|  | //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the visit functions for load, store and alloca. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombineInternal.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "instcombine" | 
|  |  | 
|  | STATISTIC(NumDeadStore,    "Number of dead stores eliminated"); | 
|  | STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); | 
|  |  | 
|  | /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to | 
|  | /// some part of a constant global variable.  This intentionally only accepts | 
|  | /// constant expressions because we can't rewrite arbitrary instructions. | 
|  | static bool pointsToConstantGlobal(Value *V) { | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) | 
|  | return GV->isConstant(); | 
|  |  | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | if (CE->getOpcode() == Instruction::BitCast || | 
|  | CE->getOpcode() == Instruction::AddrSpaceCast || | 
|  | CE->getOpcode() == Instruction::GetElementPtr) | 
|  | return pointsToConstantGlobal(CE->getOperand(0)); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) | 
|  | /// pointer to an alloca.  Ignore any reads of the pointer, return false if we | 
|  | /// see any stores or other unknown uses.  If we see pointer arithmetic, keep | 
|  | /// track of whether it moves the pointer (with IsOffset) but otherwise traverse | 
|  | /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to | 
|  | /// the alloca, and if the source pointer is a pointer to a constant global, we | 
|  | /// can optimize this. | 
|  | static bool | 
|  | isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, | 
|  | SmallVectorImpl<Instruction *> &ToDelete) { | 
|  | // We track lifetime intrinsics as we encounter them.  If we decide to go | 
|  | // ahead and replace the value with the global, this lets the caller quickly | 
|  | // eliminate the markers. | 
|  |  | 
|  | SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; | 
|  | ValuesToInspect.push_back(std::make_pair(V, false)); | 
|  | while (!ValuesToInspect.empty()) { | 
|  | auto ValuePair = ValuesToInspect.pop_back_val(); | 
|  | const bool IsOffset = ValuePair.second; | 
|  | for (auto &U : ValuePair.first->uses()) { | 
|  | Instruction *I = cast<Instruction>(U.getUser()); | 
|  |  | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | // Ignore non-volatile loads, they are always ok. | 
|  | if (!LI->isSimple()) return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { | 
|  | // If uses of the bitcast are ok, we are ok. | 
|  | ValuesToInspect.push_back(std::make_pair(I, IsOffset)); | 
|  | continue; | 
|  | } | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { | 
|  | // If the GEP has all zero indices, it doesn't offset the pointer. If it | 
|  | // doesn't, it does. | 
|  | ValuesToInspect.push_back( | 
|  | std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices())); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (auto CS = CallSite(I)) { | 
|  | // If this is the function being called then we treat it like a load and | 
|  | // ignore it. | 
|  | if (CS.isCallee(&U)) | 
|  | continue; | 
|  |  | 
|  | // Inalloca arguments are clobbered by the call. | 
|  | unsigned ArgNo = CS.getArgumentNo(&U); | 
|  | if (CS.isInAllocaArgument(ArgNo)) | 
|  | return false; | 
|  |  | 
|  | // If this is a readonly/readnone call site, then we know it is just a | 
|  | // load (but one that potentially returns the value itself), so we can | 
|  | // ignore it if we know that the value isn't captured. | 
|  | if (CS.onlyReadsMemory() && | 
|  | (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo))) | 
|  | continue; | 
|  |  | 
|  | // If this is being passed as a byval argument, the caller is making a | 
|  | // copy, so it is only a read of the alloca. | 
|  | if (CS.isByValArgument(ArgNo)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Lifetime intrinsics can be handled by the caller. | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | if (II->getIntrinsicID() == Intrinsic::lifetime_start || | 
|  | II->getIntrinsicID() == Intrinsic::lifetime_end) { | 
|  | assert(II->use_empty() && "Lifetime markers have no result to use!"); | 
|  | ToDelete.push_back(II); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is isn't our memcpy/memmove, reject it as something we can't | 
|  | // handle. | 
|  | MemTransferInst *MI = dyn_cast<MemTransferInst>(I); | 
|  | if (!MI) | 
|  | return false; | 
|  |  | 
|  | // If the transfer is using the alloca as a source of the transfer, then | 
|  | // ignore it since it is a load (unless the transfer is volatile). | 
|  | if (U.getOperandNo() == 1) { | 
|  | if (MI->isVolatile()) return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we already have seen a copy, reject the second one. | 
|  | if (TheCopy) return false; | 
|  |  | 
|  | // If the pointer has been offset from the start of the alloca, we can't | 
|  | // safely handle this. | 
|  | if (IsOffset) return false; | 
|  |  | 
|  | // If the memintrinsic isn't using the alloca as the dest, reject it. | 
|  | if (U.getOperandNo() != 0) return false; | 
|  |  | 
|  | // If the source of the memcpy/move is not a constant global, reject it. | 
|  | if (!pointsToConstantGlobal(MI->getSource())) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, the transform is safe.  Remember the copy instruction. | 
|  | TheCopy = MI; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only | 
|  | /// modified by a copy from a constant global.  If we can prove this, we can | 
|  | /// replace any uses of the alloca with uses of the global directly. | 
|  | static MemTransferInst * | 
|  | isOnlyCopiedFromConstantGlobal(AllocaInst *AI, | 
|  | SmallVectorImpl<Instruction *> &ToDelete) { | 
|  | MemTransferInst *TheCopy = nullptr; | 
|  | if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) | 
|  | return TheCopy; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { | 
|  | // Check for array size of 1 (scalar allocation). | 
|  | if (!AI.isArrayAllocation()) { | 
|  | // i32 1 is the canonical array size for scalar allocations. | 
|  | if (AI.getArraySize()->getType()->isIntegerTy(32)) | 
|  | return nullptr; | 
|  |  | 
|  | // Canonicalize it. | 
|  | Value *V = IC.Builder->getInt32(1); | 
|  | AI.setOperand(0, V); | 
|  | return &AI; | 
|  | } | 
|  |  | 
|  | // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 | 
|  | if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { | 
|  | Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); | 
|  | AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName()); | 
|  | New->setAlignment(AI.getAlignment()); | 
|  |  | 
|  | // Scan to the end of the allocation instructions, to skip over a block of | 
|  | // allocas if possible...also skip interleaved debug info | 
|  | // | 
|  | BasicBlock::iterator It = New; | 
|  | while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) | 
|  | ++It; | 
|  |  | 
|  | // Now that I is pointing to the first non-allocation-inst in the block, | 
|  | // insert our getelementptr instruction... | 
|  | // | 
|  | Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); | 
|  | Value *NullIdx = Constant::getNullValue(IdxTy); | 
|  | Value *Idx[2] = {NullIdx, NullIdx}; | 
|  | Instruction *GEP = | 
|  | GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); | 
|  | IC.InsertNewInstBefore(GEP, *It); | 
|  |  | 
|  | // Now make everything use the getelementptr instead of the original | 
|  | // allocation. | 
|  | return IC.ReplaceInstUsesWith(AI, GEP); | 
|  | } | 
|  |  | 
|  | if (isa<UndefValue>(AI.getArraySize())) | 
|  | return IC.ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); | 
|  |  | 
|  | // Ensure that the alloca array size argument has type intptr_t, so that | 
|  | // any casting is exposed early. | 
|  | Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); | 
|  | if (AI.getArraySize()->getType() != IntPtrTy) { | 
|  | Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false); | 
|  | AI.setOperand(0, V); | 
|  | return &AI; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { | 
|  | if (auto *I = simplifyAllocaArraySize(*this, AI)) | 
|  | return I; | 
|  |  | 
|  | if (AI.getAllocatedType()->isSized()) { | 
|  | // If the alignment is 0 (unspecified), assign it the preferred alignment. | 
|  | if (AI.getAlignment() == 0) | 
|  | AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); | 
|  |  | 
|  | // Move all alloca's of zero byte objects to the entry block and merge them | 
|  | // together.  Note that we only do this for alloca's, because malloc should | 
|  | // allocate and return a unique pointer, even for a zero byte allocation. | 
|  | if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { | 
|  | // For a zero sized alloca there is no point in doing an array allocation. | 
|  | // This is helpful if the array size is a complicated expression not used | 
|  | // elsewhere. | 
|  | if (AI.isArrayAllocation()) { | 
|  | AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); | 
|  | return &AI; | 
|  | } | 
|  |  | 
|  | // Get the first instruction in the entry block. | 
|  | BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); | 
|  | Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); | 
|  | if (FirstInst != &AI) { | 
|  | // If the entry block doesn't start with a zero-size alloca then move | 
|  | // this one to the start of the entry block.  There is no problem with | 
|  | // dominance as the array size was forced to a constant earlier already. | 
|  | AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); | 
|  | if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || | 
|  | DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { | 
|  | AI.moveBefore(FirstInst); | 
|  | return &AI; | 
|  | } | 
|  |  | 
|  | // If the alignment of the entry block alloca is 0 (unspecified), | 
|  | // assign it the preferred alignment. | 
|  | if (EntryAI->getAlignment() == 0) | 
|  | EntryAI->setAlignment( | 
|  | DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); | 
|  | // Replace this zero-sized alloca with the one at the start of the entry | 
|  | // block after ensuring that the address will be aligned enough for both | 
|  | // types. | 
|  | unsigned MaxAlign = std::max(EntryAI->getAlignment(), | 
|  | AI.getAlignment()); | 
|  | EntryAI->setAlignment(MaxAlign); | 
|  | if (AI.getType() != EntryAI->getType()) | 
|  | return new BitCastInst(EntryAI, AI.getType()); | 
|  | return ReplaceInstUsesWith(AI, EntryAI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AI.getAlignment()) { | 
|  | // Check to see if this allocation is only modified by a memcpy/memmove from | 
|  | // a constant global whose alignment is equal to or exceeds that of the | 
|  | // allocation.  If this is the case, we can change all users to use | 
|  | // the constant global instead.  This is commonly produced by the CFE by | 
|  | // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' | 
|  | // is only subsequently read. | 
|  | SmallVector<Instruction *, 4> ToDelete; | 
|  | if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { | 
|  | unsigned SourceAlign = getOrEnforceKnownAlignment( | 
|  | Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT); | 
|  | if (AI.getAlignment() <= SourceAlign) { | 
|  | DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); | 
|  | DEBUG(dbgs() << "  memcpy = " << *Copy << '\n'); | 
|  | for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) | 
|  | EraseInstFromFunction(*ToDelete[i]); | 
|  | Constant *TheSrc = cast<Constant>(Copy->getSource()); | 
|  | Constant *Cast | 
|  | = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType()); | 
|  | Instruction *NewI = ReplaceInstUsesWith(AI, Cast); | 
|  | EraseInstFromFunction(*Copy); | 
|  | ++NumGlobalCopies; | 
|  | return NewI; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // At last, use the generic allocation site handler to aggressively remove | 
|  | // unused allocas. | 
|  | return visitAllocSite(AI); | 
|  | } | 
|  |  | 
|  | /// \brief Helper to combine a load to a new type. | 
|  | /// | 
|  | /// This just does the work of combining a load to a new type. It handles | 
|  | /// metadata, etc., and returns the new instruction. The \c NewTy should be the | 
|  | /// loaded *value* type. This will convert it to a pointer, cast the operand to | 
|  | /// that pointer type, load it, etc. | 
|  | /// | 
|  | /// Note that this will create all of the instructions with whatever insert | 
|  | /// point the \c InstCombiner currently is using. | 
|  | static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, | 
|  | const Twine &Suffix = "") { | 
|  | Value *Ptr = LI.getPointerOperand(); | 
|  | unsigned AS = LI.getPointerAddressSpace(); | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 8> MD; | 
|  | LI.getAllMetadata(MD); | 
|  |  | 
|  | LoadInst *NewLoad = IC.Builder->CreateAlignedLoad( | 
|  | IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)), | 
|  | LI.getAlignment(), LI.getName() + Suffix); | 
|  | MDBuilder MDB(NewLoad->getContext()); | 
|  | for (const auto &MDPair : MD) { | 
|  | unsigned ID = MDPair.first; | 
|  | MDNode *N = MDPair.second; | 
|  | // Note, essentially every kind of metadata should be preserved here! This | 
|  | // routine is supposed to clone a load instruction changing *only its type*. | 
|  | // The only metadata it makes sense to drop is metadata which is invalidated | 
|  | // when the pointer type changes. This should essentially never be the case | 
|  | // in LLVM, but we explicitly switch over only known metadata to be | 
|  | // conservatively correct. If you are adding metadata to LLVM which pertains | 
|  | // to loads, you almost certainly want to add it here. | 
|  | switch (ID) { | 
|  | case LLVMContext::MD_dbg: | 
|  | case LLVMContext::MD_tbaa: | 
|  | case LLVMContext::MD_prof: | 
|  | case LLVMContext::MD_fpmath: | 
|  | case LLVMContext::MD_tbaa_struct: | 
|  | case LLVMContext::MD_invariant_load: | 
|  | case LLVMContext::MD_alias_scope: | 
|  | case LLVMContext::MD_noalias: | 
|  | case LLVMContext::MD_nontemporal: | 
|  | case LLVMContext::MD_mem_parallel_loop_access: | 
|  | // All of these directly apply. | 
|  | NewLoad->setMetadata(ID, N); | 
|  | break; | 
|  |  | 
|  | case LLVMContext::MD_nonnull: | 
|  | // This only directly applies if the new type is also a pointer. | 
|  | if (NewTy->isPointerTy()) { | 
|  | NewLoad->setMetadata(ID, N); | 
|  | break; | 
|  | } | 
|  | // If it's integral now, translate it to !range metadata. | 
|  | if (NewTy->isIntegerTy()) { | 
|  | auto *ITy = cast<IntegerType>(NewTy); | 
|  | auto *NullInt = ConstantExpr::getPtrToInt( | 
|  | ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); | 
|  | auto *NonNullInt = | 
|  | ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); | 
|  | NewLoad->setMetadata(LLVMContext::MD_range, | 
|  | MDB.createRange(NonNullInt, NullInt)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case LLVMContext::MD_range: | 
|  | // FIXME: It would be nice to propagate this in some way, but the type | 
|  | // conversions make it hard. If the new type is a pointer, we could | 
|  | // translate it to !nonnull metadata. | 
|  | break; | 
|  | } | 
|  | } | 
|  | return NewLoad; | 
|  | } | 
|  |  | 
|  | /// \brief Combine a store to a new type. | 
|  | /// | 
|  | /// Returns the newly created store instruction. | 
|  | static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { | 
|  | Value *Ptr = SI.getPointerOperand(); | 
|  | unsigned AS = SI.getPointerAddressSpace(); | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 8> MD; | 
|  | SI.getAllMetadata(MD); | 
|  |  | 
|  | StoreInst *NewStore = IC.Builder->CreateAlignedStore( | 
|  | V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), | 
|  | SI.getAlignment()); | 
|  | for (const auto &MDPair : MD) { | 
|  | unsigned ID = MDPair.first; | 
|  | MDNode *N = MDPair.second; | 
|  | // Note, essentially every kind of metadata should be preserved here! This | 
|  | // routine is supposed to clone a store instruction changing *only its | 
|  | // type*. The only metadata it makes sense to drop is metadata which is | 
|  | // invalidated when the pointer type changes. This should essentially | 
|  | // never be the case in LLVM, but we explicitly switch over only known | 
|  | // metadata to be conservatively correct. If you are adding metadata to | 
|  | // LLVM which pertains to stores, you almost certainly want to add it | 
|  | // here. | 
|  | switch (ID) { | 
|  | case LLVMContext::MD_dbg: | 
|  | case LLVMContext::MD_tbaa: | 
|  | case LLVMContext::MD_prof: | 
|  | case LLVMContext::MD_fpmath: | 
|  | case LLVMContext::MD_tbaa_struct: | 
|  | case LLVMContext::MD_alias_scope: | 
|  | case LLVMContext::MD_noalias: | 
|  | case LLVMContext::MD_nontemporal: | 
|  | case LLVMContext::MD_mem_parallel_loop_access: | 
|  | // All of these directly apply. | 
|  | NewStore->setMetadata(ID, N); | 
|  | break; | 
|  |  | 
|  | case LLVMContext::MD_invariant_load: | 
|  | case LLVMContext::MD_nonnull: | 
|  | case LLVMContext::MD_range: | 
|  | // These don't apply for stores. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NewStore; | 
|  | } | 
|  |  | 
|  | /// \brief Combine loads to match the type of value their uses after looking | 
|  | /// through intervening bitcasts. | 
|  | /// | 
|  | /// The core idea here is that if the result of a load is used in an operation, | 
|  | /// we should load the type most conducive to that operation. For example, when | 
|  | /// loading an integer and converting that immediately to a pointer, we should | 
|  | /// instead directly load a pointer. | 
|  | /// | 
|  | /// However, this routine must never change the width of a load or the number of | 
|  | /// loads as that would introduce a semantic change. This combine is expected to | 
|  | /// be a semantic no-op which just allows loads to more closely model the types | 
|  | /// of their consuming operations. | 
|  | /// | 
|  | /// Currently, we also refuse to change the precise type used for an atomic load | 
|  | /// or a volatile load. This is debatable, and might be reasonable to change | 
|  | /// later. However, it is risky in case some backend or other part of LLVM is | 
|  | /// relying on the exact type loaded to select appropriate atomic operations. | 
|  | static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { | 
|  | // FIXME: We could probably with some care handle both volatile and atomic | 
|  | // loads here but it isn't clear that this is important. | 
|  | if (!LI.isSimple()) | 
|  | return nullptr; | 
|  |  | 
|  | if (LI.use_empty()) | 
|  | return nullptr; | 
|  |  | 
|  | Type *Ty = LI.getType(); | 
|  | const DataLayout &DL = IC.getDataLayout(); | 
|  |  | 
|  | // Try to canonicalize loads which are only ever stored to operate over | 
|  | // integers instead of any other type. We only do this when the loaded type | 
|  | // is sized and has a size exactly the same as its store size and the store | 
|  | // size is a legal integer type. | 
|  | if (!Ty->isIntegerTy() && Ty->isSized() && | 
|  | DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && | 
|  | DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) { | 
|  | if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) { | 
|  | auto *SI = dyn_cast<StoreInst>(U); | 
|  | return SI && SI->getPointerOperand() != &LI; | 
|  | })) { | 
|  | LoadInst *NewLoad = combineLoadToNewType( | 
|  | IC, LI, | 
|  | Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); | 
|  | // Replace all the stores with stores of the newly loaded value. | 
|  | for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { | 
|  | auto *SI = cast<StoreInst>(*UI++); | 
|  | IC.Builder->SetInsertPoint(SI); | 
|  | combineStoreToNewValue(IC, *SI, NewLoad); | 
|  | IC.EraseInstFromFunction(*SI); | 
|  | } | 
|  | assert(LI.use_empty() && "Failed to remove all users of the load!"); | 
|  | // Return the old load so the combiner can delete it safely. | 
|  | return &LI; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold away bit casts of the loaded value by loading the desired type. | 
|  | // We can do this for BitCastInsts as well as casts from and to pointer types, | 
|  | // as long as those are noops (i.e., the source or dest type have the same | 
|  | // bitwidth as the target's pointers). | 
|  | if (LI.hasOneUse()) | 
|  | if (auto* CI = dyn_cast<CastInst>(LI.user_back())) { | 
|  | if (CI->isNoopCast(DL)) { | 
|  | LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); | 
|  | CI->replaceAllUsesWith(NewLoad); | 
|  | IC.EraseInstFromFunction(*CI); | 
|  | return &LI; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: We should also canonicalize loads of vectors when their elements are | 
|  | // cast to other types. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { | 
|  | // FIXME: We could probably with some care handle both volatile and atomic | 
|  | // stores here but it isn't clear that this is important. | 
|  | if (!LI.isSimple()) | 
|  | return nullptr; | 
|  |  | 
|  | Type *T = LI.getType(); | 
|  | if (!T->isAggregateType()) | 
|  | return nullptr; | 
|  |  | 
|  | assert(LI.getAlignment() && "Alignement must be set at this point"); | 
|  |  | 
|  | if (auto *ST = dyn_cast<StructType>(T)) { | 
|  | // If the struct only have one element, we unpack. | 
|  | if (ST->getNumElements() == 1) { | 
|  | LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), | 
|  | ".unpack"); | 
|  | return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue( | 
|  | UndefValue::get(T), NewLoad, 0, LI.getName())); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *AT = dyn_cast<ArrayType>(T)) { | 
|  | // If the array only have one element, we unpack. | 
|  | if (AT->getNumElements() == 1) { | 
|  | LoadInst *NewLoad = combineLoadToNewType(IC, LI, AT->getElementType(), | 
|  | ".unpack"); | 
|  | return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue( | 
|  | UndefValue::get(T), NewLoad, 0, LI.getName())); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If we can determine that all possible objects pointed to by the provided | 
|  | // pointer value are, not only dereferenceable, but also definitively less than | 
|  | // or equal to the provided maximum size, then return true. Otherwise, return | 
|  | // false (constant global values and allocas fall into this category). | 
|  | // | 
|  | // FIXME: This should probably live in ValueTracking (or similar). | 
|  | static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, | 
|  | const DataLayout &DL) { | 
|  | SmallPtrSet<Value *, 4> Visited; | 
|  | SmallVector<Value *, 4> Worklist(1, V); | 
|  |  | 
|  | do { | 
|  | Value *P = Worklist.pop_back_val(); | 
|  | P = P->stripPointerCasts(); | 
|  |  | 
|  | if (!Visited.insert(P).second) | 
|  | continue; | 
|  |  | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(P)) { | 
|  | Worklist.push_back(SI->getTrueValue()); | 
|  | Worklist.push_back(SI->getFalseValue()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (PHINode *PN = dyn_cast<PHINode>(P)) { | 
|  | for (Value *IncValue : PN->incoming_values()) | 
|  | Worklist.push_back(IncValue); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { | 
|  | if (GA->mayBeOverridden()) | 
|  | return false; | 
|  | Worklist.push_back(GA->getAliasee()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we know how big this object is, and it is less than MaxSize, continue | 
|  | // searching. Otherwise, return false. | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { | 
|  | if (!AI->getAllocatedType()->isSized()) | 
|  | return false; | 
|  |  | 
|  | ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); | 
|  | if (!CS) | 
|  | return false; | 
|  |  | 
|  | uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); | 
|  | // Make sure that, even if the multiplication below would wrap as an | 
|  | // uint64_t, we still do the right thing. | 
|  | if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { | 
|  | if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) | 
|  | return false; | 
|  |  | 
|  | uint64_t InitSize = DL.getTypeAllocSize(GV->getType()->getElementType()); | 
|  | if (InitSize > MaxSize) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } while (!Worklist.empty()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we're indexing into an object of a known size, and the outer index is | 
|  | // not a constant, but having any value but zero would lead to undefined | 
|  | // behavior, replace it with zero. | 
|  | // | 
|  | // For example, if we have: | 
|  | // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 | 
|  | // ... | 
|  | // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x | 
|  | // ... = load i32* %arrayidx, align 4 | 
|  | // Then we know that we can replace %x in the GEP with i64 0. | 
|  | // | 
|  | // FIXME: We could fold any GEP index to zero that would cause UB if it were | 
|  | // not zero. Currently, we only handle the first such index. Also, we could | 
|  | // also search through non-zero constant indices if we kept track of the | 
|  | // offsets those indices implied. | 
|  | static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, | 
|  | Instruction *MemI, unsigned &Idx) { | 
|  | if (GEPI->getNumOperands() < 2) | 
|  | return false; | 
|  |  | 
|  | // Find the first non-zero index of a GEP. If all indices are zero, return | 
|  | // one past the last index. | 
|  | auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { | 
|  | unsigned I = 1; | 
|  | for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { | 
|  | Value *V = GEPI->getOperand(I); | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) | 
|  | if (CI->isZero()) | 
|  | continue; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return I; | 
|  | }; | 
|  |  | 
|  | // Skip through initial 'zero' indices, and find the corresponding pointer | 
|  | // type. See if the next index is not a constant. | 
|  | Idx = FirstNZIdx(GEPI); | 
|  | if (Idx == GEPI->getNumOperands()) | 
|  | return false; | 
|  | if (isa<Constant>(GEPI->getOperand(Idx))) | 
|  | return false; | 
|  |  | 
|  | SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); | 
|  | Type *AllocTy = GetElementPtrInst::getIndexedType( | 
|  | cast<PointerType>(GEPI->getOperand(0)->getType()->getScalarType()) | 
|  | ->getElementType(), | 
|  | Ops); | 
|  | if (!AllocTy || !AllocTy->isSized()) | 
|  | return false; | 
|  | const DataLayout &DL = IC.getDataLayout(); | 
|  | uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); | 
|  |  | 
|  | // If there are more indices after the one we might replace with a zero, make | 
|  | // sure they're all non-negative. If any of them are negative, the overall | 
|  | // address being computed might be before the base address determined by the | 
|  | // first non-zero index. | 
|  | auto IsAllNonNegative = [&]() { | 
|  | for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { | 
|  | bool KnownNonNegative, KnownNegative; | 
|  | IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative, | 
|  | KnownNegative, 0, MemI); | 
|  | if (KnownNonNegative) | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // FIXME: If the GEP is not inbounds, and there are extra indices after the | 
|  | // one we'll replace, those could cause the address computation to wrap | 
|  | // (rendering the IsAllNonNegative() check below insufficient). We can do | 
|  | // better, ignoring zero indicies (and other indicies we can prove small | 
|  | // enough not to wrap). | 
|  | if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) | 
|  | return false; | 
|  |  | 
|  | // Note that isObjectSizeLessThanOrEq will return true only if the pointer is | 
|  | // also known to be dereferenceable. | 
|  | return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && | 
|  | IsAllNonNegative(); | 
|  | } | 
|  |  | 
|  | // If we're indexing into an object with a variable index for the memory | 
|  | // access, but the object has only one element, we can assume that the index | 
|  | // will always be zero. If we replace the GEP, return it. | 
|  | template <typename T> | 
|  | static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, | 
|  | T &MemI) { | 
|  | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { | 
|  | unsigned Idx; | 
|  | if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { | 
|  | Instruction *NewGEPI = GEPI->clone(); | 
|  | NewGEPI->setOperand(Idx, | 
|  | ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); | 
|  | NewGEPI->insertBefore(GEPI); | 
|  | MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); | 
|  | return NewGEPI; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { | 
|  | Value *Op = LI.getOperand(0); | 
|  |  | 
|  | // Try to canonicalize the loaded type. | 
|  | if (Instruction *Res = combineLoadToOperationType(*this, LI)) | 
|  | return Res; | 
|  |  | 
|  | // Attempt to improve the alignment. | 
|  | unsigned KnownAlign = getOrEnforceKnownAlignment( | 
|  | Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT); | 
|  | unsigned LoadAlign = LI.getAlignment(); | 
|  | unsigned EffectiveLoadAlign = | 
|  | LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); | 
|  |  | 
|  | if (KnownAlign > EffectiveLoadAlign) | 
|  | LI.setAlignment(KnownAlign); | 
|  | else if (LoadAlign == 0) | 
|  | LI.setAlignment(EffectiveLoadAlign); | 
|  |  | 
|  | // Replace GEP indices if possible. | 
|  | if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { | 
|  | Worklist.Add(NewGEPI); | 
|  | return &LI; | 
|  | } | 
|  |  | 
|  | // None of the following transforms are legal for volatile/atomic loads. | 
|  | // FIXME: Some of it is okay for atomic loads; needs refactoring. | 
|  | if (!LI.isSimple()) return nullptr; | 
|  |  | 
|  | if (Instruction *Res = unpackLoadToAggregate(*this, LI)) | 
|  | return Res; | 
|  |  | 
|  | // Do really simple store-to-load forwarding and load CSE, to catch cases | 
|  | // where there are several consecutive memory accesses to the same location, | 
|  | // separated by a few arithmetic operations. | 
|  | BasicBlock::iterator BBI = &LI; | 
|  | AAMDNodes AATags; | 
|  | if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI, | 
|  | 6, AA, &AATags)) { | 
|  | if (LoadInst *NLI = dyn_cast<LoadInst>(AvailableVal)) { | 
|  | unsigned KnownIDs[] = { | 
|  | LLVMContext::MD_tbaa, | 
|  | LLVMContext::MD_alias_scope, | 
|  | LLVMContext::MD_noalias, | 
|  | LLVMContext::MD_range, | 
|  | LLVMContext::MD_invariant_load, | 
|  | LLVMContext::MD_nonnull, | 
|  | }; | 
|  | combineMetadata(NLI, &LI, KnownIDs); | 
|  | }; | 
|  |  | 
|  | return ReplaceInstUsesWith( | 
|  | LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(), | 
|  | LI.getName() + ".cast")); | 
|  | } | 
|  |  | 
|  | // load(gep null, ...) -> unreachable | 
|  | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { | 
|  | const Value *GEPI0 = GEPI->getOperand(0); | 
|  | // TODO: Consider a target hook for valid address spaces for this xform. | 
|  | if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ | 
|  | // Insert a new store to null instruction before the load to indicate | 
|  | // that this code is not reachable.  We do this instead of inserting | 
|  | // an unreachable instruction directly because we cannot modify the | 
|  | // CFG. | 
|  | new StoreInst(UndefValue::get(LI.getType()), | 
|  | Constant::getNullValue(Op->getType()), &LI); | 
|  | return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // load null/undef -> unreachable | 
|  | // TODO: Consider a target hook for valid address spaces for this xform. | 
|  | if (isa<UndefValue>(Op) || | 
|  | (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) { | 
|  | // Insert a new store to null instruction before the load to indicate that | 
|  | // this code is not reachable.  We do this instead of inserting an | 
|  | // unreachable instruction directly because we cannot modify the CFG. | 
|  | new StoreInst(UndefValue::get(LI.getType()), | 
|  | Constant::getNullValue(Op->getType()), &LI); | 
|  | return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); | 
|  | } | 
|  |  | 
|  | if (Op->hasOneUse()) { | 
|  | // Change select and PHI nodes to select values instead of addresses: this | 
|  | // helps alias analysis out a lot, allows many others simplifications, and | 
|  | // exposes redundancy in the code. | 
|  | // | 
|  | // Note that we cannot do the transformation unless we know that the | 
|  | // introduced loads cannot trap!  Something like this is valid as long as | 
|  | // the condition is always false: load (select bool %C, int* null, int* %G), | 
|  | // but it would not be valid if we transformed it to load from null | 
|  | // unconditionally. | 
|  | // | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { | 
|  | // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2). | 
|  | unsigned Align = LI.getAlignment(); | 
|  | if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align) && | 
|  | isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align)) { | 
|  | LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), | 
|  | SI->getOperand(1)->getName()+".val"); | 
|  | LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), | 
|  | SI->getOperand(2)->getName()+".val"); | 
|  | V1->setAlignment(Align); | 
|  | V2->setAlignment(Align); | 
|  | return SelectInst::Create(SI->getCondition(), V1, V2); | 
|  | } | 
|  |  | 
|  | // load (select (cond, null, P)) -> load P | 
|  | if (isa<ConstantPointerNull>(SI->getOperand(1)) && | 
|  | LI.getPointerAddressSpace() == 0) { | 
|  | LI.setOperand(0, SI->getOperand(2)); | 
|  | return &LI; | 
|  | } | 
|  |  | 
|  | // load (select (cond, P, null)) -> load P | 
|  | if (isa<ConstantPointerNull>(SI->getOperand(2)) && | 
|  | LI.getPointerAddressSpace() == 0) { | 
|  | LI.setOperand(0, SI->getOperand(1)); | 
|  | return &LI; | 
|  | } | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// \brief Combine stores to match the type of value being stored. | 
|  | /// | 
|  | /// The core idea here is that the memory does not have any intrinsic type and | 
|  | /// where we can we should match the type of a store to the type of value being | 
|  | /// stored. | 
|  | /// | 
|  | /// However, this routine must never change the width of a store or the number of | 
|  | /// stores as that would introduce a semantic change. This combine is expected to | 
|  | /// be a semantic no-op which just allows stores to more closely model the types | 
|  | /// of their incoming values. | 
|  | /// | 
|  | /// Currently, we also refuse to change the precise type used for an atomic or | 
|  | /// volatile store. This is debatable, and might be reasonable to change later. | 
|  | /// However, it is risky in case some backend or other part of LLVM is relying | 
|  | /// on the exact type stored to select appropriate atomic operations. | 
|  | /// | 
|  | /// \returns true if the store was successfully combined away. This indicates | 
|  | /// the caller must erase the store instruction. We have to let the caller erase | 
|  | /// the store instruction sas otherwise there is no way to signal whether it was | 
|  | /// combined or not: IC.EraseInstFromFunction returns a null pointer. | 
|  | static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { | 
|  | // FIXME: We could probably with some care handle both volatile and atomic | 
|  | // stores here but it isn't clear that this is important. | 
|  | if (!SI.isSimple()) | 
|  | return false; | 
|  |  | 
|  | Value *V = SI.getValueOperand(); | 
|  |  | 
|  | // Fold away bit casts of the stored value by storing the original type. | 
|  | if (auto *BC = dyn_cast<BitCastInst>(V)) { | 
|  | V = BC->getOperand(0); | 
|  | combineStoreToNewValue(IC, SI, V); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FIXME: We should also canonicalize loads of vectors when their elements are | 
|  | // cast to other types. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { | 
|  | // FIXME: We could probably with some care handle both volatile and atomic | 
|  | // stores here but it isn't clear that this is important. | 
|  | if (!SI.isSimple()) | 
|  | return false; | 
|  |  | 
|  | Value *V = SI.getValueOperand(); | 
|  | Type *T = V->getType(); | 
|  |  | 
|  | if (!T->isAggregateType()) | 
|  | return false; | 
|  |  | 
|  | if (auto *ST = dyn_cast<StructType>(T)) { | 
|  | // If the struct only have one element, we unpack. | 
|  | if (ST->getNumElements() == 1) { | 
|  | V = IC.Builder->CreateExtractValue(V, 0); | 
|  | combineStoreToNewValue(IC, SI, V); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *AT = dyn_cast<ArrayType>(T)) { | 
|  | // If the array only have one element, we unpack. | 
|  | if (AT->getNumElements() == 1) { | 
|  | V = IC.Builder->CreateExtractValue(V, 0); | 
|  | combineStoreToNewValue(IC, SI, V); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// equivalentAddressValues - Test if A and B will obviously have the same | 
|  | /// value. This includes recognizing that %t0 and %t1 will have the same | 
|  | /// value in code like this: | 
|  | ///   %t0 = getelementptr \@a, 0, 3 | 
|  | ///   store i32 0, i32* %t0 | 
|  | ///   %t1 = getelementptr \@a, 0, 3 | 
|  | ///   %t2 = load i32* %t1 | 
|  | /// | 
|  | static bool equivalentAddressValues(Value *A, Value *B) { | 
|  | // Test if the values are trivially equivalent. | 
|  | if (A == B) return true; | 
|  |  | 
|  | // Test if the values come form identical arithmetic instructions. | 
|  | // This uses isIdenticalToWhenDefined instead of isIdenticalTo because | 
|  | // its only used to compare two uses within the same basic block, which | 
|  | // means that they'll always either have the same value or one of them | 
|  | // will have an undefined value. | 
|  | if (isa<BinaryOperator>(A) || | 
|  | isa<CastInst>(A) || | 
|  | isa<PHINode>(A) || | 
|  | isa<GetElementPtrInst>(A)) | 
|  | if (Instruction *BI = dyn_cast<Instruction>(B)) | 
|  | if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise they may not be equivalent. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { | 
|  | Value *Val = SI.getOperand(0); | 
|  | Value *Ptr = SI.getOperand(1); | 
|  |  | 
|  | // Try to canonicalize the stored type. | 
|  | if (combineStoreToValueType(*this, SI)) | 
|  | return EraseInstFromFunction(SI); | 
|  |  | 
|  | // Attempt to improve the alignment. | 
|  | unsigned KnownAlign = getOrEnforceKnownAlignment( | 
|  | Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT); | 
|  | unsigned StoreAlign = SI.getAlignment(); | 
|  | unsigned EffectiveStoreAlign = | 
|  | StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); | 
|  |  | 
|  | if (KnownAlign > EffectiveStoreAlign) | 
|  | SI.setAlignment(KnownAlign); | 
|  | else if (StoreAlign == 0) | 
|  | SI.setAlignment(EffectiveStoreAlign); | 
|  |  | 
|  | // Try to canonicalize the stored type. | 
|  | if (unpackStoreToAggregate(*this, SI)) | 
|  | return EraseInstFromFunction(SI); | 
|  |  | 
|  | // Replace GEP indices if possible. | 
|  | if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { | 
|  | Worklist.Add(NewGEPI); | 
|  | return &SI; | 
|  | } | 
|  |  | 
|  | // Don't hack volatile/atomic stores. | 
|  | // FIXME: Some bits are legal for atomic stores; needs refactoring. | 
|  | if (!SI.isSimple()) return nullptr; | 
|  |  | 
|  | // If the RHS is an alloca with a single use, zapify the store, making the | 
|  | // alloca dead. | 
|  | if (Ptr->hasOneUse()) { | 
|  | if (isa<AllocaInst>(Ptr)) | 
|  | return EraseInstFromFunction(SI); | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { | 
|  | if (isa<AllocaInst>(GEP->getOperand(0))) { | 
|  | if (GEP->getOperand(0)->hasOneUse()) | 
|  | return EraseInstFromFunction(SI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do really simple DSE, to catch cases where there are several consecutive | 
|  | // stores to the same location, separated by a few arithmetic operations. This | 
|  | // situation often occurs with bitfield accesses. | 
|  | BasicBlock::iterator BBI = &SI; | 
|  | for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; | 
|  | --ScanInsts) { | 
|  | --BBI; | 
|  | // Don't count debug info directives, lest they affect codegen, | 
|  | // and we skip pointer-to-pointer bitcasts, which are NOPs. | 
|  | if (isa<DbgInfoIntrinsic>(BBI) || | 
|  | (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { | 
|  | ScanInsts++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { | 
|  | // Prev store isn't volatile, and stores to the same location? | 
|  | if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1), | 
|  | SI.getOperand(1))) { | 
|  | ++NumDeadStore; | 
|  | ++BBI; | 
|  | EraseInstFromFunction(*PrevSI); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is a load, we have to stop.  However, if the loaded value is from | 
|  | // the pointer we're loading and is producing the pointer we're storing, | 
|  | // then *this* store is dead (X = load P; store X -> P). | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { | 
|  | if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) && | 
|  | LI->isSimple()) | 
|  | return EraseInstFromFunction(SI); | 
|  |  | 
|  | // Otherwise, this is a load from some other location.  Stores before it | 
|  | // may not be dead. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Don't skip over loads or things that can modify memory. | 
|  | if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // store X, null    -> turns into 'unreachable' in SimplifyCFG | 
|  | if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { | 
|  | if (!isa<UndefValue>(Val)) { | 
|  | SI.setOperand(0, UndefValue::get(Val->getType())); | 
|  | if (Instruction *U = dyn_cast<Instruction>(Val)) | 
|  | Worklist.Add(U);  // Dropped a use. | 
|  | } | 
|  | return nullptr;  // Do not modify these! | 
|  | } | 
|  |  | 
|  | // store undef, Ptr -> noop | 
|  | if (isa<UndefValue>(Val)) | 
|  | return EraseInstFromFunction(SI); | 
|  |  | 
|  | // If this store is the last instruction in the basic block (possibly | 
|  | // excepting debug info instructions), and if the block ends with an | 
|  | // unconditional branch, try to move it to the successor block. | 
|  | BBI = &SI; | 
|  | do { | 
|  | ++BBI; | 
|  | } while (isa<DbgInfoIntrinsic>(BBI) || | 
|  | (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) | 
|  | if (BI->isUnconditional()) | 
|  | if (SimplifyStoreAtEndOfBlock(SI)) | 
|  | return nullptr;  // xform done! | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// SimplifyStoreAtEndOfBlock - Turn things like: | 
|  | ///   if () { *P = v1; } else { *P = v2 } | 
|  | /// into a phi node with a store in the successor. | 
|  | /// | 
|  | /// Simplify things like: | 
|  | ///   *P = v1; if () { *P = v2; } | 
|  | /// into a phi node with a store in the successor. | 
|  | /// | 
|  | bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { | 
|  | BasicBlock *StoreBB = SI.getParent(); | 
|  |  | 
|  | // Check to see if the successor block has exactly two incoming edges.  If | 
|  | // so, see if the other predecessor contains a store to the same location. | 
|  | // if so, insert a PHI node (if needed) and move the stores down. | 
|  | BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); | 
|  |  | 
|  | // Determine whether Dest has exactly two predecessors and, if so, compute | 
|  | // the other predecessor. | 
|  | pred_iterator PI = pred_begin(DestBB); | 
|  | BasicBlock *P = *PI; | 
|  | BasicBlock *OtherBB = nullptr; | 
|  |  | 
|  | if (P != StoreBB) | 
|  | OtherBB = P; | 
|  |  | 
|  | if (++PI == pred_end(DestBB)) | 
|  | return false; | 
|  |  | 
|  | P = *PI; | 
|  | if (P != StoreBB) { | 
|  | if (OtherBB) | 
|  | return false; | 
|  | OtherBB = P; | 
|  | } | 
|  | if (++PI != pred_end(DestBB)) | 
|  | return false; | 
|  |  | 
|  | // Bail out if all the relevant blocks aren't distinct (this can happen, | 
|  | // for example, if SI is in an infinite loop) | 
|  | if (StoreBB == DestBB || OtherBB == DestBB) | 
|  | return false; | 
|  |  | 
|  | // Verify that the other block ends in a branch and is not otherwise empty. | 
|  | BasicBlock::iterator BBI = OtherBB->getTerminator(); | 
|  | BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); | 
|  | if (!OtherBr || BBI == OtherBB->begin()) | 
|  | return false; | 
|  |  | 
|  | // If the other block ends in an unconditional branch, check for the 'if then | 
|  | // else' case.  there is an instruction before the branch. | 
|  | StoreInst *OtherStore = nullptr; | 
|  | if (OtherBr->isUnconditional()) { | 
|  | --BBI; | 
|  | // Skip over debugging info. | 
|  | while (isa<DbgInfoIntrinsic>(BBI) || | 
|  | (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { | 
|  | if (BBI==OtherBB->begin()) | 
|  | return false; | 
|  | --BBI; | 
|  | } | 
|  | // If this isn't a store, isn't a store to the same location, or is not the | 
|  | // right kind of store, bail out. | 
|  | OtherStore = dyn_cast<StoreInst>(BBI); | 
|  | if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || | 
|  | !SI.isSameOperationAs(OtherStore)) | 
|  | return false; | 
|  | } else { | 
|  | // Otherwise, the other block ended with a conditional branch. If one of the | 
|  | // destinations is StoreBB, then we have the if/then case. | 
|  | if (OtherBr->getSuccessor(0) != StoreBB && | 
|  | OtherBr->getSuccessor(1) != StoreBB) | 
|  | return false; | 
|  |  | 
|  | // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an | 
|  | // if/then triangle.  See if there is a store to the same ptr as SI that | 
|  | // lives in OtherBB. | 
|  | for (;; --BBI) { | 
|  | // Check to see if we find the matching store. | 
|  | if ((OtherStore = dyn_cast<StoreInst>(BBI))) { | 
|  | if (OtherStore->getOperand(1) != SI.getOperand(1) || | 
|  | !SI.isSameOperationAs(OtherStore)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | // If we find something that may be using or overwriting the stored | 
|  | // value, or if we run out of instructions, we can't do the xform. | 
|  | if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || | 
|  | BBI == OtherBB->begin()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // In order to eliminate the store in OtherBr, we have to | 
|  | // make sure nothing reads or overwrites the stored value in | 
|  | // StoreBB. | 
|  | for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { | 
|  | // FIXME: This should really be AA driven. | 
|  | if (I->mayReadFromMemory() || I->mayWriteToMemory()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Insert a PHI node now if we need it. | 
|  | Value *MergedVal = OtherStore->getOperand(0); | 
|  | if (MergedVal != SI.getOperand(0)) { | 
|  | PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); | 
|  | PN->addIncoming(SI.getOperand(0), SI.getParent()); | 
|  | PN->addIncoming(OtherStore->getOperand(0), OtherBB); | 
|  | MergedVal = InsertNewInstBefore(PN, DestBB->front()); | 
|  | } | 
|  |  | 
|  | // Advance to a place where it is safe to insert the new store and | 
|  | // insert it. | 
|  | BBI = DestBB->getFirstInsertionPt(); | 
|  | StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), | 
|  | SI.isVolatile(), | 
|  | SI.getAlignment(), | 
|  | SI.getOrdering(), | 
|  | SI.getSynchScope()); | 
|  | InsertNewInstBefore(NewSI, *BBI); | 
|  | NewSI->setDebugLoc(OtherStore->getDebugLoc()); | 
|  |  | 
|  | // If the two stores had AA tags, merge them. | 
|  | AAMDNodes AATags; | 
|  | SI.getAAMetadata(AATags); | 
|  | if (AATags) { | 
|  | OtherStore->getAAMetadata(AATags, /* Merge = */ true); | 
|  | NewSI->setAAMetadata(AATags); | 
|  | } | 
|  |  | 
|  | // Nuke the old stores. | 
|  | EraseInstFromFunction(SI); | 
|  | EraseInstFromFunction(*OtherStore); | 
|  | return true; | 
|  | } |