpcode() != ISD::UNDEF) | 
|  | isConstant = false; | 
|  |  | 
|  | for (unsigned i = 1; i < NumElems; ++i) { | 
|  | SDValue V = Node->getOperand(i); | 
|  | Values[V].push_back(i); | 
|  | if (V.getOpcode() != ISD::UNDEF) | 
|  | isOnlyLowElement = false; | 
|  | if (SplatValue != V) | 
|  | SplatValue = SDValue(0, 0); | 
|  |  | 
|  | // If this isn't a constant element or an undef, we can't use a constant | 
|  | // pool load. | 
|  | if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && | 
|  | V.getOpcode() != ISD::UNDEF) | 
|  | isConstant = false; | 
|  | } | 
|  |  | 
|  | if (isOnlyLowElement) { | 
|  | // If the low element is an undef too, then this whole things is an undef. | 
|  | if (Node->getOperand(0).getOpcode() == ISD::UNDEF) | 
|  | return DAG.getUNDEF(VT); | 
|  | // Otherwise, turn this into a scalar_to_vector node. | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); | 
|  | } | 
|  |  | 
|  | // If all elements are constants, create a load from the constant pool. | 
|  | if (isConstant) { | 
|  | std::vector<Constant*> CV; | 
|  | for (unsigned i = 0, e = NumElems; i != e; ++i) { | 
|  | if (ConstantFPSDNode *V = | 
|  | dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { | 
|  | CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); | 
|  | } else if (ConstantSDNode *V = | 
|  | dyn_cast<ConstantSDNode>(Node->getOperand(i))) { | 
|  | CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); | 
|  | } else { | 
|  | assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); | 
|  | const Type *OpNTy = OpVT.getTypeForMVT(); | 
|  | CV.push_back(UndefValue::get(OpNTy)); | 
|  | } | 
|  | } | 
|  | Constant *CP = ConstantVector::get(CV); | 
|  | SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  | return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | PseudoSourceValue::getConstantPool(), 0, | 
|  | false, Alignment); | 
|  | } | 
|  |  | 
|  | if (SplatValue.getNode()) {   // Splat of one value? | 
|  | // Build the shuffle constant vector: <0, 0, 0, 0> | 
|  | SmallVector<int, 8> ZeroVec(NumElems, 0); | 
|  |  | 
|  | // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. | 
|  | if (TLI.isShuffleMaskLegal(ZeroVec, Node->getValueType(0))) { | 
|  | // Get the splatted value into the low element of a vector register. | 
|  | SDValue LowValVec = | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, SplatValue); | 
|  |  | 
|  | // Return shuffle(LowValVec, undef, <0,0,0,0>) | 
|  | return DAG.getVectorShuffle(VT, dl, LowValVec, DAG.getUNDEF(VT), | 
|  | &ZeroVec[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there are only two unique elements, we may be able to turn this into a | 
|  | // vector shuffle. | 
|  | if (Values.size() == 2) { | 
|  | // Get the two values in deterministic order. | 
|  | SDValue Val1 = Node->getOperand(1); | 
|  | SDValue Val2; | 
|  | std::map<SDValue, std::vector<unsigned> >::iterator MI = Values.begin(); | 
|  | if (MI->first != Val1) | 
|  | Val2 = MI->first; | 
|  | else | 
|  | Val2 = (++MI)->first; | 
|  |  | 
|  | // If Val1 is an undef, make sure it ends up as Val2, to ensure that our | 
|  | // vector shuffle has the undef vector on the RHS. | 
|  | if (Val1.getOpcode() == ISD::UNDEF) | 
|  | std::swap(Val1, Val2); | 
|  |  | 
|  | // Build the shuffle constant vector: e.g. <0, 4, 0, 4> | 
|  | SmallVector<int, 8> ShuffleMask(NumElems, -1); | 
|  |  | 
|  | // Set elements of the shuffle mask for Val1. | 
|  | std::vector<unsigned> &Val1Elts = Values[Val1]; | 
|  | for (unsigned i = 0, e = Val1Elts.size(); i != e; ++i) | 
|  | ShuffleMask[Val1Elts[i]] = 0; | 
|  |  | 
|  | // Set elements of the shuffle mask for Val2. | 
|  | std::vector<unsigned> &Val2Elts = Values[Val2]; | 
|  | for (unsigned i = 0, e = Val2Elts.size(); i != e; ++i) | 
|  | if (Val2.getOpcode() != ISD::UNDEF) | 
|  | ShuffleMask[Val2Elts[i]] = NumElems; | 
|  |  | 
|  | // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::SCALAR_TO_VECTOR, VT) && | 
|  | TLI.isShuffleMaskLegal(ShuffleMask, VT)) { | 
|  | Val1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val1); | 
|  | Val2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val2); | 
|  | return DAG.getVectorShuffle(VT, dl, Val1, Val2, &ShuffleMask[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we can't handle this case efficiently.  Allocate a sufficiently | 
|  | // aligned object on the stack, store each element into it, then load | 
|  | // the result as a vector. | 
|  | // Create the stack frame object. | 
|  | SDValue FIPtr = DAG.CreateStackTemporary(VT); | 
|  | int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); | 
|  | const Value *SV = PseudoSourceValue::getFixedStack(FI); | 
|  |  | 
|  | // Emit a store of each element to the stack slot. | 
|  | SmallVector<SDValue, 8> Stores; | 
|  | unsigned TypeByteSize = OpVT.getSizeInBits() / 8; | 
|  | // Store (in the right endianness) the elements to memory. | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { | 
|  | // Ignore undef elements. | 
|  | if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  |  | 
|  | unsigned Offset = TypeByteSize*i; | 
|  |  | 
|  | SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); | 
|  | Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); | 
|  |  | 
|  | Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), | 
|  | Idx, SV, Offset)); | 
|  | } | 
|  |  | 
|  | SDValue StoreChain; | 
|  | if (!Stores.empty())    // Not all undef elements? | 
|  | StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &Stores[0], Stores.size()); | 
|  | else | 
|  | StoreChain = DAG.getEntryNode(); | 
|  |  | 
|  | // Result is a load from the stack slot. | 
|  | return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, | 
|  | SDValue Op, SDValue Amt, | 
|  | SDValue &Lo, SDValue &Hi, | 
|  | DebugLoc dl) { | 
|  | // Expand the subcomponents. | 
|  | SDValue LHSL, LHSH; | 
|  | ExpandOp(Op, LHSL, LHSH); | 
|  |  | 
|  | SDValue Ops[] = { LHSL, LHSH, Amt }; | 
|  | MVT VT = LHSL.getValueType(); | 
|  | Lo = DAG.getNode(NodeOp, dl, DAG.getVTList(VT, VT), Ops, 3); | 
|  | Hi = Lo.getValue(1); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ExpandShift - Try to find a clever way to expand this shift operation out to | 
|  | /// smaller elements.  If we can't find a way that is more efficient than a | 
|  | /// libcall on this target, return false.  Otherwise, return true with the | 
|  | /// low-parts expanded into Lo and Hi. | 
|  | bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDValue Op, SDValue Amt, | 
|  | SDValue &Lo, SDValue &Hi, | 
|  | DebugLoc dl) { | 
|  | assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && | 
|  | "This is not a shift!"); | 
|  |  | 
|  | MVT NVT = TLI.getTypeToTransformTo(Op.getValueType()); | 
|  | SDValue ShAmt = LegalizeOp(Amt); | 
|  | MVT ShTy = ShAmt.getValueType(); | 
|  | unsigned ShBits = ShTy.getSizeInBits(); | 
|  | unsigned VTBits = Op.getValueType().getSizeInBits(); | 
|  | unsigned NVTBits = NVT.getSizeInBits(); | 
|  |  | 
|  | // Handle the case when Amt is an immediate. | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.getNode())) { | 
|  | unsigned Cst = CN->getZExtValue(); | 
|  | // Expand the incoming operand to be shifted, so that we have its parts | 
|  | SDValue InL, InH; | 
|  | ExpandOp(Op, InL, InH); | 
|  | switch(Opc) { | 
|  | case ISD::SHL: | 
|  | if (Cst > VTBits) { | 
|  | Lo = DAG.getConstant(0, NVT); | 
|  | Hi = DAG.getConstant(0, NVT); | 
|  | } else if (Cst > NVTBits) { | 
|  | Lo = DAG.getConstant(0, NVT); | 
|  | Hi = DAG.getNode(ISD::SHL, dl, | 
|  | NVT, InL, DAG.getConstant(Cst-NVTBits, ShTy)); | 
|  | } else if (Cst == NVTBits) { | 
|  | Lo = DAG.getConstant(0, NVT); | 
|  | Hi = InL; | 
|  | } else { | 
|  | Lo = DAG.getNode(ISD::SHL, dl, NVT, InL, DAG.getConstant(Cst, ShTy)); | 
|  | Hi = DAG.getNode(ISD::OR, dl, NVT, | 
|  | DAG.getNode(ISD::SHL, dl, NVT, InH, DAG.getConstant(Cst, ShTy)), | 
|  | DAG.getNode(ISD::SRL, dl, NVT, InL, | 
|  | DAG.getConstant(NVTBits-Cst, ShTy))); | 
|  | } | 
|  | return true; | 
|  | case ISD::SRL: | 
|  | if (Cst > VTBits) { | 
|  | Lo = DAG.getConstant(0, NVT); | 
|  | Hi = DAG.getConstant(0, NVT); | 
|  | } else if (Cst > NVTBits) { | 
|  | Lo = DAG.getNode(ISD::SRL, dl, NVT, | 
|  | InH, DAG.getConstant(Cst-NVTBits, ShTy)); | 
|  | Hi = DAG.getConstant(0, NVT); | 
|  | } else if (Cst == NVTBits) { | 
|  | Lo = InH; | 
|  | Hi = DAG.getConstant(0, NVT); | 
|  | } else { | 
|  | Lo = DAG.getNode(ISD::OR, dl, NVT, | 
|  | DAG.getNode(ISD::SRL, dl, NVT, InL, DAG.getConstant(Cst, ShTy)), | 
|  | DAG.getNode(ISD::SHL, dl, NVT, InH, | 
|  | DAG.getConstant(NVTBits-Cst, ShTy))); | 
|  | Hi = DAG.getNode(ISD::SRL, dl, NVT, InH, DAG.getConstant(Cst, ShTy)); | 
|  | } | 
|  | return true; | 
|  | case ISD::SRA: | 
|  | if (Cst > VTBits) { | 
|  | Hi = Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, | 
|  | DAG.getConstant(NVTBits-1, ShTy)); | 
|  | } else if (Cst > NVTBits) { | 
|  | Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, | 
|  | DAG.getConstant(Cst-NVTBits, ShTy)); | 
|  | Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, | 
|  | DAG.getConstant(NVTBits-1, ShTy)); | 
|  | } else if (Cst == NVTBits) { | 
|  | Lo = InH; | 
|  | Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, | 
|  | DAG.getConstant(NVTBits-1, ShTy)); | 
|  | } else { | 
|  | Lo = DAG.getNode(ISD::OR, dl, NVT, | 
|  | DAG.getNode(ISD::SRL, dl, NVT, InL, DAG.getConstant(Cst, ShTy)), | 
|  | DAG.getNode(ISD::SHL, dl, | 
|  | NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); | 
|  | Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, DAG.getConstant(Cst, ShTy)); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, the shift amount isn't constant.  However, if we can tell that it is | 
|  | // >= 32 or < 32, we can still simplify it, without knowing the actual value. | 
|  | APInt Mask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); | 
|  | APInt KnownZero, KnownOne; | 
|  | DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); | 
|  |  | 
|  | // If we know that if any of the high bits of the shift amount are one, then | 
|  | // we can do this as a couple of simple shifts. | 
|  | if (KnownOne.intersects(Mask)) { | 
|  | // Mask out the high bit, which we know is set. | 
|  | Amt = DAG.getNode(ISD::AND, dl, Amt.getValueType(), Amt, | 
|  | DAG.getConstant(~Mask, Amt.getValueType())); | 
|  |  | 
|  | // Expand the incoming operand to be shifted, so that we have its parts | 
|  | SDValue InL, InH; | 
|  | ExpandOp(Op, InL, InH); | 
|  | switch(Opc) { | 
|  | case ISD::SHL: | 
|  | Lo = DAG.getConstant(0, NVT);              // Low part is zero. | 
|  | Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part. | 
|  | return true; | 
|  | case ISD::SRL: | 
|  | Hi = DAG.getConstant(0, NVT);              // Hi part is zero. | 
|  | Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part. | 
|  | return true; | 
|  | case ISD::SRA: | 
|  | Hi = DAG.getNode(ISD::SRA, dl, NVT, InH,       // Sign extend high part. | 
|  | DAG.getConstant(NVTBits-1, Amt.getValueType())); | 
|  | Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part. | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we know that the high bits of the shift amount are all zero, then we can | 
|  | // do this as a couple of simple shifts. | 
|  | if ((KnownZero & Mask) == Mask) { | 
|  | // Compute 32-amt. | 
|  | SDValue Amt2 = DAG.getNode(ISD::SUB, dl, Amt.getValueType(), | 
|  | DAG.getConstant(NVTBits, Amt.getValueType()), | 
|  | Amt); | 
|  |  | 
|  | // Expand the incoming operand to be shifted, so that we have its parts | 
|  | SDValue InL, InH; | 
|  | ExpandOp(Op, InL, InH); | 
|  | switch(Opc) { | 
|  | case ISD::SHL: | 
|  | Lo = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); | 
|  | Hi = DAG.getNode(ISD::OR, dl, NVT, | 
|  | DAG.getNode(ISD::SHL, dl, NVT, InH, Amt), | 
|  | DAG.getNode(ISD::SRL, dl, NVT, InL, Amt2)); | 
|  | return true; | 
|  | case ISD::SRL: | 
|  | Hi = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); | 
|  | Lo = DAG.getNode(ISD::OR, dl, NVT, | 
|  | DAG.getNode(ISD::SRL, dl, NVT, InL, Amt), | 
|  | DAG.getNode(ISD::SHL, dl, NVT, InH, Amt2)); | 
|  | return true; | 
|  | case ISD::SRA: | 
|  | Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); | 
|  | Lo = DAG.getNode(ISD::OR, dl, NVT, | 
|  | DAG.getNode(ISD::SRL, dl, NVT, InL, Amt), | 
|  | DAG.getNode(ISD::SHL, dl, NVT, InH, Amt2)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // ExpandLibCall - Expand a node into a call to a libcall.  If the result value | 
|  | // does not fit into a register, return the lo part and set the hi part to the | 
|  | // by-reg argument.  If it does fit into a single register, return the result | 
|  | // and leave the Hi part unset. | 
|  | SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, | 
|  | bool isSigned, SDValue &Hi) { | 
|  | assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); | 
|  | // The input chain to this libcall is the entry node of the function. | 
|  | // Legalizing the call will automatically add the previous call to the | 
|  | // dependence. | 
|  | SDValue InChain = DAG.getEntryNode(); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { | 
|  | MVT ArgVT = Node->getOperand(i).getValueType(); | 
|  | const Type *ArgTy = ArgVT.getTypeForMVT(); | 
|  | Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; | 
|  | Entry.isSExt = isSigned; | 
|  | Entry.isZExt = !isSigned; | 
|  | Args.push_back(Entry); | 
|  | } | 
|  | SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), | 
|  | TLI.getPointerTy()); | 
|  |  | 
|  | // Splice the libcall in wherever FindInputOutputChains tells us to. | 
|  | const Type *RetTy = Node->getValueType(0).getTypeForMVT(); | 
|  | std::pair<SDValue, SDValue> CallInfo = | 
|  | TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, | 
|  | CallingConv::C, false, Callee, Args, DAG, | 
|  | Node->getDebugLoc()); | 
|  |  | 
|  | // Legalize the call sequence, starting with the chain.  This will advance | 
|  | // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that | 
|  | // was added by LowerCallTo (guaranteeing proper serialization of calls). | 
|  | LegalizeOp(CallInfo.second); | 
|  | SDValue Result; | 
|  | switch (getTypeAction(CallInfo.first.getValueType())) { | 
|  | default: assert(0 && "Unknown thing"); | 
|  | case Legal: | 
|  | Result = CallInfo.first; | 
|  | break; | 
|  | case Expand: | 
|  | ExpandOp(CallInfo.first, Result, Hi); | 
|  | break; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// LegalizeINT_TO_FP - Legalize a [US]INT_TO_FP operation. | 
|  | /// | 
|  | SDValue SelectionDAGLegalize:: | 
|  | LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, SDValue Op, | 
|  | DebugLoc dl) { | 
|  | bool isCustom = false; | 
|  | SDValue Tmp1; | 
|  | switch (getTypeAction(Op.getValueType())) { | 
|  | case Legal: | 
|  | switch (TLI.getOperationAction(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, | 
|  | Op.getValueType())) { | 
|  | default: assert(0 && "Unknown operation action!"); | 
|  | case TargetLowering::Custom: | 
|  | isCustom = true; | 
|  | // FALLTHROUGH | 
|  | case TargetLowering::Legal: | 
|  | Tmp1 = LegalizeOp(Op); | 
|  | if (Result.getNode()) | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | else | 
|  | Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, dl, | 
|  | DestTy, Tmp1); | 
|  | if (isCustom) { | 
|  | Tmp1 = TLI.LowerOperation(Result, DAG); | 
|  | if (Tmp1.getNode()) Result = Tmp1; | 
|  | } | 
|  | break; | 
|  | case TargetLowering::Expand: | 
|  | Result = ExpandLegalINT_TO_FP(isSigned, LegalizeOp(Op), DestTy, dl); | 
|  | break; | 
|  | case TargetLowering::Promote: | 
|  | Result = PromoteLegalINT_TO_FP(LegalizeOp(Op), DestTy, isSigned, dl); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case Expand: | 
|  | Result = ExpandIntToFP(isSigned, DestTy, Op, dl) ; | 
|  | break; | 
|  | case Promote: | 
|  | Tmp1 = PromoteOp(Op); | 
|  | if (isSigned) { | 
|  | Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Tmp1.getValueType(), | 
|  | Tmp1, DAG.getValueType(Op.getValueType())); | 
|  | } else { | 
|  | Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, Op.getValueType()); | 
|  | } | 
|  | if (Result.getNode()) | 
|  | Result = DAG.UpdateNodeOperands(Result, Tmp1); | 
|  | else | 
|  | Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, dl, | 
|  | DestTy, Tmp1); | 
|  | Result = LegalizeOp(Result);  // The 'op' is not necessarily legal! | 
|  | break; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// ExpandIntToFP - Expand a [US]INT_TO_FP operation. | 
|  | /// | 
|  | SDValue SelectionDAGLegalize:: | 
|  | ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source, DebugLoc dl) { | 
|  | MVT SourceVT = Source.getValueType(); | 
|  | bool ExpandSource = getTypeAction(SourceVT) == Expand; | 
|  |  | 
|  | // Expand unsupported int-to-fp vector casts by unrolling them. | 
|  | if (DestTy.isVector()) { | 
|  | if (!ExpandSource) | 
|  | return LegalizeOp(UnrollVectorOp(Source)); | 
|  | MVT DestEltTy = DestTy.getVectorElementType(); | 
|  | if (DestTy.getVectorNumElements() == 1) { | 
|  | SDValue Scalar = ScalarizeVectorOp(Source); | 
|  | SDValue Result = LegalizeINT_TO_FP(SDValue(), isSigned, | 
|  | DestEltTy, Scalar, dl); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, DestTy, Result); | 
|  | } | 
|  | SDValue Lo, Hi; | 
|  | SplitVectorOp(Source, Lo, Hi); | 
|  | MVT SplitDestTy = MVT::getVectorVT(DestEltTy, | 
|  | DestTy.getVectorNumElements() / 2); | 
|  | SDValue LoResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, | 
|  | Lo, dl); | 
|  | SDValue HiResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, | 
|  | Hi, dl); | 
|  | return LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, DestTy, LoResult, | 
|  | HiResult)); | 
|  | } | 
|  |  | 
|  | // Special case for i32 source to take advantage of UINTTOFP_I32_F32, etc. | 
|  | if (!isSigned && SourceVT != MVT::i32) { | 
|  | // The integer value loaded will be incorrectly if the 'sign bit' of the | 
|  | // incoming integer is set.  To handle this, we dynamically test to see if | 
|  | // it is set, and, if so, add a fudge factor. | 
|  | SDValue Hi; | 
|  | if (ExpandSource) { | 
|  | SDValue Lo; | 
|  | ExpandOp(Source, Lo, Hi); | 
|  | Source = DAG.getNode(ISD::BUILD_PAIR, dl, SourceVT, Lo, Hi); | 
|  | } else { | 
|  | // The comparison for the sign bit will use the entire operand. | 
|  | Hi = Source; | 
|  | } | 
|  |  | 
|  | // Check to see if the target has a custom way to lower this.  If so, use | 
|  | // it.  (Note we've already expanded the operand in this case.) | 
|  | switch (TLI.getOperationAction(ISD::UINT_TO_FP, SourceVT)) { | 
|  | default: assert(0 && "This action not implemented for this operation!"); | 
|  | case TargetLowering::Legal: | 
|  | case TargetLowering::Expand: | 
|  | break;   // This case is handled below. | 
|  | case TargetLowering::Custom: { | 
|  | SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::UINT_TO_FP, dl, DestTy, | 
|  | Source), DAG); | 
|  | if (NV.getNode()) | 
|  | return LegalizeOp(NV); | 
|  | break;   // The target decided this was legal after all | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is unsigned, and not supported, first perform the conversion to | 
|  | // signed, then adjust the result if the sign bit is set. | 
|  | SDValue SignedConv = ExpandIntToFP(true, DestTy, Source, dl); | 
|  |  | 
|  | SDValue SignSet = DAG.getSetCC(dl, | 
|  | TLI.getSetCCResultType(Hi.getValueType()), | 
|  | Hi, DAG.getConstant(0, Hi.getValueType()), | 
|  | ISD::SETLT); | 
|  | SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); | 
|  | SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), | 
|  | SignSet, Four, Zero); | 
|  | uint64_t FF = 0x5f800000ULL; | 
|  | if (TLI.isLittleEndian()) FF <<= 32; | 
|  | Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); | 
|  |  | 
|  | SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  | CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); | 
|  | Alignment = std::min(Alignment, 4u); | 
|  | SDValue FudgeInReg; | 
|  | if (DestTy == MVT::f32) | 
|  | FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, | 
|  | PseudoSourceValue::getConstantPool(), 0, | 
|  | false, Alignment); | 
|  | else if (DestTy.bitsGT(MVT::f32)) | 
|  | // FIXME: Avoid the extend by construction the right constantpool? | 
|  | FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, dl, DestTy, DAG.getEntryNode(), | 
|  | CPIdx, | 
|  | PseudoSourceValue::getConstantPool(), 0, | 
|  | MVT::f32, false, Alignment); | 
|  | else | 
|  | assert(0 && "Unexpected conversion"); | 
|  |  | 
|  | MVT SCVT = SignedConv.getValueType(); | 
|  | if (SCVT != DestTy) { | 
|  | // Destination type needs to be expanded as well. The FADD now we are | 
|  | // constructing will be expanded into a libcall. | 
|  | if (SCVT.getSizeInBits() != DestTy.getSizeInBits()) { | 
|  | assert(SCVT.getSizeInBits() * 2 == DestTy.getSizeInBits()); | 
|  | SignedConv = DAG.getNode(ISD::BUILD_PAIR, dl, DestTy, | 
|  | SignedConv, SignedConv.getValue(1)); | 
|  | } | 
|  | SignedConv = DAG.getNode(ISD::BIT_CONVERT, dl, DestTy, SignedConv); | 
|  | } | 
|  | return DAG.getNode(ISD::FADD, dl, DestTy, SignedConv, FudgeInReg); | 
|  | } | 
|  |  | 
|  | // Check to see if the target has a custom way to lower this.  If so, use it. | 
|  | switch (TLI.getOperationAction(ISD::SINT_TO_FP, SourceVT)) { | 
|  | default: assert(0 && "This action not implemented for this operation!"); | 
|  | case TargetLowering::Legal: | 
|  | case TargetLowering::Expand: | 
|  | break;   // This case is handled below. | 
|  | case TargetLowering::Custom: { | 
|  | SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, dl, DestTy, | 
|  | Source), DAG); | 
|  | if (NV.getNode()) | 
|  | return LegalizeOp(NV); | 
|  | break;   // The target decided this was legal after all | 
|  | } | 
|  | } | 
|  |  | 
|  | // Expand the source, then glue it back together for the call.  We must expand | 
|  | // the source in case it is shared (this pass of legalize must traverse it). | 
|  | if (ExpandSource) { | 
|  | SDValue SrcLo, SrcHi; | 
|  | ExpandOp(Source, SrcLo, SrcHi); | 
|  | Source = DAG.getNode(ISD::BUILD_PAIR, dl, SourceVT, SrcLo, SrcHi); | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall LC = isSigned ? | 
|  | RTLIB::getSINTTOFP(SourceVT, DestTy) : | 
|  | RTLIB::getUINTTOFP(SourceVT, DestTy); | 
|  | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unknown int value type"); | 
|  |  | 
|  | Source = DAG.getNode(ISD::SINT_TO_FP, dl, DestTy, Source); | 
|  | SDValue HiPart; | 
|  | SDValue Result = ExpandLibCall(LC, Source.getNode(), isSigned, HiPart); | 
|  | if (Result.getValueType() != DestTy && HiPart.getNode()) | 
|  | Result = DAG.getNode(ISD::BUILD_PAIR, dl, DestTy, Result, HiPart); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a | 
|  | /// INT_TO_FP operation of the specified operand when the target requests that | 
|  | /// we expand it.  At this point, we know that the result and operand types are | 
|  | /// legal for the target. | 
|  | SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, | 
|  | SDValue Op0, | 
|  | MVT DestVT, | 
|  | DebugLoc dl) { | 
|  | if (Op0.getValueType() == MVT::i32) { | 
|  | // simple 32-bit [signed|unsigned] integer to float/double expansion | 
|  |  | 
|  | // Get the stack frame index of a 8 byte buffer. | 
|  | SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); | 
|  |  | 
|  | // word offset constant for Hi/Lo address computation | 
|  | SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); | 
|  | // set up Hi and Lo (into buffer) address based on endian | 
|  | SDValue Hi = StackSlot; | 
|  | SDValue Lo = DAG.getNode(ISD::ADD, dl, | 
|  | TLI.getPointerTy(), StackSlot, WordOff); | 
|  | if (TLI.isLittleEndian()) | 
|  | std::swap(Hi, Lo); | 
|  |  | 
|  | // if signed map to unsigned space | 
|  | SDValue Op0Mapped; | 
|  | if (isSigned) { | 
|  | // constant used to invert sign bit (signed to unsigned mapping) | 
|  | SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); | 
|  | Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); | 
|  | } else { | 
|  | Op0Mapped = Op0; | 
|  | } | 
|  | // store the lo of the constructed double - based on integer input | 
|  | SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, | 
|  | Op0Mapped, Lo, NULL, 0); | 
|  | // initial hi portion of constructed double | 
|  | SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); | 
|  | // store the hi of the constructed double - biased exponent | 
|  | SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0); | 
|  | // load the constructed double | 
|  | SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0); | 
|  | // FP constant to bias correct the final result | 
|  | SDValue Bias = DAG.getConstantFP(isSigned ? | 
|  | BitsToDouble(0x4330000080000000ULL) : | 
|  | BitsToDouble(0x4330000000000000ULL), | 
|  | MVT::f64); | 
|  | // subtract the bias | 
|  | SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); | 
|  | // final result | 
|  | SDValue Result; | 
|  | // handle final rounding | 
|  | if (DestVT == MVT::f64) { | 
|  | // do nothing | 
|  | Result = Sub; | 
|  | } else if (DestVT.bitsLT(MVT::f64)) { | 
|  | Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } else if (DestVT.bitsGT(MVT::f64)) { | 
|  | Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  | assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); | 
|  | SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); | 
|  |  | 
|  | SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), | 
|  | Op0, DAG.getConstant(0, Op0.getValueType()), | 
|  | ISD::SETLT); | 
|  | SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); | 
|  | SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), | 
|  | SignSet, Four, Zero); | 
|  |  | 
|  | // If the sign bit of the integer is set, the large number will be treated | 
|  | // as a negative number.  To counteract this, the dynamic code adds an | 
|  | // offset depending on the data type. | 
|  | uint64_t FF; | 
|  | switch (Op0.getValueType().getSimpleVT()) { | 
|  | default: assert(0 && "Unsupported integer type!"); | 
|  | case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float) | 
|  | case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float) | 
|  | case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float) | 
|  | case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float) | 
|  | } | 
|  | if (TLI.isLittleEndian()) FF <<= 32; | 
|  | Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); | 
|  |  | 
|  | SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  | CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); | 
|  | Alignment = std::min(Alignment, 4u); | 
|  | SDValue FudgeInReg; | 
|  | if (DestVT == MVT::f32) | 
|  | FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, | 
|  | PseudoSourceValue::getConstantPool(), 0, | 
|  | false, Alignment); | 
|  | else { | 
|  | FudgeInReg = | 
|  | LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, | 
|  | DAG.getEntryNode(), CPIdx, | 
|  | PseudoSourceValue::getConstantPool(), 0, | 
|  | MVT::f32, false, Alignment)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); | 
|  | } | 
|  |  | 
|  | /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a | 
|  | /// *INT_TO_FP operation of the specified operand when the target requests that | 
|  | /// we promote it.  At this point, we know that the result and operand types are | 
|  | /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP | 
|  | /// operation that takes a larger input. | 
|  | SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, | 
|  | MVT DestVT, | 
|  | bool isSigned, | 
|  | DebugLoc dl) { | 
|  | // First step, figure out the appropriate *INT_TO_FP operation to use. | 
|  | MVT NewInTy = LegalOp.getValueType(); | 
|  |  | 
|  | unsigned OpToUse = 0; | 
|  |  | 
|  | // Scan for the appropriate larger type to use. | 
|  | while (1) { | 
|  | NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1); | 
|  | assert(NewInTy.isInteger() && "Ran out of possibilities!"); | 
|  |  | 
|  | // If the target supports SINT_TO_FP of this type, use it. | 
|  | switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { | 
|  | default: break; | 
|  | case TargetLowering::Legal: | 
|  | if (!TLI.isTypeLegal(NewInTy)) | 
|  | break;  // Can't use this datatype. | 
|  | // FALL THROUGH. | 
|  | case TargetLowering::Custom: | 
|  | OpToUse = ISD::SINT_TO_FP; | 
|  | break; | 
|  | } | 
|  | if (OpToUse) break; | 
|  | if (isSigned) continue; | 
|  |  | 
|  | // If the target supports UINT_TO_FP of this type, use it. | 
|  | switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { | 
|  | default: break; | 
|  | case TargetLowering::Legal: | 
|  | if (!TLI.isTypeLegal(NewInTy)) | 
|  | break;  // Can't use this datatype. | 
|  | // FALL THROUGH. | 
|  | case TargetLowering::Custom: | 
|  | OpToUse = ISD::UINT_TO_FP; | 
|  | break; | 
|  | } | 
|  | if (OpToUse) break; | 
|  |  | 
|  | // Otherwise, try a larger type. | 
|  | } | 
|  |  | 
|  | // Okay, we found the operation and type to use.  Zero extend our input to the | 
|  | // desired type then run the operation on it. | 
|  | return DAG.getNode(OpToUse, dl, DestVT, | 
|  | DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, | 
|  | dl, NewInTy, LegalOp)); | 
|  | } | 
|  |  | 
|  | /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a | 
|  | /// FP_TO_*INT operation of the specified operand when the target requests that | 
|  | /// we promote it.  At this point, we know that the result and operand types are | 
|  | /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT | 
|  | /// operation that returns a larger result. | 
|  | SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, | 
|  | MVT DestVT, | 
|  | bool isSigned, | 
|  | DebugLoc dl) { | 
|  | // First step, figure out the appropriate FP_TO*INT operation to use. | 
|  | MVT NewOutTy = DestVT; | 
|  |  | 
|  | unsigned OpToUse = 0; | 
|  |  | 
|  | // Scan for the appropriate larger type to use. | 
|  | while (1) { | 
|  | NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1); | 
|  | assert(NewOutTy.isInteger() && "Ran out of possibilities!"); | 
|  |  | 
|  | // If the target supports FP_TO_SINT returning this type, use it. | 
|  | switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { | 
|  | default: break; | 
|  | case TargetLowering::Legal: | 
|  | if (!TLI.isTypeLegal(NewOutTy)) | 
|  | break;  // Can't use this datatype. | 
|  | // FALL THROUGH. | 
|  | case TargetLowering::Custom: | 
|  | OpToUse = ISD::FP_TO_SINT; | 
|  | break; | 
|  | } | 
|  | if (OpToUse) break; | 
|  |  | 
|  | // If the target supports FP_TO_UINT of this type, use it. | 
|  | switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { | 
|  | default: break; | 
|  | case TargetLowering::Legal: | 
|  | if (!TLI.isTypeLegal(NewOutTy)) | 
|  | break;  // Can't use this datatype. | 
|  | // FALL THROUGH. | 
|  | case TargetLowering::Custom: | 
|  | OpToUse = ISD::FP_TO_UINT; | 
|  | break; | 
|  | } | 
|  | if (OpToUse) break; | 
|  |  | 
|  | // Otherwise, try a larger type. | 
|  | } | 
|  |  | 
|  |  | 
|  | // Okay, we found the operation and type to use. | 
|  | SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); | 
|  |  | 
|  | // If the operation produces an invalid type, it must be custom lowered.  Use | 
|  | // the target lowering hooks to expand it.  Just keep the low part of the | 
|  | // expanded operation, we know that we're truncating anyway. | 
|  | if (getTypeAction(NewOutTy) == Expand) { | 
|  | SmallVector<SDValue, 2> Results; | 
|  | TLI.ReplaceNodeResults(Operation.getNode(), Results, DAG); | 
|  | assert(Results.size() == 1 && "Incorrect FP_TO_XINT lowering!"); | 
|  | Operation = Results[0]; | 
|  | } | 
|  |  | 
|  | // Truncate the result of the extended FP_TO_*INT operation to the desired | 
|  | // size. | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); | 
|  | } | 
|  |  | 
|  | /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. | 
|  | /// | 
|  | SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { | 
|  | MVT VT = Op.getValueType(); | 
|  | MVT SHVT = TLI.getShiftAmountTy(); | 
|  | SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; | 
|  | switch (VT.getSimpleVT()) { | 
|  | default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); | 
|  | case MVT::i16: | 
|  | Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); | 
|  | Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); | 
|  | return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); | 
|  | case MVT::i32: | 
|  | Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); | 
|  | Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); | 
|  | Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); | 
|  | Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); | 
|  | Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); | 
|  | Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); | 
|  | Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); | 
|  | Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); | 
|  | return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); | 
|  | case MVT::i64: | 
|  | Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); | 
|  | Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); | 
|  | Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); | 
|  | Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); | 
|  | Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); | 
|  | Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); | 
|  | Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); | 
|  | Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); | 
|  | Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); | 
|  | Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); | 
|  | Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); | 
|  | Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); | 
|  | Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); | 
|  | Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); | 
|  | Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); | 
|  | Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); | 
|  | Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); | 
|  | Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); | 
|  | Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); | 
|  | Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); | 
|  | return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ExpandBitCount - Expand the specified bitcount instruction into operations. | 
|  | /// | 
|  | SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, | 
|  | DebugLoc dl) { | 
|  | switch (Opc) { | 
|  | default: assert(0 && "Cannot expand this yet!"); | 
|  | case ISD::CTPOP: { | 
|  | static const uint64_t mask[6] = { | 
|  | 0x5555555555555555ULL, 0x3333333333333333ULL, | 
|  | 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, | 
|  | 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL | 
|  | }; | 
|  | MVT VT = Op.getValueType(); | 
|  | MVT ShVT = TLI.getShiftAmountTy(); | 
|  | unsigned len = VT.getSizeInBits(); | 
|  | for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { | 
|  | //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) | 
|  | unsigned EltSize = VT.isVector() ? | 
|  | VT.getVectorElementType().getSizeInBits() : len; | 
|  | SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT); | 
|  | SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); | 
|  | Op = DAG.getNode(ISD::ADD, dl, VT, | 
|  | DAG.getNode(ISD::AND, dl, VT, Op, Tmp2), | 
|  | DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3), | 
|  | Tmp2)); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  | case ISD::CTLZ: { | 
|  | // for now, we do this: | 
|  | // x = x | (x >> 1); | 
|  | // x = x | (x >> 2); | 
|  | // ... | 
|  | // x = x | (x >>16); | 
|  | // x = x | (x >>32); // for 64-bit input | 
|  | // return popcount(~x); | 
|  | // | 
|  | // but see also: http://www.hackersdelight.org/HDcode/nlz.cc | 
|  | MVT VT = Op.getValueType(); | 
|  | MVT ShVT = TLI.getShiftAmountTy(); | 
|  | unsigned len = VT.getSizeInBits(); | 
|  | for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { | 
|  | SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); | 
|  | Op = DAG.getNode(ISD::OR, dl, VT, Op, | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); | 
|  | } | 
|  | Op = DAG.getNOT(dl, Op, VT); | 
|  | return DAG.getNode(ISD::CTPOP, dl, VT, Op); | 
|  | } | 
|  | case ISD::CTTZ: { | 
|  | // for now, we use: { return popcount(~x & (x - 1)); } | 
|  | // unless the target has ctlz but not ctpop, in which case we use: | 
|  | // { return 32 - nlz(~x & (x-1)); } | 
|  | // see also http://www.hackersdelight.org/HDcode/ntz.cc | 
|  | MVT VT = Op.getValueType(); | 
|  | SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNOT(dl, Op, VT), | 
|  | DAG.getNode(ISD::SUB, dl, VT, Op, | 
|  | DAG.getConstant(1, VT))); | 
|  | // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. | 
|  | if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) | 
|  | return DAG.getNode(ISD::SUB, dl, VT, | 
|  | DAG.getConstant(VT.getSizeInBits(), VT), | 
|  | DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); | 
|  | return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ExpandOp - Expand the specified SDValue into its two component pieces | 
|  | /// Lo&Hi.  Note that the Op MUST be an expanded type.  As a result of this, the | 
|  | /// LegalizedNodes map is filled in for any results that are not expanded, the | 
|  | /// ExpandedNodes map is filled in for any results that are expanded, and the | 
|  | /// Lo/Hi values are returned. | 
|  | void SelectionDAGLegalize::ExpandOp(SDValue Op, SDValue &Lo, SDValue &Hi){ | 
|  | MVT VT = Op.getValueType(); | 
|  | MVT NVT = TLI.getTypeToTransformTo(VT); | 
|  | SDNode *Node = Op.getNode(); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | assert(getTypeAction(VT) == Expand && "Not an expanded type!"); | 
|  | assert(((NVT.isInteger() && NVT.bitsLT(VT)) || VT.isFloatingPoint() || | 
|  | VT.isVector()) && "Cannot expand to FP value or to larger int value!"); | 
|  |  | 
|  | // See if we already expanded it. | 
|  | DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator I | 
|  | = ExpandedNodes.find(Op); | 
|  | if (I != ExpandedNodes.end()) { | 
|  | Lo = I->second.first; | 
|  | Hi = I->second.second; | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (Node->getOpcode()) { | 
|  | case ISD::CopyFromReg: | 
|  | assert(0 && "CopyFromReg must be legal!"); | 
|  | case ISD::FP_ROUND_INREG: | 
|  | if (VT == MVT::ppcf128 && | 
|  | TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == | 
|  | TargetLowering::Custom) { | 
|  | SDValue SrcLo, SrcHi, Src; | 
|  | ExpandOp(Op.getOperand(0), SrcLo, SrcHi); | 
|  | Src = DAG.getNode(ISD::BUILD_PAIR, dl, VT, SrcLo, SrcHi); | 
|  | SDValue Result = | 
|  | TLI.LowerOperation(DAG.getNode(ISD::FP_ROUND_INREG, dl, VT, Src, | 
|  | Op.getOperand(1)), DAG); | 
|  | assert(Result.getNode()->getOpcode() == ISD::BUILD_PAIR); | 
|  | Lo = Result.getNode()->getOperand(0); | 
|  | Hi = Result.getNode()->getOperand(1); | 
|  | break; | 
|  | } | 
|  | // fall through | 
|  | default: | 
|  | #ifndef NDEBUG | 
|  | cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; | 
|  | #endif | 
|  | assert(0 && "Do not know how to expand this operator!"); | 
|  | abort(); | 
|  | case ISD::EXTRACT_ELEMENT: | 
|  | ExpandOp(Node->getOperand(0), Lo, Hi); | 
|  | if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) | 
|  | return ExpandOp(Hi, Lo, Hi); | 
|  | return ExpandOp(Lo, Lo, Hi); | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. | 
|  | Lo  = ExpandEXTRACT_VECTOR_ELT(Op); | 
|  | return ExpandOp(Lo, Lo, Hi); | 
|  | case ISD::UNDEF: | 
|  | Lo = DAG.getUNDEF(NVT); | 
|  | Hi = DAG.getUNDEF(NVT); | 
|  | break; | 
|  | case ISD::Constant: { | 
|  | unsigned NVTBits = NVT.getSizeInBits(); | 
|  | const APInt &Cst = cast<ConstantSDNode>(Node)->getAPIntValue(); | 
|  | Lo = DAG.getConstant(APInt(Cst).trunc(NVTBits), NVT); | 
|  | Hi = DAG.getConstant(Cst.lshr(NVTBits).trunc(NVTBits), NVT); | 
|  | break; | 
|  | } | 
|  | case ISD::ConstantFP: { | 
|  | ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); | 
|  | if (CFP->getValueType(0) == MVT::ppcf128) { | 
|  | APInt api = CFP->getValueAPF().bitcastToAPInt(); | 
|  | Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), | 
|  | MVT::f64); | 
|  | Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), | 
|  | MVT::f64); | 
|  | break; | 
|  | } | 
|  | Lo = ExpandConstantFP(CFP, false, DAG, TLI); | 
|  | if (getTypeAction(Lo.getValueType()) == Expand) | 
|  | ExpandOp(Lo, Lo, Hi); | 
|  | break; | 
|  | } | 
|  | case ISD::BUILD_PAIR: | 
|  | // Return the operands. | 
|  | Lo = Node->getOperand(0); | 
|  | Hi = Node->getOperand(1); | 
|  | break; | 
|  |  | 
|  | case ISD::MERGE_VALUES: | 
|  | if (Node->getNumValues() == 1) { | 
|  | ExpandOp(Op.getOperand(0), Lo, Hi); | 
|  | break; | 
|  | } | 
|  | // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) | 
|  | assert(Op.getResNo() == 0 && Node->getNumValues() == 2 && | 
|  | Op.getValue(1).getValueType() == MVT::Other && | 
|  | "unhandled MERGE_VALUES"); | 
|  | ExpandOp(Op.getOperand(0), Lo, Hi); | 
|  | // Remember that we legalized the chain. | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); | 
|  | break; | 
|  |  | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | ExpandOp(Node->getOperand(0), Lo, Hi); | 
|  | // sext_inreg the low part if needed. | 
|  | Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Lo, Node->getOperand(1)); | 
|  |  | 
|  | // The high part gets the sign extension from the lo-part.  This handles | 
|  | // things like sextinreg V:i64 from i8. | 
|  | Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, | 
|  | DAG.getConstant(NVT.getSizeInBits()-1, | 
|  | TLI.getShiftAmountTy())); | 
|  | break; | 
|  |  | 
|  | case ISD::BSWAP: { | 
|  | ExpandOp(Node->getOperand(0), Lo, Hi); | 
|  | SDValue TempLo = DAG.getNode(ISD::BSWAP, dl, NVT, Hi); | 
|  | Hi = DAG.getNode(ISD::BSWAP, dl, NVT, Lo); | 
|  | Lo = TempLo; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::CTPOP: | 
|  | ExpandOp(Node->getOperand(0), Lo, Hi); | 
|  | Lo = DAG.getNode(ISD::ADD, dl, NVT,      // ctpop(HL) -> ctpop(H)+ctpop(L) | 
|  | DAG.getNode(ISD::CTPOP, dl, NVT, Lo), | 
|  | DAG.getNode(ISD::CTPOP, dl, NVT, Hi)); | 
|  | Hi = DAG.getConstant(0, NVT); | 
|  | break; | 
|  |  | 
|  | case ISD::CTLZ: { | 
|  | // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) | 
|  | ExpandOp(Node->getOperand(0), Lo, Hi); | 
|  | SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT); | 
|  | SDValue HLZ = DAG.getNode(ISD::CTLZ, dl, NVT, Hi); | 
|  | SDValue TopNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), HLZ, | 
|  | BitsC, ISD::SETNE); | 
|  | SDValue LowPart = DAG.getNode(ISD::CTLZ, dl, NVT, Lo); | 
|  | LowPart = DAG.getNode(ISD::ADD, dl, NVT, LowPart, BitsC); | 
|  |  | 
|  | Lo = DAG.getNode(ISD::SELECT, dl, NVT, TopNotZero, HLZ, LowPart); | 
|  | Hi = DAG.getConstant(0, NVT); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::CTTZ: { | 
|  | // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) | 
|  | ExpandOp(Node->getOperand(0), Lo, Hi); | 
|  | SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT); | 
|  | SDValue LTZ = DAG.getNode(ISD::CTTZ, dl, NVT, Lo); | 
|  | SDValue BotNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), LTZ, | 
|  | BitsC, ISD::SETNE); | 
|  | SDValue HiPart = DAG.getNode(ISD::CTTZ, dl, NVT, Hi); | 
|  | HiPart = DAG.getNode(ISD::ADD, dl, NVT, HiPart, BitsC); | 
|  |  | 
|  | Lo = DAG.getNode(ISD::SELECT, dl, NVT, BotNotZero, LTZ, HiPart); | 
|  | Hi = DAG.getConstant(0, NVT); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::VAARG: { | 
|  | SDValue Ch = Node->getOperand(0);   // Legalize the chain. | 
|  | SDValue Ptr = Node->getOperand(1);  // Legalize the pointer. | 
|  | Lo = DAG.getVAArg(NVT, dl, Ch, Ptr, Node->getOperand(2)); | 
|  | Hi = DAG.getVAArg(NVT, dl, Lo.getValue(1), Ptr, Node->getOperand(2)); | 
|  |  | 
|  | // Remember that we legalized the chain. | 
|  | Hi = LegalizeOp(Hi); | 
|  | AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); | 
|  | if (TLI.isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::LOAD: { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Node); | 
|  | SDValue Ch  = LD->getChain();    // Legalize the chain. | 
|  | SDValue Ptr = LD->getBasePtr();  // Legalize the pointer. | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  | const Value *SV = LD->getSrcValue(); | 
|  | int SVOffset = LD->getSrcValueOffset(); | 
|  | unsigned Alignment = LD->getAlignment(); | 
|  | bool isVolatile = LD->isVolatile(); | 
|  |  | 
|  | if (ExtType == ISD::NON_EXTLOAD) { | 
|  | Lo = DAG.getLoad(NVT, dl, Ch, Ptr, SV, SVOffset, | 
|  | isVolatile, Alignment); | 
|  | if (VT == MVT::f32 || VT == MVT::f64) { | 
|  | // f32->i32 or f64->i64 one to one expansion. | 
|  | // Remember that we legalized the chain. | 
|  | AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1))); | 
|  | // Recursively expand the new load. | 
|  | if (getTypeAction(NVT) == Expand) | 
|  | ExpandOp(Lo, Lo, Hi); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Increment the pointer to the other half. | 
|  | unsigned IncrementSize = Lo.getValueType().getSizeInBits()/8; | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getIntPtrConstant(IncrementSize)); | 
|  | SVOffset += IncrementSize; | 
|  | Alignment = MinAlign(Alignment, IncrementSize); | 
|  | Hi = DAG.getLoad(NVT, dl, Ch, Ptr, SV, SVOffset, | 
|  | isVolatile, Alignment); | 
|  |  | 
|  | // Build a factor node to remember that this load is independent of the | 
|  | // other one. | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | // Remember that we legalized the chain. | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); | 
|  | if (TLI.isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  | } else { | 
|  | MVT EVT = LD->getMemoryVT(); | 
|  |  | 
|  | if ((VT == MVT::f64 && EVT == MVT::f32) || | 
|  | (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { | 
|  | // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND | 
|  | SDValue Load = DAG.getLoad(EVT, dl, Ch, Ptr, SV, | 
|  | SVOffset, isVolatile, Alignment); | 
|  | // Remember that we legalized the chain. | 
|  | AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Load.getValue(1))); | 
|  | ExpandOp(DAG.getNode(ISD::FP_EXTEND, dl, VT, Load), Lo, Hi); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (EVT == NVT) | 
|  | Lo = DAG.getLoad(NVT, dl, Ch, Ptr, SV, | 
|  | SVOffset, isVolatile, Alignment); | 
|  | else | 
|  | Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, SV, | 
|  | SVOffset, EVT, isVolatile, | 
|  | Alignment); | 
|  |  | 
|  | // Remember that we legalized the chain. | 
|  | AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1))); | 
|  |  | 
|  | if (ExtType == ISD::SEXTLOAD) { | 
|  | // The high part is obtained by SRA'ing all but one of the bits of the | 
|  | // lo part. | 
|  | unsigned LoSize = Lo.getValueType().getSizeInBits(); | 
|  | Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, | 
|  | DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); | 
|  | } else if (ExtType == ISD::ZEXTLOAD) { | 
|  | // The high part is just a zero. | 
|  | Hi = DAG.getConstant(0, NVT); | 
|  | } else /* if (ExtType == ISD::EXTLOAD) */ { | 
|  | // The high part is undefined. | 
|  | Hi = DAG.getUNDEF(NVT); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: {   // Simple logical operators -> two trivial pieces. | 
|  | SDValue LL, LH, RL, RH; | 
|  | ExpandOp(Node->getOperand(0), LL, LH); | 
|  | ExpandOp(Node->getOperand(1), RL, RH); | 
|  | Lo = DAG.getNode(Node->getOpcode(), dl, NVT, LL, RL); | 
|  | Hi = DAG.getNode(Node->getOpcode(), dl, NVT, LH, RH); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT: { | 
|  | SDValue LL, LH, RL, RH; | 
|  | ExpandOp(Node->getOperand(1), LL, LH); | 
|  | ExpandOp(Node->getOperand(2), RL, RH); | 
|  | if (getTypeAction(NVT) == Expand) | 
|  | NVT = TLI.getTypeToExpandTo(NVT); | 
|  | Lo = DAG.getNode(ISD::SELECT, dl, NVT, Node->getOperand(0), LL, RL); | 
|  | if (VT != MVT::f32) | 
|  | Hi = DAG.getNode(ISD::SELECT, dl, NVT, Node->getOperand(0), LH, RH); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT_CC: { | 
|  | SDValue TL, TH, FL, FH; | 
|  | ExpandOp(Node->getOperand(2), TL, TH); | 
|  | ExpandOp(Node->getOperand(3), FL, FH); | 
|  | if (getTypeAction(NVT) == Expand) | 
|  | NVT = TLI.getTypeToExpandTo(NVT); | 
|  | Lo = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0), | 
|  | Node->getOperand(1), TL, FL, Node->getOperand(4)); | 
|  | if (VT != MVT::f32) | 
|  | Hi = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0), | 
|  | Node->getOperand(1), TH, FH, Node->getOperand(4)); | 
|  | break; | 
|  | } | 
|  | case ISD::ANY_EXTEND: | 
|  | // The low part is any extension of the input (which degenerates to a copy). | 
|  | Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); | 
|  | // The high part is undefined. | 
|  | Hi = DAG.getUNDEF(NVT); | 
|  | break; | 
|  | case ISD::SIGN_EXTEND: { | 
|  | // The low part is just a sign extension of the input (which degenerates to | 
|  | // a copy). | 
|  | Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Node->getOperand(0)); | 
|  |  | 
|  | // The high part is obtained by SRA'ing all but one of the bits of the lo | 
|  | // part. | 
|  | unsigned LoSize = Lo.getValueType().getSizeInBits(); | 
|  | Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, | 
|  | DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); | 
|  | break; | 
|  | } | 
|  | case ISD::ZERO_EXTEND: | 
|  | // The low part is just a zero extension of the input (which degenerates to | 
|  | // a copy). | 
|  | Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); | 
|  |  | 
|  | // The high part is just a zero. | 
|  | Hi = DAG.getConstant(0, NVT); | 
|  | break; | 
|  |  | 
|  | case ISD::TRUNCATE: { | 
|  | // The input value must be larger than this value.  Expand *it*. | 
|  | SDValue NewLo; | 
|  | ExpandOp(Node->getOperand(0), NewLo, Hi); | 
|  |  | 
|  | // The low part is now either the right size, or it is closer.  If not the | 
|  | // right size, make an illegal truncate so we recursively expand it. | 
|  | if (NewLo.getValueType() != Node->getValueType(0)) | 
|  | NewLo = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), NewLo); | 
|  | ExpandOp(NewLo, Lo, Hi); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::BIT_CONVERT: { | 
|  | SDValue Tmp; | 
|  | if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ | 
|  | // If the target wants to, allow it to lower this itself. | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Expand: assert(0 && "cannot expand FP!"); | 
|  | case Legal:   Tmp = LegalizeOp(Node->getOperand(0)); break; | 
|  | case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; | 
|  | } | 
|  | Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp), DAG); | 
|  | } | 
|  |  | 
|  | // f32 / f64 must be expanded to i32 / i64. | 
|  | if (VT == MVT::f32 || VT == MVT::f64) { | 
|  | Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); | 
|  | if (getTypeAction(NVT) == Expand) | 
|  | ExpandOp(Lo, Lo, Hi); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If source operand will be expanded to the same type as VT, i.e. | 
|  | // i64 <- f64, i32 <- f32, expand the source operand instead. | 
|  | MVT VT0 = Node->getOperand(0).getValueType(); | 
|  | if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { | 
|  | ExpandOp(Node->getOperand(0), Lo, Hi); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Turn this into a load/store pair by default. | 
|  | if (Tmp.getNode() == 0) | 
|  | Tmp = EmitStackConvert(Node->getOperand(0), VT, VT, dl); | 
|  |  | 
|  | ExpandOp(Tmp, Lo, Hi); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::READCYCLECOUNTER: { | 
|  | assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == | 
|  | TargetLowering::Custom && | 
|  | "Must custom expand ReadCycleCounter"); | 
|  | SDValue Tmp = TLI.LowerOperation(Op, DAG); | 
|  | assert(Tmp.getNode() && "Node must be custom expanded!"); | 
|  | ExpandOp(Tmp.getValue(0), Lo, Hi); | 
|  | AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain. | 
|  | LegalizeOp(Tmp.getValue(1))); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::ATOMIC_CMP_SWAP: { | 
|  | // This operation does not need a loop. | 
|  | SDValue Tmp = TLI.LowerOperation(Op, DAG); | 
|  | assert(Tmp.getNode() && "Node must be custom expanded!"); | 
|  | ExpandOp(Tmp.getValue(0), Lo, Hi); | 
|  | AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain. | 
|  | LegalizeOp(Tmp.getValue(1))); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_SWAP: { | 
|  | // These operations require a loop to be generated.  We can't do that yet, | 
|  | // so substitute a target-dependent pseudo and expand that later. | 
|  | SDValue In2Lo, In2Hi, In2; | 
|  | ExpandOp(Op.getOperand(2), In2Lo, In2Hi); | 
|  | In2 = DAG.getNode(ISD::BUILD_PAIR, dl, VT, In2Lo, In2Hi); | 
|  | AtomicSDNode* Anode = cast<AtomicSDNode>(Node); | 
|  | SDValue Replace = | 
|  | DAG.getAtomic(Op.getOpcode(), dl, Anode->getMemoryVT(), | 
|  | Op.getOperand(0), Op.getOperand(1), In2, | 
|  | Anode->getSrcValue(), Anode->getAlignment()); | 
|  | SDValue Result = TLI.LowerOperation(Replace, DAG); | 
|  | ExpandOp(Result.getValue(0), Lo, Hi); | 
|  | // Remember that we legalized the chain. | 
|  | AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Result.getValue(1))); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // These operators cannot be expanded directly, emit them as calls to | 
|  | // library functions. | 
|  | case ISD::FP_TO_SINT: { | 
|  | if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { | 
|  | SDValue Op; | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Expand: assert(0 && "cannot expand FP!"); | 
|  | case Legal:   Op = LegalizeOp(Node->getOperand(0)); break; | 
|  | case Promote: Op = PromoteOp (Node->getOperand(0)); break; | 
|  | } | 
|  |  | 
|  | Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op), DAG); | 
|  |  | 
|  | // Now that the custom expander is done, expand the result, which is still | 
|  | // VT. | 
|  | if (Op.getNode()) { | 
|  | ExpandOp(Op, Lo, Hi); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall LC = RTLIB::getFPTOSINT(Node->getOperand(0).getValueType(), | 
|  | VT); | 
|  | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected uint-to-fp conversion!"); | 
|  | Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::FP_TO_UINT: { | 
|  | if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { | 
|  | SDValue Op; | 
|  | switch (getTypeAction(Node->getOperand(0).getValueType())) { | 
|  | case Expand: assert(0 && "cannot expand FP!"); | 
|  | case Legal:   Op = LegalizeOp(Node->getOperand(0)); break; | 
|  | case Promote: Op = PromoteOp (Node->getOperand(0)); break; | 
|  | } | 
|  |  | 
|  | Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, dl, VT, Op), DAG); | 
|  |  | 
|  | // Now that the custom expander is done, expand the result. | 
|  | if (Op.getNode()) { | 
|  | ExpandOp(Op, Lo, Hi); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall LC = RTLIB::getFPTOUINT(Node->getOperand(0).getValueType(), | 
|  | VT); | 
|  | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!"); | 
|  | Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SHL: { | 
|  | // If the target wants custom lowering, do so. | 
|  | SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); | 
|  | if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { | 
|  | SDValue Op = DAG.getNode(ISD::SHL, dl, VT, Node->getOperand(0), ShiftAmt); | 
|  | Op = TLI.LowerOperation(Op, DAG); | 
|  | if (Op.getNode()) { | 
|  | // Now that the custom expander is done, expand the result, which is | 
|  | // still VT. | 
|  | ExpandOp(Op, Lo, Hi); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit | 
|  | // this X << 1 as X+X. | 
|  | if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { | 
|  | if (ShAmt->getAPIntValue() == 1 && | 
|  | TLI.isOperationLegalOrCustom(ISD::ADDC, NVT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::ADDE, NVT)) { | 
|  | SDValue LoOps[2], HiOps[3]; | 
|  | ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); | 
|  | SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); | 
|  | LoOps[1] = LoOps[0]; | 
|  | Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2); | 
|  |  | 
|  | HiOps[1] = HiOps[0]; | 
|  | HiOps[2] = Lo.getValue(1); | 
|  | Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can emit an efficient shift operation, do so now. | 
|  | if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi, dl)) | 
|  | break; | 
|  |  | 
|  | // If this target supports SHL_PARTS, use it. | 
|  | TargetLowering::LegalizeAction Action = | 
|  | TLI.getOperationAction(ISD::SHL_PARTS, NVT); | 
|  | if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || | 
|  | Action == TargetLowering::Custom) { | 
|  | ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), | 
|  | ShiftAmt, Lo, Hi, dl); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, emit a libcall. | 
|  | Lo = ExpandLibCall(RTLIB::SHL_I64, Node, false/*left shift=unsigned*/, Hi); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SRA: { | 
|  | // If the target wants custom lowering, do so. | 
|  | SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); | 
|  | if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { | 
|  | SDValue Op = DAG.getNode(ISD::SRA, dl, VT, Node->getOperand(0), ShiftAmt); | 
|  | Op = TLI.LowerOperation(Op, DAG); | 
|  | if (Op.getNode()) { | 
|  | // Now that the custom expander is done, expand the result, which is | 
|  | // still VT. | 
|  | ExpandOp(Op, Lo, Hi); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can emit an efficient shift operation, do so now. | 
|  | if (ExpandShift(ISD::SRA,  Node->getOperand(0), ShiftAmt, Lo, Hi, dl)) | 
|  | break; | 
|  |  | 
|  | // If this target supports SRA_PARTS, use it. | 
|  | TargetLowering::LegalizeAction Action = | 
|  | TLI.getOperationAction(ISD::SRA_PARTS, NVT); | 
|  | if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || | 
|  | Action == TargetLowering::Custom) { | 
|  | ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), | 
|  | ShiftAmt, Lo, Hi, dl); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, emit a libcall. | 
|  | Lo = ExpandLibCall(RTLIB::SRA_I64, Node, true/*ashr is signed*/, Hi); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SRL: { | 
|  | // If the target wants custom lowering, do so. | 
|  | SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); | 
|  | if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { | 
|  | SDValue Op = DAG.getNode(ISD::SRL, dl, VT, Node->getOperand(0), ShiftAmt); | 
|  | Op = TLI.LowerOperation(Op, DAG); | 
|  | if (Op.getNode()) { | 
|  | // Now that the custom expander is done, expand the result, which is | 
|  | // still VT. | 
|  | ExpandOp(Op, Lo, Hi); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can emit an efficient shift operation, do so now. | 
|  | if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi, dl)) | 
|  | break; | 
|  |  | 
|  | // If this target supports SRL_PARTS, use it. | 
|  | TargetLowering::LegalizeAction Action = | 
|  | TLI.getOperationAction(ISD::SRL_PARTS, NVT); | 
|  | if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || | 
|  | Action == TargetLowering::Custom) { | 
|  | ExpandShiftParts(ISD::SRL_PARTS, | 
|  | Node->getOperand(0), ShiftAmt, Lo, Hi, dl); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, emit a libcall. | 
|  | Lo = ExpandLibCall(RTLIB::SRL_I64, Node, false/*lshr is unsigned*/, Hi); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: { | 
|  | // If the target wants to custom expand this, let them. | 
|  | if (TLI.getOperationAction(Node->getOpcode(), VT) == | 
|  | TargetLowering::Custom) { | 
|  | SDValue Result = TLI.LowerOperation(Op, DAG); | 
|  | if (Result.getNode()) { | 
|  | ExpandOp(Result, Lo, Hi); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Expand the subcomponents. | 
|  | SDValue LHSL, LHSH, RHSL, RHSH; | 
|  | ExpandOp(Node->getOperand(0), LHSL, LHSH); | 
|  | ExpandOp(Node->getOperand(1), RHSL, RHSH); | 
|  | SDValue LoOps[2], HiOps[3]; | 
|  | LoOps[0] = LHSL; | 
|  | LoOps[1] = RHSL; | 
|  | HiOps[0] = LHSH; | 
|  | HiOps[1] = RHSH; | 
|  |  | 
|  | //cascaded check to see if any smaller size has a a carry flag. | 
|  | unsigned OpV = Node->getOpcode() == ISD::ADD ? ISD::ADDC : ISD::SUBC; | 
|  | bool hasCarry = false; | 
|  | for (unsigned BitSize = NVT.getSizeInBits(); BitSize != 0; BitSize /= 2) { | 
|  | MVT AVT = MVT::getIntegerVT(BitSize); | 
|  | if (TLI.isOperationLegalOrCustom(OpV, AVT)) { | 
|  | hasCarry = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if(hasCarry) { | 
|  | SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); | 
|  | if (Node->getOpcode() == ISD::ADD) { | 
|  | Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2); | 
|  | HiOps[2] = Lo.getValue(1); | 
|  | Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3); | 
|  | } else { | 
|  | Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2); | 
|  | HiOps[2] = Lo.getValue(1); | 
|  | Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3); | 
|  | } | 
|  | break; | 
|  | } else { | 
|  | if (Node->getOpcode() == ISD::ADD) { | 
|  | Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps, 2); | 
|  | Hi = DAG.getNode(ISD::ADD, dl, NVT, HiOps, 2); | 
|  | SDValue Cmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), | 
|  | Lo, LoOps[0], ISD::SETULT); | 
|  | SDValue Carry1 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp1, | 
|  | DAG.getConstant(1, NVT), | 
|  | DAG.getConstant(0, NVT)); | 
|  | SDValue Cmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), | 
|  | Lo, LoOps[1], ISD::SETULT); | 
|  | SDValue Carry2 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp2, | 
|  | DAG.getConstant(1, NVT), | 
|  | Carry1); | 
|  | Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2); | 
|  | } else { | 
|  | Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps, 2); | 
|  | Hi = DAG.getNode(ISD::SUB, dl, NVT, HiOps, 2); | 
|  | SDValue Cmp = DAG.getSetCC(dl, NVT, LoOps[0], LoOps[1], ISD::SETULT); | 
|  | SDValue Borrow = DAG.getNode(ISD::SELECT, dl, NVT, Cmp, | 
|  | DAG.getConstant(1, NVT), | 
|  | DAG.getConstant(0, NVT)); | 
|  | Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | case ISD::ADDC: | 
|  | case ISD::SUBC: { | 
|  | // Expand the subcomponents. | 
|  | SDValue LHSL, LHSH, RHSL, RHSH; | 
|  | ExpandOp(Node->getOperand(0), LHSL, LHSH); | 
|  | ExpandOp(Node->getOperand(1), RHSL, RHSH); | 
|  | SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); | 
|  | SDValue LoOps[2] = { LHSL, RHSL }; | 
|  | SDValue HiOps[3] = { LHSH, RHSH }; | 
|  |  | 
|  | if (Node->getOpcode() == ISD::ADDC) { | 
|  | Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2); | 
|  | HiOps[2] = Lo.getValue(1); | 
|  | Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3); | 
|  | } else { | 
|  | Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2); | 
|  | HiOps[2] = Lo.getValue(1); | 
|  | Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3); | 
|  | } | 
|  | // Remember that we legalized the flag. | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); | 
|  | break; | 
|  | } | 
|  | case ISD::ADDE: | 
|  | case ISD::SUBE: { | 
|  | // Expand the subcomponents. | 
|  | SDValue LHSL, LHSH, RHSL, RHSH; | 
|  | ExpandOp(Node->getOperand(0), LHSL, LHSH); | 
|  | ExpandOp(Node->getOperand(1), RHSL, RHSH); | 
|  | SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); | 
|  | SDValue LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; | 
|  | SDValue HiOps[3] = { LHSH, RHSH }; | 
|  |  | 
|  | Lo = DAG.getNode(Node->getOpcode(), dl, VTList, LoOps, 3); | 
|  | HiOps[2] = Lo.getValue(1); | 
|  | Hi = DAG.getNode(Node->getOpcode(), dl, VTList, HiOps, 3); | 
|  |  | 
|  | // Remember that we legalized the flag. | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); | 
|  | break; | 
|  | } | 
|  | case ISD::MUL: { | 
|  | // If the target wants to custom expand this, let them. | 
|  | if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { | 
|  | SDValue New = TLI.LowerOperation(Op, DAG); | 
|  | if (New.getNode()) { | 
|  | ExpandOp(New, Lo, Hi); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT); | 
|  | bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT); | 
|  | bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT); | 
|  | bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT); | 
|  | if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { | 
|  | SDValue LL, LH, RL, RH; | 
|  | ExpandOp(Node->getOperand(0), LL, LH); | 
|  | ExpandOp(Node->getOperand(1), RL, RH); | 
|  | unsigned OuterBitSize = Op.getValueSizeInBits(); | 
|  | unsigned InnerBitSize = RH.getValueSizeInBits(); | 
|  | unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); | 
|  | unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); | 
|  | APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); | 
|  | if (DAG.MaskedValueIsZero(Node->getOperand(0), HighMask) && | 
|  | DAG.MaskedValueIsZero(Node->getOperand(1), HighMask)) { | 
|  | // The inputs are both zero-extended. | 
|  | if (HasUMUL_LOHI) { | 
|  | // We can emit a umul_lohi. | 
|  | Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL); | 
|  | Hi = SDValue(Lo.getNode(), 1); | 
|  | break; | 
|  | } | 
|  | if (HasMULHU) { | 
|  | // We can emit a mulhu+mul. | 
|  | Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); | 
|  | Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { | 
|  | // The input values are both sign-extended. | 
|  | if (HasSMUL_LOHI) { | 
|  | // We can emit a smul_lohi. | 
|  | Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL); | 
|  | Hi = SDValue(Lo.getNode(), 1); | 
|  | break; | 
|  | } | 
|  | if (HasMULHS) { | 
|  | // We can emit a mulhs+mul. | 
|  | Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); | 
|  | Hi = DAG.getNode(ISD::MULHS, dl, NVT, LL, RL); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (HasUMUL_LOHI) { | 
|  | // Lo,Hi = umul LHS, RHS. | 
|  | SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, | 
|  | DAG.getVTList(NVT, NVT), LL, RL); | 
|  | Lo = UMulLOHI; | 
|  | Hi = UMulLOHI.getValue(1); | 
|  | RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH); | 
|  | LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL); | 
|  | Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH); | 
|  | Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH); | 
|  | break; | 
|  | } | 
|  | if (HasMULHU) { | 
|  | Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); | 
|  | Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL); | 
|  | RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH); | 
|  | LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL); | 
|  | Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH); | 
|  | Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If nothing else, we can make a libcall. | 
|  | Lo = ExpandLibCall(RTLIB::MUL_I64, Node, false/*sign irrelevant*/, Hi); | 
|  | break; | 
|  | } | 
|  | case ISD::SDIV: | 
|  | Lo = ExpandLibCall(RTLIB::SDIV_I64, Node, true, Hi); | 
|  | break; | 
|  | case ISD::UDIV: | 
|  | Lo = ExpandLibCall(RTLIB::UDIV_I64, Node, true, Hi); | 
|  | break; | 
|  | case ISD::SREM: | 
|  | Lo = ExpandLibCall(RTLIB::SREM_I64, Node, true, Hi); | 
|  | break; | 
|  | case ISD::UREM: | 
|  | Lo = ExpandLibCall(RTLIB::UREM_I64, Node, true, Hi); | 
|  | break; | 
|  |  | 
|  | case ISD::FADD: | 
|  | Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::ADD_F32, | 
|  | RTLIB::ADD_F64, | 
|  | RTLIB::ADD_F80, | 
|  | RTLIB::ADD_PPCF128), | 
|  | Node, false, Hi); | 
|  | break; | 
|  | case ISD::FSUB: | 
|  | Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::SUB_F32, | 
|  | RTLIB::SUB_F64, | 
|  | RTLIB::SUB_F80, | 
|  | RTLIB::SUB_PPCF128), | 
|  | Node, false, Hi); | 
|  | break; | 
|  | case ISD::FMUL: | 
|  | Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::MUL_F32, | 
|  | RTLIB::MUL_F64, | 
|  | RTLIB::MUL_F80, | 
|  | RTLIB::MUL_PPCF128), | 
|  | Node, false, Hi); | 
|  | break; | 
|  | case ISD::FDIV: | 
|  | Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::DIV_F32, | 
|  | RTLIB::DIV_F64, | 
|  | RTLIB::DIV_F80, | 
|  | RTLIB::DIV_PPCF128), | 
|  | Node, false, Hi); | 
|  | break; | 
|  | case ISD::FP_EXTEND: { | 
|  | if (VT == MVT::ppcf128) { | 
|  | assert(Node->getOperand(0).getValueType()==MVT::f32 || | 
|  | Node->getOperand(0).getValueType()==MVT::f64); | 
|  | const uint64_t zero = 0; | 
|  | if (Node->getOperand(0).getValueType()==MVT::f32) | 
|  | Hi = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Node->getOperand(0)); | 
|  | else | 
|  | Hi = Node->getOperand(0); | 
|  | Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); | 
|  | break; | 
|  | } | 
|  | RTLIB::Libcall LC = RTLIB::getFPEXT(Node->getOperand(0).getValueType(), VT); | 
|  | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!"); | 
|  | Lo = ExpandLibCall(LC, Node, true, Hi); | 
|  | break; | 
|  | } | 
|  | case ISD::FP_ROUND: { | 
|  | RTLIB::Libcall LC = RTLIB::getFPROUND(Node->getOperand(0).getValueType(), | 
|  | VT); | 
|  | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!"); | 
|  | Lo = ExpandLibCall(LC, Node, true, Hi); | 
|  | break; | 
|  | } | 
|  | case ISD::FSQRT: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FLOG: | 
|  | case ISD::FLOG2: | 
|  | case ISD::FLOG10: | 
|  | case ISD::FEXP: | 
|  | case ISD::FEXP2: | 
|  | case ISD::FTRUNC: | 
|  | case ISD::FFLOOR: | 
|  | case ISD::FCEIL: | 
|  | case ISD::FRINT: | 
|  | case ISD::FNEARBYINT: | 
|  | case ISD::FPOW: | 
|  | case ISD::FPOWI: { | 
|  | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; | 
|  | switch(Node->getOpcode()) { | 
|  | case ISD::FSQRT: | 
|  | LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, | 
|  | RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); | 
|  | break; | 
|  | case ISD::FSIN: | 
|  | LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, | 
|  | RTLIB::SIN_F80, RTLIB::SIN_PPCF128); | 
|  | break; | 
|  | case ISD::FCOS: | 
|  | LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, | 
|  | RTLIB::COS_F80, RTLIB::COS_PPCF128); | 
|  | break; | 
|  | case ISD::FLOG: | 
|  | LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64, | 
|  | RTLIB::LOG_F80, RTLIB::LOG_PPCF128); | 
|  | break; | 
|  | case ISD::FLOG2: | 
|  | LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64, | 
|  | RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128); | 
|  | break; | 
|  | case ISD::FLOG10: | 
|  | LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64, | 
|  | RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128); | 
|  | break; | 
|  | case ISD::FEXP: | 
|  | LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64, | 
|  | RTLIB::EXP_F80, RTLIB::EXP_PPCF128); | 
|  | break; | 
|  | case ISD::FEXP2: | 
|  | LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64, | 
|  | RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128); | 
|  | break; | 
|  | case ISD::FTRUNC: | 
|  | LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, | 
|  | RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128); | 
|  | break; | 
|  | case ISD::FFLOOR: | 
|  | LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, | 
|  | RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128); | 
|  | break; | 
|  | case ISD::FCEIL: | 
|  | LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64, | 
|  | RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128); | 
|  | break; | 
|  | case ISD::FRINT: | 
|  | LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64, | 
|  | RTLIB::RINT_F80, RTLIB::RINT_PPCF128); | 
|  | break; | 
|  | case ISD::FNEARBYINT: | 
|  | LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, | 
|  | RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128); | 
|  | break; | 
|  | case ISD::FPOW: | 
|  | LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, | 
|  | RTLIB::POW_PPCF128); | 
|  | break; | 
|  | case ISD::FPOWI: | 
|  | LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80, | 
|  | RTLIB::POWI_PPCF128); | 
|  | break; | 
|  | default: assert(0 && "Unreachable!"); | 
|  | } | 
|  | Lo = ExpandLibCall(LC, Node, false, Hi); | 
|  | break; | 
|  | } | 
|  | case ISD::FABS: { | 
|  | if (VT == MVT::ppcf128) { | 
|  | SDValue Tmp; | 
|  | ExpandOp(Node->getOperand(0), Lo, Tmp); | 
|  | Hi = DAG.getNode(ISD::FABS, dl, NVT, Tmp); | 
|  | // lo = hi==fabs(hi) ? lo : -lo; | 
|  | Lo = DAG.getNode(ISD::SELECT_CC, dl, NVT, Hi, Tmp, | 
|  | Lo, DAG.getNode(ISD::FNEG, dl, NVT, Lo), | 
|  | DAG.getCondCode(ISD::SETEQ)); | 
|  | break; | 
|  | } | 
|  | SDValue Mask = (VT == MVT::f64) | 
|  | ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) | 
|  | : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); | 
|  | Mask = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask); | 
|  | Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); | 
|  | Lo = DAG.getNode(ISD::AND, dl, NVT, Lo, Mask); | 
|  | if (getTypeAction(NVT) == Expand) | 
|  | ExpandOp(Lo, Lo, Hi); | 
|  | break; | 
|  | } | 
|  | case ISD::FNEG: { | 
|  | if (VT == MVT::ppcf128) { | 
|  | ExpandOp(Node->getOperand(0), Lo, Hi); | 
|  | Lo = DAG.getNode(ISD::FNEG, dl, MVT::f64, Lo); | 
|  | Hi = DAG.getNode(ISD::FNEG, dl, MVT::f64, Hi); | 
|  | break; | 
|  | } | 
|  | SDValue Mask = (VT == MVT::f64) | 
|  | ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) | 
|  | : DAG.getConstantFP(BitsToFloat(1U << 31), VT); | 
|  | Mask = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask); | 
|  | Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); | 
|  | Lo = DAG.getNode(ISD::XOR, dl, NVT, Lo, Mask); | 
|  | if (getTypeAction(NVT) == Expand) | 
|  | ExpandOp(Lo, Lo, Hi); | 
|  | break; | 
|  | } | 
|  | case ISD::FCOPYSIGN: { | 
|  | Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); | 
|  | if (getTypeAction(NVT) == Expand) | 
|  | ExpandOp(Lo, Lo, Hi); | 
|  | break; | 
|  | } | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: { | 
|  | bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; | 
|  | MVT SrcVT = Node->getOperand(0).getValueType(); | 
|  |  | 
|  | // Promote the operand if needed.  Do this before checking for | 
|  | // ppcf128 so conversions of i16 and i8 work. | 
|  | if (getTypeAction(SrcVT) == Promote) { | 
|  | SDValue Tmp = PromoteOp(Node->getOperand(0)); | 
|  | Tmp = isSigned | 
|  | ? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Tmp.getValueType(), Tmp, | 
|  | DAG.getValueType(SrcVT)) | 
|  | : DAG.getZeroExtendInReg(Tmp, dl, SrcVT); | 
|  | Node = DAG.UpdateNodeOperands(Op, Tmp).getNode(); | 
|  | SrcVT = Node->getOperand(0).getValueType(); | 
|  | } | 
|  |  | 
|  | if (VT == MVT::ppcf128 && SrcVT == MVT::i32) { | 
|  | static const uint64_t zero = 0; | 
|  | if (isSigned) { | 
|  | Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f64, | 
|  | Node->getOperand(0))); | 
|  | Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); | 
|  | } else { | 
|  | static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; | 
|  | Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f64, | 
|  | Node->getOperand(0))); | 
|  | Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); | 
|  | Hi = DAG.getNode(ISD::BUILD_PAIR, dl, VT, Lo, Hi); | 
|  | // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 | 
|  | ExpandOp(DAG.getNode(ISD::SELECT_CC, dl, | 
|  | MVT::ppcf128, Node->getOperand(0), | 
|  | DAG.getConstant(0, MVT::i32), | 
|  | DAG.getNode(ISD::FADD, dl, MVT::ppcf128, Hi, | 
|  | DAG.getConstantFP | 
|  | (APFloat(APInt(128, 2, TwoE32)), | 
|  | MVT::ppcf128)), | 
|  | Hi, | 
|  | DAG.getCondCode(ISD::SETLT)), | 
|  | Lo, Hi); | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { | 
|  | // si64->ppcf128 done by libcall, below | 
|  | static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; | 
|  | ExpandOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::ppcf128, | 
|  | Node->getOperand(0)), Lo, Hi); | 
|  | Hi = DAG.getNode(ISD::BUILD_PAIR, dl, VT, Lo, Hi); | 
|  | // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 | 
|  | ExpandOp(DAG.getNode(ISD::SELECT_CC, dl, MVT::ppcf128, | 
|  | Node->getOperand(0), | 
|  | DAG.getConstant(0, MVT::i64), | 
|  | DAG.getNode(ISD::FADD, dl, MVT::ppcf128, Hi, | 
|  | DAG.getConstantFP | 
|  | (APFloat(APInt(128, 2, TwoE64)), | 
|  | MVT::ppcf128)), | 
|  | Hi, | 
|  | DAG.getCondCode(ISD::SETLT)), | 
|  | Lo, Hi); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, | 
|  | Node->getOperand(0), dl); | 
|  | if (getTypeAction(Lo.getValueType()) == Expand) | 
|  | // float to i32 etc. can be 'expanded' to a single node. | 
|  | ExpandOp(Lo, Lo, Hi); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure the resultant values have been legalized themselves, unless this | 
|  | // is a type that requires multi-step expansion. | 
|  | if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { | 
|  | Lo = LegalizeOp(Lo); | 
|  | if (Hi.getNode()) | 
|  | // Don't legalize the high part if it is expanded to a single node. | 
|  | Hi = LegalizeOp(Hi); | 
|  | } | 
|  |  | 
|  | // Remember in a map if the values will be reused later. | 
|  | bool isNew = | 
|  | ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; | 
|  | assert(isNew && "Value already expanded?!?"); | 
|  | isNew = isNew; | 
|  | } | 
|  |  | 
|  | /// SplitVectorOp - Given an operand of vector type, break it down into | 
|  | /// two smaller values, still of vector type. | 
|  | void SelectionDAGLegalize::SplitVectorOp(SDValue Op, SDValue &Lo, | 
|  | SDValue &Hi) { | 
|  | assert(Op.getValueType().isVector() && "Cannot split non-vector type!"); | 
|  | SDNode *Node = Op.getNode(); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | unsigned NumElements = Op.getValueType().getVectorNumElements(); | 
|  | assert(NumElements > 1 && "Cannot split a single element vector!"); | 
|  |  | 
|  | MVT NewEltVT = Op.getValueType().getVectorElementType(); | 
|  |  | 
|  | unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); | 
|  | unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; | 
|  |  | 
|  | MVT NewVT_Lo = MVT::getVectorVT(NewEltVT, NewNumElts_Lo); | 
|  | MVT NewVT_Hi = MVT::getVectorVT(NewEltVT, NewNumElts_Hi); | 
|  |  | 
|  | // See if we already split it. | 
|  | std::map<SDValue, std::pair<SDValue, SDValue> >::iterator I | 
|  | = SplitNodes.find(Op); | 
|  | if (I != SplitNodes.end()) { | 
|  | Lo = I->second.first; | 
|  | Hi = I->second.second; | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (Node->getOpcode()) { | 
|  | default: | 
|  | #ifndef NDEBUG | 
|  | Node->dump(&DAG); | 
|  | #endif | 
|  | assert(0 && "Unhandled operation in SplitVectorOp!"); | 
|  | case ISD::UNDEF: | 
|  | Lo = DAG.getUNDEF(NewVT_Lo); | 
|  | Hi = DAG.getUNDEF(NewVT_Hi); | 
|  | break; | 
|  | case ISD::BUILD_PAIR: | 
|  | Lo = Node->getOperand(0); | 
|  | Hi = Node->getOperand(1); | 
|  | break; | 
|  | case ISD::INSERT_VECTOR_ELT: { | 
|  | if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Node->getOperand(2))) { | 
|  | SplitVectorOp(Node->getOperand(0), Lo, Hi); | 
|  | unsigned Index = Idx->getZExtValue(); | 
|  | SDValue ScalarOp = Node->getOperand(1); | 
|  | if (Index < NewNumElts_Lo) | 
|  | Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVT_Lo, Lo, ScalarOp, | 
|  | DAG.getIntPtrConstant(Index)); | 
|  | else | 
|  | Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVT_Hi, Hi, ScalarOp, | 
|  | DAG.getIntPtrConstant(Index - NewNumElts_Lo)); | 
|  | break; | 
|  | } | 
|  | SDValue Tmp = PerformInsertVectorEltInMemory(Node->getOperand(0), | 
|  | Node->getOperand(1), | 
|  | Node->getOperand(2), dl); | 
|  | SplitVectorOp(Tmp, Lo, Hi); | 
|  | break; | 
|  | } | 
|  | case ISD::VECTOR_SHUFFLE: { | 
|  | // Build the low part. | 
|  | SDValue Mask = Node->getOperand(2); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | MVT PtrVT = TLI.getPointerTy(); | 
|  |  | 
|  | // Insert all of the elements from the input that are needed.  We use | 
|  | // buildvector of extractelement here because the input vectors will have | 
|  | // to be legalized, so this makes the code simpler. | 
|  | for (unsigned i = 0; i != NewNumElts_Lo; ++i) { | 
|  | SDValue IdxNode = Mask.getOperand(i); | 
|  | if (IdxNode.getOpcode() == ISD::UNDEF) { | 
|  | Ops.push_back(DAG.getUNDEF(NewEltVT)); | 
|  | continue; | 
|  | } | 
|  | unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue(); | 
|  | SDValue InVec = Node->getOperand(0); | 
|  | if (Idx >= NumElements) { | 
|  | InVec = Node->getOperand(1); | 
|  | Idx -= NumElements; | 
|  | } | 
|  | Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, InVec, | 
|  | DAG.getConstant(Idx, PtrVT))); | 
|  | } | 
|  | Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Lo, &Ops[0], Ops.size()); | 
|  | Ops.clear(); | 
|  |  | 
|  | for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { | 
|  | SDValue IdxNode = Mask.getOperand(i); | 
|  | if (IdxNode.getOpcode() == ISD::UNDEF) { | 
|  | Ops.push_back(DAG.getUNDEF(NewEltVT)); | 
|  | continue; | 
|  | } | 
|  | unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue(); | 
|  | SDValue InVec = Node->getOperand(0); | 
|  | if (Idx >= NumElements) { | 
|  | InVec = Node->getOperand(1); | 
|  | Idx -= NumElements; | 
|  | } | 
|  | Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, InVec, | 
|  | DAG.getConstant(Idx, PtrVT))); | 
|  | } | 
|  | Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Hi, &Ops[0], Ops.size()); | 
|  | break; | 
|  | } | 
|  | case ISD::BUILD_VECTOR: { | 
|  | SmallVector<SDValue, 8> LoOps(Node->op_begin(), | 
|  | Node->op_begin()+NewNumElts_Lo); | 
|  | Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Lo, &LoOps[0], LoOps.size()); | 
|  |  | 
|  | SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumElts_Lo, | 
|  | Node->op_end()); | 
|  | Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Hi, &HiOps[0], HiOps.size()); | 
|  | break; | 
|  | } | 
|  | case ISD::CONCAT_VECTORS: { | 
|  | // FIXME: Handle non-power-of-two vectors? | 
|  | unsigned NewNumSubvectors = Node->getNumOperands() / 2; | 
|  | if (NewNumSubvectors == 1) { | 
|  | Lo = Node->getOperand(0); | 
|  | Hi = Node->getOperand(1); | 
|  | } else { | 
|  | SmallVector<SDValue, 8> LoOps(Node->op_begin(), | 
|  | Node->op_begin()+NewNumSubvectors); | 
|  | Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewVT_Lo, | 
|  | &LoOps[0], LoOps.size()); | 
|  |  | 
|  | SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumSubvectors, | 
|  | Node->op_end()); | 
|  | Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewVT_Hi, | 
|  | &HiOps[0], HiOps.size()); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::EXTRACT_SUBVECTOR: { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue Idx = Op.getOperand(1); | 
|  | MVT     IdxVT = Idx.getValueType(); | 
|  |  | 
|  | Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Lo, Vec, Idx); | 
|  | ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx); | 
|  | if (CIdx) { | 
|  | Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Hi, Vec, | 
|  | DAG.getConstant(CIdx->getZExtValue() + NewNumElts_Lo, | 
|  | IdxVT)); | 
|  | } else { | 
|  | Idx = DAG.getNode(ISD::ADD, dl, IdxVT, Idx, | 
|  | DAG.getConstant(NewNumElts_Lo, IdxVT)); | 
|  | Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Hi, Vec, Idx); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT: { | 
|  | SDValue Cond = Node->getOperand(0); | 
|  |  | 
|  | SDValue LL, LH, RL, RH; | 
|  | SplitVectorOp(Node->getOperand(1), LL, LH); | 
|  | SplitVectorOp(Node->getOperand(2), RL, RH); | 
|  |  | 
|  | if (Cond.getValueType().isVector()) { | 
|  | // Handle a vector merge. | 
|  | SDValue CL, CH; | 
|  | SplitVectorOp(Cond, CL, CH); | 
|  | Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, CL, LL, RL); | 
|  | Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, CH, LH, RH); | 
|  | } else { | 
|  | // Handle a simple select with vector operands. | 
|  | Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, Cond, LL, RL); | 
|  | Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, Cond, LH, RH); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT_CC: { | 
|  | SDValue CondLHS = Node->getOperand(0); | 
|  | SDValue CondRHS = Node->getOperand(1); | 
|  | SDValue CondCode = Node->getOperand(4); | 
|  |  | 
|  | SDValue LL, LH, RL, RH; | 
|  | SplitVectorOp(Node->getOperand(2), LL, LH); | 
|  | SplitVectorOp(Node->getOperand(3), RL, RH); | 
|  |  | 
|  | // Handle a simple select with vector operands. | 
|  | Lo = DAG.getNode(ISD::SELECT_CC, dl, NewVT_Lo, CondLHS, CondRHS, | 
|  | LL, RL, CondCode); | 
|  | Hi = DAG.getNode(ISD::SELECT_CC, dl, NewVT_Hi, CondLHS, CondRHS, | 
|  | LH, RH, CondCode); | 
|  | break; | 
|  | } | 
|  | case ISD::VSETCC: { | 
|  | SDValue LL, LH, RL, RH; | 
|  | SplitVectorOp(Node->getOperand(0), LL, LH); | 
|  | SplitVectorOp(Node->getOperand(1), RL, RH); | 
|  | Lo = DAG.getNode(ISD::VSETCC, dl, NewVT_Lo, LL, RL, Node->getOperand(2)); | 
|  | Hi = DAG.getNode(ISD::VSETCC, dl, NewVT_Hi, LH, RH, Node->getOperand(2)); | 
|  | break; | 
|  | } | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::SDIV: | 
|  | case ISD::UDIV: | 
|  | case ISD::FDIV: | 
|  | case ISD::FPOW: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::UREM: | 
|  | case ISD::SREM: | 
|  | case ISD::FREM: | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: { | 
|  | SDValue LL, LH, RL, RH; | 
|  | SplitVectorOp(Node->getOperand(0), LL, LH); | 
|  | SplitVectorOp(Node->getOperand(1), RL, RH); | 
|  |  | 
|  | Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, LL, RL); | 
|  | Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, LH, RH); | 
|  | break; | 
|  | } | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::FPOWI: { | 
|  | SDValue L, H; | 
|  | SplitVectorOp(Node->getOperand(0), L, H); | 
|  |  | 
|  | Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, L, Node->getOperand(1)); | 
|  | Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, H, Node->getOperand(1)); | 
|  | break; | 
|  | } | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTLZ: | 
|  | case ISD::CTPOP: | 
|  | case ISD::FNEG: | 
|  | case ISD::FABS: | 
|  | case ISD::FSQRT: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FLOG: | 
|  | case ISD::FLOG2: | 
|  | case ISD::FLOG10: | 
|  | case ISD::FEXP: | 
|  | case ISD::FEXP2: | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::TRUNCATE: | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::FP_EXTEND: { | 
|  | SDValue L, H; | 
|  | SplitVectorOp(Node->getOperand(0), L, H); | 
|  |  | 
|  | Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, L); | 
|  | Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, H); | 
|  | break; | 
|  | } | 
|  | case ISD::CONVERT_RNDSAT: { | 
|  | ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); | 
|  | SDValue L, H; | 
|  | SplitVectorOp(Node->getOperand(0), L, H); | 
|  | SDValue DTyOpL = DAG.getValueType(NewVT_Lo); | 
|  | SDValue DTyOpH = DAG.getValueType(NewVT_Hi); | 
|  | SDValue STyOpL = DAG.getValueType(L.getValueType()); | 
|  | SDValue STyOpH = DAG.getValueType(H.getValueType()); | 
|  |  | 
|  | SDValue RndOp = Node->getOperand(3); | 
|  | SDValue SatOp = Node->getOperand(4); | 
|  |  | 
|  | Lo = DAG.getConvertRndSat(NewVT_Lo, dl, L, DTyOpL, STyOpL, | 
|  | RndOp, SatOp, CvtCode); | 
|  | Hi = DAG.getConvertRndSat(NewVT_Hi, dl, H, DTyOpH, STyOpH, | 
|  | RndOp, SatOp, CvtCode); | 
|  | break; | 
|  | } | 
|  | case ISD::LOAD: { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Node); | 
|  | SDValue Ch = LD->getChain(); | 
|  | SDValue Ptr = LD->getBasePtr(); | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  | const Value *SV = LD->getSrcValue(); | 
|  | int SVOffset = LD->getSrcValueOffset(); | 
|  | MVT MemoryVT = LD->getMemoryVT(); | 
|  | unsigned Alignment = LD->getAlignment(); | 
|  | bool isVolatile = LD->isVolatile(); | 
|  |  | 
|  | assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!"); | 
|  | SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); | 
|  |  | 
|  | MVT MemNewEltVT = MemoryVT.getVectorElementType(); | 
|  | MVT MemNewVT_Lo = MVT::getVectorVT(MemNewEltVT, NewNumElts_Lo); | 
|  | MVT MemNewVT_Hi = MVT::getVectorVT(MemNewEltVT, NewNumElts_Hi); | 
|  |  | 
|  | Lo = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, | 
|  | NewVT_Lo, Ch, Ptr, Offset, | 
|  | SV, SVOffset, MemNewVT_Lo, isVolatile, Alignment); | 
|  | unsigned IncrementSize = NewNumElts_Lo * MemNewEltVT.getSizeInBits()/8; | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getIntPtrConstant(IncrementSize)); | 
|  | SVOffset += IncrementSize; | 
|  | Alignment = MinAlign(Alignment, IncrementSize); | 
|  | Hi = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, | 
|  | NewVT_Hi, Ch, Ptr, Offset, | 
|  | SV, SVOffset, MemNewVT_Hi, isVolatile, Alignment); | 
|  |  | 
|  | // Build a factor node to remember that this load is independent of the | 
|  | // other one. | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | // Remember that we legalized the chain. | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); | 
|  | break; | 
|  | } | 
|  | case ISD::BIT_CONVERT: { | 
|  | // We know the result is a vector.  The input may be either a vector or a | 
|  | // scalar value. | 
|  | SDValue InOp = Node->getOperand(0); | 
|  | if (!InOp.getValueType().isVector() || | 
|  | InOp.getValueType().getVectorNumElements() == 1) { | 
|  | // The input is a scalar or single-element vector. | 
|  | // Lower to a store/load so that it can be split. | 
|  | // FIXME: this could be improved probably. | 
|  | unsigned LdAlign = TLI.getTargetData()-> | 
|  | getPrefTypeAlignment(Op.getValueType().getTypeForMVT()); | 
|  | SDValue Ptr = DAG.CreateStackTemporary(InOp.getValueType(), LdAlign); | 
|  | int FI = cast<FrameIndexSDNode>(Ptr.getNode())->getIndex(); | 
|  |  | 
|  | SDValue St = DAG.getStore(DAG.getEntryNode(), dl, | 
|  | InOp, Ptr, | 
|  | PseudoSourceValue::getFixedStack(FI), 0); | 
|  | InOp = DAG.getLoad(Op.getValueType(), dl, St, Ptr, | 
|  | PseudoSourceValue::getFixedStack(FI), 0); | 
|  | } | 
|  | // Split the vector and convert each of the pieces now. | 
|  | SplitVectorOp(InOp, Lo, Hi); | 
|  | Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT_Lo, Lo); | 
|  | Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT_Hi, Hi); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remember in a map if the values will be reused later. | 
|  | bool isNew = | 
|  | SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; | 
|  | assert(isNew && "Value already split?!?"); | 
|  | isNew = isNew; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ScalarizeVectorOp - Given an operand of single-element vector type | 
|  | /// (e.g. v1f32), convert it into the equivalent operation that returns a | 
|  | /// scalar (e.g. f32) value. | 
|  | SDValue SelectionDAGLegalize::ScalarizeVectorOp(SDValue Op) { | 
|  | assert(Op.getValueType().isVector() && "Bad ScalarizeVectorOp invocation!"); | 
|  | SDNode *Node = Op.getNode(); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | MVT NewVT = Op.getValueType().getVectorElementType(); | 
|  | assert(Op.getValueType().getVectorNumElements() == 1); | 
|  |  | 
|  | // See if we already scalarized it. | 
|  | std::map<SDValue, SDValue>::iterator I = ScalarizedNodes.find(Op); | 
|  | if (I != ScalarizedNodes.end()) return I->second; | 
|  |  | 
|  | SDValue Result; | 
|  | switch (Node->getOpcode()) { | 
|  | default: | 
|  | #ifndef NDEBUG | 
|  | Node->dump(&DAG); cerr << "\n"; | 
|  | #endif | 
|  | assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); | 
|  | case ISD::ADD: | 
|  | case ISD::FADD: | 
|  | case ISD::SUB: | 
|  | case ISD::FSUB: | 
|  | case ISD::MUL: | 
|  | case ISD::FMUL: | 
|  | case ISD::SDIV: | 
|  | case ISD::UDIV: | 
|  | case ISD::FDIV: | 
|  | case ISD::SREM: | 
|  | case ISD::UREM: | 
|  | case ISD::FREM: | 
|  | case ISD::FPOW: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, | 
|  | NewVT, | 
|  | ScalarizeVectorOp(Node->getOperand(0)), | 
|  | ScalarizeVectorOp(Node->getOperand(1))); | 
|  | break; | 
|  | case ISD::FNEG: | 
|  | case ISD::FABS: | 
|  | case ISD::FSQRT: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FLOG: | 
|  | case ISD::FLOG2: | 
|  | case ISD::FLOG10: | 
|  | case ISD::FEXP: | 
|  | case ISD::FEXP2: | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::TRUNCATE: | 
|  | case ISD::FP_EXTEND: | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, | 
|  | NewVT, | 
|  | ScalarizeVectorOp(Node->getOperand(0))); | 
|  | break; | 
|  | case ISD::CONVERT_RNDSAT: { | 
|  | SDValue Op0 = ScalarizeVectorOp(Node->getOperand(0)); | 
|  | Result = DAG.getConvertRndSat(NewVT, dl, Op0, | 
|  | DAG.getValueType(NewVT), | 
|  | DAG.getValueType(Op0.getValueType()), | 
|  | Node->getOperand(3), | 
|  | Node->getOperand(4), | 
|  | cast<CvtRndSatSDNode>(Node)->getCvtCode()); | 
|  | break; | 
|  | } | 
|  | case ISD::FPOWI: | 
|  | case ISD::FP_ROUND: | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, | 
|  | NewVT, | 
|  | ScalarizeVectorOp(Node->getOperand(0)), | 
|  | Node->getOperand(1)); | 
|  | break; | 
|  | case ISD::LOAD: { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Node); | 
|  | SDValue Ch = LegalizeOp(LD->getChain());     // Legalize the chain. | 
|  | SDValue Ptr = LegalizeOp(LD->getBasePtr());  // Legalize the pointer. | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  | const Value *SV = LD->getSrcValue(); | 
|  | int SVOffset = LD->getSrcValueOffset(); | 
|  | MVT MemoryVT = LD->getMemoryVT(); | 
|  | unsigned Alignment = LD->getAlignment(); | 
|  | bool isVolatile = LD->isVolatile(); | 
|  |  | 
|  | assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!"); | 
|  | SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); | 
|  |  | 
|  | Result = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, | 
|  | NewVT, Ch, Ptr, Offset, SV, SVOffset, | 
|  | MemoryVT.getVectorElementType(), | 
|  | isVolatile, Alignment); | 
|  |  | 
|  | // Remember that we legalized the chain. | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); | 
|  | break; | 
|  | } | 
|  | case ISD::BUILD_VECTOR: | 
|  | Result = Node->getOperand(0); | 
|  | break; | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | // Returning the inserted scalar element. | 
|  | Result = Node->getOperand(1); | 
|  | break; | 
|  | case ISD::CONCAT_VECTORS: | 
|  | assert(Node->getOperand(0).getValueType() == NewVT && | 
|  | "Concat of non-legal vectors not yet supported!"); | 
|  | Result = Node->getOperand(0); | 
|  | break; | 
|  | case ISD::VECTOR_SHUFFLE: { | 
|  | // Figure out if the scalar is the LHS or RHS and return it. | 
|  | SDValue EltNum = Node->getOperand(2).getOperand(0); | 
|  | if (cast<ConstantSDNode>(EltNum)->getZExtValue()) | 
|  | Result = ScalarizeVectorOp(Node->getOperand(1)); | 
|  | else | 
|  | Result = ScalarizeVectorOp(Node->getOperand(0)); | 
|  | break; | 
|  | } | 
|  | case ISD::EXTRACT_SUBVECTOR: | 
|  | Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, | 
|  | Node->getOperand(0), Node->getOperand(1)); | 
|  | break; | 
|  | case ISD::BIT_CONVERT: { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | if (Op0.getValueType().getVectorNumElements() == 1) | 
|  | Op0 = ScalarizeVectorOp(Op0); | 
|  | Result = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, Op0); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT: | 
|  | Result = DAG.getNode(ISD::SELECT, dl, NewVT, Op.getOperand(0), | 
|  | ScalarizeVectorOp(Op.getOperand(1)), | 
|  | ScalarizeVectorOp(Op.getOperand(2))); | 
|  | break; | 
|  | case ISD::SELECT_CC: | 
|  | Result = DAG.getNode(ISD::SELECT_CC, dl, NewVT, Node->getOperand(0), | 
|  | Node->getOperand(1), | 
|  | ScalarizeVectorOp(Op.getOperand(2)), | 
|  | ScalarizeVectorOp(Op.getOperand(3)), | 
|  | Node->getOperand(4)); | 
|  | break; | 
|  | case ISD::VSETCC: { | 
|  | SDValue Op0 = ScalarizeVectorOp(Op.getOperand(0)); | 
|  | SDValue Op1 = ScalarizeVectorOp(Op.getOperand(1)); | 
|  | Result = DAG.getNode(ISD::SETCC, dl, | 
|  | TLI.getSetCCResultType(Op0.getValueType()), | 
|  | Op0, Op1, Op.getOperand(2)); | 
|  | Result = DAG.getNode(ISD::SELECT, dl, NewVT, Result, | 
|  | DAG.getConstant(-1ULL, NewVT), | 
|  | DAG.getConstant(0ULL, NewVT)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TLI.isTypeLegal(NewVT)) | 
|  | Result = LegalizeOp(Result); | 
|  | bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; | 
|  | assert(isNew && "Value already scalarized?"); | 
|  | isNew = isNew; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue SelectionDAGLegalize::WidenVectorOp(SDValue Op, MVT WidenVT) { | 
|  | std::map<SDValue, SDValue>::iterator I = WidenNodes.find(Op); | 
|  | if (I != WidenNodes.end()) return I->second; | 
|  |  | 
|  | MVT VT = Op.getValueType(); | 
|  | assert(VT.isVector() && "Cannot widen non-vector type!"); | 
|  |  | 
|  | SDValue Result; | 
|  | SDNode *Node = Op.getNode(); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | MVT EVT = VT.getVectorElementType(); | 
|  |  | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned NewNumElts = WidenVT.getVectorNumElements(); | 
|  | assert(NewNumElts > NumElts  && "Cannot widen to smaller type!"); | 
|  | assert(NewNumElts < 17); | 
|  |  | 
|  | // When widen is called, it is assumed that it is more efficient to use a | 
|  | // wide type.  The default action is to widen to operation to a wider legal | 
|  | // vector type and then do the operation if it is legal by calling LegalizeOp | 
|  | // again.  If there is no vector equivalent, we will unroll the operation, do | 
|  | // it, and rebuild the vector.  If most of the operations are vectorizible to | 
|  | // the legal type, the resulting code will be more efficient.  If this is not | 
|  | // the case, the resulting code will preform badly as we end up generating | 
|  | // code to pack/unpack the results. It is the function that calls widen | 
|  | // that is responsible for seeing this doesn't happen. | 
|  | switch (Node->getOpcode()) { | 
|  | default: | 
|  | #ifndef NDEBUG | 
|  | Node->dump(&DAG); | 
|  | #endif | 
|  | assert(0 && "Unexpected operation in WidenVectorOp!"); | 
|  | break; | 
|  | case ISD::CopyFromReg: | 
|  | assert(0 && "CopyFromReg doesn't need widening!"); | 
|  | case ISD::Constant: | 
|  | case ISD::ConstantFP: | 
|  | // To build a vector of these elements, clients should call BuildVector | 
|  | // and with each element instead of creating a node with a vector type | 
|  | assert(0 && "Unexpected operation in WidenVectorOp!"); | 
|  | case ISD::VAARG: | 
|  | // Variable Arguments with vector types doesn't make any sense to me | 
|  | assert(0 && "Unexpected operation in WidenVectorOp!"); | 
|  | break; | 
|  | case ISD::UNDEF: | 
|  | Result = DAG.getUNDEF(WidenVT); | 
|  | break; | 
|  | case ISD::BUILD_VECTOR: { | 
|  | // Build a vector with undefined for the new nodes | 
|  | SDValueVector NewOps(Node->op_begin(), Node->op_end()); | 
|  | for (unsigned i = NumElts; i < NewNumElts; ++i) { | 
|  | NewOps.push_back(DAG.getUNDEF(EVT)); | 
|  | } | 
|  | Result = DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, | 
|  | &NewOps[0], NewOps.size()); | 
|  | break; | 
|  | } | 
|  | case ISD::INSERT_VECTOR_ELT: { | 
|  | SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); | 
|  | Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, WidenVT, Tmp1, | 
|  | Node->getOperand(1), Node->getOperand(2)); | 
|  | break; | 
|  | } | 
|  | case ISD::VECTOR_SHUFFLE: { | 
|  | SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); | 
|  | SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Node); | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (unsigned i = 0; i < NumElts; ++i) { | 
|  | int Idx = SVOp->getMaskElt(i); | 
|  | if (Idx < (int)NumElts) | 
|  | NewMask.push_back(Idx); | 
|  | else | 
|  | NewMask.push_back(Idx + NewNumElts - NumElts); | 
|  | } | 
|  | for (unsigned i = NumElts; i < NewNumElts; ++i) | 
|  | NewMask.push_back(-1); | 
|  |  | 
|  | Result = DAG.getVectorShuffle(WidenVT, dl, Tmp1, Tmp2, &NewMask[0]); | 
|  | break; | 
|  | } | 
|  | case ISD::LOAD: { | 
|  | // If the load widen returns true, we can use a single load for the | 
|  | // vector.  Otherwise, it is returning a token factor for multiple | 
|  | // loads. | 
|  | SDValue TFOp; | 
|  | if (LoadWidenVectorOp(Result, TFOp, Op, WidenVT)) | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(1))); | 
|  | else | 
|  | AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(0))); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::BIT_CONVERT: { | 
|  | SDValue Tmp1 = Node->getOperand(0); | 
|  | // Converts between two different types so we need to determine | 
|  | // the correct widen type for the input operand. | 
|  | MVT InVT = Tmp1.getValueType(); | 
|  | unsigned WidenSize = WidenVT.getSizeInBits(); | 
|  | if (InVT.isVector()) { | 
|  | MVT InEltVT = InVT.getVectorElementType(); | 
|  | unsigned InEltSize = InEltVT.getSizeInBits(); | 
|  | assert(WidenSize % InEltSize == 0 && | 
|  | "can not widen bit convert that are not multiple of element type"); | 
|  | MVT NewInWidenVT = MVT::getVectorVT(InEltVT, WidenSize / InEltSize); | 
|  | Tmp1 = WidenVectorOp(Tmp1, NewInWidenVT); | 
|  | assert(Tmp1.getValueType().getSizeInBits() == WidenVT.getSizeInBits()); | 
|  | Result = DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, Tmp1); | 
|  | } else { | 
|  | // If the result size is a multiple of the input size, widen the input | 
|  | // and then convert. | 
|  | unsigned InSize = InVT.getSizeInBits(); | 
|  | assert(WidenSize % InSize == 0 && | 
|  | "can not widen bit convert that are not multiple of element type"); | 
|  | unsigned NewNumElts = WidenSize / InSize; | 
|  | SmallVector<SDValue, 16> Ops(NewNumElts); | 
|  | SDValue UndefVal = DAG.getUNDEF(InVT); | 
|  | Ops[0] = Tmp1; | 
|  | for (unsigned i = 1; i < NewNumElts; ++i) | 
|  | Ops[i] = UndefVal; | 
|  |  | 
|  | MVT NewInVT = MVT::getVectorVT(InVT, NewNumElts); | 
|  | Result = DAG.getNode(ISD::BUILD_VECTOR, dl, NewInVT, &Ops[0], NewNumElts); | 
|  | Result = DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, Result); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: | 
|  | case ISD::FP_ROUND: { | 
|  | SDValue Tmp1 = Node->getOperand(0); | 
|  | // Converts between two different types so we need to determine | 
|  | // the correct widen type for the input operand. | 
|  | MVT TVT = Tmp1.getValueType(); | 
|  | assert(TVT.isVector() && "can not widen non vector type"); | 
|  | MVT TEVT = TVT.getVectorElementType(); | 
|  | MVT TWidenVT =  MVT::getVectorVT(TEVT, NewNumElts); | 
|  | Tmp1 = WidenVectorOp(Tmp1, TWidenVT); | 
|  | assert(Tmp1.getValueType().getVectorNumElements() == NewNumElts); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::FP_EXTEND: | 
|  | assert(0 && "Case not implemented.  Dynamically dead with 2 FP types!"); | 
|  | case ISD::TRUNCATE: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | case ISD::FABS: | 
|  | case ISD::FNEG: | 
|  | case ISD::FSQRT: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::CTPOP: | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTLZ: { | 
|  | // Unary op widening | 
|  | SDValue Tmp1; | 
|  | Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); | 
|  | assert(Tmp1.getValueType() == WidenVT); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::CONVERT_RNDSAT: { | 
|  | SDValue RndOp = Node->getOperand(3); | 
|  | SDValue SatOp = Node->getOperand(4); | 
|  | SDValue SrcOp = Node->getOperand(0); | 
|  |  | 
|  | // Converts between two different types so we need to determine | 
|  | // the correct widen type for the input operand. | 
|  | MVT SVT = SrcOp.getValueType(); | 
|  | assert(SVT.isVector() && "can not widen non vector type"); | 
|  | MVT SEVT = SVT.getVectorElementType(); | 
|  | MVT SWidenVT =  MVT::getVectorVT(SEVT, NewNumElts); | 
|  |  | 
|  | SrcOp = WidenVectorOp(SrcOp, SWidenVT); | 
|  | assert(SrcOp.getValueType() == WidenVT); | 
|  | SDValue DTyOp = DAG.getValueType(WidenVT); | 
|  | SDValue STyOp = DAG.getValueType(SrcOp.getValueType()); | 
|  | ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); | 
|  |  | 
|  | Result = DAG.getConvertRndSat(WidenVT, dl, SrcOp, DTyOp, STyOp, | 
|  | RndOp, SatOp, CvtCode); | 
|  | break; | 
|  | } | 
|  | case ISD::FPOW: | 
|  | case ISD::FPOWI: | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | case ISD::MULHS: | 
|  | case ISD::MULHU: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::SDIV: | 
|  | case ISD::SREM: | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | case ISD::FCOPYSIGN: | 
|  | case ISD::UDIV: | 
|  | case ISD::UREM: | 
|  | case ISD::BSWAP: { | 
|  | // Binary op widening | 
|  | SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); | 
|  | SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT); | 
|  | assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, Tmp2); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: { | 
|  | SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); | 
|  | assert(Tmp1.getValueType() == WidenVT); | 
|  | SDValue ShOp = Node->getOperand(1); | 
|  | MVT ShVT = ShOp.getValueType(); | 
|  | MVT NewShVT = MVT::getVectorVT(ShVT.getVectorElementType(), | 
|  | WidenVT.getVectorNumElements()); | 
|  | ShOp = WidenVectorOp(ShOp, NewShVT); | 
|  | assert(ShOp.getValueType() == NewShVT); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, ShOp); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::EXTRACT_VECTOR_ELT: { | 
|  | SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); | 
|  | assert(Tmp1.getValueType() == WidenVT); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, EVT, Tmp1, Node->getOperand(1)); | 
|  | break; | 
|  | } | 
|  | case ISD::CONCAT_VECTORS: { | 
|  | // We concurrently support only widen on a multiple of the incoming vector. | 
|  | // We could widen on a multiple of the incoming operand if necessary. | 
|  | unsigned NumConcat = NewNumElts / NumElts; | 
|  | assert(NewNumElts % NumElts == 0 && "Can widen only a multiple of vector"); | 
|  | SDValue UndefVal = DAG.getUNDEF(VT); | 
|  | SmallVector<SDValue, 8> MOps; | 
|  | MOps.push_back(Op); | 
|  | for (unsigned i = 1; i != NumConcat; ++i) { | 
|  | MOps.push_back(UndefVal); | 
|  | } | 
|  | Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, | 
|  | &MOps[0], MOps.size())); | 
|  | break; | 
|  | } | 
|  | case ISD::EXTRACT_SUBVECTOR: { | 
|  | SDValue Tmp1 = Node->getOperand(0); | 
|  | SDValue Idx = Node->getOperand(1); | 
|  | ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx); | 
|  | if (CIdx && CIdx->getZExtValue() == 0) { | 
|  | // Since we are access the start of the vector, the incoming | 
|  | // vector type might be the proper. | 
|  | MVT Tmp1VT = Tmp1.getValueType(); | 
|  | if (Tmp1VT == WidenVT) | 
|  | return Tmp1; | 
|  | else { | 
|  | unsigned Tmp1VTNumElts = Tmp1VT.getVectorNumElements(); | 
|  | if (Tmp1VTNumElts < NewNumElts) | 
|  | Result = WidenVectorOp(Tmp1, WidenVT); | 
|  | else | 
|  | Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, Tmp1, Idx); | 
|  | } | 
|  | } else if (NewNumElts % NumElts == 0) { | 
|  | // Widen the extracted subvector. | 
|  | unsigned NumConcat = NewNumElts / NumElts; | 
|  | SDValue UndefVal = DAG.getUNDEF(VT); | 
|  | SmallVector<SDValue, 8> MOps; | 
|  | MOps.push_back(Op); | 
|  | for (unsigned i = 1; i != NumConcat; ++i) { | 
|  | MOps.push_back(UndefVal); | 
|  | } | 
|  | Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, | 
|  | &MOps[0], MOps.size())); | 
|  | } else { | 
|  | assert(0 && "can not widen extract subvector"); | 
|  | // This could be implemented using insert and build vector but I would | 
|  | // like to see when this happens. | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SELECT: { | 
|  | // Determine new condition widen type and widen | 
|  | SDValue Cond1 = Node->getOperand(0); | 
|  | MVT CondVT = Cond1.getValueType(); | 
|  | assert(CondVT.isVector() && "can not widen non vector type"); | 
|  | MVT CondEVT = CondVT.getVectorElementType(); | 
|  | MVT CondWidenVT =  MVT::getVectorVT(CondEVT, NewNumElts); | 
|  | Cond1 = WidenVectorOp(Cond1, CondWidenVT); | 
|  | assert(Cond1.getValueType() == CondWidenVT && "Condition not widen"); | 
|  |  | 
|  | SDValue Tmp1 = WidenVectorOp(Node->getOperand(1), WidenVT); | 
|  | SDValue Tmp2 = WidenVectorOp(Node->getOperand(2), WidenVT); | 
|  | assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Cond1, Tmp1, Tmp2); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SELECT_CC: { | 
|  | // Determine new condition widen type and widen | 
|  | SDValue Cond1 = Node->getOperand(0); | 
|  | SDValue Cond2 = Node->getOperand(1); | 
|  | MVT CondVT = Cond1.getValueType(); | 
|  | assert(CondVT.isVector() && "can not widen non vector type"); | 
|  | assert(CondVT == Cond2.getValueType() && "mismatch lhs/rhs"); | 
|  | MVT CondEVT = CondVT.getVectorElementType(); | 
|  | MVT CondWidenVT =  MVT::getVectorVT(CondEVT, NewNumElts); | 
|  | Cond1 = WidenVectorOp(Cond1, CondWidenVT); | 
|  | Cond2 = WidenVectorOp(Cond2, CondWidenVT); | 
|  | assert(Cond1.getValueType() == CondWidenVT && | 
|  | Cond2.getValueType() == CondWidenVT && "condition not widen"); | 
|  |  | 
|  | SDValue Tmp1 = WidenVectorOp(Node->getOperand(2), WidenVT); | 
|  | SDValue Tmp2 = WidenVectorOp(Node->getOperand(3), WidenVT); | 
|  | assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT && | 
|  | "operands not widen"); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Cond1, Cond2, Tmp1, | 
|  | Tmp2, Node->getOperand(4)); | 
|  | break; | 
|  | } | 
|  | case ISD::VSETCC: { | 
|  | // Determine widen for the operand | 
|  | SDValue Tmp1 = Node->getOperand(0); | 
|  | MVT TmpVT = Tmp1.getValueType(); | 
|  | assert(TmpVT.isVector() && "can not widen non vector type"); | 
|  | MVT TmpEVT = TmpVT.getVectorElementType(); | 
|  | MVT TmpWidenVT =  MVT::getVectorVT(TmpEVT, NewNumElts); | 
|  | Tmp1 = WidenVectorOp(Tmp1, TmpWidenVT); | 
|  | SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), TmpWidenVT); | 
|  | Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, Tmp2, | 
|  | Node->getOperand(2)); | 
|  | break; | 
|  | } | 
|  | case ISD::ATOMIC_CMP_SWAP: | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | case ISD::ATOMIC_SWAP: { | 
|  | // For now, we assume that using vectors for these operations don't make | 
|  | // much sense so we just split it.  We return an empty result | 
|  | SDValue X, Y; | 
|  | SplitVectorOp(Op, X, Y); | 
|  | return Result; | 
|  | break; | 
|  | } | 
|  |  | 
|  | } // end switch (Node->getOpcode()) | 
|  |  | 
|  | assert(Result.getNode() && "Didn't set a result!"); | 
|  | if (Result != Op) | 
|  | Result = LegalizeOp(Result); | 
|  |  | 
|  | AddWidenedOperand(Op, Result); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Utility function to find a legal vector type and its associated element | 
|  | // type from a preferred width and whose vector type must be the same size | 
|  | // as the VVT. | 
|  | //  TLI:   Target lowering used to determine legal types | 
|  | //  Width: Preferred width of element type | 
|  | //  VVT:   Vector value type whose size we must match. | 
|  | // Returns VecEVT and EVT - the vector type and its associated element type | 
|  | static void FindWidenVecType(const TargetLowering &TLI, unsigned Width, MVT VVT, | 
|  | MVT& EVT, MVT& VecEVT) { | 
|  | // We start with the preferred width, make it a power of 2 and see if | 
|  | // we can find a vector type of that width. If not, we reduce it by | 
|  | // another power of 2.  If we have widen the type, a vector of bytes should | 
|  | // always be legal. | 
|  | assert(TLI.isTypeLegal(VVT)); | 
|  | unsigned EWidth = Width + 1; | 
|  | do { | 
|  | assert(EWidth > 0); | 
|  | EWidth =  (1 << Log2_32(EWidth-1)); | 
|  | EVT = MVT::getIntegerVT(EWidth); | 
|  | unsigned NumEVT = VVT.getSizeInBits()/EWidth; | 
|  | VecEVT = MVT::getVectorVT(EVT, NumEVT); | 
|  | } while (!TLI.isTypeLegal(VecEVT) || | 
|  | VVT.getSizeInBits() != VecEVT.getSizeInBits()); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::genWidenVectorLoads(SDValueVector& LdChain, | 
|  | SDValue   Chain, | 
|  | SDValue   BasePtr, | 
|  | const Value *SV, | 
|  | int         SVOffset, | 
|  | unsigned    Alignment, | 
|  | bool        isVolatile, | 
|  | unsigned    LdWidth, | 
|  | MVT         ResType, | 
|  | DebugLoc    dl) { | 
|  | // We assume that we have good rules to handle loading power of two loads so | 
|  | // we break down the operations to power of 2 loads.  The strategy is to | 
|  | // load the largest power of 2 that we can easily transform to a legal vector | 
|  | // and then insert into that vector, and the cast the result into the legal | 
|  | // vector that we want.  This avoids unnecessary stack converts. | 
|  | // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and | 
|  | //       the load is nonvolatile, we an use a wider load for the value. | 
|  | // Find a vector length we can load a large chunk | 
|  | MVT EVT, VecEVT; | 
|  | unsigned EVTWidth; | 
|  | FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT); | 
|  | EVTWidth = EVT.getSizeInBits(); | 
|  |  | 
|  | SDValue LdOp = DAG.getLoad(EVT, dl, Chain, BasePtr, SV, SVOffset, | 
|  | isVolatile, Alignment); | 
|  | SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecEVT, LdOp); | 
|  | LdChain.push_back(LdOp.getValue(1)); | 
|  |  | 
|  | // Check if we can load the element with one instruction | 
|  | if (LdWidth == EVTWidth) { | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp); | 
|  | } | 
|  |  | 
|  | // The vector element order is endianness dependent. | 
|  | unsigned Idx = 1; | 
|  | LdWidth -= EVTWidth; | 
|  | unsigned Offset = 0; | 
|  |  | 
|  | while (LdWidth > 0) { | 
|  | unsigned Increment = EVTWidth / 8; | 
|  | Offset += Increment; | 
|  | BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, | 
|  | DAG.getIntPtrConstant(Increment)); | 
|  |  | 
|  | if (LdWidth < EVTWidth) { | 
|  | // Our current type we are using is too large, use a smaller size by | 
|  | // using a smaller power of 2 | 
|  | unsigned oEVTWidth = EVTWidth; | 
|  | FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT); | 
|  | EVTWidth = EVT.getSizeInBits(); | 
|  | // Readjust position and vector position based on new load type | 
|  | Idx = Idx * (oEVTWidth/EVTWidth); | 
|  | VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, VecOp); | 
|  | } | 
|  |  | 
|  | SDValue LdOp = DAG.getLoad(EVT, dl, Chain, BasePtr, SV, | 
|  | SVOffset+Offset, isVolatile, | 
|  | MinAlign(Alignment, Offset)); | 
|  | LdChain.push_back(LdOp.getValue(1)); | 
|  | VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecEVT, VecOp, LdOp, | 
|  | DAG.getIntPtrConstant(Idx++)); | 
|  |  | 
|  | LdWidth -= EVTWidth; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp); | 
|  | } | 
|  |  | 
|  | bool SelectionDAGLegalize::LoadWidenVectorOp(SDValue& Result, | 
|  | SDValue& TFOp, | 
|  | SDValue Op, | 
|  | MVT NVT) { | 
|  | // TODO: Add support for ConcatVec and the ability to load many vector | 
|  | //       types (e.g., v4i8).  This will not work when a vector register | 
|  | //       to memory mapping is strange (e.g., vector elements are not | 
|  | //       stored in some sequential order). | 
|  |  | 
|  | // It must be true that the widen vector type is bigger than where | 
|  | // we need to load from. | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); | 
|  | MVT LdVT = LD->getMemoryVT(); | 
|  | DebugLoc dl = LD->getDebugLoc(); | 
|  | assert(LdVT.isVector() && NVT.isVector()); | 
|  | assert(LdVT.getVectorElementType() == NVT.getVectorElementType()); | 
|  |  | 
|  | // Load information | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue BasePtr = LD->getBasePtr(); | 
|  | int       SVOffset = LD->getSrcValueOffset(); | 
|  | unsigned  Alignment = LD->getAlignment(); | 
|  | bool      isVolatile = LD->isVolatile(); | 
|  | const Value *SV = LD->getSrcValue(); | 
|  | unsigned int LdWidth = LdVT.getSizeInBits(); | 
|  |  | 
|  | // Load value as a large register | 
|  | SDValueVector LdChain; | 
|  | Result = genWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset, | 
|  | Alignment, isVolatile, LdWidth, NVT, dl); | 
|  |  | 
|  | if (LdChain.size() == 1) { | 
|  | TFOp = LdChain[0]; | 
|  | return true; | 
|  | } | 
|  | else { | 
|  | TFOp=DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &LdChain[0], LdChain.size()); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void SelectionDAGLegalize::genWidenVectorStores(SDValueVector& StChain, | 
|  | SDValue   Chain, | 
|  | SDValue   BasePtr, | 
|  | const Value *SV, | 
|  | int         SVOffset, | 
|  | unsigned    Alignment, | 
|  | bool        isVolatile, | 
|  | SDValue     ValOp, | 
|  | unsigned    StWidth, | 
|  | DebugLoc    dl) { | 
|  | // Breaks the stores into a series of power of 2 width stores.  For any | 
|  | // width, we convert the vector to the vector of element size that we | 
|  | // want to store.  This avoids requiring a stack convert. | 
|  |  | 
|  | // Find a width of the element type we can store with | 
|  | MVT VVT = ValOp.getValueType(); | 
|  | MVT EVT, VecEVT; | 
|  | unsigned EVTWidth; | 
|  | FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT); | 
|  | EVTWidth = EVT.getSizeInBits(); | 
|  |  | 
|  | SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, ValOp); | 
|  | SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EVT, VecOp, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | SDValue StOp = DAG.getStore(Chain, dl, EOp, BasePtr, SV, SVOffset, | 
|  | isVolatile, Alignment); | 
|  | StChain.push_back(StOp); | 
|  |  | 
|  | // Check if we are done | 
|  | if (StWidth == EVTWidth) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned Idx = 1; | 
|  | StWidth -= EVTWidth; | 
|  | unsigned Offset = 0; | 
|  |  | 
|  | while (StWidth > 0) { | 
|  | unsigned Increment = EVTWidth / 8; | 
|  | Offset += Increment; | 
|  | BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, | 
|  | DAG.getIntPtrConstant(Increment)); | 
|  |  | 
|  | if (StWidth < EVTWidth) { | 
|  | // Our current type we are using is too large, use a smaller size by | 
|  | // using a smaller power of 2 | 
|  | unsigned oEVTWidth = EVTWidth; | 
|  | FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT); | 
|  | EVTWidth = EVT.getSizeInBits(); | 
|  | // Readjust position and vector position based on new load type | 
|  | Idx = Idx * (oEVTWidth/EVTWidth); | 
|  | VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, VecOp); | 
|  | } | 
|  |  | 
|  | EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EVT, VecOp, | 
|  | DAG.getIntPtrConstant(Idx++)); | 
|  | StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, SV, | 
|  | SVOffset + Offset, isVolatile, | 
|  | MinAlign(Alignment, Offset))); | 
|  | StWidth -= EVTWidth; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue SelectionDAGLegalize::StoreWidenVectorOp(StoreSDNode *ST, | 
|  | SDValue Chain, | 
|  | SDValue BasePtr) { | 
|  | // TODO: It might be cleaner if we can use SplitVector and have more legal | 
|  | //        vector types that can be stored into memory (e.g., v4xi8 can | 
|  | //        be stored as a word). This will not work when a vector register | 
|  | //        to memory mapping is strange (e.g., vector elements are not | 
|  | //        stored in some sequential order). | 
|  |  | 
|  | MVT StVT = ST->getMemoryVT(); | 
|  | SDValue ValOp = ST->getValue(); | 
|  | DebugLoc dl = ST->getDebugLoc(); | 
|  |  | 
|  | // Check if we have widen this node with another value | 
|  | std::map<SDValue, SDValue>::iterator I = WidenNodes.find(ValOp); | 
|  | if (I != WidenNodes.end()) | 
|  | ValOp = I->second; | 
|  |  | 
|  | MVT VVT = ValOp.getValueType(); | 
|  |  | 
|  | // It must be true that we the widen vector type is bigger than where | 
|  | // we need to store. | 
|  | assert(StVT.isVector() && VVT.isVector()); | 
|  | assert(StVT.bitsLT(VVT)); | 
|  | assert(StVT.getVectorElementType() == VVT.getVectorElementType()); | 
|  |  | 
|  | // Store value | 
|  | SDValueVector StChain; | 
|  | genWidenVectorStores(StChain, Chain, BasePtr, ST->getSrcValue(), | 
|  | ST->getSrcValueOffset(), ST->getAlignment(), | 
|  | ST->isVolatile(), ValOp, StVT.getSizeInBits(), dl); | 
|  | if (StChain.size() == 1) | 
|  | return StChain[0]; | 
|  | else | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &StChain[0], StChain.size()); | 
|  | } | 
|  |  | 
|  |  | 
|  | // SelectionDAG::Legalize - This is the entry point for the file. | 
|  | // | 
|  | void SelectionDAG::Legalize(bool TypesNeedLegalizing, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | /// run - This is the main entry point to this class. | 
|  | /// | 
|  | SelectionDAGLegalize(*this, TypesNeedLegalizing, OptLevel).LegalizeDAG(); | 
|  | } | 
|  |  |