|  | //===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | //===----------------------------------------------------------------------===/ | 
|  | // | 
|  | //  This file implements C++ template instantiation for declarations. | 
|  | // | 
|  | //===----------------------------------------------------------------------===/ | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "clang/AST/ASTConsumer.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTMutationListener.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/DeclVisitor.h" | 
|  | #include "clang/AST/DependentDiagnostic.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/Sema/Initialization.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/PrettyDeclStackTrace.h" | 
|  | #include "clang/Sema/Template.h" | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | static bool isDeclWithinFunction(const Decl *D) { | 
|  | const DeclContext *DC = D->getDeclContext(); | 
|  | if (DC->isFunctionOrMethod()) | 
|  | return true; | 
|  |  | 
|  | if (DC->isRecord()) | 
|  | return cast<CXXRecordDecl>(DC)->isLocalClass(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template<typename DeclT> | 
|  | static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl, | 
|  | const MultiLevelTemplateArgumentList &TemplateArgs) { | 
|  | if (!OldDecl->getQualifierLoc()) | 
|  | return false; | 
|  |  | 
|  | assert((NewDecl->getFriendObjectKind() || | 
|  | !OldDecl->getLexicalDeclContext()->isDependentContext()) && | 
|  | "non-friend with qualified name defined in dependent context"); | 
|  | Sema::ContextRAII SavedContext( | 
|  | SemaRef, | 
|  | const_cast<DeclContext *>(NewDecl->getFriendObjectKind() | 
|  | ? NewDecl->getLexicalDeclContext() | 
|  | : OldDecl->getLexicalDeclContext())); | 
|  |  | 
|  | NestedNameSpecifierLoc NewQualifierLoc | 
|  | = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), | 
|  | TemplateArgs); | 
|  |  | 
|  | if (!NewQualifierLoc) | 
|  | return true; | 
|  |  | 
|  | NewDecl->setQualifierInfo(NewQualifierLoc); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl, | 
|  | DeclaratorDecl *NewDecl) { | 
|  | return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); | 
|  | } | 
|  |  | 
|  | bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl, | 
|  | TagDecl *NewDecl) { | 
|  | return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); | 
|  | } | 
|  |  | 
|  | // Include attribute instantiation code. | 
|  | #include "clang/Sema/AttrTemplateInstantiate.inc" | 
|  |  | 
|  | static void instantiateDependentAlignedAttr( | 
|  | Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, | 
|  | const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) { | 
|  | if (Aligned->isAlignmentExpr()) { | 
|  | // The alignment expression is a constant expression. | 
|  | EnterExpressionEvaluationContext Unevaluated( | 
|  | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); | 
|  | ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs); | 
|  | if (!Result.isInvalid()) | 
|  | S.AddAlignedAttr(Aligned->getLocation(), New, Result.getAs<Expr>(), | 
|  | Aligned->getSpellingListIndex(), IsPackExpansion); | 
|  | } else { | 
|  | TypeSourceInfo *Result = S.SubstType(Aligned->getAlignmentType(), | 
|  | TemplateArgs, Aligned->getLocation(), | 
|  | DeclarationName()); | 
|  | if (Result) | 
|  | S.AddAlignedAttr(Aligned->getLocation(), New, Result, | 
|  | Aligned->getSpellingListIndex(), IsPackExpansion); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void instantiateDependentAlignedAttr( | 
|  | Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, | 
|  | const AlignedAttr *Aligned, Decl *New) { | 
|  | if (!Aligned->isPackExpansion()) { | 
|  | instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SmallVector<UnexpandedParameterPack, 2> Unexpanded; | 
|  | if (Aligned->isAlignmentExpr()) | 
|  | S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(), | 
|  | Unexpanded); | 
|  | else | 
|  | S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(), | 
|  | Unexpanded); | 
|  | assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); | 
|  |  | 
|  | // Determine whether we can expand this attribute pack yet. | 
|  | bool Expand = true, RetainExpansion = false; | 
|  | Optional<unsigned> NumExpansions; | 
|  | // FIXME: Use the actual location of the ellipsis. | 
|  | SourceLocation EllipsisLoc = Aligned->getLocation(); | 
|  | if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(), | 
|  | Unexpanded, TemplateArgs, Expand, | 
|  | RetainExpansion, NumExpansions)) | 
|  | return; | 
|  |  | 
|  | if (!Expand) { | 
|  | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1); | 
|  | instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true); | 
|  | } else { | 
|  | for (unsigned I = 0; I != *NumExpansions; ++I) { | 
|  | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I); | 
|  | instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void instantiateDependentAssumeAlignedAttr( | 
|  | Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, | 
|  | const AssumeAlignedAttr *Aligned, Decl *New) { | 
|  | // The alignment expression is a constant expression. | 
|  | EnterExpressionEvaluationContext Unevaluated( | 
|  | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); | 
|  |  | 
|  | Expr *E, *OE = nullptr; | 
|  | ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); | 
|  | if (Result.isInvalid()) | 
|  | return; | 
|  | E = Result.getAs<Expr>(); | 
|  |  | 
|  | if (Aligned->getOffset()) { | 
|  | Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs); | 
|  | if (Result.isInvalid()) | 
|  | return; | 
|  | OE = Result.getAs<Expr>(); | 
|  | } | 
|  |  | 
|  | S.AddAssumeAlignedAttr(Aligned->getLocation(), New, E, OE, | 
|  | Aligned->getSpellingListIndex()); | 
|  | } | 
|  |  | 
|  | static void instantiateDependentAlignValueAttr( | 
|  | Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, | 
|  | const AlignValueAttr *Aligned, Decl *New) { | 
|  | // The alignment expression is a constant expression. | 
|  | EnterExpressionEvaluationContext Unevaluated( | 
|  | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); | 
|  | ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); | 
|  | if (!Result.isInvalid()) | 
|  | S.AddAlignValueAttr(Aligned->getLocation(), New, Result.getAs<Expr>(), | 
|  | Aligned->getSpellingListIndex()); | 
|  | } | 
|  |  | 
|  | static void instantiateDependentAllocAlignAttr( | 
|  | Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, | 
|  | const AllocAlignAttr *Align, Decl *New) { | 
|  | Expr *Param = IntegerLiteral::Create( | 
|  | S.getASTContext(), llvm::APInt(64, Align->getParamIndex()), | 
|  | S.getASTContext().UnsignedLongLongTy, Align->getLocation()); | 
|  | S.AddAllocAlignAttr(Align->getLocation(), New, Param, | 
|  | Align->getSpellingListIndex()); | 
|  | } | 
|  |  | 
|  | static Expr *instantiateDependentFunctionAttrCondition( | 
|  | Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, | 
|  | const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) { | 
|  | Expr *Cond = nullptr; | 
|  | { | 
|  | Sema::ContextRAII SwitchContext(S, New); | 
|  | EnterExpressionEvaluationContext Unevaluated( | 
|  | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); | 
|  | ExprResult Result = S.SubstExpr(OldCond, TemplateArgs); | 
|  | if (Result.isInvalid()) | 
|  | return nullptr; | 
|  | Cond = Result.getAs<Expr>(); | 
|  | } | 
|  | if (!Cond->isTypeDependent()) { | 
|  | ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); | 
|  | if (Converted.isInvalid()) | 
|  | return nullptr; | 
|  | Cond = Converted.get(); | 
|  | } | 
|  |  | 
|  | SmallVector<PartialDiagnosticAt, 8> Diags; | 
|  | if (OldCond->isValueDependent() && !Cond->isValueDependent() && | 
|  | !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) { | 
|  | S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A; | 
|  | for (const auto &P : Diags) | 
|  | S.Diag(P.first, P.second); | 
|  | return nullptr; | 
|  | } | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | static void instantiateDependentEnableIfAttr( | 
|  | Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, | 
|  | const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) { | 
|  | Expr *Cond = instantiateDependentFunctionAttrCondition( | 
|  | S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New); | 
|  |  | 
|  | if (Cond) | 
|  | New->addAttr(new (S.getASTContext()) EnableIfAttr( | 
|  | EIA->getLocation(), S.getASTContext(), Cond, EIA->getMessage(), | 
|  | EIA->getSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | static void instantiateDependentDiagnoseIfAttr( | 
|  | Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, | 
|  | const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) { | 
|  | Expr *Cond = instantiateDependentFunctionAttrCondition( | 
|  | S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New); | 
|  |  | 
|  | if (Cond) | 
|  | New->addAttr(new (S.getASTContext()) DiagnoseIfAttr( | 
|  | DIA->getLocation(), S.getASTContext(), Cond, DIA->getMessage(), | 
|  | DIA->getDiagnosticType(), DIA->getArgDependent(), New, | 
|  | DIA->getSpellingListIndex())); | 
|  | } | 
|  |  | 
|  | // Constructs and adds to New a new instance of CUDALaunchBoundsAttr using | 
|  | // template A as the base and arguments from TemplateArgs. | 
|  | static void instantiateDependentCUDALaunchBoundsAttr( | 
|  | Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, | 
|  | const CUDALaunchBoundsAttr &Attr, Decl *New) { | 
|  | // The alignment expression is a constant expression. | 
|  | EnterExpressionEvaluationContext Unevaluated( | 
|  | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); | 
|  |  | 
|  | ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs); | 
|  | if (Result.isInvalid()) | 
|  | return; | 
|  | Expr *MaxThreads = Result.getAs<Expr>(); | 
|  |  | 
|  | Expr *MinBlocks = nullptr; | 
|  | if (Attr.getMinBlocks()) { | 
|  | Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs); | 
|  | if (Result.isInvalid()) | 
|  | return; | 
|  | MinBlocks = Result.getAs<Expr>(); | 
|  | } | 
|  |  | 
|  | S.AddLaunchBoundsAttr(Attr.getLocation(), New, MaxThreads, MinBlocks, | 
|  | Attr.getSpellingListIndex()); | 
|  | } | 
|  |  | 
|  | static void | 
|  | instantiateDependentModeAttr(Sema &S, | 
|  | const MultiLevelTemplateArgumentList &TemplateArgs, | 
|  | const ModeAttr &Attr, Decl *New) { | 
|  | S.AddModeAttr(Attr.getRange(), New, Attr.getMode(), | 
|  | Attr.getSpellingListIndex(), /*InInstantiation=*/true); | 
|  | } | 
|  |  | 
|  | /// Instantiation of 'declare simd' attribute and its arguments. | 
|  | static void instantiateOMPDeclareSimdDeclAttr( | 
|  | Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, | 
|  | const OMPDeclareSimdDeclAttr &Attr, Decl *New) { | 
|  | // Allow 'this' in clauses with varlists. | 
|  | if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New)) | 
|  | New = FTD->getTemplatedDecl(); | 
|  | auto *FD = cast<FunctionDecl>(New); | 
|  | auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext()); | 
|  | SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps; | 
|  | SmallVector<unsigned, 4> LinModifiers; | 
|  |  | 
|  | auto &&Subst = [&](Expr *E) -> ExprResult { | 
|  | if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) | 
|  | if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { | 
|  | Sema::ContextRAII SavedContext(S, FD); | 
|  | LocalInstantiationScope Local(S); | 
|  | if (FD->getNumParams() > PVD->getFunctionScopeIndex()) | 
|  | Local.InstantiatedLocal( | 
|  | PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); | 
|  | return S.SubstExpr(E, TemplateArgs); | 
|  | } | 
|  | Sema::CXXThisScopeRAII ThisScope(S, ThisContext, /*TypeQuals=*/0, | 
|  | FD->isCXXInstanceMember()); | 
|  | return S.SubstExpr(E, TemplateArgs); | 
|  | }; | 
|  |  | 
|  | ExprResult Simdlen; | 
|  | if (auto *E = Attr.getSimdlen()) | 
|  | Simdlen = Subst(E); | 
|  |  | 
|  | if (Attr.uniforms_size() > 0) { | 
|  | for(auto *E : Attr.uniforms()) { | 
|  | ExprResult Inst = Subst(E); | 
|  | if (Inst.isInvalid()) | 
|  | continue; | 
|  | Uniforms.push_back(Inst.get()); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto AI = Attr.alignments_begin(); | 
|  | for (auto *E : Attr.aligneds()) { | 
|  | ExprResult Inst = Subst(E); | 
|  | if (Inst.isInvalid()) | 
|  | continue; | 
|  | Aligneds.push_back(Inst.get()); | 
|  | Inst = ExprEmpty(); | 
|  | if (*AI) | 
|  | Inst = S.SubstExpr(*AI, TemplateArgs); | 
|  | Alignments.push_back(Inst.get()); | 
|  | ++AI; | 
|  | } | 
|  |  | 
|  | auto SI = Attr.steps_begin(); | 
|  | for (auto *E : Attr.linears()) { | 
|  | ExprResult Inst = Subst(E); | 
|  | if (Inst.isInvalid()) | 
|  | continue; | 
|  | Linears.push_back(Inst.get()); | 
|  | Inst = ExprEmpty(); | 
|  | if (*SI) | 
|  | Inst = S.SubstExpr(*SI, TemplateArgs); | 
|  | Steps.push_back(Inst.get()); | 
|  | ++SI; | 
|  | } | 
|  | LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end()); | 
|  | (void)S.ActOnOpenMPDeclareSimdDirective( | 
|  | S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(), | 
|  | Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps, | 
|  | Attr.getRange()); | 
|  | } | 
|  |  | 
|  | static bool DeclContainsAttr(const Decl *D, const Attr *NewAttr) { | 
|  | if (!D->hasAttrs() || NewAttr->duplicatesAllowed()) | 
|  | return false; | 
|  | return llvm::find_if(D->getAttrs(), [NewAttr](const Attr *Attr) { | 
|  | return Attr->getKind() == NewAttr->getKind(); | 
|  | }) != D->getAttrs().end(); | 
|  | } | 
|  |  | 
|  | void Sema::InstantiateAttrsForDecl( | 
|  | const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl, | 
|  | Decl *New, LateInstantiatedAttrVec *LateAttrs, | 
|  | LocalInstantiationScope *OuterMostScope) { | 
|  | if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) { | 
|  | for (const auto *TmplAttr : Tmpl->attrs()) { | 
|  | // FIXME: If any of the special case versions from InstantiateAttrs become | 
|  | // applicable to template declaration, we'll need to add them here. | 
|  | CXXThisScopeRAII ThisScope( | 
|  | *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()), | 
|  | /*TypeQuals*/ 0, ND->isCXXInstanceMember()); | 
|  |  | 
|  | Attr *NewAttr = sema::instantiateTemplateAttributeForDecl( | 
|  | TmplAttr, Context, *this, TemplateArgs); | 
|  | if (NewAttr && !DeclContainsAttr(New, NewAttr)) | 
|  | New->addAttr(NewAttr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, | 
|  | const Decl *Tmpl, Decl *New, | 
|  | LateInstantiatedAttrVec *LateAttrs, | 
|  | LocalInstantiationScope *OuterMostScope) { | 
|  | for (const auto *TmplAttr : Tmpl->attrs()) { | 
|  | // FIXME: This should be generalized to more than just the AlignedAttr. | 
|  | const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr); | 
|  | if (Aligned && Aligned->isAlignmentDependent()) { | 
|  | instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const AssumeAlignedAttr *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr); | 
|  | if (AssumeAligned) { | 
|  | instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const AlignValueAttr *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr); | 
|  | if (AlignValue) { | 
|  | instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) { | 
|  | instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New); | 
|  | continue; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) { | 
|  | instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl, | 
|  | cast<FunctionDecl>(New)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) { | 
|  | instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl, | 
|  | cast<FunctionDecl>(New)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const CUDALaunchBoundsAttr *CUDALaunchBounds = | 
|  | dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) { | 
|  | instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs, | 
|  | *CUDALaunchBounds, New); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const ModeAttr *Mode = dyn_cast<ModeAttr>(TmplAttr)) { | 
|  | instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) { | 
|  | instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Existing DLL attribute on the instantiation takes precedence. | 
|  | if (TmplAttr->getKind() == attr::DLLExport || | 
|  | TmplAttr->getKind() == attr::DLLImport) { | 
|  | if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) { | 
|  | AddParameterABIAttr(ABIAttr->getRange(), New, ABIAttr->getABI(), | 
|  | ABIAttr->getSpellingListIndex()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (isa<NSConsumedAttr>(TmplAttr) || isa<CFConsumedAttr>(TmplAttr)) { | 
|  | AddNSConsumedAttr(TmplAttr->getRange(), New, | 
|  | TmplAttr->getSpellingListIndex(), | 
|  | isa<NSConsumedAttr>(TmplAttr), | 
|  | /*template instantiation*/ true); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(!TmplAttr->isPackExpansion()); | 
|  | if (TmplAttr->isLateParsed() && LateAttrs) { | 
|  | // Late parsed attributes must be instantiated and attached after the | 
|  | // enclosing class has been instantiated.  See Sema::InstantiateClass. | 
|  | LocalInstantiationScope *Saved = nullptr; | 
|  | if (CurrentInstantiationScope) | 
|  | Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope); | 
|  | LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New)); | 
|  | } else { | 
|  | // Allow 'this' within late-parsed attributes. | 
|  | NamedDecl *ND = dyn_cast<NamedDecl>(New); | 
|  | CXXRecordDecl *ThisContext = | 
|  | dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()); | 
|  | CXXThisScopeRAII ThisScope(*this, ThisContext, /*TypeQuals*/0, | 
|  | ND && ND->isCXXInstanceMember()); | 
|  |  | 
|  | Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context, | 
|  | *this, TemplateArgs); | 
|  |  | 
|  | if (NewAttr && !DeclContainsAttr(New, NewAttr)) | 
|  | New->addAttr(NewAttr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Get the previous declaration of a declaration for the purposes of template | 
|  | /// instantiation. If this finds a previous declaration, then the previous | 
|  | /// declaration of the instantiation of D should be an instantiation of the | 
|  | /// result of this function. | 
|  | template<typename DeclT> | 
|  | static DeclT *getPreviousDeclForInstantiation(DeclT *D) { | 
|  | DeclT *Result = D->getPreviousDecl(); | 
|  |  | 
|  | // If the declaration is within a class, and the previous declaration was | 
|  | // merged from a different definition of that class, then we don't have a | 
|  | // previous declaration for the purpose of template instantiation. | 
|  | if (Result && isa<CXXRecordDecl>(D->getDeclContext()) && | 
|  | D->getLexicalDeclContext() != Result->getLexicalDeclContext()) | 
|  | return nullptr; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) { | 
|  | llvm_unreachable("Translation units cannot be instantiated"); | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) { | 
|  | llvm_unreachable("pragma comment cannot be instantiated"); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl( | 
|  | PragmaDetectMismatchDecl *D) { | 
|  | llvm_unreachable("pragma comment cannot be instantiated"); | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) { | 
|  | llvm_unreachable("extern \"C\" context cannot be instantiated"); | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) { | 
|  | LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(), | 
|  | D->getIdentifier()); | 
|  | Owner->addDecl(Inst); | 
|  | return Inst; | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) { | 
|  | llvm_unreachable("Namespaces cannot be instantiated"); | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { | 
|  | NamespaceAliasDecl *Inst | 
|  | = NamespaceAliasDecl::Create(SemaRef.Context, Owner, | 
|  | D->getNamespaceLoc(), | 
|  | D->getAliasLoc(), | 
|  | D->getIdentifier(), | 
|  | D->getQualifierLoc(), | 
|  | D->getTargetNameLoc(), | 
|  | D->getNamespace()); | 
|  | Owner->addDecl(Inst); | 
|  | return Inst; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D, | 
|  | bool IsTypeAlias) { | 
|  | bool Invalid = false; | 
|  | TypeSourceInfo *DI = D->getTypeSourceInfo(); | 
|  | if (DI->getType()->isInstantiationDependentType() || | 
|  | DI->getType()->isVariablyModifiedType()) { | 
|  | DI = SemaRef.SubstType(DI, TemplateArgs, | 
|  | D->getLocation(), D->getDeclName()); | 
|  | if (!DI) { | 
|  | Invalid = true; | 
|  | DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy); | 
|  | } | 
|  | } else { | 
|  | SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); | 
|  | } | 
|  |  | 
|  | // HACK: g++ has a bug where it gets the value kind of ?: wrong. | 
|  | // libstdc++ relies upon this bug in its implementation of common_type. | 
|  | // If we happen to be processing that implementation, fake up the g++ ?: | 
|  | // semantics. See LWG issue 2141 for more information on the bug. | 
|  | const DecltypeType *DT = DI->getType()->getAs<DecltypeType>(); | 
|  | CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext()); | 
|  | if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) && | 
|  | DT->isReferenceType() && | 
|  | RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() && | 
|  | RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") && | 
|  | D->getIdentifier() && D->getIdentifier()->isStr("type") && | 
|  | SemaRef.getSourceManager().isInSystemHeader(D->getLocStart())) | 
|  | // Fold it to the (non-reference) type which g++ would have produced. | 
|  | DI = SemaRef.Context.getTrivialTypeSourceInfo( | 
|  | DI->getType().getNonReferenceType()); | 
|  |  | 
|  | // Create the new typedef | 
|  | TypedefNameDecl *Typedef; | 
|  | if (IsTypeAlias) | 
|  | Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getLocStart(), | 
|  | D->getLocation(), D->getIdentifier(), DI); | 
|  | else | 
|  | Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getLocStart(), | 
|  | D->getLocation(), D->getIdentifier(), DI); | 
|  | if (Invalid) | 
|  | Typedef->setInvalidDecl(); | 
|  |  | 
|  | // If the old typedef was the name for linkage purposes of an anonymous | 
|  | // tag decl, re-establish that relationship for the new typedef. | 
|  | if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) { | 
|  | TagDecl *oldTag = oldTagType->getDecl(); | 
|  | if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) { | 
|  | TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl(); | 
|  | assert(!newTag->hasNameForLinkage()); | 
|  | newTag->setTypedefNameForAnonDecl(Typedef); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) { | 
|  | NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev, | 
|  | TemplateArgs); | 
|  | if (!InstPrev) | 
|  | return nullptr; | 
|  |  | 
|  | TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev); | 
|  |  | 
|  | // If the typedef types are not identical, reject them. | 
|  | SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef); | 
|  |  | 
|  | Typedef->setPreviousDecl(InstPrevTypedef); | 
|  | } | 
|  |  | 
|  | SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef); | 
|  |  | 
|  | Typedef->setAccess(D->getAccess()); | 
|  |  | 
|  | return Typedef; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) { | 
|  | Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false); | 
|  | if (Typedef) | 
|  | Owner->addDecl(Typedef); | 
|  | return Typedef; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) { | 
|  | Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true); | 
|  | if (Typedef) | 
|  | Owner->addDecl(Typedef); | 
|  | return Typedef; | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { | 
|  | // Create a local instantiation scope for this type alias template, which | 
|  | // will contain the instantiations of the template parameters. | 
|  | LocalInstantiationScope Scope(SemaRef); | 
|  |  | 
|  | TemplateParameterList *TempParams = D->getTemplateParameters(); | 
|  | TemplateParameterList *InstParams = SubstTemplateParams(TempParams); | 
|  | if (!InstParams) | 
|  | return nullptr; | 
|  |  | 
|  | TypeAliasDecl *Pattern = D->getTemplatedDecl(); | 
|  |  | 
|  | TypeAliasTemplateDecl *PrevAliasTemplate = nullptr; | 
|  | if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) { | 
|  | DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); | 
|  | if (!Found.empty()) { | 
|  | PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>( | 
|  | InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true)); | 
|  | if (!AliasInst) | 
|  | return nullptr; | 
|  |  | 
|  | TypeAliasTemplateDecl *Inst | 
|  | = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(), | 
|  | D->getDeclName(), InstParams, AliasInst); | 
|  | AliasInst->setDescribedAliasTemplate(Inst); | 
|  | if (PrevAliasTemplate) | 
|  | Inst->setPreviousDecl(PrevAliasTemplate); | 
|  |  | 
|  | Inst->setAccess(D->getAccess()); | 
|  |  | 
|  | if (!PrevAliasTemplate) | 
|  | Inst->setInstantiatedFromMemberTemplate(D); | 
|  |  | 
|  | Owner->addDecl(Inst); | 
|  |  | 
|  | return Inst; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) { | 
|  | auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(), | 
|  | D->getIdentifier()); | 
|  | NewBD->setReferenced(D->isReferenced()); | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD); | 
|  | return NewBD; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) { | 
|  | // Transform the bindings first. | 
|  | SmallVector<BindingDecl*, 16> NewBindings; | 
|  | for (auto *OldBD : D->bindings()) | 
|  | NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD))); | 
|  | ArrayRef<BindingDecl*> NewBindingArray = NewBindings; | 
|  |  | 
|  | auto *NewDD = cast_or_null<DecompositionDecl>( | 
|  | VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray)); | 
|  |  | 
|  | if (!NewDD || NewDD->isInvalidDecl()) | 
|  | for (auto *NewBD : NewBindings) | 
|  | NewBD->setInvalidDecl(); | 
|  |  | 
|  | return NewDD; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) { | 
|  | return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D, | 
|  | bool InstantiatingVarTemplate, | 
|  | ArrayRef<BindingDecl*> *Bindings) { | 
|  |  | 
|  | // Do substitution on the type of the declaration | 
|  | TypeSourceInfo *DI = SemaRef.SubstType( | 
|  | D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(), | 
|  | D->getDeclName(), /*AllowDeducedTST*/true); | 
|  | if (!DI) | 
|  | return nullptr; | 
|  |  | 
|  | if (DI->getType()->isFunctionType()) { | 
|  | SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) | 
|  | << D->isStaticDataMember() << DI->getType(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | DeclContext *DC = Owner; | 
|  | if (D->isLocalExternDecl()) | 
|  | SemaRef.adjustContextForLocalExternDecl(DC); | 
|  |  | 
|  | // Build the instantiated declaration. | 
|  | VarDecl *Var; | 
|  | if (Bindings) | 
|  | Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), | 
|  | D->getLocation(), DI->getType(), DI, | 
|  | D->getStorageClass(), *Bindings); | 
|  | else | 
|  | Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), | 
|  | D->getLocation(), D->getIdentifier(), DI->getType(), | 
|  | DI, D->getStorageClass()); | 
|  |  | 
|  | // In ARC, infer 'retaining' for variables of retainable type. | 
|  | if (SemaRef.getLangOpts().ObjCAutoRefCount && | 
|  | SemaRef.inferObjCARCLifetime(Var)) | 
|  | Var->setInvalidDecl(); | 
|  |  | 
|  | // Substitute the nested name specifier, if any. | 
|  | if (SubstQualifier(D, Var)) | 
|  | return nullptr; | 
|  |  | 
|  | SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, | 
|  | StartingScope, InstantiatingVarTemplate); | 
|  |  | 
|  | if (D->isNRVOVariable()) { | 
|  | QualType ReturnType = cast<FunctionDecl>(DC)->getReturnType(); | 
|  | if (SemaRef.isCopyElisionCandidate(ReturnType, Var, false)) | 
|  | Var->setNRVOVariable(true); | 
|  | } | 
|  |  | 
|  | Var->setImplicit(D->isImplicit()); | 
|  |  | 
|  | return Var; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) { | 
|  | AccessSpecDecl* AD | 
|  | = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner, | 
|  | D->getAccessSpecifierLoc(), D->getColonLoc()); | 
|  | Owner->addHiddenDecl(AD); | 
|  | return AD; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) { | 
|  | bool Invalid = false; | 
|  | TypeSourceInfo *DI = D->getTypeSourceInfo(); | 
|  | if (DI->getType()->isInstantiationDependentType() || | 
|  | DI->getType()->isVariablyModifiedType())  { | 
|  | DI = SemaRef.SubstType(DI, TemplateArgs, | 
|  | D->getLocation(), D->getDeclName()); | 
|  | if (!DI) { | 
|  | DI = D->getTypeSourceInfo(); | 
|  | Invalid = true; | 
|  | } else if (DI->getType()->isFunctionType()) { | 
|  | // C++ [temp.arg.type]p3: | 
|  | //   If a declaration acquires a function type through a type | 
|  | //   dependent on a template-parameter and this causes a | 
|  | //   declaration that does not use the syntactic form of a | 
|  | //   function declarator to have function type, the program is | 
|  | //   ill-formed. | 
|  | SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) | 
|  | << DI->getType(); | 
|  | Invalid = true; | 
|  | } | 
|  | } else { | 
|  | SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); | 
|  | } | 
|  |  | 
|  | Expr *BitWidth = D->getBitWidth(); | 
|  | if (Invalid) | 
|  | BitWidth = nullptr; | 
|  | else if (BitWidth) { | 
|  | // The bit-width expression is a constant expression. | 
|  | EnterExpressionEvaluationContext Unevaluated( | 
|  | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); | 
|  |  | 
|  | ExprResult InstantiatedBitWidth | 
|  | = SemaRef.SubstExpr(BitWidth, TemplateArgs); | 
|  | if (InstantiatedBitWidth.isInvalid()) { | 
|  | Invalid = true; | 
|  | BitWidth = nullptr; | 
|  | } else | 
|  | BitWidth = InstantiatedBitWidth.getAs<Expr>(); | 
|  | } | 
|  |  | 
|  | FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(), | 
|  | DI->getType(), DI, | 
|  | cast<RecordDecl>(Owner), | 
|  | D->getLocation(), | 
|  | D->isMutable(), | 
|  | BitWidth, | 
|  | D->getInClassInitStyle(), | 
|  | D->getInnerLocStart(), | 
|  | D->getAccess(), | 
|  | nullptr); | 
|  | if (!Field) { | 
|  | cast<Decl>(Owner)->setInvalidDecl(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope); | 
|  |  | 
|  | if (Field->hasAttrs()) | 
|  | SemaRef.CheckAlignasUnderalignment(Field); | 
|  |  | 
|  | if (Invalid) | 
|  | Field->setInvalidDecl(); | 
|  |  | 
|  | if (!Field->getDeclName()) { | 
|  | // Keep track of where this decl came from. | 
|  | SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D); | 
|  | } | 
|  | if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) { | 
|  | if (Parent->isAnonymousStructOrUnion() && | 
|  | Parent->getRedeclContext()->isFunctionOrMethod()) | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field); | 
|  | } | 
|  |  | 
|  | Field->setImplicit(D->isImplicit()); | 
|  | Field->setAccess(D->getAccess()); | 
|  | Owner->addDecl(Field); | 
|  |  | 
|  | return Field; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) { | 
|  | bool Invalid = false; | 
|  | TypeSourceInfo *DI = D->getTypeSourceInfo(); | 
|  |  | 
|  | if (DI->getType()->isVariablyModifiedType()) { | 
|  | SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified) | 
|  | << D; | 
|  | Invalid = true; | 
|  | } else if (DI->getType()->isInstantiationDependentType())  { | 
|  | DI = SemaRef.SubstType(DI, TemplateArgs, | 
|  | D->getLocation(), D->getDeclName()); | 
|  | if (!DI) { | 
|  | DI = D->getTypeSourceInfo(); | 
|  | Invalid = true; | 
|  | } else if (DI->getType()->isFunctionType()) { | 
|  | // C++ [temp.arg.type]p3: | 
|  | //   If a declaration acquires a function type through a type | 
|  | //   dependent on a template-parameter and this causes a | 
|  | //   declaration that does not use the syntactic form of a | 
|  | //   function declarator to have function type, the program is | 
|  | //   ill-formed. | 
|  | SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) | 
|  | << DI->getType(); | 
|  | Invalid = true; | 
|  | } | 
|  | } else { | 
|  | SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); | 
|  | } | 
|  |  | 
|  | MSPropertyDecl *Property = MSPropertyDecl::Create( | 
|  | SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(), | 
|  | DI, D->getLocStart(), D->getGetterId(), D->getSetterId()); | 
|  |  | 
|  | SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs, | 
|  | StartingScope); | 
|  |  | 
|  | if (Invalid) | 
|  | Property->setInvalidDecl(); | 
|  |  | 
|  | Property->setAccess(D->getAccess()); | 
|  | Owner->addDecl(Property); | 
|  |  | 
|  | return Property; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) { | 
|  | NamedDecl **NamedChain = | 
|  | new (SemaRef.Context)NamedDecl*[D->getChainingSize()]; | 
|  |  | 
|  | int i = 0; | 
|  | for (auto *PI : D->chain()) { | 
|  | NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI, | 
|  | TemplateArgs); | 
|  | if (!Next) | 
|  | return nullptr; | 
|  |  | 
|  | NamedChain[i++] = Next; | 
|  | } | 
|  |  | 
|  | QualType T = cast<FieldDecl>(NamedChain[i-1])->getType(); | 
|  | IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( | 
|  | SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T, | 
|  | {NamedChain, D->getChainingSize()}); | 
|  |  | 
|  | for (const auto *Attr : D->attrs()) | 
|  | IndirectField->addAttr(Attr->clone(SemaRef.Context)); | 
|  |  | 
|  | IndirectField->setImplicit(D->isImplicit()); | 
|  | IndirectField->setAccess(D->getAccess()); | 
|  | Owner->addDecl(IndirectField); | 
|  | return IndirectField; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) { | 
|  | // Handle friend type expressions by simply substituting template | 
|  | // parameters into the pattern type and checking the result. | 
|  | if (TypeSourceInfo *Ty = D->getFriendType()) { | 
|  | TypeSourceInfo *InstTy; | 
|  | // If this is an unsupported friend, don't bother substituting template | 
|  | // arguments into it. The actual type referred to won't be used by any | 
|  | // parts of Clang, and may not be valid for instantiating. Just use the | 
|  | // same info for the instantiated friend. | 
|  | if (D->isUnsupportedFriend()) { | 
|  | InstTy = Ty; | 
|  | } else { | 
|  | InstTy = SemaRef.SubstType(Ty, TemplateArgs, | 
|  | D->getLocation(), DeclarationName()); | 
|  | } | 
|  | if (!InstTy) | 
|  | return nullptr; | 
|  |  | 
|  | FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getLocStart(), | 
|  | D->getFriendLoc(), InstTy); | 
|  | if (!FD) | 
|  | return nullptr; | 
|  |  | 
|  | FD->setAccess(AS_public); | 
|  | FD->setUnsupportedFriend(D->isUnsupportedFriend()); | 
|  | Owner->addDecl(FD); | 
|  | return FD; | 
|  | } | 
|  |  | 
|  | NamedDecl *ND = D->getFriendDecl(); | 
|  | assert(ND && "friend decl must be a decl or a type!"); | 
|  |  | 
|  | // All of the Visit implementations for the various potential friend | 
|  | // declarations have to be carefully written to work for friend | 
|  | // objects, with the most important detail being that the target | 
|  | // decl should almost certainly not be placed in Owner. | 
|  | Decl *NewND = Visit(ND); | 
|  | if (!NewND) return nullptr; | 
|  |  | 
|  | FriendDecl *FD = | 
|  | FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), | 
|  | cast<NamedDecl>(NewND), D->getFriendLoc()); | 
|  | FD->setAccess(AS_public); | 
|  | FD->setUnsupportedFriend(D->isUnsupportedFriend()); | 
|  | Owner->addDecl(FD); | 
|  | return FD; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) { | 
|  | Expr *AssertExpr = D->getAssertExpr(); | 
|  |  | 
|  | // The expression in a static assertion is a constant expression. | 
|  | EnterExpressionEvaluationContext Unevaluated( | 
|  | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); | 
|  |  | 
|  | ExprResult InstantiatedAssertExpr | 
|  | = SemaRef.SubstExpr(AssertExpr, TemplateArgs); | 
|  | if (InstantiatedAssertExpr.isInvalid()) | 
|  | return nullptr; | 
|  |  | 
|  | return SemaRef.BuildStaticAssertDeclaration(D->getLocation(), | 
|  | InstantiatedAssertExpr.get(), | 
|  | D->getMessage(), | 
|  | D->getRParenLoc(), | 
|  | D->isFailed()); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) { | 
|  | EnumDecl *PrevDecl = nullptr; | 
|  | if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { | 
|  | NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), | 
|  | PatternPrev, | 
|  | TemplateArgs); | 
|  | if (!Prev) return nullptr; | 
|  | PrevDecl = cast<EnumDecl>(Prev); | 
|  | } | 
|  |  | 
|  | EnumDecl *Enum = EnumDecl::Create(SemaRef.Context, Owner, D->getLocStart(), | 
|  | D->getLocation(), D->getIdentifier(), | 
|  | PrevDecl, D->isScoped(), | 
|  | D->isScopedUsingClassTag(), D->isFixed()); | 
|  | if (D->isFixed()) { | 
|  | if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) { | 
|  | // If we have type source information for the underlying type, it means it | 
|  | // has been explicitly set by the user. Perform substitution on it before | 
|  | // moving on. | 
|  | SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); | 
|  | TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc, | 
|  | DeclarationName()); | 
|  | if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI)) | 
|  | Enum->setIntegerType(SemaRef.Context.IntTy); | 
|  | else | 
|  | Enum->setIntegerTypeSourceInfo(NewTI); | 
|  | } else { | 
|  | assert(!D->getIntegerType()->isDependentType() | 
|  | && "Dependent type without type source info"); | 
|  | Enum->setIntegerType(D->getIntegerType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | SemaRef.InstantiateAttrs(TemplateArgs, D, Enum); | 
|  |  | 
|  | Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation); | 
|  | Enum->setAccess(D->getAccess()); | 
|  | // Forward the mangling number from the template to the instantiated decl. | 
|  | SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D)); | 
|  | // See if the old tag was defined along with a declarator. | 
|  | // If it did, mark the new tag as being associated with that declarator. | 
|  | if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) | 
|  | SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD); | 
|  | // See if the old tag was defined along with a typedef. | 
|  | // If it did, mark the new tag as being associated with that typedef. | 
|  | if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) | 
|  | SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND); | 
|  | if (SubstQualifier(D, Enum)) return nullptr; | 
|  | Owner->addDecl(Enum); | 
|  |  | 
|  | EnumDecl *Def = D->getDefinition(); | 
|  | if (Def && Def != D) { | 
|  | // If this is an out-of-line definition of an enum member template, check | 
|  | // that the underlying types match in the instantiation of both | 
|  | // declarations. | 
|  | if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) { | 
|  | SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); | 
|  | QualType DefnUnderlying = | 
|  | SemaRef.SubstType(TI->getType(), TemplateArgs, | 
|  | UnderlyingLoc, DeclarationName()); | 
|  | SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(), | 
|  | DefnUnderlying, | 
|  | /*EnumUnderlyingIsImplicit=*/false, Enum); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++11 [temp.inst]p1: The implicit instantiation of a class template | 
|  | // specialization causes the implicit instantiation of the declarations, but | 
|  | // not the definitions of scoped member enumerations. | 
|  | // | 
|  | // DR1484 clarifies that enumeration definitions inside of a template | 
|  | // declaration aren't considered entities that can be separately instantiated | 
|  | // from the rest of the entity they are declared inside of. | 
|  | if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) { | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum); | 
|  | InstantiateEnumDefinition(Enum, Def); | 
|  | } | 
|  |  | 
|  | return Enum; | 
|  | } | 
|  |  | 
|  | void TemplateDeclInstantiator::InstantiateEnumDefinition( | 
|  | EnumDecl *Enum, EnumDecl *Pattern) { | 
|  | Enum->startDefinition(); | 
|  |  | 
|  | // Update the location to refer to the definition. | 
|  | Enum->setLocation(Pattern->getLocation()); | 
|  |  | 
|  | SmallVector<Decl*, 4> Enumerators; | 
|  |  | 
|  | EnumConstantDecl *LastEnumConst = nullptr; | 
|  | for (auto *EC : Pattern->enumerators()) { | 
|  | // The specified value for the enumerator. | 
|  | ExprResult Value((Expr *)nullptr); | 
|  | if (Expr *UninstValue = EC->getInitExpr()) { | 
|  | // The enumerator's value expression is a constant expression. | 
|  | EnterExpressionEvaluationContext Unevaluated( | 
|  | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); | 
|  |  | 
|  | Value = SemaRef.SubstExpr(UninstValue, TemplateArgs); | 
|  | } | 
|  |  | 
|  | // Drop the initial value and continue. | 
|  | bool isInvalid = false; | 
|  | if (Value.isInvalid()) { | 
|  | Value = nullptr; | 
|  | isInvalid = true; | 
|  | } | 
|  |  | 
|  | EnumConstantDecl *EnumConst | 
|  | = SemaRef.CheckEnumConstant(Enum, LastEnumConst, | 
|  | EC->getLocation(), EC->getIdentifier(), | 
|  | Value.get()); | 
|  |  | 
|  | if (isInvalid) { | 
|  | if (EnumConst) | 
|  | EnumConst->setInvalidDecl(); | 
|  | Enum->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | if (EnumConst) { | 
|  | SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst); | 
|  |  | 
|  | EnumConst->setAccess(Enum->getAccess()); | 
|  | Enum->addDecl(EnumConst); | 
|  | Enumerators.push_back(EnumConst); | 
|  | LastEnumConst = EnumConst; | 
|  |  | 
|  | if (Pattern->getDeclContext()->isFunctionOrMethod() && | 
|  | !Enum->isScoped()) { | 
|  | // If the enumeration is within a function or method, record the enum | 
|  | // constant as a local. | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum, | 
|  | Enumerators, | 
|  | nullptr, nullptr); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) { | 
|  | llvm_unreachable("EnumConstantDecls can only occur within EnumDecls."); | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) { | 
|  | llvm_unreachable("BuiltinTemplateDecls cannot be instantiated."); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) { | 
|  | bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None); | 
|  |  | 
|  | // Create a local instantiation scope for this class template, which | 
|  | // will contain the instantiations of the template parameters. | 
|  | LocalInstantiationScope Scope(SemaRef); | 
|  | TemplateParameterList *TempParams = D->getTemplateParameters(); | 
|  | TemplateParameterList *InstParams = SubstTemplateParams(TempParams); | 
|  | if (!InstParams) | 
|  | return nullptr; | 
|  |  | 
|  | CXXRecordDecl *Pattern = D->getTemplatedDecl(); | 
|  |  | 
|  | // Instantiate the qualifier.  We have to do this first in case | 
|  | // we're a friend declaration, because if we are then we need to put | 
|  | // the new declaration in the appropriate context. | 
|  | NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc(); | 
|  | if (QualifierLoc) { | 
|  | QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, | 
|  | TemplateArgs); | 
|  | if (!QualifierLoc) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *PrevDecl = nullptr; | 
|  | ClassTemplateDecl *PrevClassTemplate = nullptr; | 
|  |  | 
|  | if (!isFriend && getPreviousDeclForInstantiation(Pattern)) { | 
|  | DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); | 
|  | if (!Found.empty()) { | 
|  | PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front()); | 
|  | if (PrevClassTemplate) | 
|  | PrevDecl = PrevClassTemplate->getTemplatedDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this isn't a friend, then it's a member template, in which | 
|  | // case we just want to build the instantiation in the | 
|  | // specialization.  If it is a friend, we want to build it in | 
|  | // the appropriate context. | 
|  | DeclContext *DC = Owner; | 
|  | if (isFriend) { | 
|  | if (QualifierLoc) { | 
|  | CXXScopeSpec SS; | 
|  | SS.Adopt(QualifierLoc); | 
|  | DC = SemaRef.computeDeclContext(SS); | 
|  | if (!DC) return nullptr; | 
|  | } else { | 
|  | DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(), | 
|  | Pattern->getDeclContext(), | 
|  | TemplateArgs); | 
|  | } | 
|  |  | 
|  | // Look for a previous declaration of the template in the owning | 
|  | // context. | 
|  | LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(), | 
|  | Sema::LookupOrdinaryName, | 
|  | SemaRef.forRedeclarationInCurContext()); | 
|  | SemaRef.LookupQualifiedName(R, DC); | 
|  |  | 
|  | if (R.isSingleResult()) { | 
|  | PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>(); | 
|  | if (PrevClassTemplate) | 
|  | PrevDecl = PrevClassTemplate->getTemplatedDecl(); | 
|  | } | 
|  |  | 
|  | if (!PrevClassTemplate && QualifierLoc) { | 
|  | SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope) | 
|  | << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC | 
|  | << QualifierLoc.getSourceRange(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool AdoptedPreviousTemplateParams = false; | 
|  | if (PrevClassTemplate) { | 
|  | bool Complain = true; | 
|  |  | 
|  | // HACK: libstdc++ 4.2.1 contains an ill-formed friend class | 
|  | // template for struct std::tr1::__detail::_Map_base, where the | 
|  | // template parameters of the friend declaration don't match the | 
|  | // template parameters of the original declaration. In this one | 
|  | // case, we don't complain about the ill-formed friend | 
|  | // declaration. | 
|  | if (isFriend && Pattern->getIdentifier() && | 
|  | Pattern->getIdentifier()->isStr("_Map_base") && | 
|  | DC->isNamespace() && | 
|  | cast<NamespaceDecl>(DC)->getIdentifier() && | 
|  | cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__detail")) { | 
|  | DeclContext *DCParent = DC->getParent(); | 
|  | if (DCParent->isNamespace() && | 
|  | cast<NamespaceDecl>(DCParent)->getIdentifier() && | 
|  | cast<NamespaceDecl>(DCParent)->getIdentifier()->isStr("tr1")) { | 
|  | if (cast<Decl>(DCParent)->isInStdNamespace()) | 
|  | Complain = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | TemplateParameterList *PrevParams | 
|  | = PrevClassTemplate->getTemplateParameters(); | 
|  |  | 
|  | // Make sure the parameter lists match. | 
|  | if (!SemaRef.TemplateParameterListsAreEqual(InstParams, PrevParams, | 
|  | Complain, | 
|  | Sema::TPL_TemplateMatch)) { | 
|  | if (Complain) | 
|  | return nullptr; | 
|  |  | 
|  | AdoptedPreviousTemplateParams = true; | 
|  | InstParams = PrevParams; | 
|  | } | 
|  |  | 
|  | // Do some additional validation, then merge default arguments | 
|  | // from the existing declarations. | 
|  | if (!AdoptedPreviousTemplateParams && | 
|  | SemaRef.CheckTemplateParameterList(InstParams, PrevParams, | 
|  | Sema::TPC_ClassTemplate)) | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *RecordInst | 
|  | = CXXRecordDecl::Create(SemaRef.Context, Pattern->getTagKind(), DC, | 
|  | Pattern->getLocStart(), Pattern->getLocation(), | 
|  | Pattern->getIdentifier(), PrevDecl, | 
|  | /*DelayTypeCreation=*/true); | 
|  |  | 
|  | if (QualifierLoc) | 
|  | RecordInst->setQualifierInfo(QualifierLoc); | 
|  |  | 
|  | ClassTemplateDecl *Inst | 
|  | = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(), | 
|  | D->getIdentifier(), InstParams, RecordInst); | 
|  | assert(!(isFriend && Owner->isDependentContext())); | 
|  | Inst->setPreviousDecl(PrevClassTemplate); | 
|  |  | 
|  | RecordInst->setDescribedClassTemplate(Inst); | 
|  |  | 
|  | if (isFriend) { | 
|  | if (PrevClassTemplate) | 
|  | Inst->setAccess(PrevClassTemplate->getAccess()); | 
|  | else | 
|  | Inst->setAccess(D->getAccess()); | 
|  |  | 
|  | Inst->setObjectOfFriendDecl(); | 
|  | // TODO: do we want to track the instantiation progeny of this | 
|  | // friend target decl? | 
|  | } else { | 
|  | Inst->setAccess(D->getAccess()); | 
|  | if (!PrevClassTemplate) | 
|  | Inst->setInstantiatedFromMemberTemplate(D); | 
|  | } | 
|  |  | 
|  | // Trigger creation of the type for the instantiation. | 
|  | SemaRef.Context.getInjectedClassNameType(RecordInst, | 
|  | Inst->getInjectedClassNameSpecialization()); | 
|  |  | 
|  | // Finish handling of friends. | 
|  | if (isFriend) { | 
|  | DC->makeDeclVisibleInContext(Inst); | 
|  | Inst->setLexicalDeclContext(Owner); | 
|  | RecordInst->setLexicalDeclContext(Owner); | 
|  | return Inst; | 
|  | } | 
|  |  | 
|  | if (D->isOutOfLine()) { | 
|  | Inst->setLexicalDeclContext(D->getLexicalDeclContext()); | 
|  | RecordInst->setLexicalDeclContext(D->getLexicalDeclContext()); | 
|  | } | 
|  |  | 
|  | Owner->addDecl(Inst); | 
|  |  | 
|  | if (!PrevClassTemplate) { | 
|  | // Queue up any out-of-line partial specializations of this member | 
|  | // class template; the client will force their instantiation once | 
|  | // the enclosing class has been instantiated. | 
|  | SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs; | 
|  | D->getPartialSpecializations(PartialSpecs); | 
|  | for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) | 
|  | if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) | 
|  | OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I])); | 
|  | } | 
|  |  | 
|  | return Inst; | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl( | 
|  | ClassTemplatePartialSpecializationDecl *D) { | 
|  | ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); | 
|  |  | 
|  | // Lookup the already-instantiated declaration in the instantiation | 
|  | // of the class template and return that. | 
|  | DeclContext::lookup_result Found | 
|  | = Owner->lookup(ClassTemplate->getDeclName()); | 
|  | if (Found.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | ClassTemplateDecl *InstClassTemplate | 
|  | = dyn_cast<ClassTemplateDecl>(Found.front()); | 
|  | if (!InstClassTemplate) | 
|  | return nullptr; | 
|  |  | 
|  | if (ClassTemplatePartialSpecializationDecl *Result | 
|  | = InstClassTemplate->findPartialSpecInstantiatedFromMember(D)) | 
|  | return Result; | 
|  |  | 
|  | return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) { | 
|  | assert(D->getTemplatedDecl()->isStaticDataMember() && | 
|  | "Only static data member templates are allowed."); | 
|  |  | 
|  | // Create a local instantiation scope for this variable template, which | 
|  | // will contain the instantiations of the template parameters. | 
|  | LocalInstantiationScope Scope(SemaRef); | 
|  | TemplateParameterList *TempParams = D->getTemplateParameters(); | 
|  | TemplateParameterList *InstParams = SubstTemplateParams(TempParams); | 
|  | if (!InstParams) | 
|  | return nullptr; | 
|  |  | 
|  | VarDecl *Pattern = D->getTemplatedDecl(); | 
|  | VarTemplateDecl *PrevVarTemplate = nullptr; | 
|  |  | 
|  | if (getPreviousDeclForInstantiation(Pattern)) { | 
|  | DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); | 
|  | if (!Found.empty()) | 
|  | PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); | 
|  | } | 
|  |  | 
|  | VarDecl *VarInst = | 
|  | cast_or_null<VarDecl>(VisitVarDecl(Pattern, | 
|  | /*InstantiatingVarTemplate=*/true)); | 
|  | if (!VarInst) return nullptr; | 
|  |  | 
|  | DeclContext *DC = Owner; | 
|  |  | 
|  | VarTemplateDecl *Inst = VarTemplateDecl::Create( | 
|  | SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams, | 
|  | VarInst); | 
|  | VarInst->setDescribedVarTemplate(Inst); | 
|  | Inst->setPreviousDecl(PrevVarTemplate); | 
|  |  | 
|  | Inst->setAccess(D->getAccess()); | 
|  | if (!PrevVarTemplate) | 
|  | Inst->setInstantiatedFromMemberTemplate(D); | 
|  |  | 
|  | if (D->isOutOfLine()) { | 
|  | Inst->setLexicalDeclContext(D->getLexicalDeclContext()); | 
|  | VarInst->setLexicalDeclContext(D->getLexicalDeclContext()); | 
|  | } | 
|  |  | 
|  | Owner->addDecl(Inst); | 
|  |  | 
|  | if (!PrevVarTemplate) { | 
|  | // Queue up any out-of-line partial specializations of this member | 
|  | // variable template; the client will force their instantiation once | 
|  | // the enclosing class has been instantiated. | 
|  | SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; | 
|  | D->getPartialSpecializations(PartialSpecs); | 
|  | for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) | 
|  | if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) | 
|  | OutOfLineVarPartialSpecs.push_back( | 
|  | std::make_pair(Inst, PartialSpecs[I])); | 
|  | } | 
|  |  | 
|  | return Inst; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl( | 
|  | VarTemplatePartialSpecializationDecl *D) { | 
|  | assert(D->isStaticDataMember() && | 
|  | "Only static data member templates are allowed."); | 
|  |  | 
|  | VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); | 
|  |  | 
|  | // Lookup the already-instantiated declaration and return that. | 
|  | DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName()); | 
|  | assert(!Found.empty() && "Instantiation found nothing?"); | 
|  |  | 
|  | VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); | 
|  | assert(InstVarTemplate && "Instantiation did not find a variable template?"); | 
|  |  | 
|  | if (VarTemplatePartialSpecializationDecl *Result = | 
|  | InstVarTemplate->findPartialSpecInstantiatedFromMember(D)) | 
|  | return Result; | 
|  |  | 
|  | return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D); | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { | 
|  | // Create a local instantiation scope for this function template, which | 
|  | // will contain the instantiations of the template parameters and then get | 
|  | // merged with the local instantiation scope for the function template | 
|  | // itself. | 
|  | LocalInstantiationScope Scope(SemaRef); | 
|  |  | 
|  | TemplateParameterList *TempParams = D->getTemplateParameters(); | 
|  | TemplateParameterList *InstParams = SubstTemplateParams(TempParams); | 
|  | if (!InstParams) | 
|  | return nullptr; | 
|  |  | 
|  | FunctionDecl *Instantiated = nullptr; | 
|  | if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl())) | 
|  | Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod, | 
|  | InstParams)); | 
|  | else | 
|  | Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl( | 
|  | D->getTemplatedDecl(), | 
|  | InstParams)); | 
|  |  | 
|  | if (!Instantiated) | 
|  | return nullptr; | 
|  |  | 
|  | // Link the instantiated function template declaration to the function | 
|  | // template from which it was instantiated. | 
|  | FunctionTemplateDecl *InstTemplate | 
|  | = Instantiated->getDescribedFunctionTemplate(); | 
|  | InstTemplate->setAccess(D->getAccess()); | 
|  | assert(InstTemplate && | 
|  | "VisitFunctionDecl/CXXMethodDecl didn't create a template!"); | 
|  |  | 
|  | bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None); | 
|  |  | 
|  | // Link the instantiation back to the pattern *unless* this is a | 
|  | // non-definition friend declaration. | 
|  | if (!InstTemplate->getInstantiatedFromMemberTemplate() && | 
|  | !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition())) | 
|  | InstTemplate->setInstantiatedFromMemberTemplate(D); | 
|  |  | 
|  | // Make declarations visible in the appropriate context. | 
|  | if (!isFriend) { | 
|  | Owner->addDecl(InstTemplate); | 
|  | } else if (InstTemplate->getDeclContext()->isRecord() && | 
|  | !getPreviousDeclForInstantiation(D)) { | 
|  | SemaRef.CheckFriendAccess(InstTemplate); | 
|  | } | 
|  |  | 
|  | return InstTemplate; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) { | 
|  | CXXRecordDecl *PrevDecl = nullptr; | 
|  | if (D->isInjectedClassName()) | 
|  | PrevDecl = cast<CXXRecordDecl>(Owner); | 
|  | else if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { | 
|  | NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), | 
|  | PatternPrev, | 
|  | TemplateArgs); | 
|  | if (!Prev) return nullptr; | 
|  | PrevDecl = cast<CXXRecordDecl>(Prev); | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *Record | 
|  | = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner, | 
|  | D->getLocStart(), D->getLocation(), | 
|  | D->getIdentifier(), PrevDecl); | 
|  |  | 
|  | // Substitute the nested name specifier, if any. | 
|  | if (SubstQualifier(D, Record)) | 
|  | return nullptr; | 
|  |  | 
|  | Record->setImplicit(D->isImplicit()); | 
|  | // FIXME: Check against AS_none is an ugly hack to work around the issue that | 
|  | // the tag decls introduced by friend class declarations don't have an access | 
|  | // specifier. Remove once this area of the code gets sorted out. | 
|  | if (D->getAccess() != AS_none) | 
|  | Record->setAccess(D->getAccess()); | 
|  | if (!D->isInjectedClassName()) | 
|  | Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); | 
|  |  | 
|  | // If the original function was part of a friend declaration, | 
|  | // inherit its namespace state. | 
|  | if (D->getFriendObjectKind()) | 
|  | Record->setObjectOfFriendDecl(); | 
|  |  | 
|  | // Make sure that anonymous structs and unions are recorded. | 
|  | if (D->isAnonymousStructOrUnion()) | 
|  | Record->setAnonymousStructOrUnion(true); | 
|  |  | 
|  | if (D->isLocalClass()) | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record); | 
|  |  | 
|  | // Forward the mangling number from the template to the instantiated decl. | 
|  | SemaRef.Context.setManglingNumber(Record, | 
|  | SemaRef.Context.getManglingNumber(D)); | 
|  |  | 
|  | // See if the old tag was defined along with a declarator. | 
|  | // If it did, mark the new tag as being associated with that declarator. | 
|  | if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) | 
|  | SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD); | 
|  |  | 
|  | // See if the old tag was defined along with a typedef. | 
|  | // If it did, mark the new tag as being associated with that typedef. | 
|  | if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) | 
|  | SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND); | 
|  |  | 
|  | Owner->addDecl(Record); | 
|  |  | 
|  | // DR1484 clarifies that the members of a local class are instantiated as part | 
|  | // of the instantiation of their enclosing entity. | 
|  | if (D->isCompleteDefinition() && D->isLocalClass()) { | 
|  | Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef); | 
|  |  | 
|  | SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs, | 
|  | TSK_ImplicitInstantiation, | 
|  | /*Complain=*/true); | 
|  |  | 
|  | // For nested local classes, we will instantiate the members when we | 
|  | // reach the end of the outermost (non-nested) local class. | 
|  | if (!D->isCXXClassMember()) | 
|  | SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs, | 
|  | TSK_ImplicitInstantiation); | 
|  |  | 
|  | // This class may have local implicit instantiations that need to be | 
|  | // performed within this scope. | 
|  | LocalInstantiations.perform(); | 
|  | } | 
|  |  | 
|  | SemaRef.DiagnoseUnusedNestedTypedefs(Record); | 
|  |  | 
|  | return Record; | 
|  | } | 
|  |  | 
|  | /// \brief Adjust the given function type for an instantiation of the | 
|  | /// given declaration, to cope with modifications to the function's type that | 
|  | /// aren't reflected in the type-source information. | 
|  | /// | 
|  | /// \param D The declaration we're instantiating. | 
|  | /// \param TInfo The already-instantiated type. | 
|  | static QualType adjustFunctionTypeForInstantiation(ASTContext &Context, | 
|  | FunctionDecl *D, | 
|  | TypeSourceInfo *TInfo) { | 
|  | const FunctionProtoType *OrigFunc | 
|  | = D->getType()->castAs<FunctionProtoType>(); | 
|  | const FunctionProtoType *NewFunc | 
|  | = TInfo->getType()->castAs<FunctionProtoType>(); | 
|  | if (OrigFunc->getExtInfo() == NewFunc->getExtInfo()) | 
|  | return TInfo->getType(); | 
|  |  | 
|  | FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo(); | 
|  | NewEPI.ExtInfo = OrigFunc->getExtInfo(); | 
|  | return Context.getFunctionType(NewFunc->getReturnType(), | 
|  | NewFunc->getParamTypes(), NewEPI); | 
|  | } | 
|  |  | 
|  | /// Normal class members are of more specific types and therefore | 
|  | /// don't make it here.  This function serves two purposes: | 
|  | ///   1) instantiating function templates | 
|  | ///   2) substituting friend declarations | 
|  | Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D, | 
|  | TemplateParameterList *TemplateParams) { | 
|  | // Check whether there is already a function template specialization for | 
|  | // this declaration. | 
|  | FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); | 
|  | if (FunctionTemplate && !TemplateParams) { | 
|  | ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | FunctionDecl *SpecFunc | 
|  | = FunctionTemplate->findSpecialization(Innermost, InsertPos); | 
|  |  | 
|  | // If we already have a function template specialization, return it. | 
|  | if (SpecFunc) | 
|  | return SpecFunc; | 
|  | } | 
|  |  | 
|  | bool isFriend; | 
|  | if (FunctionTemplate) | 
|  | isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); | 
|  | else | 
|  | isFriend = (D->getFriendObjectKind() != Decl::FOK_None); | 
|  |  | 
|  | bool MergeWithParentScope = (TemplateParams != nullptr) || | 
|  | Owner->isFunctionOrMethod() || | 
|  | !(isa<Decl>(Owner) && | 
|  | cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); | 
|  | LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); | 
|  |  | 
|  | SmallVector<ParmVarDecl *, 4> Params; | 
|  | TypeSourceInfo *TInfo = SubstFunctionType(D, Params); | 
|  | if (!TInfo) | 
|  | return nullptr; | 
|  | QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); | 
|  |  | 
|  | NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); | 
|  | if (QualifierLoc) { | 
|  | QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, | 
|  | TemplateArgs); | 
|  | if (!QualifierLoc) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If we're instantiating a local function declaration, put the result | 
|  | // in the enclosing namespace; otherwise we need to find the instantiated | 
|  | // context. | 
|  | DeclContext *DC; | 
|  | if (D->isLocalExternDecl()) { | 
|  | DC = Owner; | 
|  | SemaRef.adjustContextForLocalExternDecl(DC); | 
|  | } else if (isFriend && QualifierLoc) { | 
|  | CXXScopeSpec SS; | 
|  | SS.Adopt(QualifierLoc); | 
|  | DC = SemaRef.computeDeclContext(SS); | 
|  | if (!DC) return nullptr; | 
|  | } else { | 
|  | DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), | 
|  | TemplateArgs); | 
|  | } | 
|  |  | 
|  | FunctionDecl *Function; | 
|  | if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) { | 
|  | Function = CXXDeductionGuideDecl::Create( | 
|  | SemaRef.Context, DC, D->getInnerLocStart(), DGuide->isExplicit(), | 
|  | D->getNameInfo(), T, TInfo, D->getSourceRange().getEnd()); | 
|  | if (DGuide->isCopyDeductionCandidate()) | 
|  | cast<CXXDeductionGuideDecl>(Function)->setIsCopyDeductionCandidate(); | 
|  | } else { | 
|  | Function = FunctionDecl::Create( | 
|  | SemaRef.Context, DC, D->getInnerLocStart(), D->getNameInfo(), T, TInfo, | 
|  | D->getCanonicalDecl()->getStorageClass(), D->isInlineSpecified(), | 
|  | D->hasWrittenPrototype(), D->isConstexpr()); | 
|  | Function->setRangeEnd(D->getSourceRange().getEnd()); | 
|  | } | 
|  |  | 
|  | if (D->isInlined()) | 
|  | Function->setImplicitlyInline(); | 
|  |  | 
|  | if (QualifierLoc) | 
|  | Function->setQualifierInfo(QualifierLoc); | 
|  |  | 
|  | if (D->isLocalExternDecl()) | 
|  | Function->setLocalExternDecl(); | 
|  |  | 
|  | DeclContext *LexicalDC = Owner; | 
|  | if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) { | 
|  | assert(D->getDeclContext()->isFileContext()); | 
|  | LexicalDC = D->getDeclContext(); | 
|  | } | 
|  |  | 
|  | Function->setLexicalDeclContext(LexicalDC); | 
|  |  | 
|  | // Attach the parameters | 
|  | for (unsigned P = 0; P < Params.size(); ++P) | 
|  | if (Params[P]) | 
|  | Params[P]->setOwningFunction(Function); | 
|  | Function->setParams(Params); | 
|  |  | 
|  | if (TemplateParams) { | 
|  | // Our resulting instantiation is actually a function template, since we | 
|  | // are substituting only the outer template parameters. For example, given | 
|  | // | 
|  | //   template<typename T> | 
|  | //   struct X { | 
|  | //     template<typename U> friend void f(T, U); | 
|  | //   }; | 
|  | // | 
|  | //   X<int> x; | 
|  | // | 
|  | // We are instantiating the friend function template "f" within X<int>, | 
|  | // which means substituting int for T, but leaving "f" as a friend function | 
|  | // template. | 
|  | // Build the function template itself. | 
|  | FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC, | 
|  | Function->getLocation(), | 
|  | Function->getDeclName(), | 
|  | TemplateParams, Function); | 
|  | Function->setDescribedFunctionTemplate(FunctionTemplate); | 
|  |  | 
|  | FunctionTemplate->setLexicalDeclContext(LexicalDC); | 
|  |  | 
|  | if (isFriend && D->isThisDeclarationADefinition()) { | 
|  | FunctionTemplate->setInstantiatedFromMemberTemplate( | 
|  | D->getDescribedFunctionTemplate()); | 
|  | } | 
|  | } else if (FunctionTemplate) { | 
|  | // Record this function template specialization. | 
|  | ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); | 
|  | Function->setFunctionTemplateSpecialization(FunctionTemplate, | 
|  | TemplateArgumentList::CreateCopy(SemaRef.Context, | 
|  | Innermost), | 
|  | /*InsertPos=*/nullptr); | 
|  | } else if (isFriend && D->isThisDeclarationADefinition()) { | 
|  | // Do not connect the friend to the template unless it's actually a | 
|  | // definition. We don't want non-template functions to be marked as being | 
|  | // template instantiations. | 
|  | Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); | 
|  | } | 
|  |  | 
|  | if (InitFunctionInstantiation(Function, D)) | 
|  | Function->setInvalidDecl(); | 
|  |  | 
|  | bool isExplicitSpecialization = false; | 
|  |  | 
|  | LookupResult Previous( | 
|  | SemaRef, Function->getDeclName(), SourceLocation(), | 
|  | D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage | 
|  | : Sema::LookupOrdinaryName, | 
|  | D->isLocalExternDecl() ? Sema::ForExternalRedeclaration | 
|  | : SemaRef.forRedeclarationInCurContext()); | 
|  |  | 
|  | if (DependentFunctionTemplateSpecializationInfo *Info | 
|  | = D->getDependentSpecializationInfo()) { | 
|  | assert(isFriend && "non-friend has dependent specialization info?"); | 
|  |  | 
|  | // This needs to be set now for future sanity. | 
|  | Function->setObjectOfFriendDecl(); | 
|  |  | 
|  | // Instantiate the explicit template arguments. | 
|  | TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), | 
|  | Info->getRAngleLoc()); | 
|  | if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(), | 
|  | ExplicitArgs, TemplateArgs)) | 
|  | return nullptr; | 
|  |  | 
|  | // Map the candidate templates to their instantiations. | 
|  | for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) { | 
|  | Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(), | 
|  | Info->getTemplate(I), | 
|  | TemplateArgs); | 
|  | if (!Temp) return nullptr; | 
|  |  | 
|  | Previous.addDecl(cast<FunctionTemplateDecl>(Temp)); | 
|  | } | 
|  |  | 
|  | if (SemaRef.CheckFunctionTemplateSpecialization(Function, | 
|  | &ExplicitArgs, | 
|  | Previous)) | 
|  | Function->setInvalidDecl(); | 
|  |  | 
|  | isExplicitSpecialization = true; | 
|  |  | 
|  | } else if (TemplateParams || !FunctionTemplate) { | 
|  | // Look only into the namespace where the friend would be declared to | 
|  | // find a previous declaration. This is the innermost enclosing namespace, | 
|  | // as described in ActOnFriendFunctionDecl. | 
|  | SemaRef.LookupQualifiedName(Previous, DC); | 
|  |  | 
|  | // In C++, the previous declaration we find might be a tag type | 
|  | // (class or enum). In this case, the new declaration will hide the | 
|  | // tag type. Note that this does does not apply if we're declaring a | 
|  | // typedef (C++ [dcl.typedef]p4). | 
|  | if (Previous.isSingleTagDecl()) | 
|  | Previous.clear(); | 
|  | } | 
|  |  | 
|  | if (isFriend) | 
|  | Function->setObjectOfFriendDecl(); | 
|  |  | 
|  | SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous, | 
|  | isExplicitSpecialization); | 
|  |  | 
|  | NamedDecl *PrincipalDecl = (TemplateParams | 
|  | ? cast<NamedDecl>(FunctionTemplate) | 
|  | : Function); | 
|  |  | 
|  | // If the original function was part of a friend declaration, | 
|  | // inherit its namespace state and add it to the owner. | 
|  | if (isFriend) { | 
|  | PrincipalDecl->setObjectOfFriendDecl(); | 
|  | DC->makeDeclVisibleInContext(PrincipalDecl); | 
|  |  | 
|  | bool QueuedInstantiation = false; | 
|  |  | 
|  | // C++11 [temp.friend]p4 (DR329): | 
|  | //   When a function is defined in a friend function declaration in a class | 
|  | //   template, the function is instantiated when the function is odr-used. | 
|  | //   The same restrictions on multiple declarations and definitions that | 
|  | //   apply to non-template function declarations and definitions also apply | 
|  | //   to these implicit definitions. | 
|  | if (D->isThisDeclarationADefinition()) { | 
|  | // Check for a function body. | 
|  | const FunctionDecl *Definition = nullptr; | 
|  | if (Function->isDefined(Definition) && | 
|  | Definition->getTemplateSpecializationKind() == TSK_Undeclared) { | 
|  | SemaRef.Diag(Function->getLocation(), diag::err_redefinition) | 
|  | << Function->getDeclName(); | 
|  | SemaRef.Diag(Definition->getLocation(), diag::note_previous_definition); | 
|  | } | 
|  | // Check for redefinitions due to other instantiations of this or | 
|  | // a similar friend function. | 
|  | else for (auto R : Function->redecls()) { | 
|  | if (R == Function) | 
|  | continue; | 
|  |  | 
|  | // If some prior declaration of this function has been used, we need | 
|  | // to instantiate its definition. | 
|  | if (!QueuedInstantiation && R->isUsed(false)) { | 
|  | if (MemberSpecializationInfo *MSInfo = | 
|  | Function->getMemberSpecializationInfo()) { | 
|  | if (MSInfo->getPointOfInstantiation().isInvalid()) { | 
|  | SourceLocation Loc = R->getLocation(); // FIXME | 
|  | MSInfo->setPointOfInstantiation(Loc); | 
|  | SemaRef.PendingLocalImplicitInstantiations.push_back( | 
|  | std::make_pair(Function, Loc)); | 
|  | QueuedInstantiation = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If some prior declaration of this function was a friend with an | 
|  | // uninstantiated definition, reject it. | 
|  | if (R->getFriendObjectKind()) { | 
|  | if (const FunctionDecl *RPattern = | 
|  | R->getTemplateInstantiationPattern()) { | 
|  | if (RPattern->isDefined(RPattern)) { | 
|  | SemaRef.Diag(Function->getLocation(), diag::err_redefinition) | 
|  | << Function->getDeclName(); | 
|  | SemaRef.Diag(R->getLocation(), diag::note_previous_definition); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check the template parameter list against the previous declaration. The | 
|  | // goal here is to pick up default arguments added since the friend was | 
|  | // declared; we know the template parameter lists match, since otherwise | 
|  | // we would not have picked this template as the previous declaration. | 
|  | if (TemplateParams && FunctionTemplate->getPreviousDecl()) { | 
|  | SemaRef.CheckTemplateParameterList( | 
|  | TemplateParams, | 
|  | FunctionTemplate->getPreviousDecl()->getTemplateParameters(), | 
|  | Function->isThisDeclarationADefinition() | 
|  | ? Sema::TPC_FriendFunctionTemplateDefinition | 
|  | : Sema::TPC_FriendFunctionTemplate); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Function->isLocalExternDecl() && !Function->getPreviousDecl()) | 
|  | DC->makeDeclVisibleInContext(PrincipalDecl); | 
|  |  | 
|  | if (Function->isOverloadedOperator() && !DC->isRecord() && | 
|  | PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) | 
|  | PrincipalDecl->setNonMemberOperator(); | 
|  |  | 
|  | assert(!D->isDefaulted() && "only methods should be defaulted"); | 
|  | return Function; | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D, | 
|  | TemplateParameterList *TemplateParams, | 
|  | bool IsClassScopeSpecialization) { | 
|  | FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); | 
|  | if (FunctionTemplate && !TemplateParams) { | 
|  | // We are creating a function template specialization from a function | 
|  | // template. Check whether there is already a function template | 
|  | // specialization for this particular set of template arguments. | 
|  | ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | FunctionDecl *SpecFunc | 
|  | = FunctionTemplate->findSpecialization(Innermost, InsertPos); | 
|  |  | 
|  | // If we already have a function template specialization, return it. | 
|  | if (SpecFunc) | 
|  | return SpecFunc; | 
|  | } | 
|  |  | 
|  | bool isFriend; | 
|  | if (FunctionTemplate) | 
|  | isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); | 
|  | else | 
|  | isFriend = (D->getFriendObjectKind() != Decl::FOK_None); | 
|  |  | 
|  | bool MergeWithParentScope = (TemplateParams != nullptr) || | 
|  | !(isa<Decl>(Owner) && | 
|  | cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); | 
|  | LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); | 
|  |  | 
|  | // Instantiate enclosing template arguments for friends. | 
|  | SmallVector<TemplateParameterList *, 4> TempParamLists; | 
|  | unsigned NumTempParamLists = 0; | 
|  | if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) { | 
|  | TempParamLists.resize(NumTempParamLists); | 
|  | for (unsigned I = 0; I != NumTempParamLists; ++I) { | 
|  | TemplateParameterList *TempParams = D->getTemplateParameterList(I); | 
|  | TemplateParameterList *InstParams = SubstTemplateParams(TempParams); | 
|  | if (!InstParams) | 
|  | return nullptr; | 
|  | TempParamLists[I] = InstParams; | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<ParmVarDecl *, 4> Params; | 
|  | TypeSourceInfo *TInfo = SubstFunctionType(D, Params); | 
|  | if (!TInfo) | 
|  | return nullptr; | 
|  | QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); | 
|  |  | 
|  | NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); | 
|  | if (QualifierLoc) { | 
|  | QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, | 
|  | TemplateArgs); | 
|  | if (!QualifierLoc) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | DeclContext *DC = Owner; | 
|  | if (isFriend) { | 
|  | if (QualifierLoc) { | 
|  | CXXScopeSpec SS; | 
|  | SS.Adopt(QualifierLoc); | 
|  | DC = SemaRef.computeDeclContext(SS); | 
|  |  | 
|  | if (DC && SemaRef.RequireCompleteDeclContext(SS, DC)) | 
|  | return nullptr; | 
|  | } else { | 
|  | DC = SemaRef.FindInstantiatedContext(D->getLocation(), | 
|  | D->getDeclContext(), | 
|  | TemplateArgs); | 
|  | } | 
|  | if (!DC) return nullptr; | 
|  | } | 
|  |  | 
|  | // Build the instantiated method declaration. | 
|  | CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); | 
|  | CXXMethodDecl *Method = nullptr; | 
|  |  | 
|  | SourceLocation StartLoc = D->getInnerLocStart(); | 
|  | DeclarationNameInfo NameInfo | 
|  | = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); | 
|  | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { | 
|  | Method = CXXConstructorDecl::Create(SemaRef.Context, Record, | 
|  | StartLoc, NameInfo, T, TInfo, | 
|  | Constructor->isExplicit(), | 
|  | Constructor->isInlineSpecified(), | 
|  | false, Constructor->isConstexpr()); | 
|  | Method->setRangeEnd(Constructor->getLocEnd()); | 
|  | } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { | 
|  | Method = CXXDestructorDecl::Create(SemaRef.Context, Record, | 
|  | StartLoc, NameInfo, T, TInfo, | 
|  | Destructor->isInlineSpecified(), | 
|  | false); | 
|  | Method->setRangeEnd(Destructor->getLocEnd()); | 
|  | } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { | 
|  | Method = CXXConversionDecl::Create(SemaRef.Context, Record, | 
|  | StartLoc, NameInfo, T, TInfo, | 
|  | Conversion->isInlineSpecified(), | 
|  | Conversion->isExplicit(), | 
|  | Conversion->isConstexpr(), | 
|  | Conversion->getLocEnd()); | 
|  | } else { | 
|  | StorageClass SC = D->isStatic() ? SC_Static : SC_None; | 
|  | Method = CXXMethodDecl::Create(SemaRef.Context, Record, | 
|  | StartLoc, NameInfo, T, TInfo, | 
|  | SC, D->isInlineSpecified(), | 
|  | D->isConstexpr(), D->getLocEnd()); | 
|  | } | 
|  |  | 
|  | if (D->isInlined()) | 
|  | Method->setImplicitlyInline(); | 
|  |  | 
|  | if (QualifierLoc) | 
|  | Method->setQualifierInfo(QualifierLoc); | 
|  |  | 
|  | if (TemplateParams) { | 
|  | // Our resulting instantiation is actually a function template, since we | 
|  | // are substituting only the outer template parameters. For example, given | 
|  | // | 
|  | //   template<typename T> | 
|  | //   struct X { | 
|  | //     template<typename U> void f(T, U); | 
|  | //   }; | 
|  | // | 
|  | //   X<int> x; | 
|  | // | 
|  | // We are instantiating the member template "f" within X<int>, which means | 
|  | // substituting int for T, but leaving "f" as a member function template. | 
|  | // Build the function template itself. | 
|  | FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record, | 
|  | Method->getLocation(), | 
|  | Method->getDeclName(), | 
|  | TemplateParams, Method); | 
|  | if (isFriend) { | 
|  | FunctionTemplate->setLexicalDeclContext(Owner); | 
|  | FunctionTemplate->setObjectOfFriendDecl(); | 
|  | } else if (D->isOutOfLine()) | 
|  | FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext()); | 
|  | Method->setDescribedFunctionTemplate(FunctionTemplate); | 
|  | } else if (FunctionTemplate) { | 
|  | // Record this function template specialization. | 
|  | ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); | 
|  | Method->setFunctionTemplateSpecialization(FunctionTemplate, | 
|  | TemplateArgumentList::CreateCopy(SemaRef.Context, | 
|  | Innermost), | 
|  | /*InsertPos=*/nullptr); | 
|  | } else if (!isFriend) { | 
|  | // Record that this is an instantiation of a member function. | 
|  | Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); | 
|  | } | 
|  |  | 
|  | // If we are instantiating a member function defined | 
|  | // out-of-line, the instantiation will have the same lexical | 
|  | // context (which will be a namespace scope) as the template. | 
|  | if (isFriend) { | 
|  | if (NumTempParamLists) | 
|  | Method->setTemplateParameterListsInfo( | 
|  | SemaRef.Context, | 
|  | llvm::makeArrayRef(TempParamLists.data(), NumTempParamLists)); | 
|  |  | 
|  | Method->setLexicalDeclContext(Owner); | 
|  | Method->setObjectOfFriendDecl(); | 
|  | } else if (D->isOutOfLine()) | 
|  | Method->setLexicalDeclContext(D->getLexicalDeclContext()); | 
|  |  | 
|  | // Attach the parameters | 
|  | for (unsigned P = 0; P < Params.size(); ++P) | 
|  | Params[P]->setOwningFunction(Method); | 
|  | Method->setParams(Params); | 
|  |  | 
|  | if (InitMethodInstantiation(Method, D)) | 
|  | Method->setInvalidDecl(); | 
|  |  | 
|  | LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName, | 
|  | Sema::ForExternalRedeclaration); | 
|  |  | 
|  | if (!FunctionTemplate || TemplateParams || isFriend) { | 
|  | SemaRef.LookupQualifiedName(Previous, Record); | 
|  |  | 
|  | // In C++, the previous declaration we find might be a tag type | 
|  | // (class or enum). In this case, the new declaration will hide the | 
|  | // tag type. Note that this does does not apply if we're declaring a | 
|  | // typedef (C++ [dcl.typedef]p4). | 
|  | if (Previous.isSingleTagDecl()) | 
|  | Previous.clear(); | 
|  | } | 
|  |  | 
|  | if (!IsClassScopeSpecialization) | 
|  | SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous, false); | 
|  |  | 
|  | if (D->isPure()) | 
|  | SemaRef.CheckPureMethod(Method, SourceRange()); | 
|  |  | 
|  | // Propagate access.  For a non-friend declaration, the access is | 
|  | // whatever we're propagating from.  For a friend, it should be the | 
|  | // previous declaration we just found. | 
|  | if (isFriend && Method->getPreviousDecl()) | 
|  | Method->setAccess(Method->getPreviousDecl()->getAccess()); | 
|  | else | 
|  | Method->setAccess(D->getAccess()); | 
|  | if (FunctionTemplate) | 
|  | FunctionTemplate->setAccess(Method->getAccess()); | 
|  |  | 
|  | SemaRef.CheckOverrideControl(Method); | 
|  |  | 
|  | // If a function is defined as defaulted or deleted, mark it as such now. | 
|  | if (D->isExplicitlyDefaulted()) | 
|  | SemaRef.SetDeclDefaulted(Method, Method->getLocation()); | 
|  | if (D->isDeletedAsWritten()) | 
|  | SemaRef.SetDeclDeleted(Method, Method->getLocation()); | 
|  |  | 
|  | // If there's a function template, let our caller handle it. | 
|  | if (FunctionTemplate) { | 
|  | // do nothing | 
|  |  | 
|  | // Don't hide a (potentially) valid declaration with an invalid one. | 
|  | } else if (Method->isInvalidDecl() && !Previous.empty()) { | 
|  | // do nothing | 
|  |  | 
|  | // Otherwise, check access to friends and make them visible. | 
|  | } else if (isFriend) { | 
|  | // We only need to re-check access for methods which we didn't | 
|  | // manage to match during parsing. | 
|  | if (!D->getPreviousDecl()) | 
|  | SemaRef.CheckFriendAccess(Method); | 
|  |  | 
|  | Record->makeDeclVisibleInContext(Method); | 
|  |  | 
|  | // Otherwise, add the declaration.  We don't need to do this for | 
|  | // class-scope specializations because we'll have matched them with | 
|  | // the appropriate template. | 
|  | } else if (!IsClassScopeSpecialization) { | 
|  | Owner->addDecl(Method); | 
|  | } | 
|  |  | 
|  | return Method; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) { | 
|  | return VisitCXXMethodDecl(D); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) { | 
|  | return VisitCXXMethodDecl(D); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) { | 
|  | return VisitCXXMethodDecl(D); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) { | 
|  | return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, None, | 
|  | /*ExpectParameterPack=*/ false); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl( | 
|  | TemplateTypeParmDecl *D) { | 
|  | // TODO: don't always clone when decls are refcounted. | 
|  | assert(D->getTypeForDecl()->isTemplateTypeParmType()); | 
|  |  | 
|  | TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create( | 
|  | SemaRef.Context, Owner, D->getLocStart(), D->getLocation(), | 
|  | D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(), | 
|  | D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack()); | 
|  | Inst->setAccess(AS_public); | 
|  |  | 
|  | if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { | 
|  | TypeSourceInfo *InstantiatedDefaultArg = | 
|  | SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs, | 
|  | D->getDefaultArgumentLoc(), D->getDeclName()); | 
|  | if (InstantiatedDefaultArg) | 
|  | Inst->setDefaultArgument(InstantiatedDefaultArg); | 
|  | } | 
|  |  | 
|  | // Introduce this template parameter's instantiation into the instantiation | 
|  | // scope. | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst); | 
|  |  | 
|  | return Inst; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl( | 
|  | NonTypeTemplateParmDecl *D) { | 
|  | // Substitute into the type of the non-type template parameter. | 
|  | TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc(); | 
|  | SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten; | 
|  | SmallVector<QualType, 4> ExpandedParameterPackTypes; | 
|  | bool IsExpandedParameterPack = false; | 
|  | TypeSourceInfo *DI; | 
|  | QualType T; | 
|  | bool Invalid = false; | 
|  |  | 
|  | if (D->isExpandedParameterPack()) { | 
|  | // The non-type template parameter pack is an already-expanded pack | 
|  | // expansion of types. Substitute into each of the expanded types. | 
|  | ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes()); | 
|  | ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes()); | 
|  | for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { | 
|  | TypeSourceInfo *NewDI = | 
|  | SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs, | 
|  | D->getLocation(), D->getDeclName()); | 
|  | if (!NewDI) | 
|  | return nullptr; | 
|  |  | 
|  | QualType NewT = | 
|  | SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); | 
|  | if (NewT.isNull()) | 
|  | return nullptr; | 
|  |  | 
|  | ExpandedParameterPackTypesAsWritten.push_back(NewDI); | 
|  | ExpandedParameterPackTypes.push_back(NewT); | 
|  | } | 
|  |  | 
|  | IsExpandedParameterPack = true; | 
|  | DI = D->getTypeSourceInfo(); | 
|  | T = DI->getType(); | 
|  | } else if (D->isPackExpansion()) { | 
|  | // The non-type template parameter pack's type is a pack expansion of types. | 
|  | // Determine whether we need to expand this parameter pack into separate | 
|  | // types. | 
|  | PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>(); | 
|  | TypeLoc Pattern = Expansion.getPatternLoc(); | 
|  | SmallVector<UnexpandedParameterPack, 2> Unexpanded; | 
|  | SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); | 
|  |  | 
|  | // Determine whether the set of unexpanded parameter packs can and should | 
|  | // be expanded. | 
|  | bool Expand = true; | 
|  | bool RetainExpansion = false; | 
|  | Optional<unsigned> OrigNumExpansions | 
|  | = Expansion.getTypePtr()->getNumExpansions(); | 
|  | Optional<unsigned> NumExpansions = OrigNumExpansions; | 
|  | if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(), | 
|  | Pattern.getSourceRange(), | 
|  | Unexpanded, | 
|  | TemplateArgs, | 
|  | Expand, RetainExpansion, | 
|  | NumExpansions)) | 
|  | return nullptr; | 
|  |  | 
|  | if (Expand) { | 
|  | for (unsigned I = 0; I != *NumExpansions; ++I) { | 
|  | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); | 
|  | TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs, | 
|  | D->getLocation(), | 
|  | D->getDeclName()); | 
|  | if (!NewDI) | 
|  | return nullptr; | 
|  |  | 
|  | QualType NewT = | 
|  | SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); | 
|  | if (NewT.isNull()) | 
|  | return nullptr; | 
|  |  | 
|  | ExpandedParameterPackTypesAsWritten.push_back(NewDI); | 
|  | ExpandedParameterPackTypes.push_back(NewT); | 
|  | } | 
|  |  | 
|  | // Note that we have an expanded parameter pack. The "type" of this | 
|  | // expanded parameter pack is the original expansion type, but callers | 
|  | // will end up using the expanded parameter pack types for type-checking. | 
|  | IsExpandedParameterPack = true; | 
|  | DI = D->getTypeSourceInfo(); | 
|  | T = DI->getType(); | 
|  | } else { | 
|  | // We cannot fully expand the pack expansion now, so substitute into the | 
|  | // pattern and create a new pack expansion type. | 
|  | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); | 
|  | TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs, | 
|  | D->getLocation(), | 
|  | D->getDeclName()); | 
|  | if (!NewPattern) | 
|  | return nullptr; | 
|  |  | 
|  | SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation()); | 
|  | DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(), | 
|  | NumExpansions); | 
|  | if (!DI) | 
|  | return nullptr; | 
|  |  | 
|  | T = DI->getType(); | 
|  | } | 
|  | } else { | 
|  | // Simple case: substitution into a parameter that is not a parameter pack. | 
|  | DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, | 
|  | D->getLocation(), D->getDeclName()); | 
|  | if (!DI) | 
|  | return nullptr; | 
|  |  | 
|  | // Check that this type is acceptable for a non-type template parameter. | 
|  | T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation()); | 
|  | if (T.isNull()) { | 
|  | T = SemaRef.Context.IntTy; | 
|  | Invalid = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | NonTypeTemplateParmDecl *Param; | 
|  | if (IsExpandedParameterPack) | 
|  | Param = NonTypeTemplateParmDecl::Create( | 
|  | SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), | 
|  | D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), | 
|  | D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes, | 
|  | ExpandedParameterPackTypesAsWritten); | 
|  | else | 
|  | Param = NonTypeTemplateParmDecl::Create( | 
|  | SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), | 
|  | D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), | 
|  | D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI); | 
|  |  | 
|  | Param->setAccess(AS_public); | 
|  | if (Invalid) | 
|  | Param->setInvalidDecl(); | 
|  |  | 
|  | if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { | 
|  | EnterExpressionEvaluationContext ConstantEvaluated( | 
|  | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); | 
|  | ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs); | 
|  | if (!Value.isInvalid()) | 
|  | Param->setDefaultArgument(Value.get()); | 
|  | } | 
|  |  | 
|  | // Introduce this template parameter's instantiation into the instantiation | 
|  | // scope. | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); | 
|  | return Param; | 
|  | } | 
|  |  | 
|  | static void collectUnexpandedParameterPacks( | 
|  | Sema &S, | 
|  | TemplateParameterList *Params, | 
|  | SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) { | 
|  | for (const auto &P : *Params) { | 
|  | if (P->isTemplateParameterPack()) | 
|  | continue; | 
|  | if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) | 
|  | S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(), | 
|  | Unexpanded); | 
|  | if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P)) | 
|  | collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(), | 
|  | Unexpanded); | 
|  | } | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | TemplateDeclInstantiator::VisitTemplateTemplateParmDecl( | 
|  | TemplateTemplateParmDecl *D) { | 
|  | // Instantiate the template parameter list of the template template parameter. | 
|  | TemplateParameterList *TempParams = D->getTemplateParameters(); | 
|  | TemplateParameterList *InstParams; | 
|  | SmallVector<TemplateParameterList*, 8> ExpandedParams; | 
|  |  | 
|  | bool IsExpandedParameterPack = false; | 
|  |  | 
|  | if (D->isExpandedParameterPack()) { | 
|  | // The template template parameter pack is an already-expanded pack | 
|  | // expansion of template parameters. Substitute into each of the expanded | 
|  | // parameters. | 
|  | ExpandedParams.reserve(D->getNumExpansionTemplateParameters()); | 
|  | for (unsigned I = 0, N = D->getNumExpansionTemplateParameters(); | 
|  | I != N; ++I) { | 
|  | LocalInstantiationScope Scope(SemaRef); | 
|  | TemplateParameterList *Expansion = | 
|  | SubstTemplateParams(D->getExpansionTemplateParameters(I)); | 
|  | if (!Expansion) | 
|  | return nullptr; | 
|  | ExpandedParams.push_back(Expansion); | 
|  | } | 
|  |  | 
|  | IsExpandedParameterPack = true; | 
|  | InstParams = TempParams; | 
|  | } else if (D->isPackExpansion()) { | 
|  | // The template template parameter pack expands to a pack of template | 
|  | // template parameters. Determine whether we need to expand this parameter | 
|  | // pack into separate parameters. | 
|  | SmallVector<UnexpandedParameterPack, 2> Unexpanded; | 
|  | collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(), | 
|  | Unexpanded); | 
|  |  | 
|  | // Determine whether the set of unexpanded parameter packs can and should | 
|  | // be expanded. | 
|  | bool Expand = true; | 
|  | bool RetainExpansion = false; | 
|  | Optional<unsigned> NumExpansions; | 
|  | if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(), | 
|  | TempParams->getSourceRange(), | 
|  | Unexpanded, | 
|  | TemplateArgs, | 
|  | Expand, RetainExpansion, | 
|  | NumExpansions)) | 
|  | return nullptr; | 
|  |  | 
|  | if (Expand) { | 
|  | for (unsigned I = 0; I != *NumExpansions; ++I) { | 
|  | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); | 
|  | LocalInstantiationScope Scope(SemaRef); | 
|  | TemplateParameterList *Expansion = SubstTemplateParams(TempParams); | 
|  | if (!Expansion) | 
|  | return nullptr; | 
|  | ExpandedParams.push_back(Expansion); | 
|  | } | 
|  |  | 
|  | // Note that we have an expanded parameter pack. The "type" of this | 
|  | // expanded parameter pack is the original expansion type, but callers | 
|  | // will end up using the expanded parameter pack types for type-checking. | 
|  | IsExpandedParameterPack = true; | 
|  | InstParams = TempParams; | 
|  | } else { | 
|  | // We cannot fully expand the pack expansion now, so just substitute | 
|  | // into the pattern. | 
|  | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); | 
|  |  | 
|  | LocalInstantiationScope Scope(SemaRef); | 
|  | InstParams = SubstTemplateParams(TempParams); | 
|  | if (!InstParams) | 
|  | return nullptr; | 
|  | } | 
|  | } else { | 
|  | // Perform the actual substitution of template parameters within a new, | 
|  | // local instantiation scope. | 
|  | LocalInstantiationScope Scope(SemaRef); | 
|  | InstParams = SubstTemplateParams(TempParams); | 
|  | if (!InstParams) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Build the template template parameter. | 
|  | TemplateTemplateParmDecl *Param; | 
|  | if (IsExpandedParameterPack) | 
|  | Param = TemplateTemplateParmDecl::Create( | 
|  | SemaRef.Context, Owner, D->getLocation(), | 
|  | D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), | 
|  | D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams); | 
|  | else | 
|  | Param = TemplateTemplateParmDecl::Create( | 
|  | SemaRef.Context, Owner, D->getLocation(), | 
|  | D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), | 
|  | D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams); | 
|  | if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { | 
|  | NestedNameSpecifierLoc QualifierLoc = | 
|  | D->getDefaultArgument().getTemplateQualifierLoc(); | 
|  | QualifierLoc = | 
|  | SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); | 
|  | TemplateName TName = SemaRef.SubstTemplateName( | 
|  | QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(), | 
|  | D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs); | 
|  | if (!TName.isNull()) | 
|  | Param->setDefaultArgument( | 
|  | SemaRef.Context, | 
|  | TemplateArgumentLoc(TemplateArgument(TName), | 
|  | D->getDefaultArgument().getTemplateQualifierLoc(), | 
|  | D->getDefaultArgument().getTemplateNameLoc())); | 
|  | } | 
|  | Param->setAccess(AS_public); | 
|  |  | 
|  | // Introduce this template parameter's instantiation into the instantiation | 
|  | // scope. | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); | 
|  |  | 
|  | return Param; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { | 
|  | // Using directives are never dependent (and never contain any types or | 
|  | // expressions), so they require no explicit instantiation work. | 
|  |  | 
|  | UsingDirectiveDecl *Inst | 
|  | = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(), | 
|  | D->getNamespaceKeyLocation(), | 
|  | D->getQualifierLoc(), | 
|  | D->getIdentLocation(), | 
|  | D->getNominatedNamespace(), | 
|  | D->getCommonAncestor()); | 
|  |  | 
|  | // Add the using directive to its declaration context | 
|  | // only if this is not a function or method. | 
|  | if (!Owner->isFunctionOrMethod()) | 
|  | Owner->addDecl(Inst); | 
|  |  | 
|  | return Inst; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) { | 
|  |  | 
|  | // The nested name specifier may be dependent, for example | 
|  | //     template <typename T> struct t { | 
|  | //       struct s1 { T f1(); }; | 
|  | //       struct s2 : s1 { using s1::f1; }; | 
|  | //     }; | 
|  | //     template struct t<int>; | 
|  | // Here, in using s1::f1, s1 refers to t<T>::s1; | 
|  | // we need to substitute for t<int>::s1. | 
|  | NestedNameSpecifierLoc QualifierLoc | 
|  | = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), | 
|  | TemplateArgs); | 
|  | if (!QualifierLoc) | 
|  | return nullptr; | 
|  |  | 
|  | // For an inheriting constructor declaration, the name of the using | 
|  | // declaration is the name of a constructor in this class, not in the | 
|  | // base class. | 
|  | DeclarationNameInfo NameInfo = D->getNameInfo(); | 
|  | if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) | 
|  | if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext)) | 
|  | NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName( | 
|  | SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD)))); | 
|  |  | 
|  | // We only need to do redeclaration lookups if we're in a class | 
|  | // scope (in fact, it's not really even possible in non-class | 
|  | // scopes). | 
|  | bool CheckRedeclaration = Owner->isRecord(); | 
|  |  | 
|  | LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName, | 
|  | Sema::ForVisibleRedeclaration); | 
|  |  | 
|  | UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner, | 
|  | D->getUsingLoc(), | 
|  | QualifierLoc, | 
|  | NameInfo, | 
|  | D->hasTypename()); | 
|  |  | 
|  | CXXScopeSpec SS; | 
|  | SS.Adopt(QualifierLoc); | 
|  | if (CheckRedeclaration) { | 
|  | Prev.setHideTags(false); | 
|  | SemaRef.LookupQualifiedName(Prev, Owner); | 
|  |  | 
|  | // Check for invalid redeclarations. | 
|  | if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(), | 
|  | D->hasTypename(), SS, | 
|  | D->getLocation(), Prev)) | 
|  | NewUD->setInvalidDecl(); | 
|  |  | 
|  | } | 
|  |  | 
|  | if (!NewUD->isInvalidDecl() && | 
|  | SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(), | 
|  | SS, NameInfo, D->getLocation())) | 
|  | NewUD->setInvalidDecl(); | 
|  |  | 
|  | SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D); | 
|  | NewUD->setAccess(D->getAccess()); | 
|  | Owner->addDecl(NewUD); | 
|  |  | 
|  | // Don't process the shadow decls for an invalid decl. | 
|  | if (NewUD->isInvalidDecl()) | 
|  | return NewUD; | 
|  |  | 
|  | if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) | 
|  | SemaRef.CheckInheritingConstructorUsingDecl(NewUD); | 
|  |  | 
|  | bool isFunctionScope = Owner->isFunctionOrMethod(); | 
|  |  | 
|  | // Process the shadow decls. | 
|  | for (auto *Shadow : D->shadows()) { | 
|  | // FIXME: UsingShadowDecl doesn't preserve its immediate target, so | 
|  | // reconstruct it in the case where it matters. | 
|  | NamedDecl *OldTarget = Shadow->getTargetDecl(); | 
|  | if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow)) | 
|  | if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl()) | 
|  | OldTarget = BaseShadow; | 
|  |  | 
|  | NamedDecl *InstTarget = | 
|  | cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl( | 
|  | Shadow->getLocation(), OldTarget, TemplateArgs)); | 
|  | if (!InstTarget) | 
|  | return nullptr; | 
|  |  | 
|  | UsingShadowDecl *PrevDecl = nullptr; | 
|  | if (CheckRedeclaration) { | 
|  | if (SemaRef.CheckUsingShadowDecl(NewUD, InstTarget, Prev, PrevDecl)) | 
|  | continue; | 
|  | } else if (UsingShadowDecl *OldPrev = | 
|  | getPreviousDeclForInstantiation(Shadow)) { | 
|  | PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl( | 
|  | Shadow->getLocation(), OldPrev, TemplateArgs)); | 
|  | } | 
|  |  | 
|  | UsingShadowDecl *InstShadow = | 
|  | SemaRef.BuildUsingShadowDecl(/*Scope*/nullptr, NewUD, InstTarget, | 
|  | PrevDecl); | 
|  | SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow); | 
|  |  | 
|  | if (isFunctionScope) | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow); | 
|  | } | 
|  |  | 
|  | return NewUD; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) { | 
|  | // Ignore these;  we handle them in bulk when processing the UsingDecl. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl( | 
|  | ConstructorUsingShadowDecl *D) { | 
|  | // Ignore these;  we handle them in bulk when processing the UsingDecl. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl( | 
|  | T *D, bool InstantiatingPackElement) { | 
|  | // If this is a pack expansion, expand it now. | 
|  | if (D->isPackExpansion() && !InstantiatingPackElement) { | 
|  | SmallVector<UnexpandedParameterPack, 2> Unexpanded; | 
|  | SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded); | 
|  | SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded); | 
|  |  | 
|  | // Determine whether the set of unexpanded parameter packs can and should | 
|  | // be expanded. | 
|  | bool Expand = true; | 
|  | bool RetainExpansion = false; | 
|  | Optional<unsigned> NumExpansions; | 
|  | if (SemaRef.CheckParameterPacksForExpansion( | 
|  | D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs, | 
|  | Expand, RetainExpansion, NumExpansions)) | 
|  | return nullptr; | 
|  |  | 
|  | // This declaration cannot appear within a function template signature, | 
|  | // so we can't have a partial argument list for a parameter pack. | 
|  | assert(!RetainExpansion && | 
|  | "should never need to retain an expansion for UsingPackDecl"); | 
|  |  | 
|  | if (!Expand) { | 
|  | // We cannot fully expand the pack expansion now, so substitute into the | 
|  | // pattern and create a new pack expansion. | 
|  | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); | 
|  | return instantiateUnresolvedUsingDecl(D, true); | 
|  | } | 
|  |  | 
|  | // Within a function, we don't have any normal way to check for conflicts | 
|  | // between shadow declarations from different using declarations in the | 
|  | // same pack expansion, but this is always ill-formed because all expansions | 
|  | // must produce (conflicting) enumerators. | 
|  | // | 
|  | // Sadly we can't just reject this in the template definition because it | 
|  | // could be valid if the pack is empty or has exactly one expansion. | 
|  | if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) { | 
|  | SemaRef.Diag(D->getEllipsisLoc(), | 
|  | diag::err_using_decl_redeclaration_expansion); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Instantiate the slices of this pack and build a UsingPackDecl. | 
|  | SmallVector<NamedDecl*, 8> Expansions; | 
|  | for (unsigned I = 0; I != *NumExpansions; ++I) { | 
|  | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); | 
|  | Decl *Slice = instantiateUnresolvedUsingDecl(D, true); | 
|  | if (!Slice) | 
|  | return nullptr; | 
|  | // Note that we can still get unresolved using declarations here, if we | 
|  | // had arguments for all packs but the pattern also contained other | 
|  | // template arguments (this only happens during partial substitution, eg | 
|  | // into the body of a generic lambda in a function template). | 
|  | Expansions.push_back(cast<NamedDecl>(Slice)); | 
|  | } | 
|  |  | 
|  | auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); | 
|  | if (isDeclWithinFunction(D)) | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); | 
|  | return NewD; | 
|  | } | 
|  |  | 
|  | UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D); | 
|  | SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation(); | 
|  |  | 
|  | NestedNameSpecifierLoc QualifierLoc | 
|  | = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), | 
|  | TemplateArgs); | 
|  | if (!QualifierLoc) | 
|  | return nullptr; | 
|  |  | 
|  | CXXScopeSpec SS; | 
|  | SS.Adopt(QualifierLoc); | 
|  |  | 
|  | DeclarationNameInfo NameInfo | 
|  | = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); | 
|  |  | 
|  | // Produce a pack expansion only if we're not instantiating a particular | 
|  | // slice of a pack expansion. | 
|  | bool InstantiatingSlice = D->getEllipsisLoc().isValid() && | 
|  | SemaRef.ArgumentPackSubstitutionIndex != -1; | 
|  | SourceLocation EllipsisLoc = | 
|  | InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc(); | 
|  |  | 
|  | NamedDecl *UD = SemaRef.BuildUsingDeclaration( | 
|  | /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(), | 
|  | /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc, nullptr, | 
|  | /*IsInstantiation*/ true); | 
|  | if (UD) | 
|  | SemaRef.Context.setInstantiatedFromUsingDecl(UD, D); | 
|  |  | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl( | 
|  | UnresolvedUsingTypenameDecl *D) { | 
|  | return instantiateUnresolvedUsingDecl(D); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl( | 
|  | UnresolvedUsingValueDecl *D) { | 
|  | return instantiateUnresolvedUsingDecl(D); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) { | 
|  | SmallVector<NamedDecl*, 8> Expansions; | 
|  | for (auto *UD : D->expansions()) { | 
|  | if (auto *NewUD = | 
|  | SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs)) | 
|  | Expansions.push_back(cast<NamedDecl>(NewUD)); | 
|  | else | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); | 
|  | if (isDeclWithinFunction(D)) | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); | 
|  | return NewD; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl( | 
|  | ClassScopeFunctionSpecializationDecl *Decl) { | 
|  | CXXMethodDecl *OldFD = Decl->getSpecialization(); | 
|  | CXXMethodDecl *NewFD = | 
|  | cast_or_null<CXXMethodDecl>(VisitCXXMethodDecl(OldFD, nullptr, true)); | 
|  | if (!NewFD) | 
|  | return nullptr; | 
|  |  | 
|  | LookupResult Previous(SemaRef, NewFD->getNameInfo(), Sema::LookupOrdinaryName, | 
|  | Sema::ForExternalRedeclaration); | 
|  |  | 
|  | TemplateArgumentListInfo TemplateArgs; | 
|  | TemplateArgumentListInfo *TemplateArgsPtr = nullptr; | 
|  | if (Decl->hasExplicitTemplateArgs()) { | 
|  | TemplateArgs = Decl->templateArgs(); | 
|  | TemplateArgsPtr = &TemplateArgs; | 
|  | } | 
|  |  | 
|  | SemaRef.LookupQualifiedName(Previous, SemaRef.CurContext); | 
|  | if (SemaRef.CheckFunctionTemplateSpecialization(NewFD, TemplateArgsPtr, | 
|  | Previous)) { | 
|  | NewFD->setInvalidDecl(); | 
|  | return NewFD; | 
|  | } | 
|  |  | 
|  | // Associate the specialization with the pattern. | 
|  | FunctionDecl *Specialization = cast<FunctionDecl>(Previous.getFoundDecl()); | 
|  | assert(Specialization && "Class scope Specialization is null"); | 
|  | SemaRef.Context.setClassScopeSpecializationPattern(Specialization, OldFD); | 
|  |  | 
|  | return NewFD; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl( | 
|  | OMPThreadPrivateDecl *D) { | 
|  | SmallVector<Expr *, 5> Vars; | 
|  | for (auto *I : D->varlists()) { | 
|  | Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); | 
|  | assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr"); | 
|  | Vars.push_back(Var); | 
|  | } | 
|  |  | 
|  | OMPThreadPrivateDecl *TD = | 
|  | SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars); | 
|  |  | 
|  | TD->setAccess(AS_public); | 
|  | Owner->addDecl(TD); | 
|  |  | 
|  | return TD; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl( | 
|  | OMPDeclareReductionDecl *D) { | 
|  | // Instantiate type and check if it is allowed. | 
|  | QualType SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType( | 
|  | D->getLocation(), | 
|  | ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs, | 
|  | D->getLocation(), DeclarationName()))); | 
|  | if (SubstReductionType.isNull()) | 
|  | return nullptr; | 
|  | bool IsCorrect = !SubstReductionType.isNull(); | 
|  | // Create instantiated copy. | 
|  | std::pair<QualType, SourceLocation> ReductionTypes[] = { | 
|  | std::make_pair(SubstReductionType, D->getLocation())}; | 
|  | auto *PrevDeclInScope = D->getPrevDeclInScope(); | 
|  | if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { | 
|  | PrevDeclInScope = cast<OMPDeclareReductionDecl>( | 
|  | SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) | 
|  | ->get<Decl *>()); | 
|  | } | 
|  | auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart( | 
|  | /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(), | 
|  | PrevDeclInScope); | 
|  | auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl()); | 
|  | if (isDeclWithinFunction(NewDRD)) | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD); | 
|  | Expr *SubstCombiner = nullptr; | 
|  | Expr *SubstInitializer = nullptr; | 
|  | // Combiners instantiation sequence. | 
|  | if (D->getCombiner()) { | 
|  | SemaRef.ActOnOpenMPDeclareReductionCombinerStart( | 
|  | /*S=*/nullptr, NewDRD); | 
|  | const char *Names[] = {"omp_in", "omp_out"}; | 
|  | for (auto &Name : Names) { | 
|  | DeclarationName DN(&SemaRef.Context.Idents.get(Name)); | 
|  | auto OldLookup = D->lookup(DN); | 
|  | auto Lookup = NewDRD->lookup(DN); | 
|  | if (!OldLookup.empty() && !Lookup.empty()) { | 
|  | assert(Lookup.size() == 1 && OldLookup.size() == 1); | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldLookup.front(), | 
|  | Lookup.front()); | 
|  | } | 
|  | } | 
|  | SubstCombiner = SemaRef.SubstExpr(D->getCombiner(), TemplateArgs).get(); | 
|  | SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner); | 
|  | // Initializers instantiation sequence. | 
|  | if (D->getInitializer()) { | 
|  | VarDecl *OmpPrivParm = | 
|  | SemaRef.ActOnOpenMPDeclareReductionInitializerStart( | 
|  | /*S=*/nullptr, NewDRD); | 
|  | const char *Names[] = {"omp_orig", "omp_priv"}; | 
|  | for (auto &Name : Names) { | 
|  | DeclarationName DN(&SemaRef.Context.Idents.get(Name)); | 
|  | auto OldLookup = D->lookup(DN); | 
|  | auto Lookup = NewDRD->lookup(DN); | 
|  | if (!OldLookup.empty() && !Lookup.empty()) { | 
|  | assert(Lookup.size() == 1 && OldLookup.size() == 1); | 
|  | auto *OldVD = cast<VarDecl>(OldLookup.front()); | 
|  | auto *NewVD = cast<VarDecl>(Lookup.front()); | 
|  | SemaRef.InstantiateVariableInitializer(NewVD, OldVD, TemplateArgs); | 
|  | SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldVD, NewVD); | 
|  | } | 
|  | } | 
|  | if (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit) { | 
|  | SubstInitializer = | 
|  | SemaRef.SubstExpr(D->getInitializer(), TemplateArgs).get(); | 
|  | } else { | 
|  | IsCorrect = IsCorrect && OmpPrivParm->hasInit(); | 
|  | } | 
|  | SemaRef.ActOnOpenMPDeclareReductionInitializerEnd( | 
|  | NewDRD, SubstInitializer, OmpPrivParm); | 
|  | } | 
|  | IsCorrect = | 
|  | IsCorrect && SubstCombiner && | 
|  | (!D->getInitializer() || | 
|  | (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit && | 
|  | SubstInitializer) || | 
|  | (D->getInitializerKind() != OMPDeclareReductionDecl::CallInit && | 
|  | !SubstInitializer && !SubstInitializer)); | 
|  | } else | 
|  | IsCorrect = false; | 
|  |  | 
|  | (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd(/*S=*/nullptr, DRD, | 
|  | IsCorrect); | 
|  |  | 
|  | return NewDRD; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl( | 
|  | OMPCapturedExprDecl * /*D*/) { | 
|  | llvm_unreachable("Should not be met in templates"); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) { | 
|  | return VisitFunctionDecl(D, nullptr); | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) { | 
|  | return VisitFunctionDecl(D, nullptr); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) { | 
|  | return VisitCXXMethodDecl(D, nullptr); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) { | 
|  | llvm_unreachable("There are only CXXRecordDecls in C++"); | 
|  | } | 
|  |  | 
|  | Decl * | 
|  | TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl( | 
|  | ClassTemplateSpecializationDecl *D) { | 
|  | // As a MS extension, we permit class-scope explicit specialization | 
|  | // of member class templates. | 
|  | ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); | 
|  | assert(ClassTemplate->getDeclContext()->isRecord() && | 
|  | D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && | 
|  | "can only instantiate an explicit specialization " | 
|  | "for a member class template"); | 
|  |  | 
|  | // Lookup the already-instantiated declaration in the instantiation | 
|  | // of the class template. FIXME: Diagnose or assert if this fails? | 
|  | DeclContext::lookup_result Found | 
|  | = Owner->lookup(ClassTemplate->getDeclName()); | 
|  | if (Found.empty()) | 
|  | return nullptr; | 
|  | ClassTemplateDecl *InstClassTemplate | 
|  | = dyn_cast<ClassTemplateDecl>(Found.front()); | 
|  | if (!InstClassTemplate) | 
|  | return nullptr; | 
|  |  | 
|  | // Substitute into the template arguments of the class template explicit | 
|  | // specialization. | 
|  | TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc(). | 
|  | castAs<TemplateSpecializationTypeLoc>(); | 
|  | TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(), | 
|  | Loc.getRAngleLoc()); | 
|  | SmallVector<TemplateArgumentLoc, 4> ArgLocs; | 
|  | for (unsigned I = 0; I != Loc.getNumArgs(); ++I) | 
|  | ArgLocs.push_back(Loc.getArgLoc(I)); | 
|  | if (SemaRef.Subst(ArgLocs.data(), ArgLocs.size(), | 
|  | InstTemplateArgs, TemplateArgs)) | 
|  | return nullptr; | 
|  |  | 
|  | // Check that the template argument list is well-formed for this | 
|  | // class template. | 
|  | SmallVector<TemplateArgument, 4> Converted; | 
|  | if (SemaRef.CheckTemplateArgumentList(InstClassTemplate, | 
|  | D->getLocation(), | 
|  | InstTemplateArgs, | 
|  | false, | 
|  | Converted)) | 
|  | return nullptr; | 
|  |  | 
|  | // Figure out where to insert this class template explicit specialization | 
|  | // in the member template's set of class template explicit specializations. | 
|  | void *InsertPos = nullptr; | 
|  | ClassTemplateSpecializationDecl *PrevDecl = | 
|  | InstClassTemplate->findSpecialization(Converted, InsertPos); | 
|  |  | 
|  | // Check whether we've already seen a conflicting instantiation of this | 
|  | // declaration (for instance, if there was a prior implicit instantiation). | 
|  | bool Ignored; | 
|  | if (PrevDecl && | 
|  | SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(), | 
|  | D->getSpecializationKind(), | 
|  | PrevDecl, | 
|  | PrevDecl->getSpecializationKind(), | 
|  | PrevDecl->getPointOfInstantiation(), | 
|  | Ignored)) | 
|  | return nullptr; | 
|  |  | 
|  | // If PrevDecl was a definition and D is also a definition, diagnose. | 
|  | // This happens in cases like: | 
|  | // | 
|  | //   template<typename T, typename U> | 
|  | //   struct Outer { | 
|  | //     template<typename X> struct Inner; | 
|  | //     template<> struct Inner<T> {}; | 
|  | //     template<> struct Inner<U> {}; | 
|  | //   }; | 
|  | // | 
|  | //   Outer<int, int> outer; // error: the explicit specializations of Inner | 
|  | //                          // have the same signature. | 
|  | if (PrevDecl && PrevDecl->getDefinition() && | 
|  | D->isThisDeclarationADefinition()) { | 
|  | SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl; | 
|  | SemaRef.Diag(PrevDecl->getDefinition()->getLocation(), | 
|  | diag::note_previous_definition); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Create the class template partial specialization declaration. | 
|  | ClassTemplateSpecializationDecl *InstD | 
|  | = ClassTemplateSpecializationDecl::Create(SemaRef.Context, | 
|  | D->getTagKind(), | 
|  | Owner, | 
|  | D->getLocStart(), | 
|  | D->getLocation(), | 
|  | InstClassTemplate, | 
|  | Converted, | 
|  | PrevDecl); | 
|  |  | 
|  | // Add this partial specialization to the set of class template partial | 
|  | // specializations. | 
|  | if (!PrevDecl) | 
|  | InstClassTemplate->AddSpecialization(InstD, InsertPos); | 
|  |  | 
|  | // Substitute the nested name specifier, if any. | 
|  | if (SubstQualifier(D, InstD)) | 
|  | return nullptr; | 
|  |  | 
|  | // Build the canonical type that describes the converted template | 
|  | // arguments of the class template explicit specialization. | 
|  | QualType CanonType = SemaRef.Context.getTemplateSpecializationType( | 
|  | TemplateName(InstClassTemplate), Converted, | 
|  | SemaRef.Context.getRecordType(InstD)); | 
|  |  | 
|  | // Build the fully-sugared type for this class template | 
|  | // specialization as the user wrote in the specialization | 
|  | // itself. This means that we'll pretty-print the type retrieved | 
|  | // from the specialization's declaration the way that the user | 
|  | // actually wrote the specialization, rather than formatting the | 
|  | // name based on the "canonical" representation used to store the | 
|  | // template arguments in the specialization. | 
|  | TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( | 
|  | TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs, | 
|  | CanonType); | 
|  |  | 
|  | InstD->setAccess(D->getAccess()); | 
|  | InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); | 
|  | InstD->setSpecializationKind(D->getSpecializationKind()); | 
|  | InstD->setTypeAsWritten(WrittenTy); | 
|  | InstD->setExternLoc(D->getExternLoc()); | 
|  | InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc()); | 
|  |  | 
|  | Owner->addDecl(InstD); | 
|  |  | 
|  | // Instantiate the members of the class-scope explicit specialization eagerly. | 
|  | // We don't have support for lazy instantiation of an explicit specialization | 
|  | // yet, and MSVC eagerly instantiates in this case. | 
|  | if (D->isThisDeclarationADefinition() && | 
|  | SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs, | 
|  | TSK_ImplicitInstantiation, | 
|  | /*Complain=*/true)) | 
|  | return nullptr; | 
|  |  | 
|  | return InstD; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( | 
|  | VarTemplateSpecializationDecl *D) { | 
|  |  | 
|  | TemplateArgumentListInfo VarTemplateArgsInfo; | 
|  | VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); | 
|  | assert(VarTemplate && | 
|  | "A template specialization without specialized template?"); | 
|  |  | 
|  | // Substitute the current template arguments. | 
|  | const TemplateArgumentListInfo &TemplateArgsInfo = D->getTemplateArgsInfo(); | 
|  | VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo.getLAngleLoc()); | 
|  | VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo.getRAngleLoc()); | 
|  |  | 
|  | if (SemaRef.Subst(TemplateArgsInfo.getArgumentArray(), | 
|  | TemplateArgsInfo.size(), VarTemplateArgsInfo, TemplateArgs)) | 
|  | return nullptr; | 
|  |  | 
|  | // Check that the template argument list is well-formed for this template. | 
|  | SmallVector<TemplateArgument, 4> Converted; | 
|  | if (SemaRef.CheckTemplateArgumentList( | 
|  | VarTemplate, VarTemplate->getLocStart(), | 
|  | const_cast<TemplateArgumentListInfo &>(VarTemplateArgsInfo), false, | 
|  | Converted)) | 
|  | return nullptr; | 
|  |  | 
|  | // Find the variable template specialization declaration that | 
|  | // corresponds to these arguments. | 
|  | void *InsertPos = nullptr; | 
|  | if (VarTemplateSpecializationDecl *VarSpec = VarTemplate->findSpecialization( | 
|  | Converted, InsertPos)) | 
|  | // If we already have a variable template specialization, return it. | 
|  | return VarSpec; | 
|  |  | 
|  | return VisitVarTemplateSpecializationDecl(VarTemplate, D, InsertPos, | 
|  | VarTemplateArgsInfo, Converted); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( | 
|  | VarTemplateDecl *VarTemplate, VarDecl *D, void *InsertPos, | 
|  | const TemplateArgumentListInfo &TemplateArgsInfo, | 
|  | ArrayRef<TemplateArgument> Converted) { | 
|  |  | 
|  | // Do substitution on the type of the declaration | 
|  | TypeSourceInfo *DI = | 
|  | SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, | 
|  | D->getTypeSpecStartLoc(), D->getDeclName()); | 
|  | if (!DI) | 
|  | return nullptr; | 
|  |  | 
|  | if (DI->getType()->isFunctionType()) { | 
|  | SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) | 
|  | << D->isStaticDataMember() << DI->getType(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Build the instantiated declaration | 
|  | VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create( | 
|  | SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), | 
|  | VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted); | 
|  | Var->setTemplateArgsInfo(TemplateArgsInfo); | 
|  | if (InsertPos) | 
|  | VarTemplate->AddSpecialization(Var, InsertPos); | 
|  |  | 
|  | // Substitute the nested name specifier, if any. | 
|  | if (SubstQualifier(D, Var)) | 
|  | return nullptr; | 
|  |  | 
|  | SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, | 
|  | Owner, StartingScope); | 
|  |  | 
|  | return Var; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) { | 
|  | llvm_unreachable("@defs is not supported in Objective-C++"); | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) { | 
|  | // FIXME: We need to be able to instantiate FriendTemplateDecls. | 
|  | unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID( | 
|  | DiagnosticsEngine::Error, | 
|  | "cannot instantiate %0 yet"); | 
|  | SemaRef.Diag(D->getLocation(), DiagID) | 
|  | << D->getDeclKindName(); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) { | 
|  | llvm_unreachable("Unexpected decl"); | 
|  | } | 
|  |  | 
|  | Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner, | 
|  | const MultiLevelTemplateArgumentList &TemplateArgs) { | 
|  | TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); | 
|  | if (D->isInvalidDecl()) | 
|  | return nullptr; | 
|  |  | 
|  | return Instantiator.Visit(D); | 
|  | } | 
|  |  | 
|  | /// \brief Instantiates a nested template parameter list in the current | 
|  | /// instantiation context. | 
|  | /// | 
|  | /// \param L The parameter list to instantiate | 
|  | /// | 
|  | /// \returns NULL if there was an error | 
|  | TemplateParameterList * | 
|  | TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) { | 
|  | // Get errors for all the parameters before bailing out. | 
|  | bool Invalid = false; | 
|  |  | 
|  | unsigned N = L->size(); | 
|  | typedef SmallVector<NamedDecl *, 8> ParamVector; | 
|  | ParamVector Params; | 
|  | Params.reserve(N); | 
|  | for (auto &P : *L) { | 
|  | NamedDecl *D = cast_or_null<NamedDecl>(Visit(P)); | 
|  | Params.push_back(D); | 
|  | Invalid = Invalid || !D || D->isInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // Clean up if we had an error. | 
|  | if (Invalid) | 
|  | return nullptr; | 
|  |  | 
|  | // Note: we substitute into associated constraints later | 
|  | Expr *const UninstantiatedRequiresClause = L->getRequiresClause(); | 
|  |  | 
|  | TemplateParameterList *InstL | 
|  | = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(), | 
|  | L->getLAngleLoc(), Params, | 
|  | L->getRAngleLoc(), | 
|  | UninstantiatedRequiresClause); | 
|  | return InstL; | 
|  | } | 
|  |  | 
|  | /// \brief Instantiate the declaration of a class template partial | 
|  | /// specialization. | 
|  | /// | 
|  | /// \param ClassTemplate the (instantiated) class template that is partially | 
|  | // specialized by the instantiation of \p PartialSpec. | 
|  | /// | 
|  | /// \param PartialSpec the (uninstantiated) class template partial | 
|  | /// specialization that we are instantiating. | 
|  | /// | 
|  | /// \returns The instantiated partial specialization, if successful; otherwise, | 
|  | /// NULL to indicate an error. | 
|  | ClassTemplatePartialSpecializationDecl * | 
|  | TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization( | 
|  | ClassTemplateDecl *ClassTemplate, | 
|  | ClassTemplatePartialSpecializationDecl *PartialSpec) { | 
|  | // Create a local instantiation scope for this class template partial | 
|  | // specialization, which will contain the instantiations of the template | 
|  | // parameters. | 
|  | LocalInstantiationScope Scope(SemaRef); | 
|  |  | 
|  | // Substitute into the template parameters of the class template partial | 
|  | // specialization. | 
|  | TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); | 
|  | TemplateParameterList *InstParams = SubstTemplateParams(TempParams); | 
|  | if (!InstParams) | 
|  | return nullptr; | 
|  |  | 
|  | // Substitute into the template arguments of the class template partial | 
|  | // specialization. | 
|  | const ASTTemplateArgumentListInfo *TemplArgInfo | 
|  | = PartialSpec->getTemplateArgsAsWritten(); | 
|  | TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, | 
|  | TemplArgInfo->RAngleLoc); | 
|  | if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(), | 
|  | TemplArgInfo->NumTemplateArgs, | 
|  | InstTemplateArgs, TemplateArgs)) | 
|  | return nullptr; | 
|  |  | 
|  | // Check that the template argument list is well-formed for this | 
|  | // class template. | 
|  | SmallVector<TemplateArgument, 4> Converted; | 
|  | if (SemaRef.CheckTemplateArgumentList(ClassTemplate, | 
|  | PartialSpec->getLocation(), | 
|  | InstTemplateArgs, | 
|  | false, | 
|  | Converted)) | 
|  | return nullptr; | 
|  |  | 
|  | // Check these arguments are valid for a template partial specialization. | 
|  | if (SemaRef.CheckTemplatePartialSpecializationArgs( | 
|  | PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(), | 
|  | Converted)) | 
|  | return nullptr; | 
|  |  | 
|  | // Figure out where to insert this class template partial specialization | 
|  | // in the member template's set of class template partial specializations. | 
|  | void *InsertPos = nullptr; | 
|  | ClassTemplateSpecializationDecl *PrevDecl | 
|  | = ClassTemplate->findPartialSpecialization(Converted, InsertPos); | 
|  |  | 
|  | // Build the canonical type that describes the converted template | 
|  | // arguments of the class template partial specialization. | 
|  | QualType CanonType | 
|  | = SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate), | 
|  | Converted); | 
|  |  | 
|  | // Build the fully-sugared type for this class template | 
|  | // specialization as the user wrote in the specialization | 
|  | // itself. This means that we'll pretty-print the type retrieved | 
|  | // from the specialization's declaration the way that the user | 
|  | // actually wrote the specialization, rather than formatting the | 
|  | // name based on the "canonical" representation used to store the | 
|  | // template arguments in the specialization. | 
|  | TypeSourceInfo *WrittenTy | 
|  | = SemaRef.Context.getTemplateSpecializationTypeInfo( | 
|  | TemplateName(ClassTemplate), | 
|  | PartialSpec->getLocation(), | 
|  | InstTemplateArgs, | 
|  | CanonType); | 
|  |  | 
|  | if (PrevDecl) { | 
|  | // We've already seen a partial specialization with the same template | 
|  | // parameters and template arguments. This can happen, for example, when | 
|  | // substituting the outer template arguments ends up causing two | 
|  | // class template partial specializations of a member class template | 
|  | // to have identical forms, e.g., | 
|  | // | 
|  | //   template<typename T, typename U> | 
|  | //   struct Outer { | 
|  | //     template<typename X, typename Y> struct Inner; | 
|  | //     template<typename Y> struct Inner<T, Y>; | 
|  | //     template<typename Y> struct Inner<U, Y>; | 
|  | //   }; | 
|  | // | 
|  | //   Outer<int, int> outer; // error: the partial specializations of Inner | 
|  | //                          // have the same signature. | 
|  | SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared) | 
|  | << WrittenTy->getType(); | 
|  | SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here) | 
|  | << SemaRef.Context.getTypeDeclType(PrevDecl); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Create the class template partial specialization declaration. | 
|  | ClassTemplatePartialSpecializationDecl *InstPartialSpec | 
|  | = ClassTemplatePartialSpecializationDecl::Create(SemaRef.Context, | 
|  | PartialSpec->getTagKind(), | 
|  | Owner, | 
|  | PartialSpec->getLocStart(), | 
|  | PartialSpec->getLocation(), | 
|  | InstParams, | 
|  | ClassTemplate, | 
|  | Converted, | 
|  | InstTemplateArgs, | 
|  | CanonType, | 
|  | nullptr); | 
|  | // Substitute the nested name specifier, if any. | 
|  | if (SubstQualifier(PartialSpec, InstPartialSpec)) | 
|  | return nullptr; | 
|  |  | 
|  | InstPartialSpec->setInstantiatedFromMember(PartialSpec); | 
|  | InstPartialSpec->setTypeAsWritten(WrittenTy); | 
|  |  | 
|  | // Check the completed partial specialization. | 
|  | SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); | 
|  |  | 
|  | // Add this partial specialization to the set of class template partial | 
|  | // specializations. | 
|  | ClassTemplate->AddPartialSpecialization(InstPartialSpec, | 
|  | /*InsertPos=*/nullptr); | 
|  | return InstPartialSpec; | 
|  | } | 
|  |  | 
|  | /// \brief Instantiate the declaration of a variable template partial | 
|  | /// specialization. | 
|  | /// | 
|  | /// \param VarTemplate the (instantiated) variable template that is partially | 
|  | /// specialized by the instantiation of \p PartialSpec. | 
|  | /// | 
|  | /// \param PartialSpec the (uninstantiated) variable template partial | 
|  | /// specialization that we are instantiating. | 
|  | /// | 
|  | /// \returns The instantiated partial specialization, if successful; otherwise, | 
|  | /// NULL to indicate an error. | 
|  | VarTemplatePartialSpecializationDecl * | 
|  | TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization( | 
|  | VarTemplateDecl *VarTemplate, | 
|  | VarTemplatePartialSpecializationDecl *PartialSpec) { | 
|  | // Create a local instantiation scope for this variable template partial | 
|  | // specialization, which will contain the instantiations of the template | 
|  | // parameters. | 
|  | LocalInstantiationScope Scope(SemaRef); | 
|  |  | 
|  | // Substitute into the template parameters of the variable template partial | 
|  | // specialization. | 
|  | TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); | 
|  | TemplateParameterList *InstParams = SubstTemplateParams(TempParams); | 
|  | if (!InstParams) | 
|  | return nullptr; | 
|  |  | 
|  | // Substitute into the template arguments of the variable template partial | 
|  | // specialization. | 
|  | const ASTTemplateArgumentListInfo *TemplArgInfo | 
|  | = PartialSpec->getTemplateArgsAsWritten(); | 
|  | TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, | 
|  | TemplArgInfo->RAngleLoc); | 
|  | if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(), | 
|  | TemplArgInfo->NumTemplateArgs, | 
|  | InstTemplateArgs, TemplateArgs)) | 
|  | return nullptr; | 
|  |  | 
|  | // Check that the template argument list is well-formed for this | 
|  | // class template. | 
|  | SmallVector<TemplateArgument, 4> Converted; | 
|  | if (SemaRef.CheckTemplateArgumentList(VarTemplate, PartialSpec->getLocation(), | 
|  | InstTemplateArgs, false, Converted)) | 
|  | return nullptr; | 
|  |  | 
|  | // Check these arguments are valid for a template partial specialization. | 
|  | if (SemaRef.CheckTemplatePartialSpecializationArgs( | 
|  | PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(), | 
|  | Converted)) | 
|  | return nullptr; | 
|  |  | 
|  | // Figure out where to insert this variable template partial specialization | 
|  | // in the member template's set of variable template partial specializations. | 
|  | void *InsertPos = nullptr; | 
|  | VarTemplateSpecializationDecl *PrevDecl = | 
|  | VarTemplate->findPartialSpecialization(Converted, InsertPos); | 
|  |  | 
|  | // Build the canonical type that describes the converted template | 
|  | // arguments of the variable template partial specialization. | 
|  | QualType CanonType = SemaRef.Context.getTemplateSpecializationType( | 
|  | TemplateName(VarTemplate), Converted); | 
|  |  | 
|  | // Build the fully-sugared type for this variable template | 
|  | // specialization as the user wrote in the specialization | 
|  | // itself. This means that we'll pretty-print the type retrieved | 
|  | // from the specialization's declaration the way that the user | 
|  | // actually wrote the specialization, rather than formatting the | 
|  | // name based on the "canonical" representation used to store the | 
|  | // template arguments in the specialization. | 
|  | TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( | 
|  | TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs, | 
|  | CanonType); | 
|  |  | 
|  | if (PrevDecl) { | 
|  | // We've already seen a partial specialization with the same template | 
|  | // parameters and template arguments. This can happen, for example, when | 
|  | // substituting the outer template arguments ends up causing two | 
|  | // variable template partial specializations of a member variable template | 
|  | // to have identical forms, e.g., | 
|  | // | 
|  | //   template<typename T, typename U> | 
|  | //   struct Outer { | 
|  | //     template<typename X, typename Y> pair<X,Y> p; | 
|  | //     template<typename Y> pair<T, Y> p; | 
|  | //     template<typename Y> pair<U, Y> p; | 
|  | //   }; | 
|  | // | 
|  | //   Outer<int, int> outer; // error: the partial specializations of Inner | 
|  | //                          // have the same signature. | 
|  | SemaRef.Diag(PartialSpec->getLocation(), | 
|  | diag::err_var_partial_spec_redeclared) | 
|  | << WrittenTy->getType(); | 
|  | SemaRef.Diag(PrevDecl->getLocation(), | 
|  | diag::note_var_prev_partial_spec_here); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Do substitution on the type of the declaration | 
|  | TypeSourceInfo *DI = SemaRef.SubstType( | 
|  | PartialSpec->getTypeSourceInfo(), TemplateArgs, | 
|  | PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName()); | 
|  | if (!DI) | 
|  | return nullptr; | 
|  |  | 
|  | if (DI->getType()->isFunctionType()) { | 
|  | SemaRef.Diag(PartialSpec->getLocation(), | 
|  | diag::err_variable_instantiates_to_function) | 
|  | << PartialSpec->isStaticDataMember() << DI->getType(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Create the variable template partial specialization declaration. | 
|  | VarTemplatePartialSpecializationDecl *InstPartialSpec = | 
|  | VarTemplatePartialSpecializationDecl::Create( | 
|  | SemaRef.Context, Owner, PartialSpec->getInnerLocStart(), | 
|  | PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(), | 
|  | DI, PartialSpec->getStorageClass(), Converted, InstTemplateArgs); | 
|  |  | 
|  | // Substitute the nested name specifier, if any. | 
|  | if (SubstQualifier(PartialSpec, InstPartialSpec)) | 
|  | return nullptr; | 
|  |  | 
|  | InstPartialSpec->setInstantiatedFromMember(PartialSpec); | 
|  | InstPartialSpec->setTypeAsWritten(WrittenTy); | 
|  |  | 
|  | // Check the completed partial specialization. | 
|  | SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); | 
|  |  | 
|  | // Add this partial specialization to the set of variable template partial | 
|  | // specializations. The instantiation of the initializer is not necessary. | 
|  | VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr); | 
|  |  | 
|  | SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs, | 
|  | LateAttrs, Owner, StartingScope); | 
|  |  | 
|  | return InstPartialSpec; | 
|  | } | 
|  |  | 
|  | TypeSourceInfo* | 
|  | TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D, | 
|  | SmallVectorImpl<ParmVarDecl *> &Params) { | 
|  | TypeSourceInfo *OldTInfo = D->getTypeSourceInfo(); | 
|  | assert(OldTInfo && "substituting function without type source info"); | 
|  | assert(Params.empty() && "parameter vector is non-empty at start"); | 
|  |  | 
|  | CXXRecordDecl *ThisContext = nullptr; | 
|  | unsigned ThisTypeQuals = 0; | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { | 
|  | ThisContext = cast<CXXRecordDecl>(Owner); | 
|  | ThisTypeQuals = Method->getTypeQualifiers(); | 
|  | } | 
|  |  | 
|  | TypeSourceInfo *NewTInfo | 
|  | = SemaRef.SubstFunctionDeclType(OldTInfo, TemplateArgs, | 
|  | D->getTypeSpecStartLoc(), | 
|  | D->getDeclName(), | 
|  | ThisContext, ThisTypeQuals); | 
|  | if (!NewTInfo) | 
|  | return nullptr; | 
|  |  | 
|  | TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); | 
|  | if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) { | 
|  | if (NewTInfo != OldTInfo) { | 
|  | // Get parameters from the new type info. | 
|  | TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens(); | 
|  | FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>(); | 
|  | unsigned NewIdx = 0; | 
|  | for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams(); | 
|  | OldIdx != NumOldParams; ++OldIdx) { | 
|  | ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx); | 
|  | LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope; | 
|  |  | 
|  | Optional<unsigned> NumArgumentsInExpansion; | 
|  | if (OldParam->isParameterPack()) | 
|  | NumArgumentsInExpansion = | 
|  | SemaRef.getNumArgumentsInExpansion(OldParam->getType(), | 
|  | TemplateArgs); | 
|  | if (!NumArgumentsInExpansion) { | 
|  | // Simple case: normal parameter, or a parameter pack that's | 
|  | // instantiated to a (still-dependent) parameter pack. | 
|  | ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); | 
|  | Params.push_back(NewParam); | 
|  | Scope->InstantiatedLocal(OldParam, NewParam); | 
|  | } else { | 
|  | // Parameter pack expansion: make the instantiation an argument pack. | 
|  | Scope->MakeInstantiatedLocalArgPack(OldParam); | 
|  | for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) { | 
|  | ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); | 
|  | Params.push_back(NewParam); | 
|  | Scope->InstantiatedLocalPackArg(OldParam, NewParam); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // The function type itself was not dependent and therefore no | 
|  | // substitution occurred. However, we still need to instantiate | 
|  | // the function parameters themselves. | 
|  | const FunctionProtoType *OldProto = | 
|  | cast<FunctionProtoType>(OldProtoLoc.getType()); | 
|  | for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end; | 
|  | ++i) { | 
|  | ParmVarDecl *OldParam = OldProtoLoc.getParam(i); | 
|  | if (!OldParam) { | 
|  | Params.push_back(SemaRef.BuildParmVarDeclForTypedef( | 
|  | D, D->getLocation(), OldProto->getParamType(i))); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ParmVarDecl *Parm = | 
|  | cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam)); | 
|  | if (!Parm) | 
|  | return nullptr; | 
|  | Params.push_back(Parm); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // If the type of this function, after ignoring parentheses, is not | 
|  | // *directly* a function type, then we're instantiating a function that | 
|  | // was declared via a typedef or with attributes, e.g., | 
|  | // | 
|  | //   typedef int functype(int, int); | 
|  | //   functype func; | 
|  | //   int __cdecl meth(int, int); | 
|  | // | 
|  | // In this case, we'll just go instantiate the ParmVarDecls that we | 
|  | // synthesized in the method declaration. | 
|  | SmallVector<QualType, 4> ParamTypes; | 
|  | Sema::ExtParameterInfoBuilder ExtParamInfos; | 
|  | if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr, | 
|  | TemplateArgs, ParamTypes, &Params, | 
|  | ExtParamInfos)) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return NewTInfo; | 
|  | } | 
|  |  | 
|  | /// Introduce the instantiated function parameters into the local | 
|  | /// instantiation scope, and set the parameter names to those used | 
|  | /// in the template. | 
|  | static bool addInstantiatedParametersToScope(Sema &S, FunctionDecl *Function, | 
|  | const FunctionDecl *PatternDecl, | 
|  | LocalInstantiationScope &Scope, | 
|  | const MultiLevelTemplateArgumentList &TemplateArgs) { | 
|  | unsigned FParamIdx = 0; | 
|  | for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) { | 
|  | const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I); | 
|  | if (!PatternParam->isParameterPack()) { | 
|  | // Simple case: not a parameter pack. | 
|  | assert(FParamIdx < Function->getNumParams()); | 
|  | ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); | 
|  | FunctionParam->setDeclName(PatternParam->getDeclName()); | 
|  | // If the parameter's type is not dependent, update it to match the type | 
|  | // in the pattern. They can differ in top-level cv-qualifiers, and we want | 
|  | // the pattern's type here. If the type is dependent, they can't differ, | 
|  | // per core issue 1668. Substitute into the type from the pattern, in case | 
|  | // it's instantiation-dependent. | 
|  | // FIXME: Updating the type to work around this is at best fragile. | 
|  | if (!PatternDecl->getType()->isDependentType()) { | 
|  | QualType T = S.SubstType(PatternParam->getType(), TemplateArgs, | 
|  | FunctionParam->getLocation(), | 
|  | FunctionParam->getDeclName()); | 
|  | if (T.isNull()) | 
|  | return true; | 
|  | FunctionParam->setType(T); | 
|  | } | 
|  |  | 
|  | Scope.InstantiatedLocal(PatternParam, FunctionParam); | 
|  | ++FParamIdx; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Expand the parameter pack. | 
|  | Scope.MakeInstantiatedLocalArgPack(PatternParam); | 
|  | Optional<unsigned> NumArgumentsInExpansion | 
|  | = S.getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs); | 
|  | assert(NumArgumentsInExpansion && | 
|  | "should only be called when all template arguments are known"); | 
|  | QualType PatternType = | 
|  | PatternParam->getType()->castAs<PackExpansionType>()->getPattern(); | 
|  | for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) { | 
|  | ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); | 
|  | FunctionParam->setDeclName(PatternParam->getDeclName()); | 
|  | if (!PatternDecl->getType()->isDependentType()) { | 
|  | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, Arg); | 
|  | QualType T = S.SubstType(PatternType, TemplateArgs, | 
|  | FunctionParam->getLocation(), | 
|  | FunctionParam->getDeclName()); | 
|  | if (T.isNull()) | 
|  | return true; | 
|  | FunctionParam->setType(T); | 
|  | } | 
|  |  | 
|  | Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam); | 
|  | ++FParamIdx; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation, | 
|  | FunctionDecl *Decl) { | 
|  | const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>(); | 
|  | if (Proto->getExceptionSpecType() != EST_Uninstantiated) | 
|  | return; | 
|  |  | 
|  | InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl, | 
|  | InstantiatingTemplate::ExceptionSpecification()); | 
|  | if (Inst.isInvalid()) { | 
|  | // We hit the instantiation depth limit. Clear the exception specification | 
|  | // so that our callers don't have to cope with EST_Uninstantiated. | 
|  | UpdateExceptionSpec(Decl, EST_None); | 
|  | return; | 
|  | } | 
|  | if (Inst.isAlreadyInstantiating()) { | 
|  | // This exception specification indirectly depends on itself. Reject. | 
|  | // FIXME: Corresponding rule in the standard? | 
|  | Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl; | 
|  | UpdateExceptionSpec(Decl, EST_None); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Enter the scope of this instantiation. We don't use | 
|  | // PushDeclContext because we don't have a scope. | 
|  | Sema::ContextRAII savedContext(*this, Decl); | 
|  | LocalInstantiationScope Scope(*this); | 
|  |  | 
|  | MultiLevelTemplateArgumentList TemplateArgs = | 
|  | getTemplateInstantiationArgs(Decl, nullptr, /*RelativeToPrimary*/true); | 
|  |  | 
|  | FunctionDecl *Template = Proto->getExceptionSpecTemplate(); | 
|  | if (addInstantiatedParametersToScope(*this, Decl, Template, Scope, | 
|  | TemplateArgs)) { | 
|  | UpdateExceptionSpec(Decl, EST_None); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(), | 
|  | TemplateArgs); | 
|  | } | 
|  |  | 
|  | /// \brief Initializes the common fields of an instantiation function | 
|  | /// declaration (New) from the corresponding fields of its template (Tmpl). | 
|  | /// | 
|  | /// \returns true if there was an error | 
|  | bool | 
|  | TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New, | 
|  | FunctionDecl *Tmpl) { | 
|  | if (Tmpl->isDeleted()) | 
|  | New->setDeletedAsWritten(); | 
|  |  | 
|  | New->setImplicit(Tmpl->isImplicit()); | 
|  |  | 
|  | // Forward the mangling number from the template to the instantiated decl. | 
|  | SemaRef.Context.setManglingNumber(New, | 
|  | SemaRef.Context.getManglingNumber(Tmpl)); | 
|  |  | 
|  | // If we are performing substituting explicitly-specified template arguments | 
|  | // or deduced template arguments into a function template and we reach this | 
|  | // point, we are now past the point where SFINAE applies and have committed | 
|  | // to keeping the new function template specialization. We therefore | 
|  | // convert the active template instantiation for the function template | 
|  | // into a template instantiation for this specific function template | 
|  | // specialization, which is not a SFINAE context, so that we diagnose any | 
|  | // further errors in the declaration itself. | 
|  | typedef Sema::CodeSynthesisContext ActiveInstType; | 
|  | ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back(); | 
|  | if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution || | 
|  | ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) { | 
|  | if (FunctionTemplateDecl *FunTmpl | 
|  | = dyn_cast<FunctionTemplateDecl>(ActiveInst.Entity)) { | 
|  | assert(FunTmpl->getTemplatedDecl() == Tmpl && | 
|  | "Deduction from the wrong function template?"); | 
|  | (void) FunTmpl; | 
|  | ActiveInst.Kind = ActiveInstType::TemplateInstantiation; | 
|  | ActiveInst.Entity = New; | 
|  | } | 
|  | } | 
|  |  | 
|  | const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>(); | 
|  | assert(Proto && "Function template without prototype?"); | 
|  |  | 
|  | if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) { | 
|  | FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); | 
|  |  | 
|  | // DR1330: In C++11, defer instantiation of a non-trivial | 
|  | // exception specification. | 
|  | // DR1484: Local classes and their members are instantiated along with the | 
|  | // containing function. | 
|  | if (SemaRef.getLangOpts().CPlusPlus11 && | 
|  | EPI.ExceptionSpec.Type != EST_None && | 
|  | EPI.ExceptionSpec.Type != EST_DynamicNone && | 
|  | EPI.ExceptionSpec.Type != EST_BasicNoexcept && | 
|  | !Tmpl->isLexicallyWithinFunctionOrMethod()) { | 
|  | FunctionDecl *ExceptionSpecTemplate = Tmpl; | 
|  | if (EPI.ExceptionSpec.Type == EST_Uninstantiated) | 
|  | ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate; | 
|  | ExceptionSpecificationType NewEST = EST_Uninstantiated; | 
|  | if (EPI.ExceptionSpec.Type == EST_Unevaluated) | 
|  | NewEST = EST_Unevaluated; | 
|  |  | 
|  | // Mark the function has having an uninstantiated exception specification. | 
|  | const FunctionProtoType *NewProto | 
|  | = New->getType()->getAs<FunctionProtoType>(); | 
|  | assert(NewProto && "Template instantiation without function prototype?"); | 
|  | EPI = NewProto->getExtProtoInfo(); | 
|  | EPI.ExceptionSpec.Type = NewEST; | 
|  | EPI.ExceptionSpec.SourceDecl = New; | 
|  | EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate; | 
|  | New->setType(SemaRef.Context.getFunctionType( | 
|  | NewProto->getReturnType(), NewProto->getParamTypes(), EPI)); | 
|  | } else { | 
|  | Sema::ContextRAII SwitchContext(SemaRef, New); | 
|  | SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the definition. Leaves the variable unchanged if undefined. | 
|  | const FunctionDecl *Definition = Tmpl; | 
|  | Tmpl->isDefined(Definition); | 
|  |  | 
|  | SemaRef.InstantiateAttrs(TemplateArgs, Definition, New, | 
|  | LateAttrs, StartingScope); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Initializes common fields of an instantiated method | 
|  | /// declaration (New) from the corresponding fields of its template | 
|  | /// (Tmpl). | 
|  | /// | 
|  | /// \returns true if there was an error | 
|  | bool | 
|  | TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New, | 
|  | CXXMethodDecl *Tmpl) { | 
|  | if (InitFunctionInstantiation(New, Tmpl)) | 
|  | return true; | 
|  |  | 
|  | New->setAccess(Tmpl->getAccess()); | 
|  | if (Tmpl->isVirtualAsWritten()) | 
|  | New->setVirtualAsWritten(true); | 
|  |  | 
|  | // FIXME: New needs a pointer to Tmpl | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// In the MS ABI, we need to instantiate default arguments of dllexported | 
|  | /// default constructors along with the constructor definition. This allows IR | 
|  | /// gen to emit a constructor closure which calls the default constructor with | 
|  | /// its default arguments. | 
|  | static void InstantiateDefaultCtorDefaultArgs(Sema &S, | 
|  | CXXConstructorDecl *Ctor) { | 
|  | assert(S.Context.getTargetInfo().getCXXABI().isMicrosoft() && | 
|  | Ctor->isDefaultConstructor()); | 
|  | unsigned NumParams = Ctor->getNumParams(); | 
|  | if (NumParams == 0) | 
|  | return; | 
|  | DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>(); | 
|  | if (!Attr) | 
|  | return; | 
|  | for (unsigned I = 0; I != NumParams; ++I) { | 
|  | (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor, | 
|  | Ctor->getParamDecl(I)); | 
|  | S.DiscardCleanupsInEvaluationContext(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Instantiate the definition of the given function from its | 
|  | /// template. | 
|  | /// | 
|  | /// \param PointOfInstantiation the point at which the instantiation was | 
|  | /// required. Note that this is not precisely a "point of instantiation" | 
|  | /// for the function, but it's close. | 
|  | /// | 
|  | /// \param Function the already-instantiated declaration of a | 
|  | /// function template specialization or member function of a class template | 
|  | /// specialization. | 
|  | /// | 
|  | /// \param Recursive if true, recursively instantiates any functions that | 
|  | /// are required by this instantiation. | 
|  | /// | 
|  | /// \param DefinitionRequired if true, then we are performing an explicit | 
|  | /// instantiation where the body of the function is required. Complain if | 
|  | /// there is no such body. | 
|  | void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, | 
|  | FunctionDecl *Function, | 
|  | bool Recursive, | 
|  | bool DefinitionRequired, | 
|  | bool AtEndOfTU) { | 
|  | if (Function->isInvalidDecl() || Function->isDefined() || | 
|  | isa<CXXDeductionGuideDecl>(Function)) | 
|  | return; | 
|  |  | 
|  | // Never instantiate an explicit specialization except if it is a class scope | 
|  | // explicit specialization. | 
|  | TemplateSpecializationKind TSK = Function->getTemplateSpecializationKind(); | 
|  | if (TSK == TSK_ExplicitSpecialization && | 
|  | !Function->getClassScopeSpecializationPattern()) | 
|  | return; | 
|  |  | 
|  | // Find the function body that we'll be substituting. | 
|  | const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern(); | 
|  | assert(PatternDecl && "instantiating a non-template"); | 
|  |  | 
|  | const FunctionDecl *PatternDef = PatternDecl->getDefinition(); | 
|  | Stmt *Pattern = nullptr; | 
|  | if (PatternDef) { | 
|  | Pattern = PatternDef->getBody(PatternDef); | 
|  | PatternDecl = PatternDef; | 
|  | if (PatternDef->willHaveBody()) | 
|  | PatternDef = nullptr; | 
|  | } | 
|  |  | 
|  | // FIXME: We need to track the instantiation stack in order to know which | 
|  | // definitions should be visible within this instantiation. | 
|  | if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function, | 
|  | Function->getInstantiatedFromMemberFunction(), | 
|  | PatternDecl, PatternDef, TSK, | 
|  | /*Complain*/DefinitionRequired)) { | 
|  | if (DefinitionRequired) | 
|  | Function->setInvalidDecl(); | 
|  | else if (TSK == TSK_ExplicitInstantiationDefinition) { | 
|  | // Try again at the end of the translation unit (at which point a | 
|  | // definition will be required). | 
|  | assert(!Recursive); | 
|  | Function->setInstantiationIsPending(true); | 
|  | PendingInstantiations.push_back( | 
|  | std::make_pair(Function, PointOfInstantiation)); | 
|  | } else if (TSK == TSK_ImplicitInstantiation) { | 
|  | if (AtEndOfTU && !getDiagnostics().hasErrorOccurred()) { | 
|  | Diag(PointOfInstantiation, diag::warn_func_template_missing) | 
|  | << Function; | 
|  | Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); | 
|  | if (getLangOpts().CPlusPlus11) | 
|  | Diag(PointOfInstantiation, diag::note_inst_declaration_hint) | 
|  | << Function; | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Postpone late parsed template instantiations. | 
|  | if (PatternDecl->isLateTemplateParsed() && | 
|  | !LateTemplateParser) { | 
|  | Function->setInstantiationIsPending(true); | 
|  | PendingInstantiations.push_back( | 
|  | std::make_pair(Function, PointOfInstantiation)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If we're performing recursive template instantiation, create our own | 
|  | // queue of pending implicit instantiations that we will instantiate later, | 
|  | // while we're still within our own instantiation context. | 
|  | // This has to happen before LateTemplateParser below is called, so that | 
|  | // it marks vtables used in late parsed templates as used. | 
|  | GlobalEagerInstantiationScope GlobalInstantiations(*this, | 
|  | /*Enabled=*/Recursive); | 
|  | LocalEagerInstantiationScope LocalInstantiations(*this); | 
|  |  | 
|  | // Call the LateTemplateParser callback if there is a need to late parse | 
|  | // a templated function definition. | 
|  | if (!Pattern && PatternDecl->isLateTemplateParsed() && | 
|  | LateTemplateParser) { | 
|  | // FIXME: Optimize to allow individual templates to be deserialized. | 
|  | if (PatternDecl->isFromASTFile()) | 
|  | ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap); | 
|  |  | 
|  | auto LPTIter = LateParsedTemplateMap.find(PatternDecl); | 
|  | assert(LPTIter != LateParsedTemplateMap.end() && | 
|  | "missing LateParsedTemplate"); | 
|  | LateTemplateParser(OpaqueParser, *LPTIter->second); | 
|  | Pattern = PatternDecl->getBody(PatternDecl); | 
|  | } | 
|  |  | 
|  | // Note, we should never try to instantiate a deleted function template. | 
|  | assert((Pattern || PatternDecl->isDefaulted()) && | 
|  | "unexpected kind of function template definition"); | 
|  |  | 
|  | // C++1y [temp.explicit]p10: | 
|  | //   Except for inline functions, declarations with types deduced from their | 
|  | //   initializer or return value, and class template specializations, other | 
|  | //   explicit instantiation declarations have the effect of suppressing the | 
|  | //   implicit instantiation of the entity to which they refer. | 
|  | if (TSK == TSK_ExplicitInstantiationDeclaration && | 
|  | !PatternDecl->isInlined() && | 
|  | !PatternDecl->getReturnType()->getContainedAutoType()) | 
|  | return; | 
|  |  | 
|  | if (PatternDecl->isInlined()) { | 
|  | // Function, and all later redeclarations of it (from imported modules, | 
|  | // for instance), are now implicitly inline. | 
|  | for (auto *D = Function->getMostRecentDecl(); /**/; | 
|  | D = D->getPreviousDecl()) { | 
|  | D->setImplicitlyInline(); | 
|  | if (D == Function) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | InstantiatingTemplate Inst(*this, PointOfInstantiation, Function); | 
|  | if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) | 
|  | return; | 
|  | PrettyDeclStackTraceEntry CrashInfo(*this, Function, SourceLocation(), | 
|  | "instantiating function definition"); | 
|  |  | 
|  | // The instantiation is visible here, even if it was first declared in an | 
|  | // unimported module. | 
|  | Function->setVisibleDespiteOwningModule(); | 
|  |  | 
|  | // Copy the inner loc start from the pattern. | 
|  | Function->setInnerLocStart(PatternDecl->getInnerLocStart()); | 
|  |  | 
|  | EnterExpressionEvaluationContext EvalContext( | 
|  | *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); | 
|  |  | 
|  | // Introduce a new scope where local variable instantiations will be | 
|  | // recorded, unless we're actually a member function within a local | 
|  | // class, in which case we need to merge our results with the parent | 
|  | // scope (of the enclosing function). | 
|  | bool MergeWithParentScope = false; | 
|  | if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext())) | 
|  | MergeWithParentScope = Rec->isLocalClass(); | 
|  |  | 
|  | LocalInstantiationScope Scope(*this, MergeWithParentScope); | 
|  |  | 
|  | if (PatternDecl->isDefaulted()) | 
|  | SetDeclDefaulted(Function, PatternDecl->getLocation()); | 
|  | else { | 
|  | MultiLevelTemplateArgumentList TemplateArgs = | 
|  | getTemplateInstantiationArgs(Function, nullptr, false, PatternDecl); | 
|  |  | 
|  | // Substitute into the qualifier; we can get a substitution failure here | 
|  | // through evil use of alias templates. | 
|  | // FIXME: Is CurContext correct for this? Should we go to the (instantiation | 
|  | // of the) lexical context of the pattern? | 
|  | SubstQualifier(*this, PatternDecl, Function, TemplateArgs); | 
|  |  | 
|  | ActOnStartOfFunctionDef(nullptr, Function); | 
|  |  | 
|  | // Enter the scope of this instantiation. We don't use | 
|  | // PushDeclContext because we don't have a scope. | 
|  | Sema::ContextRAII savedContext(*this, Function); | 
|  |  | 
|  | if (addInstantiatedParametersToScope(*this, Function, PatternDecl, Scope, | 
|  | TemplateArgs)) | 
|  | return; | 
|  |  | 
|  | if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Function)) { | 
|  | // If this is a constructor, instantiate the member initializers. | 
|  | InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl), | 
|  | TemplateArgs); | 
|  |  | 
|  | // If this is an MS ABI dllexport default constructor, instantiate any | 
|  | // default arguments. | 
|  | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && | 
|  | Ctor->isDefaultConstructor()) { | 
|  | InstantiateDefaultCtorDefaultArgs(*this, Ctor); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Instantiate the function body. | 
|  | StmtResult Body = SubstStmt(Pattern, TemplateArgs); | 
|  |  | 
|  | if (Body.isInvalid()) | 
|  | Function->setInvalidDecl(); | 
|  |  | 
|  | // FIXME: finishing the function body while in an expression evaluation | 
|  | // context seems wrong. Investigate more. | 
|  | ActOnFinishFunctionBody(Function, Body.get(), | 
|  | /*IsInstantiation=*/true); | 
|  |  | 
|  | PerformDependentDiagnostics(PatternDecl, TemplateArgs); | 
|  |  | 
|  | if (auto *Listener = getASTMutationListener()) | 
|  | Listener->FunctionDefinitionInstantiated(Function); | 
|  |  | 
|  | savedContext.pop(); | 
|  | } | 
|  |  | 
|  | DeclGroupRef DG(Function); | 
|  | Consumer.HandleTopLevelDecl(DG); | 
|  |  | 
|  | // This class may have local implicit instantiations that need to be | 
|  | // instantiation within this scope. | 
|  | LocalInstantiations.perform(); | 
|  | Scope.Exit(); | 
|  | GlobalInstantiations.perform(); | 
|  | } | 
|  |  | 
|  | VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation( | 
|  | VarTemplateDecl *VarTemplate, VarDecl *FromVar, | 
|  | const TemplateArgumentList &TemplateArgList, | 
|  | const TemplateArgumentListInfo &TemplateArgsInfo, | 
|  | SmallVectorImpl<TemplateArgument> &Converted, | 
|  | SourceLocation PointOfInstantiation, void *InsertPos, | 
|  | LateInstantiatedAttrVec *LateAttrs, | 
|  | LocalInstantiationScope *StartingScope) { | 
|  | if (FromVar->isInvalidDecl()) | 
|  | return nullptr; | 
|  |  | 
|  | InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar); | 
|  | if (Inst.isInvalid()) | 
|  | return nullptr; | 
|  |  | 
|  | MultiLevelTemplateArgumentList TemplateArgLists; | 
|  | TemplateArgLists.addOuterTemplateArguments(&TemplateArgList); | 
|  |  | 
|  | // Instantiate the first declaration of the variable template: for a partial | 
|  | // specialization of a static data member template, the first declaration may | 
|  | // or may not be the declaration in the class; if it's in the class, we want | 
|  | // to instantiate a member in the class (a declaration), and if it's outside, | 
|  | // we want to instantiate a definition. | 
|  | // | 
|  | // If we're instantiating an explicitly-specialized member template or member | 
|  | // partial specialization, don't do this. The member specialization completely | 
|  | // replaces the original declaration in this case. | 
|  | bool IsMemberSpec = false; | 
|  | if (VarTemplatePartialSpecializationDecl *PartialSpec = | 
|  | dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar)) | 
|  | IsMemberSpec = PartialSpec->isMemberSpecialization(); | 
|  | else if (VarTemplateDecl *FromTemplate = FromVar->getDescribedVarTemplate()) | 
|  | IsMemberSpec = FromTemplate->isMemberSpecialization(); | 
|  | if (!IsMemberSpec) | 
|  | FromVar = FromVar->getFirstDecl(); | 
|  |  | 
|  | MultiLevelTemplateArgumentList MultiLevelList(TemplateArgList); | 
|  | TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(), | 
|  | MultiLevelList); | 
|  |  | 
|  | // TODO: Set LateAttrs and StartingScope ... | 
|  |  | 
|  | return cast_or_null<VarTemplateSpecializationDecl>( | 
|  | Instantiator.VisitVarTemplateSpecializationDecl( | 
|  | VarTemplate, FromVar, InsertPos, TemplateArgsInfo, Converted)); | 
|  | } | 
|  |  | 
|  | /// \brief Instantiates a variable template specialization by completing it | 
|  | /// with appropriate type information and initializer. | 
|  | VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl( | 
|  | VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, | 
|  | const MultiLevelTemplateArgumentList &TemplateArgs) { | 
|  | assert(PatternDecl->isThisDeclarationADefinition() && | 
|  | "don't have a definition to instantiate from"); | 
|  |  | 
|  | // Do substitution on the type of the declaration | 
|  | TypeSourceInfo *DI = | 
|  | SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs, | 
|  | PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName()); | 
|  | if (!DI) | 
|  | return nullptr; | 
|  |  | 
|  | // Update the type of this variable template specialization. | 
|  | VarSpec->setType(DI->getType()); | 
|  |  | 
|  | // Convert the declaration into a definition now. | 
|  | VarSpec->setCompleteDefinition(); | 
|  |  | 
|  | // Instantiate the initializer. | 
|  | InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs); | 
|  |  | 
|  | return VarSpec; | 
|  | } | 
|  |  | 
|  | /// BuildVariableInstantiation - Used after a new variable has been created. | 
|  | /// Sets basic variable data and decides whether to postpone the | 
|  | /// variable instantiation. | 
|  | void Sema::BuildVariableInstantiation( | 
|  | VarDecl *NewVar, VarDecl *OldVar, | 
|  | const MultiLevelTemplateArgumentList &TemplateArgs, | 
|  | LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner, | 
|  | LocalInstantiationScope *StartingScope, | 
|  | bool InstantiatingVarTemplate) { | 
|  |  | 
|  | // If we are instantiating a local extern declaration, the | 
|  | // instantiation belongs lexically to the containing function. | 
|  | // If we are instantiating a static data member defined | 
|  | // out-of-line, the instantiation will have the same lexical | 
|  | // context (which will be a namespace scope) as the template. | 
|  | if (OldVar->isLocalExternDecl()) { | 
|  | NewVar->setLocalExternDecl(); | 
|  | NewVar->setLexicalDeclContext(Owner); | 
|  | } else if (OldVar->isOutOfLine()) | 
|  | NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext()); | 
|  | NewVar->setTSCSpec(OldVar->getTSCSpec()); | 
|  | NewVar->setInitStyle(OldVar->getInitStyle()); | 
|  | NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl()); | 
|  | NewVar->setConstexpr(OldVar->isConstexpr()); | 
|  | NewVar->setInitCapture(OldVar->isInitCapture()); | 
|  | NewVar->setPreviousDeclInSameBlockScope( | 
|  | OldVar->isPreviousDeclInSameBlockScope()); | 
|  | NewVar->setAccess(OldVar->getAccess()); | 
|  |  | 
|  | if (!OldVar->isStaticDataMember()) { | 
|  | if (OldVar->isUsed(false)) | 
|  | NewVar->setIsUsed(); | 
|  | NewVar->setReferenced(OldVar->isReferenced()); | 
|  | } | 
|  |  | 
|  | InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope); | 
|  |  | 
|  | LookupResult Previous( | 
|  | *this, NewVar->getDeclName(), NewVar->getLocation(), | 
|  | NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage | 
|  | : Sema::LookupOrdinaryName, | 
|  | NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration | 
|  | : forRedeclarationInCurContext()); | 
|  |  | 
|  | if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() && | 
|  | (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() || | 
|  | OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) { | 
|  | // We have a previous declaration. Use that one, so we merge with the | 
|  | // right type. | 
|  | if (NamedDecl *NewPrev = FindInstantiatedDecl( | 
|  | NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs)) | 
|  | Previous.addDecl(NewPrev); | 
|  | } else if (!isa<VarTemplateSpecializationDecl>(NewVar) && | 
|  | OldVar->hasLinkage()) | 
|  | LookupQualifiedName(Previous, NewVar->getDeclContext(), false); | 
|  | CheckVariableDeclaration(NewVar, Previous); | 
|  |  | 
|  | if (!InstantiatingVarTemplate) { | 
|  | NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar); | 
|  | if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl()) | 
|  | NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar); | 
|  | } | 
|  |  | 
|  | if (!OldVar->isOutOfLine()) { | 
|  | if (NewVar->getDeclContext()->isFunctionOrMethod()) | 
|  | CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar); | 
|  | } | 
|  |  | 
|  | // Link instantiations of static data members back to the template from | 
|  | // which they were instantiated. | 
|  | if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate) | 
|  | NewVar->setInstantiationOfStaticDataMember(OldVar, | 
|  | TSK_ImplicitInstantiation); | 
|  |  | 
|  | // Forward the mangling number from the template to the instantiated decl. | 
|  | Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar)); | 
|  | Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar)); | 
|  |  | 
|  | // Delay instantiation of the initializer for variable templates or inline | 
|  | // static data members until a definition of the variable is needed. We need | 
|  | // it right away if the type contains 'auto'. | 
|  | if ((!isa<VarTemplateSpecializationDecl>(NewVar) && | 
|  | !InstantiatingVarTemplate && | 
|  | !(OldVar->isInline() && OldVar->isThisDeclarationADefinition())) || | 
|  | NewVar->getType()->isUndeducedType()) | 
|  | InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); | 
|  |  | 
|  | // Diagnose unused local variables with dependent types, where the diagnostic | 
|  | // will have been deferred. | 
|  | if (!NewVar->isInvalidDecl() && | 
|  | NewVar->getDeclContext()->isFunctionOrMethod() && | 
|  | OldVar->getType()->isDependentType()) | 
|  | DiagnoseUnusedDecl(NewVar); | 
|  | } | 
|  |  | 
|  | /// \brief Instantiate the initializer of a variable. | 
|  | void Sema::InstantiateVariableInitializer( | 
|  | VarDecl *Var, VarDecl *OldVar, | 
|  | const MultiLevelTemplateArgumentList &TemplateArgs) { | 
|  | // We propagate the 'inline' flag with the initializer, because it | 
|  | // would otherwise imply that the variable is a definition for a | 
|  | // non-static data member. | 
|  | if (OldVar->isInlineSpecified()) | 
|  | Var->setInlineSpecified(); | 
|  | else if (OldVar->isInline()) | 
|  | Var->setImplicitlyInline(); | 
|  |  | 
|  | if (OldVar->getInit()) { | 
|  | EnterExpressionEvaluationContext Evaluated( | 
|  | *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var); | 
|  |  | 
|  | // Instantiate the initializer. | 
|  | ExprResult Init; | 
|  |  | 
|  | { | 
|  | ContextRAII SwitchContext(*this, Var->getDeclContext()); | 
|  | Init = SubstInitializer(OldVar->getInit(), TemplateArgs, | 
|  | OldVar->getInitStyle() == VarDecl::CallInit); | 
|  | } | 
|  |  | 
|  | if (!Init.isInvalid()) { | 
|  | Expr *InitExpr = Init.get(); | 
|  |  | 
|  | if (Var->hasAttr<DLLImportAttr>() && | 
|  | (!InitExpr || | 
|  | !InitExpr->isConstantInitializer(getASTContext(), false))) { | 
|  | // Do not dynamically initialize dllimport variables. | 
|  | } else if (InitExpr) { | 
|  | bool DirectInit = OldVar->isDirectInit(); | 
|  | AddInitializerToDecl(Var, InitExpr, DirectInit); | 
|  | } else | 
|  | ActOnUninitializedDecl(Var); | 
|  | } else { | 
|  | // FIXME: Not too happy about invalidating the declaration | 
|  | // because of a bogus initializer. | 
|  | Var->setInvalidDecl(); | 
|  | } | 
|  | } else { | 
|  | if (Var->isStaticDataMember()) { | 
|  | if (!Var->isOutOfLine()) | 
|  | return; | 
|  |  | 
|  | // If the declaration inside the class had an initializer, don't add | 
|  | // another one to the out-of-line definition. | 
|  | if (OldVar->getFirstDecl()->hasInit()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We'll add an initializer to a for-range declaration later. | 
|  | if (Var->isCXXForRangeDecl()) | 
|  | return; | 
|  |  | 
|  | ActOnUninitializedDecl(Var); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Instantiate the definition of the given variable from its | 
|  | /// template. | 
|  | /// | 
|  | /// \param PointOfInstantiation the point at which the instantiation was | 
|  | /// required. Note that this is not precisely a "point of instantiation" | 
|  | /// for the function, but it's close. | 
|  | /// | 
|  | /// \param Var the already-instantiated declaration of a static member | 
|  | /// variable of a class template specialization. | 
|  | /// | 
|  | /// \param Recursive if true, recursively instantiates any functions that | 
|  | /// are required by this instantiation. | 
|  | /// | 
|  | /// \param DefinitionRequired if true, then we are performing an explicit | 
|  | /// instantiation where an out-of-line definition of the member variable | 
|  | /// is required. Complain if there is no such definition. | 
|  | void Sema::InstantiateStaticDataMemberDefinition( | 
|  | SourceLocation PointOfInstantiation, | 
|  | VarDecl *Var, | 
|  | bool Recursive, | 
|  | bool DefinitionRequired) { | 
|  | InstantiateVariableDefinition(PointOfInstantiation, Var, Recursive, | 
|  | DefinitionRequired); | 
|  | } | 
|  |  | 
|  | void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation, | 
|  | VarDecl *Var, bool Recursive, | 
|  | bool DefinitionRequired, bool AtEndOfTU) { | 
|  | if (Var->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // FIXME: We're missing ASTMutationListener notifications for all of the work | 
|  | // done here. (Some of our callers notify the listeners for the static data | 
|  | // member case, but not in general.) | 
|  |  | 
|  | VarTemplateSpecializationDecl *VarSpec = | 
|  | dyn_cast<VarTemplateSpecializationDecl>(Var); | 
|  | VarDecl *PatternDecl = nullptr, *Def = nullptr; | 
|  | MultiLevelTemplateArgumentList TemplateArgs = | 
|  | getTemplateInstantiationArgs(Var); | 
|  |  | 
|  | if (VarSpec) { | 
|  | // If this is a variable template specialization, make sure that it is | 
|  | // non-dependent, then find its instantiation pattern. | 
|  | bool InstantiationDependent = false; | 
|  | assert(!TemplateSpecializationType::anyDependentTemplateArguments( | 
|  | VarSpec->getTemplateArgsInfo(), InstantiationDependent) && | 
|  | "Only instantiate variable template specializations that are " | 
|  | "not type-dependent"); | 
|  | (void)InstantiationDependent; | 
|  |  | 
|  | // Find the variable initialization that we'll be substituting. If the | 
|  | // pattern was instantiated from a member template, look back further to | 
|  | // find the real pattern. | 
|  | assert(VarSpec->getSpecializedTemplate() && | 
|  | "Specialization without specialized template?"); | 
|  | llvm::PointerUnion<VarTemplateDecl *, | 
|  | VarTemplatePartialSpecializationDecl *> PatternPtr = | 
|  | VarSpec->getSpecializedTemplateOrPartial(); | 
|  | if (PatternPtr.is<VarTemplatePartialSpecializationDecl *>()) { | 
|  | VarTemplatePartialSpecializationDecl *Tmpl = | 
|  | PatternPtr.get<VarTemplatePartialSpecializationDecl *>(); | 
|  | while (VarTemplatePartialSpecializationDecl *From = | 
|  | Tmpl->getInstantiatedFromMember()) { | 
|  | if (Tmpl->isMemberSpecialization()) | 
|  | break; | 
|  |  | 
|  | Tmpl = From; | 
|  | } | 
|  | PatternDecl = Tmpl; | 
|  | } else { | 
|  | VarTemplateDecl *Tmpl = PatternPtr.get<VarTemplateDecl *>(); | 
|  | while (VarTemplateDecl *From = | 
|  | Tmpl->getInstantiatedFromMemberTemplate()) { | 
|  | if (Tmpl->isMemberSpecialization()) | 
|  | break; | 
|  |  | 
|  | Tmpl = From; | 
|  | } | 
|  | PatternDecl = Tmpl->getTemplatedDecl(); | 
|  | } | 
|  |  | 
|  | // If this is a static data member template, there might be an | 
|  | // uninstantiated initializer on the declaration. If so, instantiate | 
|  | // it now. | 
|  | if (PatternDecl->isStaticDataMember() && | 
|  | (PatternDecl = PatternDecl->getFirstDecl())->hasInit() && | 
|  | !Var->hasInit()) { | 
|  | // FIXME: Factor out the duplicated instantiation context setup/tear down | 
|  | // code here. | 
|  | InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); | 
|  | if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) | 
|  | return; | 
|  | PrettyDeclStackTraceEntry CrashInfo(*this, Var, SourceLocation(), | 
|  | "instantiating variable initializer"); | 
|  |  | 
|  | // The instantiation is visible here, even if it was first declared in an | 
|  | // unimported module. | 
|  | Var->setVisibleDespiteOwningModule(); | 
|  |  | 
|  | // If we're performing recursive template instantiation, create our own | 
|  | // queue of pending implicit instantiations that we will instantiate | 
|  | // later, while we're still within our own instantiation context. | 
|  | GlobalEagerInstantiationScope GlobalInstantiations(*this, | 
|  | /*Enabled=*/Recursive); | 
|  | LocalInstantiationScope Local(*this); | 
|  | LocalEagerInstantiationScope LocalInstantiations(*this); | 
|  |  | 
|  | // Enter the scope of this instantiation. We don't use | 
|  | // PushDeclContext because we don't have a scope. | 
|  | ContextRAII PreviousContext(*this, Var->getDeclContext()); | 
|  | InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs); | 
|  | PreviousContext.pop(); | 
|  |  | 
|  | // This variable may have local implicit instantiations that need to be | 
|  | // instantiated within this scope. | 
|  | LocalInstantiations.perform(); | 
|  | Local.Exit(); | 
|  | GlobalInstantiations.perform(); | 
|  | } | 
|  |  | 
|  | // Find actual definition | 
|  | Def = PatternDecl->getDefinition(getASTContext()); | 
|  | } else { | 
|  | // If this is a static data member, find its out-of-line definition. | 
|  | assert(Var->isStaticDataMember() && "not a static data member?"); | 
|  | PatternDecl = Var->getInstantiatedFromStaticDataMember(); | 
|  |  | 
|  | assert(PatternDecl && "data member was not instantiated from a template?"); | 
|  | assert(PatternDecl->isStaticDataMember() && "not a static data member?"); | 
|  | Def = PatternDecl->getDefinition(); | 
|  | } | 
|  |  | 
|  | TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind(); | 
|  |  | 
|  | // If we don't have a definition of the variable template, we won't perform | 
|  | // any instantiation. Rather, we rely on the user to instantiate this | 
|  | // definition (or provide a specialization for it) in another translation | 
|  | // unit. | 
|  | if (!Def && !DefinitionRequired) { | 
|  | if (TSK == TSK_ExplicitInstantiationDefinition) { | 
|  | PendingInstantiations.push_back( | 
|  | std::make_pair(Var, PointOfInstantiation)); | 
|  | } else if (TSK == TSK_ImplicitInstantiation) { | 
|  | // Warn about missing definition at the end of translation unit. | 
|  | if (AtEndOfTU && !getDiagnostics().hasErrorOccurred()) { | 
|  | Diag(PointOfInstantiation, diag::warn_var_template_missing) | 
|  | << Var; | 
|  | Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); | 
|  | if (getLangOpts().CPlusPlus11) | 
|  | Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | // FIXME: We need to track the instantiation stack in order to know which | 
|  | // definitions should be visible within this instantiation. | 
|  | // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember(). | 
|  | if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var, | 
|  | /*InstantiatedFromMember*/false, | 
|  | PatternDecl, Def, TSK, | 
|  | /*Complain*/DefinitionRequired)) | 
|  | return; | 
|  |  | 
|  |  | 
|  | // Never instantiate an explicit specialization. | 
|  | if (TSK == TSK_ExplicitSpecialization) | 
|  | return; | 
|  |  | 
|  | // C++11 [temp.explicit]p10: | 
|  | //   Except for inline functions, const variables of literal types, variables | 
|  | //   of reference types, [...] explicit instantiation declarations | 
|  | //   have the effect of suppressing the implicit instantiation of the entity | 
|  | //   to which they refer. | 
|  | if (TSK == TSK_ExplicitInstantiationDeclaration && | 
|  | !Var->isUsableInConstantExpressions(getASTContext())) | 
|  | return; | 
|  |  | 
|  | // Make sure to pass the instantiated variable to the consumer at the end. | 
|  | struct PassToConsumerRAII { | 
|  | ASTConsumer &Consumer; | 
|  | VarDecl *Var; | 
|  |  | 
|  | PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var) | 
|  | : Consumer(Consumer), Var(Var) { } | 
|  |  | 
|  | ~PassToConsumerRAII() { | 
|  | Consumer.HandleCXXStaticMemberVarInstantiation(Var); | 
|  | } | 
|  | } PassToConsumerRAII(Consumer, Var); | 
|  |  | 
|  | // If we already have a definition, we're done. | 
|  | if (VarDecl *Def = Var->getDefinition()) { | 
|  | // We may be explicitly instantiating something we've already implicitly | 
|  | // instantiated. | 
|  | Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(), | 
|  | PointOfInstantiation); | 
|  | return; | 
|  | } | 
|  |  | 
|  | InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); | 
|  | if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) | 
|  | return; | 
|  | PrettyDeclStackTraceEntry CrashInfo(*this, Var, SourceLocation(), | 
|  | "instantiating variable definition"); | 
|  |  | 
|  | // If we're performing recursive template instantiation, create our own | 
|  | // queue of pending implicit instantiations that we will instantiate later, | 
|  | // while we're still within our own instantiation context. | 
|  | GlobalEagerInstantiationScope GlobalInstantiations(*this, | 
|  | /*Enabled=*/Recursive); | 
|  |  | 
|  | // Enter the scope of this instantiation. We don't use | 
|  | // PushDeclContext because we don't have a scope. | 
|  | ContextRAII PreviousContext(*this, Var->getDeclContext()); | 
|  | LocalInstantiationScope Local(*this); | 
|  |  | 
|  | LocalEagerInstantiationScope LocalInstantiations(*this); | 
|  |  | 
|  | VarDecl *OldVar = Var; | 
|  | if (Def->isStaticDataMember() && !Def->isOutOfLine()) { | 
|  | // We're instantiating an inline static data member whose definition was | 
|  | // provided inside the class. | 
|  | InstantiateVariableInitializer(Var, Def, TemplateArgs); | 
|  | } else if (!VarSpec) { | 
|  | Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(), | 
|  | TemplateArgs)); | 
|  | } else if (Var->isStaticDataMember() && | 
|  | Var->getLexicalDeclContext()->isRecord()) { | 
|  | // We need to instantiate the definition of a static data member template, | 
|  | // and all we have is the in-class declaration of it. Instantiate a separate | 
|  | // declaration of the definition. | 
|  | TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(), | 
|  | TemplateArgs); | 
|  | Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl( | 
|  | VarSpec->getSpecializedTemplate(), Def, nullptr, | 
|  | VarSpec->getTemplateArgsInfo(), VarSpec->getTemplateArgs().asArray())); | 
|  | if (Var) { | 
|  | llvm::PointerUnion<VarTemplateDecl *, | 
|  | VarTemplatePartialSpecializationDecl *> PatternPtr = | 
|  | VarSpec->getSpecializedTemplateOrPartial(); | 
|  | if (VarTemplatePartialSpecializationDecl *Partial = | 
|  | PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>()) | 
|  | cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf( | 
|  | Partial, &VarSpec->getTemplateInstantiationArgs()); | 
|  |  | 
|  | // Merge the definition with the declaration. | 
|  | LookupResult R(*this, Var->getDeclName(), Var->getLocation(), | 
|  | LookupOrdinaryName, forRedeclarationInCurContext()); | 
|  | R.addDecl(OldVar); | 
|  | MergeVarDecl(Var, R); | 
|  |  | 
|  | // Attach the initializer. | 
|  | InstantiateVariableInitializer(Var, Def, TemplateArgs); | 
|  | } | 
|  | } else | 
|  | // Complete the existing variable's definition with an appropriately | 
|  | // substituted type and initializer. | 
|  | Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs); | 
|  |  | 
|  | PreviousContext.pop(); | 
|  |  | 
|  | if (Var) { | 
|  | PassToConsumerRAII.Var = Var; | 
|  | Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(), | 
|  | OldVar->getPointOfInstantiation()); | 
|  | } | 
|  |  | 
|  | // This variable may have local implicit instantiations that need to be | 
|  | // instantiated within this scope. | 
|  | LocalInstantiations.perform(); | 
|  | Local.Exit(); | 
|  | GlobalInstantiations.perform(); | 
|  | } | 
|  |  | 
|  | void | 
|  | Sema::InstantiateMemInitializers(CXXConstructorDecl *New, | 
|  | const CXXConstructorDecl *Tmpl, | 
|  | const MultiLevelTemplateArgumentList &TemplateArgs) { | 
|  |  | 
|  | SmallVector<CXXCtorInitializer*, 4> NewInits; | 
|  | bool AnyErrors = Tmpl->isInvalidDecl(); | 
|  |  | 
|  | // Instantiate all the initializers. | 
|  | for (const auto *Init : Tmpl->inits()) { | 
|  | // Only instantiate written initializers, let Sema re-construct implicit | 
|  | // ones. | 
|  | if (!Init->isWritten()) | 
|  | continue; | 
|  |  | 
|  | SourceLocation EllipsisLoc; | 
|  |  | 
|  | if (Init->isPackExpansion()) { | 
|  | // This is a pack expansion. We should expand it now. | 
|  | TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc(); | 
|  | SmallVector<UnexpandedParameterPack, 4> Unexpanded; | 
|  | collectUnexpandedParameterPacks(BaseTL, Unexpanded); | 
|  | collectUnexpandedParameterPacks(Init->getInit(), Unexpanded); | 
|  | bool ShouldExpand = false; | 
|  | bool RetainExpansion = false; | 
|  | Optional<unsigned> NumExpansions; | 
|  | if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(), | 
|  | BaseTL.getSourceRange(), | 
|  | Unexpanded, | 
|  | TemplateArgs, ShouldExpand, | 
|  | RetainExpansion, | 
|  | NumExpansions)) { | 
|  | AnyErrors = true; | 
|  | New->setInvalidDecl(); | 
|  | continue; | 
|  | } | 
|  | assert(ShouldExpand && "Partial instantiation of base initializer?"); | 
|  |  | 
|  | // Loop over all of the arguments in the argument pack(s), | 
|  | for (unsigned I = 0; I != *NumExpansions; ++I) { | 
|  | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I); | 
|  |  | 
|  | // Instantiate the initializer. | 
|  | ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, | 
|  | /*CXXDirectInit=*/true); | 
|  | if (TempInit.isInvalid()) { | 
|  | AnyErrors = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Instantiate the base type. | 
|  | TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(), | 
|  | TemplateArgs, | 
|  | Init->getSourceLocation(), | 
|  | New->getDeclName()); | 
|  | if (!BaseTInfo) { | 
|  | AnyErrors = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Build the initializer. | 
|  | MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(), | 
|  | BaseTInfo, TempInit.get(), | 
|  | New->getParent(), | 
|  | SourceLocation()); | 
|  | if (NewInit.isInvalid()) { | 
|  | AnyErrors = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | NewInits.push_back(NewInit.get()); | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Instantiate the initializer. | 
|  | ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, | 
|  | /*CXXDirectInit=*/true); | 
|  | if (TempInit.isInvalid()) { | 
|  | AnyErrors = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | MemInitResult NewInit; | 
|  | if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) { | 
|  | TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(), | 
|  | TemplateArgs, | 
|  | Init->getSourceLocation(), | 
|  | New->getDeclName()); | 
|  | if (!TInfo) { | 
|  | AnyErrors = true; | 
|  | New->setInvalidDecl(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Init->isBaseInitializer()) | 
|  | NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(), | 
|  | New->getParent(), EllipsisLoc); | 
|  | else | 
|  | NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(), | 
|  | cast<CXXRecordDecl>(CurContext->getParent())); | 
|  | } else if (Init->isMemberInitializer()) { | 
|  | FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl( | 
|  | Init->getMemberLocation(), | 
|  | Init->getMember(), | 
|  | TemplateArgs)); | 
|  | if (!Member) { | 
|  | AnyErrors = true; | 
|  | New->setInvalidDecl(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | NewInit = BuildMemberInitializer(Member, TempInit.get(), | 
|  | Init->getSourceLocation()); | 
|  | } else if (Init->isIndirectMemberInitializer()) { | 
|  | IndirectFieldDecl *IndirectMember = | 
|  | cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl( | 
|  | Init->getMemberLocation(), | 
|  | Init->getIndirectMember(), TemplateArgs)); | 
|  |  | 
|  | if (!IndirectMember) { | 
|  | AnyErrors = true; | 
|  | New->setInvalidDecl(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(), | 
|  | Init->getSourceLocation()); | 
|  | } | 
|  |  | 
|  | if (NewInit.isInvalid()) { | 
|  | AnyErrors = true; | 
|  | New->setInvalidDecl(); | 
|  | } else { | 
|  | NewInits.push_back(NewInit.get()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assign all the initializers to the new constructor. | 
|  | ActOnMemInitializers(New, | 
|  | /*FIXME: ColonLoc */ | 
|  | SourceLocation(), | 
|  | NewInits, | 
|  | AnyErrors); | 
|  | } | 
|  |  | 
|  | // TODO: this could be templated if the various decl types used the | 
|  | // same method name. | 
|  | static bool isInstantiationOf(ClassTemplateDecl *Pattern, | 
|  | ClassTemplateDecl *Instance) { | 
|  | Pattern = Pattern->getCanonicalDecl(); | 
|  |  | 
|  | do { | 
|  | Instance = Instance->getCanonicalDecl(); | 
|  | if (Pattern == Instance) return true; | 
|  | Instance = Instance->getInstantiatedFromMemberTemplate(); | 
|  | } while (Instance); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isInstantiationOf(FunctionTemplateDecl *Pattern, | 
|  | FunctionTemplateDecl *Instance) { | 
|  | Pattern = Pattern->getCanonicalDecl(); | 
|  |  | 
|  | do { | 
|  | Instance = Instance->getCanonicalDecl(); | 
|  | if (Pattern == Instance) return true; | 
|  | Instance = Instance->getInstantiatedFromMemberTemplate(); | 
|  | } while (Instance); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern, | 
|  | ClassTemplatePartialSpecializationDecl *Instance) { | 
|  | Pattern | 
|  | = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl()); | 
|  | do { | 
|  | Instance = cast<ClassTemplatePartialSpecializationDecl>( | 
|  | Instance->getCanonicalDecl()); | 
|  | if (Pattern == Instance) | 
|  | return true; | 
|  | Instance = Instance->getInstantiatedFromMember(); | 
|  | } while (Instance); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isInstantiationOf(CXXRecordDecl *Pattern, | 
|  | CXXRecordDecl *Instance) { | 
|  | Pattern = Pattern->getCanonicalDecl(); | 
|  |  | 
|  | do { | 
|  | Instance = Instance->getCanonicalDecl(); | 
|  | if (Pattern == Instance) return true; | 
|  | Instance = Instance->getInstantiatedFromMemberClass(); | 
|  | } while (Instance); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isInstantiationOf(FunctionDecl *Pattern, | 
|  | FunctionDecl *Instance) { | 
|  | Pattern = Pattern->getCanonicalDecl(); | 
|  |  | 
|  | do { | 
|  | Instance = Instance->getCanonicalDecl(); | 
|  | if (Pattern == Instance) return true; | 
|  | Instance = Instance->getInstantiatedFromMemberFunction(); | 
|  | } while (Instance); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isInstantiationOf(EnumDecl *Pattern, | 
|  | EnumDecl *Instance) { | 
|  | Pattern = Pattern->getCanonicalDecl(); | 
|  |  | 
|  | do { | 
|  | Instance = Instance->getCanonicalDecl(); | 
|  | if (Pattern == Instance) return true; | 
|  | Instance = Instance->getInstantiatedFromMemberEnum(); | 
|  | } while (Instance); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isInstantiationOf(UsingShadowDecl *Pattern, | 
|  | UsingShadowDecl *Instance, | 
|  | ASTContext &C) { | 
|  | return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance), | 
|  | Pattern); | 
|  | } | 
|  |  | 
|  | static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance, | 
|  | ASTContext &C) { | 
|  | return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other, | 
|  | ASTContext &Ctx) { | 
|  | // An unresolved using declaration can instantiate to an unresolved using | 
|  | // declaration, or to a using declaration or a using declaration pack. | 
|  | // | 
|  | // Multiple declarations can claim to be instantiated from an unresolved | 
|  | // using declaration if it's a pack expansion. We want the UsingPackDecl | 
|  | // in that case, not the individual UsingDecls within the pack. | 
|  | bool OtherIsPackExpansion; | 
|  | NamedDecl *OtherFrom; | 
|  | if (auto *OtherUUD = dyn_cast<T>(Other)) { | 
|  | OtherIsPackExpansion = OtherUUD->isPackExpansion(); | 
|  | OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD); | 
|  | } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) { | 
|  | OtherIsPackExpansion = true; | 
|  | OtherFrom = OtherUPD->getInstantiatedFromUsingDecl(); | 
|  | } else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) { | 
|  | OtherIsPackExpansion = false; | 
|  | OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | return Pattern->isPackExpansion() == OtherIsPackExpansion && | 
|  | declaresSameEntity(OtherFrom, Pattern); | 
|  | } | 
|  |  | 
|  | static bool isInstantiationOfStaticDataMember(VarDecl *Pattern, | 
|  | VarDecl *Instance) { | 
|  | assert(Instance->isStaticDataMember()); | 
|  |  | 
|  | Pattern = Pattern->getCanonicalDecl(); | 
|  |  | 
|  | do { | 
|  | Instance = Instance->getCanonicalDecl(); | 
|  | if (Pattern == Instance) return true; | 
|  | Instance = Instance->getInstantiatedFromStaticDataMember(); | 
|  | } while (Instance); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Other is the prospective instantiation | 
|  | // D is the prospective pattern | 
|  | static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) { | 
|  | if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D)) | 
|  | return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); | 
|  |  | 
|  | if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D)) | 
|  | return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); | 
|  |  | 
|  | if (D->getKind() != Other->getKind()) | 
|  | return false; | 
|  |  | 
|  | if (auto *Record = dyn_cast<CXXRecordDecl>(Other)) | 
|  | return isInstantiationOf(cast<CXXRecordDecl>(D), Record); | 
|  |  | 
|  | if (auto *Function = dyn_cast<FunctionDecl>(Other)) | 
|  | return isInstantiationOf(cast<FunctionDecl>(D), Function); | 
|  |  | 
|  | if (auto *Enum = dyn_cast<EnumDecl>(Other)) | 
|  | return isInstantiationOf(cast<EnumDecl>(D), Enum); | 
|  |  | 
|  | if (auto *Var = dyn_cast<VarDecl>(Other)) | 
|  | if (Var->isStaticDataMember()) | 
|  | return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var); | 
|  |  | 
|  | if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other)) | 
|  | return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp); | 
|  |  | 
|  | if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other)) | 
|  | return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp); | 
|  |  | 
|  | if (auto *PartialSpec = | 
|  | dyn_cast<ClassTemplatePartialSpecializationDecl>(Other)) | 
|  | return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D), | 
|  | PartialSpec); | 
|  |  | 
|  | if (auto *Field = dyn_cast<FieldDecl>(Other)) { | 
|  | if (!Field->getDeclName()) { | 
|  | // This is an unnamed field. | 
|  | return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field), | 
|  | cast<FieldDecl>(D)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *Using = dyn_cast<UsingDecl>(Other)) | 
|  | return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx); | 
|  |  | 
|  | if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other)) | 
|  | return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx); | 
|  |  | 
|  | return D->getDeclName() && | 
|  | D->getDeclName() == cast<NamedDecl>(Other)->getDeclName(); | 
|  | } | 
|  |  | 
|  | template<typename ForwardIterator> | 
|  | static NamedDecl *findInstantiationOf(ASTContext &Ctx, | 
|  | NamedDecl *D, | 
|  | ForwardIterator first, | 
|  | ForwardIterator last) { | 
|  | for (; first != last; ++first) | 
|  | if (isInstantiationOf(Ctx, D, *first)) | 
|  | return cast<NamedDecl>(*first); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// \brief Finds the instantiation of the given declaration context | 
|  | /// within the current instantiation. | 
|  | /// | 
|  | /// \returns NULL if there was an error | 
|  | DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC, | 
|  | const MultiLevelTemplateArgumentList &TemplateArgs) { | 
|  | if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) { | 
|  | Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true); | 
|  | return cast_or_null<DeclContext>(ID); | 
|  | } else return DC; | 
|  | } | 
|  |  | 
|  | /// \brief Find the instantiation of the given declaration within the | 
|  | /// current instantiation. | 
|  | /// | 
|  | /// This routine is intended to be used when \p D is a declaration | 
|  | /// referenced from within a template, that needs to mapped into the | 
|  | /// corresponding declaration within an instantiation. For example, | 
|  | /// given: | 
|  | /// | 
|  | /// \code | 
|  | /// template<typename T> | 
|  | /// struct X { | 
|  | ///   enum Kind { | 
|  | ///     KnownValue = sizeof(T) | 
|  | ///   }; | 
|  | /// | 
|  | ///   bool getKind() const { return KnownValue; } | 
|  | /// }; | 
|  | /// | 
|  | /// template struct X<int>; | 
|  | /// \endcode | 
|  | /// | 
|  | /// In the instantiation of <tt>X<int>::getKind()</tt>, we need to map the | 
|  | /// \p EnumConstantDecl for \p KnownValue (which refers to | 
|  | /// <tt>X<T>::<Kind>::KnownValue</tt>) to its instantiation | 
|  | /// (<tt>X<int>::<Kind>::KnownValue</tt>). \p FindInstantiatedDecl performs | 
|  | /// this mapping from within the instantiation of <tt>X<int></tt>. | 
|  | NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, | 
|  | const MultiLevelTemplateArgumentList &TemplateArgs, | 
|  | bool FindingInstantiatedContext) { | 
|  | DeclContext *ParentDC = D->getDeclContext(); | 
|  | // FIXME: Parmeters of pointer to functions (y below) that are themselves | 
|  | // parameters (p below) can have their ParentDC set to the translation-unit | 
|  | // - thus we can not consistently check if the ParentDC of such a parameter | 
|  | // is Dependent or/and a FunctionOrMethod. | 
|  | // For e.g. this code, during Template argument deduction tries to | 
|  | // find an instantiated decl for (T y) when the ParentDC for y is | 
|  | // the translation unit. | 
|  | //   e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {} | 
|  | //   float baz(float(*)()) { return 0.0; } | 
|  | //   Foo(baz); | 
|  | // The better fix here is perhaps to ensure that a ParmVarDecl, by the time | 
|  | // it gets here, always has a FunctionOrMethod as its ParentDC?? | 
|  | // For now: | 
|  | //  - as long as we have a ParmVarDecl whose parent is non-dependent and | 
|  | //    whose type is not instantiation dependent, do nothing to the decl | 
|  | //  - otherwise find its instantiated decl. | 
|  | if (isa<ParmVarDecl>(D) && !ParentDC->isDependentContext() && | 
|  | !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType()) | 
|  | return D; | 
|  | if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) || | 
|  | isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) || | 
|  | (ParentDC->isFunctionOrMethod() && ParentDC->isDependentContext()) || | 
|  | (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda())) { | 
|  | // D is a local of some kind. Look into the map of local | 
|  | // declarations to their instantiations. | 
|  | if (CurrentInstantiationScope) { | 
|  | if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) { | 
|  | if (Decl *FD = Found->dyn_cast<Decl *>()) | 
|  | return cast<NamedDecl>(FD); | 
|  |  | 
|  | int PackIdx = ArgumentPackSubstitutionIndex; | 
|  | assert(PackIdx != -1 && | 
|  | "found declaration pack but not pack expanding"); | 
|  | typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack; | 
|  | return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we're performing a partial substitution during template argument | 
|  | // deduction, we may not have values for template parameters yet. They | 
|  | // just map to themselves. | 
|  | if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) || | 
|  | isa<TemplateTemplateParmDecl>(D)) | 
|  | return D; | 
|  |  | 
|  | if (D->isInvalidDecl()) | 
|  | return nullptr; | 
|  |  | 
|  | // Normally this function only searches for already instantiated declaration | 
|  | // however we have to make an exclusion for local types used before | 
|  | // definition as in the code: | 
|  | // | 
|  | //   template<typename T> void f1() { | 
|  | //     void g1(struct x1); | 
|  | //     struct x1 {}; | 
|  | //   } | 
|  | // | 
|  | // In this case instantiation of the type of 'g1' requires definition of | 
|  | // 'x1', which is defined later. Error recovery may produce an enum used | 
|  | // before definition. In these cases we need to instantiate relevant | 
|  | // declarations here. | 
|  | bool NeedInstantiate = false; | 
|  | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) | 
|  | NeedInstantiate = RD->isLocalClass(); | 
|  | else | 
|  | NeedInstantiate = isa<EnumDecl>(D); | 
|  | if (NeedInstantiate) { | 
|  | Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); | 
|  | CurrentInstantiationScope->InstantiatedLocal(D, Inst); | 
|  | return cast<TypeDecl>(Inst); | 
|  | } | 
|  |  | 
|  | // If we didn't find the decl, then we must have a label decl that hasn't | 
|  | // been found yet.  Lazily instantiate it and return it now. | 
|  | assert(isa<LabelDecl>(D)); | 
|  |  | 
|  | Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); | 
|  | assert(Inst && "Failed to instantiate label??"); | 
|  |  | 
|  | CurrentInstantiationScope->InstantiatedLocal(D, Inst); | 
|  | return cast<LabelDecl>(Inst); | 
|  | } | 
|  |  | 
|  | // For variable template specializations, update those that are still | 
|  | // type-dependent. | 
|  | if (VarTemplateSpecializationDecl *VarSpec = | 
|  | dyn_cast<VarTemplateSpecializationDecl>(D)) { | 
|  | bool InstantiationDependent = false; | 
|  | const TemplateArgumentListInfo &VarTemplateArgs = | 
|  | VarSpec->getTemplateArgsInfo(); | 
|  | if (TemplateSpecializationType::anyDependentTemplateArguments( | 
|  | VarTemplateArgs, InstantiationDependent)) | 
|  | D = cast<NamedDecl>( | 
|  | SubstDecl(D, VarSpec->getDeclContext(), TemplateArgs)); | 
|  | return D; | 
|  | } | 
|  |  | 
|  | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { | 
|  | if (!Record->isDependentContext()) | 
|  | return D; | 
|  |  | 
|  | // Determine whether this record is the "templated" declaration describing | 
|  | // a class template or class template partial specialization. | 
|  | ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate(); | 
|  | if (ClassTemplate) | 
|  | ClassTemplate = ClassTemplate->getCanonicalDecl(); | 
|  | else if (ClassTemplatePartialSpecializationDecl *PartialSpec | 
|  | = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) | 
|  | ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl(); | 
|  |  | 
|  | // Walk the current context to find either the record or an instantiation of | 
|  | // it. | 
|  | DeclContext *DC = CurContext; | 
|  | while (!DC->isFileContext()) { | 
|  | // If we're performing substitution while we're inside the template | 
|  | // definition, we'll find our own context. We're done. | 
|  | if (DC->Equals(Record)) | 
|  | return Record; | 
|  |  | 
|  | if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) { | 
|  | // Check whether we're in the process of instantiating a class template | 
|  | // specialization of the template we're mapping. | 
|  | if (ClassTemplateSpecializationDecl *InstSpec | 
|  | = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){ | 
|  | ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate(); | 
|  | if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate)) | 
|  | return InstRecord; | 
|  | } | 
|  |  | 
|  | // Check whether we're in the process of instantiating a member class. | 
|  | if (isInstantiationOf(Record, InstRecord)) | 
|  | return InstRecord; | 
|  | } | 
|  |  | 
|  | // Move to the outer template scope. | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) { | 
|  | if (FD->getFriendObjectKind() && FD->getDeclContext()->isFileContext()){ | 
|  | DC = FD->getLexicalDeclContext(); | 
|  | continue; | 
|  | } | 
|  | // An implicit deduction guide acts as if it's within the class template | 
|  | // specialization described by its name and first N template params. | 
|  | auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD); | 
|  | if (Guide && Guide->isImplicit()) { | 
|  | TemplateDecl *TD = Guide->getDeducedTemplate(); | 
|  | // Convert the arguments to an "as-written" list. | 
|  | TemplateArgumentListInfo Args(Loc, Loc); | 
|  | for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front( | 
|  | TD->getTemplateParameters()->size())) { | 
|  | ArrayRef<TemplateArgument> Unpacked(Arg); | 
|  | if (Arg.getKind() == TemplateArgument::Pack) | 
|  | Unpacked = Arg.pack_elements(); | 
|  | for (TemplateArgument UnpackedArg : Unpacked) | 
|  | Args.addArgument( | 
|  | getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc)); | 
|  | } | 
|  | QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args); | 
|  | if (T.isNull()) | 
|  | return nullptr; | 
|  | auto *SubstRecord = T->getAsCXXRecordDecl(); | 
|  | assert(SubstRecord && "class template id not a class type?"); | 
|  | // Check that this template-id names the primary template and not a | 
|  | // partial or explicit specialization. (In the latter cases, it's | 
|  | // meaningless to attempt to find an instantiation of D within the | 
|  | // specialization.) | 
|  | // FIXME: The standard doesn't say what should happen here. | 
|  | if (FindingInstantiatedContext && | 
|  | usesPartialOrExplicitSpecialization( | 
|  | Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) { | 
|  | Diag(Loc, diag::err_specialization_not_primary_template) | 
|  | << T << (SubstRecord->getTemplateSpecializationKind() == | 
|  | TSK_ExplicitSpecialization); | 
|  | return nullptr; | 
|  | } | 
|  | DC = SubstRecord; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | DC = DC->getParent(); | 
|  | } | 
|  |  | 
|  | // Fall through to deal with other dependent record types (e.g., | 
|  | // anonymous unions in class templates). | 
|  | } | 
|  |  | 
|  | if (!ParentDC->isDependentContext()) | 
|  | return D; | 
|  |  | 
|  | ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs); | 
|  | if (!ParentDC) | 
|  | return nullptr; | 
|  |  | 
|  | if (ParentDC != D->getDeclContext()) { | 
|  | // We performed some kind of instantiation in the parent context, | 
|  | // so now we need to look into the instantiated parent context to | 
|  | // find the instantiation of the declaration D. | 
|  |  | 
|  | // If our context used to be dependent, we may need to instantiate | 
|  | // it before performing lookup into that context. | 
|  | bool IsBeingInstantiated = false; | 
|  | if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) { | 
|  | if (!Spec->isDependentContext()) { | 
|  | QualType T = Context.getTypeDeclType(Spec); | 
|  | const RecordType *Tag = T->getAs<RecordType>(); | 
|  | assert(Tag && "type of non-dependent record is not a RecordType"); | 
|  | if (Tag->isBeingDefined()) | 
|  | IsBeingInstantiated = true; | 
|  | if (!Tag->isBeingDefined() && | 
|  | RequireCompleteType(Loc, T, diag::err_incomplete_type)) | 
|  | return nullptr; | 
|  |  | 
|  | ParentDC = Tag->getDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | NamedDecl *Result = nullptr; | 
|  | // FIXME: If the name is a dependent name, this lookup won't necessarily | 
|  | // find it. Does that ever matter? | 
|  | if (auto Name = D->getDeclName()) { | 
|  | DeclarationNameInfo NameInfo(Name, D->getLocation()); | 
|  | Name = SubstDeclarationNameInfo(NameInfo, TemplateArgs).getName(); | 
|  | if (!Name) | 
|  | return nullptr; | 
|  | DeclContext::lookup_result Found = ParentDC->lookup(Name); | 
|  | Result = findInstantiationOf(Context, D, Found.begin(), Found.end()); | 
|  | } else { | 
|  | // Since we don't have a name for the entity we're looking for, | 
|  | // our only option is to walk through all of the declarations to | 
|  | // find that name. This will occur in a few cases: | 
|  | // | 
|  | //   - anonymous struct/union within a template | 
|  | //   - unnamed class/struct/union/enum within a template | 
|  | // | 
|  | // FIXME: Find a better way to find these instantiations! | 
|  | Result = findInstantiationOf(Context, D, | 
|  | ParentDC->decls_begin(), | 
|  | ParentDC->decls_end()); | 
|  | } | 
|  |  | 
|  | if (!Result) { | 
|  | if (isa<UsingShadowDecl>(D)) { | 
|  | // UsingShadowDecls can instantiate to nothing because of using hiding. | 
|  | } else if (Diags.hasErrorOccurred()) { | 
|  | // We've already complained about something, so most likely this | 
|  | // declaration failed to instantiate. There's no point in complaining | 
|  | // further, since this is normal in invalid code. | 
|  | } else if (IsBeingInstantiated) { | 
|  | // The class in which this member exists is currently being | 
|  | // instantiated, and we haven't gotten around to instantiating this | 
|  | // member yet. This can happen when the code uses forward declarations | 
|  | // of member classes, and introduces ordering dependencies via | 
|  | // template instantiation. | 
|  | Diag(Loc, diag::err_member_not_yet_instantiated) | 
|  | << D->getDeclName() | 
|  | << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC)); | 
|  | Diag(D->getLocation(), diag::note_non_instantiated_member_here); | 
|  | } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) { | 
|  | // This enumeration constant was found when the template was defined, | 
|  | // but can't be found in the instantiation. This can happen if an | 
|  | // unscoped enumeration member is explicitly specialized. | 
|  | EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext()); | 
|  | EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum, | 
|  | TemplateArgs)); | 
|  | assert(Spec->getTemplateSpecializationKind() == | 
|  | TSK_ExplicitSpecialization); | 
|  | Diag(Loc, diag::err_enumerator_does_not_exist) | 
|  | << D->getDeclName() | 
|  | << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext())); | 
|  | Diag(Spec->getLocation(), diag::note_enum_specialized_here) | 
|  | << Context.getTypeDeclType(Spec); | 
|  | } else { | 
|  | // We should have found something, but didn't. | 
|  | llvm_unreachable("Unable to find instantiation of declaration!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | D = Result; | 
|  | } | 
|  |  | 
|  | return D; | 
|  | } | 
|  |  | 
|  | /// \brief Performs template instantiation for all implicit template | 
|  | /// instantiations we have seen until this point. | 
|  | void Sema::PerformPendingInstantiations(bool LocalOnly) { | 
|  | while (!PendingLocalImplicitInstantiations.empty() || | 
|  | (!LocalOnly && !PendingInstantiations.empty())) { | 
|  | PendingImplicitInstantiation Inst; | 
|  |  | 
|  | if (PendingLocalImplicitInstantiations.empty()) { | 
|  | Inst = PendingInstantiations.front(); | 
|  | PendingInstantiations.pop_front(); | 
|  | } else { | 
|  | Inst = PendingLocalImplicitInstantiations.front(); | 
|  | PendingLocalImplicitInstantiations.pop_front(); | 
|  | } | 
|  |  | 
|  | // Instantiate function definitions | 
|  | if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) { | 
|  | bool DefinitionRequired = Function->getTemplateSpecializationKind() == | 
|  | TSK_ExplicitInstantiationDefinition; | 
|  | InstantiateFunctionDefinition(/*FIXME:*/Inst.second, Function, true, | 
|  | DefinitionRequired, true); | 
|  | if (Function->isDefined()) | 
|  | Function->setInstantiationIsPending(false); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Instantiate variable definitions | 
|  | VarDecl *Var = cast<VarDecl>(Inst.first); | 
|  |  | 
|  | assert((Var->isStaticDataMember() || | 
|  | isa<VarTemplateSpecializationDecl>(Var)) && | 
|  | "Not a static data member, nor a variable template" | 
|  | " specialization?"); | 
|  |  | 
|  | // Don't try to instantiate declarations if the most recent redeclaration | 
|  | // is invalid. | 
|  | if (Var->getMostRecentDecl()->isInvalidDecl()) | 
|  | continue; | 
|  |  | 
|  | // Check if the most recent declaration has changed the specialization kind | 
|  | // and removed the need for implicit instantiation. | 
|  | switch (Var->getMostRecentDecl()->getTemplateSpecializationKind()) { | 
|  | case TSK_Undeclared: | 
|  | llvm_unreachable("Cannot instantitiate an undeclared specialization."); | 
|  | case TSK_ExplicitInstantiationDeclaration: | 
|  | case TSK_ExplicitSpecialization: | 
|  | continue;  // No longer need to instantiate this type. | 
|  | case TSK_ExplicitInstantiationDefinition: | 
|  | // We only need an instantiation if the pending instantiation *is* the | 
|  | // explicit instantiation. | 
|  | if (Var != Var->getMostRecentDecl()) continue; | 
|  | case TSK_ImplicitInstantiation: | 
|  | break; | 
|  | } | 
|  |  | 
|  | PrettyDeclStackTraceEntry CrashInfo(*this, Var, SourceLocation(), | 
|  | "instantiating variable definition"); | 
|  | bool DefinitionRequired = Var->getTemplateSpecializationKind() == | 
|  | TSK_ExplicitInstantiationDefinition; | 
|  |  | 
|  | // Instantiate static data member definitions or variable template | 
|  | // specializations. | 
|  | InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true, | 
|  | DefinitionRequired, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::PerformDependentDiagnostics(const DeclContext *Pattern, | 
|  | const MultiLevelTemplateArgumentList &TemplateArgs) { | 
|  | for (auto DD : Pattern->ddiags()) { | 
|  | switch (DD->getKind()) { | 
|  | case DependentDiagnostic::Access: | 
|  | HandleDependentAccessCheck(*DD, TemplateArgs); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } |