|  | //===-- IA64ISelPattern.cpp - A pattern matching inst selector for IA64 ---===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by Duraid Madina and is distributed under the | 
|  | // University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines a pattern matching instruction selector for IA64. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "IA64.h" | 
|  | #include "IA64InstrBuilder.h" | 
|  | #include "IA64RegisterInfo.h" | 
|  | #include "IA64MachineFunctionInfo.h" | 
|  | #include "llvm/Constants.h"                   // FIXME: REMOVE | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/CodeGen/SSARegMap.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include <set> | 
|  | #include <map> | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  IA64TargetLowering - IA64 Implementation of the TargetLowering interface | 
|  | namespace { | 
|  | class IA64TargetLowering : public TargetLowering { | 
|  | int VarArgsFrameIndex;            // FrameIndex for start of varargs area. | 
|  |  | 
|  | //int ReturnAddrIndex;              // FrameIndex for return slot. | 
|  | unsigned GP, SP, RP; // FIXME - clean this mess up | 
|  | public: | 
|  |  | 
|  | unsigned VirtGPR; // this is public so it can be accessed in the selector | 
|  | // for ISD::RET down below. add an accessor instead? FIXME | 
|  |  | 
|  | IA64TargetLowering(TargetMachine &TM) : TargetLowering(TM) { | 
|  |  | 
|  | // register class for general registers | 
|  | addRegisterClass(MVT::i64, IA64::GRRegisterClass); | 
|  |  | 
|  | // register class for FP registers | 
|  | addRegisterClass(MVT::f64, IA64::FPRegisterClass); | 
|  |  | 
|  | // register class for predicate registers | 
|  | addRegisterClass(MVT::i1, IA64::PRRegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::BRCONDTWOWAY     , MVT::Other, Expand); | 
|  | setOperationAction(ISD::BRTWOWAY_CC      , MVT::Other, Expand); | 
|  | setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand); | 
|  |  | 
|  | setSetCCResultType(MVT::i1); | 
|  | setShiftAmountType(MVT::i64); | 
|  |  | 
|  | setOperationAction(ISD::EXTLOAD          , MVT::i1   , Promote); | 
|  |  | 
|  | setOperationAction(ISD::ZEXTLOAD         , MVT::i1   , Expand); | 
|  |  | 
|  | setOperationAction(ISD::SEXTLOAD         , MVT::i1   , Expand); | 
|  | setOperationAction(ISD::SEXTLOAD         , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::SEXTLOAD         , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::SEXTLOAD         , MVT::i32  , Expand); | 
|  |  | 
|  | setOperationAction(ISD::FREM             , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::FREM             , MVT::f64  , Expand); | 
|  |  | 
|  | setOperationAction(ISD::UREM             , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::UREM             , MVT::f64  , Expand); | 
|  |  | 
|  | setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand); | 
|  | setOperationAction(ISD::MEMSET           , MVT::Other, Expand); | 
|  | setOperationAction(ISD::MEMCPY           , MVT::Other, Expand); | 
|  |  | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote); | 
|  |  | 
|  | // We don't support sin/cos/sqrt | 
|  | setOperationAction(ISD::FSIN , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSQRT, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSIN , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FSQRT, MVT::f32, Expand); | 
|  |  | 
|  | //IA64 has these, but they are not implemented | 
|  | setOperationAction(ISD::CTTZ , MVT::i64  , Expand); | 
|  | setOperationAction(ISD::CTLZ , MVT::i64  , Expand); | 
|  | // FIXME: implement mulhs (xma.h) and mulhu (xma.hu) | 
|  | setOperationAction(ISD::MULHS , MVT::i64  , Expand); | 
|  | setOperationAction(ISD::MULHU , MVT::i64  , Expand); | 
|  |  | 
|  | // We don't have line number support yet. | 
|  | setOperationAction(ISD::LOCATION, MVT::Other, Expand); | 
|  |  | 
|  | computeRegisterProperties(); | 
|  |  | 
|  | addLegalFPImmediate(+0.0); | 
|  | addLegalFPImmediate(+1.0); | 
|  | addLegalFPImmediate(-0.0); | 
|  | addLegalFPImmediate(-1.0); | 
|  | } | 
|  |  | 
|  | /// LowerArguments - This hook must be implemented to indicate how we should | 
|  | /// lower the arguments for the specified function, into the specified DAG. | 
|  | virtual std::vector<SDOperand> | 
|  | LowerArguments(Function &F, SelectionDAG &DAG); | 
|  |  | 
|  | /// LowerCallTo - This hook lowers an abstract call to a function into an | 
|  | /// actual call. | 
|  | virtual std::pair<SDOperand, SDOperand> | 
|  | LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC, | 
|  | bool isTailCall, SDOperand Callee, ArgListTy &Args, | 
|  | SelectionDAG &DAG); | 
|  |  | 
|  | virtual SDOperand LowerVAStart(SDOperand Chain, SDOperand VAListP, | 
|  | Value *VAListV, SelectionDAG &DAG); | 
|  | virtual std::pair<SDOperand,SDOperand> | 
|  | LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV, | 
|  | const Type *ArgTy, SelectionDAG &DAG); | 
|  |  | 
|  | void restoreGP_SP_RP(MachineBasicBlock* BB) | 
|  | { | 
|  | BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(GP); | 
|  | BuildMI(BB, IA64::MOV, 1, IA64::r12).addReg(SP); | 
|  | BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP); | 
|  | } | 
|  |  | 
|  | void restoreSP_RP(MachineBasicBlock* BB) | 
|  | { | 
|  | BuildMI(BB, IA64::MOV, 1, IA64::r12).addReg(SP); | 
|  | BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP); | 
|  | } | 
|  |  | 
|  | void restoreRP(MachineBasicBlock* BB) | 
|  | { | 
|  | BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP); | 
|  | } | 
|  |  | 
|  | void restoreGP(MachineBasicBlock* BB) | 
|  | { | 
|  | BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(GP); | 
|  | } | 
|  |  | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | std::vector<SDOperand> | 
|  | IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { | 
|  | std::vector<SDOperand> ArgValues; | 
|  |  | 
|  | // | 
|  | // add beautiful description of IA64 stack frame format | 
|  | // here (from intel 24535803.pdf most likely) | 
|  | // | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  |  | 
|  | GP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); | 
|  | SP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); | 
|  | RP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); | 
|  |  | 
|  | MachineBasicBlock& BB = MF.front(); | 
|  |  | 
|  | unsigned args_int[] = {IA64::r32, IA64::r33, IA64::r34, IA64::r35, | 
|  | IA64::r36, IA64::r37, IA64::r38, IA64::r39}; | 
|  |  | 
|  | unsigned args_FP[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11, | 
|  | IA64::F12,IA64::F13,IA64::F14, IA64::F15}; | 
|  |  | 
|  | unsigned argVreg[8]; | 
|  | unsigned argPreg[8]; | 
|  | unsigned argOpc[8]; | 
|  |  | 
|  | unsigned used_FPArgs = 0; // how many FP args have been used so far? | 
|  |  | 
|  | unsigned ArgOffset = 0; | 
|  | int count = 0; | 
|  |  | 
|  | for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) | 
|  | { | 
|  | SDOperand newroot, argt; | 
|  | if(count < 8) { // need to fix this logic? maybe. | 
|  |  | 
|  | switch (getValueType(I->getType())) { | 
|  | default: | 
|  | std::cerr << "ERROR in LowerArgs: unknown type " | 
|  | << getValueType(I->getType()) << "\n"; | 
|  | abort(); | 
|  | case MVT::f32: | 
|  | // fixme? (well, will need to for weird FP structy stuff, | 
|  | // see intel ABI docs) | 
|  | case MVT::f64: | 
|  | //XXX            BuildMI(&BB, IA64::IDEF, 0, args_FP[used_FPArgs]); | 
|  | MF.addLiveIn(args_FP[used_FPArgs]); // mark this reg as liveIn | 
|  | // floating point args go into f8..f15 as-needed, the increment | 
|  | argVreg[count] =                              // is below..: | 
|  | MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::f64)); | 
|  | // FP args go into f8..f15 as needed: (hence the ++) | 
|  | argPreg[count] = args_FP[used_FPArgs++]; | 
|  | argOpc[count] = IA64::FMOV; | 
|  | argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), argVreg[count], | 
|  | MVT::f64); | 
|  | if (I->getType() == Type::FloatTy) | 
|  | argt = DAG.getNode(ISD::FP_ROUND, MVT::f32, argt); | 
|  | break; | 
|  | case MVT::i1: // NOTE: as far as C abi stuff goes, | 
|  | // bools are just boring old ints | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | //XXX            BuildMI(&BB, IA64::IDEF, 0, args_int[count]); | 
|  | MF.addLiveIn(args_int[count]); // mark this register as liveIn | 
|  | argVreg[count] = | 
|  | MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); | 
|  | argPreg[count] = args_int[count]; | 
|  | argOpc[count] = IA64::MOV; | 
|  | argt = newroot = | 
|  | DAG.getCopyFromReg(DAG.getRoot(), argVreg[count], MVT::i64); | 
|  | if ( getValueType(I->getType()) != MVT::i64) | 
|  | argt = DAG.getNode(ISD::TRUNCATE, getValueType(I->getType()), | 
|  | newroot); | 
|  | break; | 
|  | } | 
|  | } else { // more than 8 args go into the frame | 
|  | // Create the frame index object for this incoming parameter... | 
|  | ArgOffset = 16 + 8 * (count - 8); | 
|  | int FI = MFI->CreateFixedObject(8, ArgOffset); | 
|  |  | 
|  | // Create the SelectionDAG nodes corresponding to a load | 
|  | //from this parameter | 
|  | SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64); | 
|  | argt = newroot = DAG.getLoad(getValueType(I->getType()), | 
|  | DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL)); | 
|  | } | 
|  | ++count; | 
|  | DAG.setRoot(newroot.getValue(1)); | 
|  | ArgValues.push_back(argt); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Create a vreg to hold the output of (what will become) | 
|  | // the "alloc" instruction | 
|  | VirtGPR = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); | 
|  | BuildMI(&BB, IA64::PSEUDO_ALLOC, 0, VirtGPR); | 
|  | // we create a PSEUDO_ALLOC (pseudo)instruction for now | 
|  |  | 
|  | BuildMI(&BB, IA64::IDEF, 0, IA64::r1); | 
|  |  | 
|  | // hmm: | 
|  | BuildMI(&BB, IA64::IDEF, 0, IA64::r12); | 
|  | BuildMI(&BB, IA64::IDEF, 0, IA64::rp); | 
|  | // ..hmm. | 
|  |  | 
|  | BuildMI(&BB, IA64::MOV, 1, GP).addReg(IA64::r1); | 
|  |  | 
|  | // hmm: | 
|  | BuildMI(&BB, IA64::MOV, 1, SP).addReg(IA64::r12); | 
|  | BuildMI(&BB, IA64::MOV, 1, RP).addReg(IA64::rp); | 
|  | // ..hmm. | 
|  |  | 
|  | unsigned tempOffset=0; | 
|  |  | 
|  | // if this is a varargs function, we simply lower llvm.va_start by | 
|  | // pointing to the first entry | 
|  | if(F.isVarArg()) { | 
|  | tempOffset=0; | 
|  | VarArgsFrameIndex = MFI->CreateFixedObject(8, tempOffset); | 
|  | } | 
|  |  | 
|  | // here we actually do the moving of args, and store them to the stack | 
|  | // too if this is a varargs function: | 
|  | for (int i = 0; i < count && i < 8; ++i) { | 
|  | BuildMI(&BB, argOpc[i], 1, argVreg[i]).addReg(argPreg[i]); | 
|  | if(F.isVarArg()) { | 
|  | // if this is a varargs function, we copy the input registers to the stack | 
|  | int FI = MFI->CreateFixedObject(8, tempOffset); | 
|  | tempOffset+=8;   //XXX: is it safe to use r22 like this? | 
|  | BuildMI(&BB, IA64::MOV, 1, IA64::r22).addFrameIndex(FI); | 
|  | // FIXME: we should use st8.spill here, one day | 
|  | BuildMI(&BB, IA64::ST8, 1, IA64::r22).addReg(argPreg[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, inform the code generator which regs we return values in. | 
|  | // (see the ISD::RET: case down below) | 
|  | switch (getValueType(F.getReturnType())) { | 
|  | default: assert(0 && "i have no idea where to return this type!"); | 
|  | case MVT::isVoid: break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | MF.addLiveOut(IA64::r8); | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | MF.addLiveOut(IA64::F8); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ArgValues; | 
|  | } | 
|  |  | 
|  | std::pair<SDOperand, SDOperand> | 
|  | IA64TargetLowering::LowerCallTo(SDOperand Chain, | 
|  | const Type *RetTy, bool isVarArg, | 
|  | unsigned CallingConv, bool isTailCall, | 
|  | SDOperand Callee, ArgListTy &Args, | 
|  | SelectionDAG &DAG) { | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | unsigned NumBytes = 16; | 
|  | unsigned outRegsUsed = 0; | 
|  |  | 
|  | if (Args.size() > 8) { | 
|  | NumBytes += (Args.size() - 8) * 8; | 
|  | outRegsUsed = 8; | 
|  | } else { | 
|  | outRegsUsed = Args.size(); | 
|  | } | 
|  |  | 
|  | // FIXME? this WILL fail if we ever try to pass around an arg that | 
|  | // consumes more than a single output slot (a 'real' double, int128 | 
|  | // some sort of aggregate etc.), as we'll underestimate how many 'outX' | 
|  | // registers we use. Hopefully, the assembler will notice. | 
|  | MF.getInfo<IA64FunctionInfo>()->outRegsUsed= | 
|  | std::max(outRegsUsed, MF.getInfo<IA64FunctionInfo>()->outRegsUsed); | 
|  |  | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, | 
|  | DAG.getConstant(NumBytes, getPointerTy())); | 
|  |  | 
|  | std::vector<SDOperand> args_to_use; | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) | 
|  | { | 
|  | switch (getValueType(Args[i].second)) { | 
|  | default: assert(0 && "unexpected argument type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | //promote to 64-bits, sign/zero extending based on type | 
|  | //of the argument | 
|  | if(Args[i].second->isSigned()) | 
|  | Args[i].first = DAG.getNode(ISD::SIGN_EXTEND, MVT::i64, | 
|  | Args[i].first); | 
|  | else | 
|  | Args[i].first = DAG.getNode(ISD::ZERO_EXTEND, MVT::i64, | 
|  | Args[i].first); | 
|  | break; | 
|  | case MVT::f32: | 
|  | //promote to 64-bits | 
|  | Args[i].first = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Args[i].first); | 
|  | case MVT::f64: | 
|  | case MVT::i64: | 
|  | break; | 
|  | } | 
|  | args_to_use.push_back(Args[i].first); | 
|  | } | 
|  |  | 
|  | std::vector<MVT::ValueType> RetVals; | 
|  | MVT::ValueType RetTyVT = getValueType(RetTy); | 
|  | if (RetTyVT != MVT::isVoid) | 
|  | RetVals.push_back(RetTyVT); | 
|  | RetVals.push_back(MVT::Other); | 
|  |  | 
|  | SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain, | 
|  | Callee, args_to_use), 0); | 
|  | Chain = TheCall.getValue(RetTyVT != MVT::isVoid); | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain, | 
|  | DAG.getConstant(NumBytes, getPointerTy())); | 
|  | return std::make_pair(TheCall, Chain); | 
|  | } | 
|  |  | 
|  | SDOperand | 
|  | IA64TargetLowering::LowerVAStart(SDOperand Chain, SDOperand VAListP, | 
|  | Value *VAListV, SelectionDAG &DAG) { | 
|  | // vastart just stores the address of the VarArgsFrameIndex slot. | 
|  | SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i64); | 
|  | return DAG.getNode(ISD::STORE, MVT::Other, Chain, FR, | 
|  | VAListP, DAG.getSrcValue(VAListV)); | 
|  | } | 
|  |  | 
|  | std::pair<SDOperand,SDOperand> IA64TargetLowering:: | 
|  | LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV, | 
|  | const Type *ArgTy, SelectionDAG &DAG) { | 
|  |  | 
|  | MVT::ValueType ArgVT = getValueType(ArgTy); | 
|  | SDOperand Val = DAG.getLoad(MVT::i64, Chain, | 
|  | VAListP, DAG.getSrcValue(VAListV)); | 
|  | SDOperand Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), Val, | 
|  | DAG.getSrcValue(NULL)); | 
|  | unsigned Amt; | 
|  | if (ArgVT == MVT::i32 || ArgVT == MVT::f32) | 
|  | Amt = 8; | 
|  | else { | 
|  | assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) && | 
|  | "Other types should have been promoted for varargs!"); | 
|  | Amt = 8; | 
|  | } | 
|  | Val = DAG.getNode(ISD::ADD, Val.getValueType(), Val, | 
|  | DAG.getConstant(Amt, Val.getValueType())); | 
|  | Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Val, VAListP, DAG.getSrcValue(VAListV)); | 
|  | return std::make_pair(Result, Chain); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// ISel - IA64 specific code to select IA64 machine instructions for | 
|  | /// SelectionDAG operations. | 
|  | /// | 
|  | class ISel : public SelectionDAGISel { | 
|  | /// IA64Lowering - This object fully describes how to lower LLVM code to an | 
|  | /// IA64-specific SelectionDAG. | 
|  | IA64TargetLowering IA64Lowering; | 
|  | SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform | 
|  | // for sdiv and udiv until it is put into the future | 
|  | // dag combiner | 
|  |  | 
|  | /// ExprMap - As shared expressions are codegen'd, we keep track of which | 
|  | /// vreg the value is produced in, so we only emit one copy of each compiled | 
|  | /// tree. | 
|  | std::map<SDOperand, unsigned> ExprMap; | 
|  | std::set<SDOperand> LoweredTokens; | 
|  |  | 
|  | public: | 
|  | ISel(TargetMachine &TM) : SelectionDAGISel(IA64Lowering), IA64Lowering(TM), | 
|  | ISelDAG(0) { } | 
|  |  | 
|  | /// InstructionSelectBasicBlock - This callback is invoked by | 
|  | /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. | 
|  | virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); | 
|  |  | 
|  | unsigned SelectExpr(SDOperand N); | 
|  | void Select(SDOperand N); | 
|  | // a dag->dag to transform mul-by-constant-int to shifts+adds/subs | 
|  | SDOperand BuildConstmulSequence(SDOperand N); | 
|  |  | 
|  | const char *getPassName() const { return "IA64 Instruction Selector"; } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel | 
|  | /// when it has created a SelectionDAG for us to codegen. | 
|  | void ISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { | 
|  |  | 
|  | // Codegen the basic block. | 
|  | ISelDAG = &DAG; | 
|  | Select(DAG.getRoot()); | 
|  |  | 
|  | // Clear state used for selection. | 
|  | ExprMap.clear(); | 
|  | LoweredTokens.clear(); | 
|  | ISelDAG = 0; | 
|  | } | 
|  |  | 
|  | // strip leading '0' characters from a string | 
|  | void munchLeadingZeros(std::string& inString) { | 
|  | while(inString.c_str()[0]=='0') { | 
|  | inString.erase(0, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // strip trailing '0' characters from a string | 
|  | void munchTrailingZeros(std::string& inString) { | 
|  | int curPos=inString.length()-1; | 
|  |  | 
|  | while(inString.c_str()[curPos]=='0') { | 
|  | inString.erase(curPos, 1); | 
|  | curPos--; | 
|  | } | 
|  | } | 
|  |  | 
|  | // return how many consecutive '0' characters are at the end of a string | 
|  | unsigned int countTrailingZeros(std::string& inString) { | 
|  | int curPos=inString.length()-1; | 
|  | unsigned int zeroCount=0; | 
|  | // assert goes here | 
|  | while(inString.c_str()[curPos--]=='0') { | 
|  | zeroCount++; | 
|  | } | 
|  | return zeroCount; | 
|  | } | 
|  |  | 
|  | // booth encode a string of '1' and '0' characters (returns string of 'P' (+1) | 
|  | // '0' and 'N' (-1) characters) | 
|  | void boothEncode(std::string inString, std::string& boothEncodedString) { | 
|  |  | 
|  | int curpos=0; | 
|  | int replacements=0; | 
|  | int lim=inString.size(); | 
|  |  | 
|  | while(curpos<lim) { | 
|  | if(inString[curpos]=='1') { // if we see a '1', look for a run of them | 
|  | int runlength=0; | 
|  | std::string replaceString="N"; | 
|  |  | 
|  | // find the run length | 
|  | for(;inString[curpos+runlength]=='1';runlength++) ; | 
|  |  | 
|  | for(int i=0; i<runlength-1; i++) | 
|  | replaceString+="0"; | 
|  | replaceString+="1"; | 
|  |  | 
|  | if(runlength>1) { | 
|  | inString.replace(curpos, runlength+1, replaceString); | 
|  | curpos+=runlength-1; | 
|  | } else | 
|  | curpos++; | 
|  | } else { // a zero, we just keep chugging along | 
|  | curpos++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // clean up (trim the string, reverse it and turn '1's into 'P's) | 
|  | munchTrailingZeros(inString); | 
|  | boothEncodedString=""; | 
|  |  | 
|  | for(int i=inString.size()-1;i>=0;i--) | 
|  | if(inString[i]=='1') | 
|  | boothEncodedString+="P"; | 
|  | else | 
|  | boothEncodedString+=inString[i]; | 
|  |  | 
|  | } | 
|  |  | 
|  | struct shiftaddblob { // this encodes stuff like (x=) "A << B [+-] C << D" | 
|  | unsigned firstVal;    // A | 
|  | unsigned firstShift;  // B | 
|  | unsigned secondVal;   // C | 
|  | unsigned secondShift; // D | 
|  | bool isSub; | 
|  | }; | 
|  |  | 
|  | /* this implements Lefevre's "pattern-based" constant multiplication, | 
|  | * see "Multiplication by an Integer Constant", INRIA report 1999-06 | 
|  | * | 
|  | * TODO: implement a method to try rewriting P0N<->0PP / N0P<->0NN | 
|  | * to get better booth encodings - this does help in practice | 
|  | * TODO: weight shifts appropriately (most architectures can't | 
|  | * fuse a shift and an add for arbitrary shift amounts) */ | 
|  | unsigned lefevre(const std::string inString, | 
|  | std::vector<struct shiftaddblob> &ops) { | 
|  | std::string retstring; | 
|  | std::string s = inString; | 
|  | munchTrailingZeros(s); | 
|  |  | 
|  | int length=s.length()-1; | 
|  |  | 
|  | if(length==0) { | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | std::vector<int> p,n; | 
|  |  | 
|  | for(int i=0; i<=length; i++) { | 
|  | if (s.c_str()[length-i]=='P') { | 
|  | p.push_back(i); | 
|  | } else if (s.c_str()[length-i]=='N') { | 
|  | n.push_back(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::string t, u; | 
|  | int c = 0; | 
|  | bool f; | 
|  | std::map<const int, int> w; | 
|  |  | 
|  | for(unsigned i=0; i<p.size(); i++) { | 
|  | for(unsigned j=0; j<i; j++) { | 
|  | w[p[i]-p[j]]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | for(unsigned i=1; i<n.size(); i++) { | 
|  | for(unsigned j=0; j<i; j++) { | 
|  | w[n[i]-n[j]]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | for(unsigned i=0; i<p.size(); i++) { | 
|  | for(unsigned j=0; j<n.size(); j++) { | 
|  | w[-abs(p[i]-n[j])]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::map<const int, int>::const_iterator ii; | 
|  | std::vector<int> d; | 
|  | std::multimap<int, int> sorted_by_value; | 
|  |  | 
|  | for(ii = w.begin(); ii!=w.end(); ii++) | 
|  | sorted_by_value.insert(std::pair<int, int>((*ii).second,(*ii).first)); | 
|  |  | 
|  | for (std::multimap<int, int>::iterator it = sorted_by_value.begin(); | 
|  | it != sorted_by_value.end(); ++it) { | 
|  | d.push_back((*it).second); | 
|  | } | 
|  |  | 
|  | int int_W=0; | 
|  | int int_d; | 
|  |  | 
|  | while(d.size()>0 && (w[int_d=d.back()] > int_W)) { | 
|  | d.pop_back(); | 
|  | retstring=s; // hmmm | 
|  | int x=0; | 
|  | int z=abs(int_d)-1; | 
|  |  | 
|  | if(int_d>0) { | 
|  |  | 
|  | for(unsigned base=0; base<retstring.size(); base++) { | 
|  | if( ((base+z+1) < retstring.size()) && | 
|  | retstring.c_str()[base]=='P' && | 
|  | retstring.c_str()[base+z+1]=='P') | 
|  | { | 
|  | // match | 
|  | x++; | 
|  | retstring.replace(base, 1, "0"); | 
|  | retstring.replace(base+z+1, 1, "p"); | 
|  | } | 
|  | } | 
|  |  | 
|  | for(unsigned base=0; base<retstring.size(); base++) { | 
|  | if( ((base+z+1) < retstring.size()) && | 
|  | retstring.c_str()[base]=='N' && | 
|  | retstring.c_str()[base+z+1]=='N') | 
|  | { | 
|  | // match | 
|  | x++; | 
|  | retstring.replace(base, 1, "0"); | 
|  | retstring.replace(base+z+1, 1, "n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | } else { | 
|  | for(unsigned base=0; base<retstring.size(); base++) { | 
|  | if( ((base+z+1) < retstring.size()) && | 
|  | ((retstring.c_str()[base]=='P' && | 
|  | retstring.c_str()[base+z+1]=='N') || | 
|  | (retstring.c_str()[base]=='N' && | 
|  | retstring.c_str()[base+z+1]=='P')) ) { | 
|  | // match | 
|  | x++; | 
|  |  | 
|  | if(retstring.c_str()[base]=='P') { | 
|  | retstring.replace(base, 1, "0"); | 
|  | retstring.replace(base+z+1, 1, "p"); | 
|  | } else { // retstring[base]=='N' | 
|  | retstring.replace(base, 1, "0"); | 
|  | retstring.replace(base+z+1, 1, "n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if(x>int_W) { | 
|  | int_W = x; | 
|  | t = retstring; | 
|  | c = int_d; // tofix | 
|  | } | 
|  |  | 
|  | } d.pop_back(); // hmm | 
|  |  | 
|  | u = t; | 
|  |  | 
|  | for(unsigned i=0; i<t.length(); i++) { | 
|  | if(t.c_str()[i]=='p' || t.c_str()[i]=='n') | 
|  | t.replace(i, 1, "0"); | 
|  | } | 
|  |  | 
|  | for(unsigned i=0; i<u.length(); i++) { | 
|  | if(u[i]=='P' || u[i]=='N') | 
|  | u.replace(i, 1, "0"); | 
|  | if(u[i]=='p') | 
|  | u.replace(i, 1, "P"); | 
|  | if(u[i]=='n') | 
|  | u.replace(i, 1, "N"); | 
|  | } | 
|  |  | 
|  | if( c<0 ) { | 
|  | f=true; | 
|  | c=-c; | 
|  | } else | 
|  | f=false; | 
|  |  | 
|  | int pos=0; | 
|  | while(u[pos]=='0') | 
|  | pos++; | 
|  |  | 
|  | bool hit=(u[pos]=='N'); | 
|  |  | 
|  | int g=0; | 
|  | if(hit) { | 
|  | g=1; | 
|  | for(unsigned p=0; p<u.length(); p++) { | 
|  | bool isP=(u[p]=='P'); | 
|  | bool isN=(u[p]=='N'); | 
|  |  | 
|  | if(isP) | 
|  | u.replace(p, 1, "N"); | 
|  | if(isN) | 
|  | u.replace(p, 1, "P"); | 
|  | } | 
|  | } | 
|  |  | 
|  | munchLeadingZeros(u); | 
|  |  | 
|  | int i = lefevre(u, ops); | 
|  |  | 
|  | shiftaddblob blob; | 
|  |  | 
|  | blob.firstVal=i; blob.firstShift=c; | 
|  | blob.isSub=f; | 
|  | blob.secondVal=i; blob.secondShift=0; | 
|  |  | 
|  | ops.push_back(blob); | 
|  |  | 
|  | i = ops.size(); | 
|  |  | 
|  | munchLeadingZeros(t); | 
|  |  | 
|  | if(t.length()==0) | 
|  | return i; | 
|  |  | 
|  | if(t.c_str()[0]!='P') { | 
|  | g=2; | 
|  | for(unsigned p=0; p<t.length(); p++) { | 
|  | bool isP=(t.c_str()[p]=='P'); | 
|  | bool isN=(t.c_str()[p]=='N'); | 
|  |  | 
|  | if(isP) | 
|  | t.replace(p, 1, "N"); | 
|  | if(isN) | 
|  | t.replace(p, 1, "P"); | 
|  | } | 
|  | } | 
|  |  | 
|  | int j = lefevre(t, ops); | 
|  |  | 
|  | int trail=countTrailingZeros(u); | 
|  | blob.secondVal=i; blob.secondShift=trail; | 
|  |  | 
|  | trail=countTrailingZeros(t); | 
|  | blob.firstVal=j; blob.firstShift=trail; | 
|  |  | 
|  | switch(g) { | 
|  | case 0: | 
|  | blob.isSub=false; // first + second | 
|  | break; | 
|  | case 1: | 
|  | blob.isSub=true; // first - second | 
|  | break; | 
|  | case 2: | 
|  | blob.isSub=true; // second - first | 
|  | int tmpval, tmpshift; | 
|  | tmpval=blob.firstVal; | 
|  | tmpshift=blob.firstShift; | 
|  | blob.firstVal=blob.secondVal; | 
|  | blob.firstShift=blob.secondShift; | 
|  | blob.secondVal=tmpval; | 
|  | blob.secondShift=tmpshift; | 
|  | break; | 
|  | //assert | 
|  | } | 
|  |  | 
|  | ops.push_back(blob); | 
|  | return ops.size(); | 
|  | } | 
|  |  | 
|  | SDOperand ISel::BuildConstmulSequence(SDOperand N) { | 
|  | //FIXME: we should shortcut this stuff for multiplies by 2^n+1 | 
|  | //       in particular, *3 is nicer as *2+1, not *4-1 | 
|  | int64_t constant=cast<ConstantSDNode>(N.getOperand(1))->getValue(); | 
|  |  | 
|  | bool flippedSign; | 
|  | unsigned preliminaryShift=0; | 
|  |  | 
|  | assert(constant != 0 && "erk, you're trying to multiply by constant zero\n"); | 
|  |  | 
|  | // first, we make the constant to multiply by positive | 
|  | if(constant<0) { | 
|  | constant=-constant; | 
|  | flippedSign=true; | 
|  | } else { | 
|  | flippedSign=false; | 
|  | } | 
|  |  | 
|  | // next, we make it odd. | 
|  | for(; (constant%2==0); preliminaryShift++) | 
|  | constant>>=1; | 
|  |  | 
|  | //OK, we have a positive, odd number of 64 bits or less. Convert it | 
|  | //to a binary string, constantString[0] is the LSB | 
|  | char constantString[65]; | 
|  | for(int i=0; i<64; i++) | 
|  | constantString[i]='0'+((constant>>i)&0x1); | 
|  | constantString[64]=0; | 
|  |  | 
|  | // now, Booth encode it | 
|  | std::string boothEncodedString; | 
|  | boothEncode(constantString, boothEncodedString); | 
|  |  | 
|  | std::vector<struct shiftaddblob> ops; | 
|  | // do the transformation, filling out 'ops' | 
|  | lefevre(boothEncodedString, ops); | 
|  |  | 
|  | assert(ops.size() < 80 && "constmul code has gone haywire\n"); | 
|  | SDOperand results[80]; // temporary results (of adds/subs of shifts) | 
|  |  | 
|  | // now turn 'ops' into DAG bits | 
|  | for(unsigned i=0; i<ops.size(); i++) { | 
|  | SDOperand amt = ISelDAG->getConstant(ops[i].firstShift, MVT::i64); | 
|  | SDOperand val = (ops[i].firstVal == 0) ? N.getOperand(0) : | 
|  | results[ops[i].firstVal-1]; | 
|  | SDOperand left = ISelDAG->getNode(ISD::SHL, MVT::i64, val, amt); | 
|  | amt = ISelDAG->getConstant(ops[i].secondShift, MVT::i64); | 
|  | val = (ops[i].secondVal == 0) ? N.getOperand(0) : | 
|  | results[ops[i].secondVal-1]; | 
|  | SDOperand right = ISelDAG->getNode(ISD::SHL, MVT::i64, val, amt); | 
|  | if(ops[i].isSub) | 
|  | results[i] = ISelDAG->getNode(ISD::SUB, MVT::i64, left, right); | 
|  | else | 
|  | results[i] = ISelDAG->getNode(ISD::ADD, MVT::i64, left, right); | 
|  | } | 
|  |  | 
|  | // don't forget flippedSign and preliminaryShift! | 
|  | SDOperand shiftedresult; | 
|  | if(preliminaryShift) { | 
|  | SDOperand finalshift = ISelDAG->getConstant(preliminaryShift, MVT::i64); | 
|  | shiftedresult = ISelDAG->getNode(ISD::SHL, MVT::i64, | 
|  | results[ops.size()-1], finalshift); | 
|  | } else { // there was no preliminary divide-by-power-of-2 required | 
|  | shiftedresult = results[ops.size()-1]; | 
|  | } | 
|  |  | 
|  | SDOperand finalresult; | 
|  | if(flippedSign) { // if we were multiplying by a negative constant: | 
|  | SDOperand zero = ISelDAG->getConstant(0, MVT::i64); | 
|  | // subtract the result from 0 to flip its sign | 
|  | finalresult = ISelDAG->getNode(ISD::SUB, MVT::i64, zero, shiftedresult); | 
|  | } else { // there was no preliminary multiply by -1 required | 
|  | finalresult = shiftedresult; | 
|  | } | 
|  |  | 
|  | return finalresult; | 
|  | } | 
|  |  | 
|  | /// ponderIntegerDivisionBy - When handling integer divides, if the divide | 
|  | /// is by a constant such that we can efficiently codegen it, this | 
|  | /// function says what to do. Currently, it returns 0 if the division must | 
|  | /// become a genuine divide, and 1 if the division can be turned into a | 
|  | /// right shift. | 
|  | static unsigned ponderIntegerDivisionBy(SDOperand N, bool isSigned, | 
|  | unsigned& Imm) { | 
|  | if (N.getOpcode() != ISD::Constant) return 0; // if not a divide by | 
|  | // a constant, give up. | 
|  |  | 
|  | int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended(); | 
|  |  | 
|  | if (isPowerOf2_64(v)) { // if a division by a power of two, say so | 
|  | Imm = Log2_64(v); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; // fallthrough | 
|  | } | 
|  |  | 
|  | static unsigned ponderIntegerAndWith(SDOperand N, unsigned& Imm) { | 
|  | if (N.getOpcode() != ISD::Constant) return 0; // if not ANDing with | 
|  | // a constant, give up. | 
|  |  | 
|  | int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended(); | 
|  |  | 
|  | if (isMask_64(v)) { // if ANDing with ((2^n)-1) for some n | 
|  | Imm = Log2_64(v) + 1; | 
|  | return 1; // say so | 
|  | } | 
|  |  | 
|  | return 0; // fallthrough | 
|  | } | 
|  |  | 
|  | static unsigned ponderIntegerAdditionWith(SDOperand N, unsigned& Imm) { | 
|  | if (N.getOpcode() != ISD::Constant) return 0; // if not adding a | 
|  | // constant, give up. | 
|  | int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended(); | 
|  |  | 
|  | if (v <= 8191 && v >= -8192) { // if this constants fits in 14 bits, say so | 
|  | Imm = v & 0x3FFF; // 14 bits | 
|  | return 1; | 
|  | } | 
|  | return 0; // fallthrough | 
|  | } | 
|  |  | 
|  | static unsigned ponderIntegerSubtractionFrom(SDOperand N, unsigned& Imm) { | 
|  | if (N.getOpcode() != ISD::Constant) return 0; // if not subtracting a | 
|  | // constant, give up. | 
|  | int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended(); | 
|  |  | 
|  | if (v <= 127 && v >= -128) { // if this constants fits in 8 bits, say so | 
|  | Imm = v & 0xFF; // 8 bits | 
|  | return 1; | 
|  | } | 
|  | return 0; // fallthrough | 
|  | } | 
|  |  | 
|  | unsigned ISel::SelectExpr(SDOperand N) { | 
|  | unsigned Result; | 
|  | unsigned Tmp1, Tmp2, Tmp3; | 
|  | unsigned Opc = 0; | 
|  | MVT::ValueType DestType = N.getValueType(); | 
|  |  | 
|  | unsigned opcode = N.getOpcode(); | 
|  |  | 
|  | SDNode *Node = N.Val; | 
|  | SDOperand Op0, Op1; | 
|  |  | 
|  | if (Node->getOpcode() == ISD::CopyFromReg) | 
|  | // Just use the specified register as our input. | 
|  | return cast<RegisterSDNode>(Node->getOperand(1))->getReg(); | 
|  |  | 
|  | unsigned &Reg = ExprMap[N]; | 
|  | if (Reg) return Reg; | 
|  |  | 
|  | if (N.getOpcode() != ISD::CALL && N.getOpcode() != ISD::TAILCALL) | 
|  | Reg = Result = (N.getValueType() != MVT::Other) ? | 
|  | MakeReg(N.getValueType()) : 1; | 
|  | else { | 
|  | // If this is a call instruction, make sure to prepare ALL of the result | 
|  | // values as well as the chain. | 
|  | if (Node->getNumValues() == 1) | 
|  | Reg = Result = 1;  // Void call, just a chain. | 
|  | else { | 
|  | Result = MakeReg(Node->getValueType(0)); | 
|  | ExprMap[N.getValue(0)] = Result; | 
|  | for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i) | 
|  | ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); | 
|  | ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (N.getOpcode()) { | 
|  | default: | 
|  | Node->dump(); | 
|  | assert(0 && "Node not handled!\n"); | 
|  |  | 
|  | case ISD::FrameIndex: { | 
|  | Tmp1 = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | BuildMI(BB, IA64::MOV, 1, Result).addFrameIndex(Tmp1); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::ConstantPool: { | 
|  | Tmp1 = BB->getParent()->getConstantPool()-> | 
|  | getConstantPoolIndex(cast<ConstantPoolSDNode>(N)->get()); | 
|  | IA64Lowering.restoreGP(BB); // FIXME: do i really need this? | 
|  | BuildMI(BB, IA64::ADD, 2, Result).addConstantPoolIndex(Tmp1) | 
|  | .addReg(IA64::r1); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::ConstantFP: { | 
|  | Tmp1 = Result;   // Intermediate Register | 
|  | if (cast<ConstantFPSDNode>(N)->getValue() < 0.0 || | 
|  | cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0)) | 
|  | Tmp1 = MakeReg(MVT::f64); | 
|  |  | 
|  | if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) || | 
|  | cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0)) | 
|  | BuildMI(BB, IA64::FMOV, 1, Tmp1).addReg(IA64::F0); // load 0.0 | 
|  | else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0) || | 
|  | cast<ConstantFPSDNode>(N)->isExactlyValue(-1.0)) | 
|  | BuildMI(BB, IA64::FMOV, 1, Tmp1).addReg(IA64::F1); // load 1.0 | 
|  | else | 
|  | assert(0 && "Unexpected FP constant!"); | 
|  | if (Tmp1 != Result) | 
|  | // we multiply by +1.0, negate (this is FNMA), and then add 0.0 | 
|  | BuildMI(BB, IA64::FNMA, 3, Result).addReg(Tmp1).addReg(IA64::F1) | 
|  | .addReg(IA64::F0); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::DYNAMIC_STACKALLOC: { | 
|  | // Generate both result values. | 
|  | if (Result != 1) | 
|  | ExprMap[N.getValue(1)] = 1;   // Generate the token | 
|  | else | 
|  | Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); | 
|  |  | 
|  | // FIXME: We are currently ignoring the requested alignment for handling | 
|  | // greater than the stack alignment.  This will need to be revisited at some | 
|  | // point.  Align = N.getOperand(2); | 
|  |  | 
|  | if (!isa<ConstantSDNode>(N.getOperand(2)) || | 
|  | cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) { | 
|  | std::cerr << "Cannot allocate stack object with greater alignment than" | 
|  | << " the stack alignment yet!"; | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | Select(N.getOperand(0)); | 
|  | if (ConstantSDNode* CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) | 
|  | { | 
|  | if (CN->getValue() < 32000) | 
|  | { | 
|  | BuildMI(BB, IA64::ADDIMM22, 2, IA64::r12).addReg(IA64::r12) | 
|  | .addImm(-CN->getValue()); | 
|  | } else { | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | // Subtract size from stack pointer, thereby allocating some space. | 
|  | BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1); | 
|  | } | 
|  | } else { | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | // Subtract size from stack pointer, thereby allocating some space. | 
|  | BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1); | 
|  | } | 
|  | */ | 
|  | Select(N.getOperand(0)); | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | // Subtract size from stack pointer, thereby allocating some space. | 
|  | BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1); | 
|  | // Put a pointer to the space into the result register, by copying the | 
|  | // stack pointer. | 
|  | BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r12); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::SELECT: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); //Cond | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE | 
|  | Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE | 
|  |  | 
|  | unsigned bogoResult; | 
|  |  | 
|  | switch (N.getOperand(1).getValueType()) { | 
|  | default: assert(0 && | 
|  | "ISD::SELECT: 'select'ing something other than i1, i64 or f64!\n"); | 
|  | // for i1, we load the condition into an integer register, then | 
|  | // conditionally copy Tmp2 and Tmp3 to Tmp1 in parallel (only one | 
|  | // of them will go through, since the integer register will hold | 
|  | // either 0 or 1) | 
|  | case MVT::i1: { | 
|  | bogoResult=MakeReg(MVT::i1); | 
|  |  | 
|  | // load the condition into an integer register | 
|  | unsigned condReg=MakeReg(MVT::i64); | 
|  | unsigned dummy=MakeReg(MVT::i64); | 
|  | BuildMI(BB, IA64::MOV, 1, dummy).addReg(IA64::r0); | 
|  | BuildMI(BB, IA64::TPCADDIMM22, 2, condReg).addReg(dummy) | 
|  | .addImm(1).addReg(Tmp1); | 
|  |  | 
|  | // initialize Result (bool) to false (hence UNC) and if | 
|  | // the select condition (condReg) is false (0), copy Tmp3 | 
|  | BuildMI(BB, IA64::PCMPEQUNC, 3, bogoResult) | 
|  | .addReg(condReg).addReg(IA64::r0).addReg(Tmp3); | 
|  |  | 
|  | // now, if the selection condition is true, write 1 to the | 
|  | // result if Tmp2 is 1 | 
|  | BuildMI(BB, IA64::TPCMPNE, 3, Result).addReg(bogoResult) | 
|  | .addReg(condReg).addReg(IA64::r0).addReg(Tmp2); | 
|  | break; | 
|  | } | 
|  | // for i64/f64, we just copy Tmp3 and then conditionally overwrite it | 
|  | // with Tmp2 if Tmp1 is true | 
|  | case MVT::i64: | 
|  | bogoResult=MakeReg(MVT::i64); | 
|  | BuildMI(BB, IA64::MOV, 1, bogoResult).addReg(Tmp3); | 
|  | BuildMI(BB, IA64::CMOV, 2, Result).addReg(bogoResult).addReg(Tmp2) | 
|  | .addReg(Tmp1); | 
|  | break; | 
|  | case MVT::f64: | 
|  | bogoResult=MakeReg(MVT::f64); | 
|  | BuildMI(BB, IA64::FMOV, 1, bogoResult).addReg(Tmp3); | 
|  | BuildMI(BB, IA64::CFMOV, 2, Result).addReg(bogoResult).addReg(Tmp2) | 
|  | .addReg(Tmp1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::Constant: { | 
|  | unsigned depositPos=0; | 
|  | unsigned depositLen=0; | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot use constants of this type!"); | 
|  | case MVT::i1: { // if a bool, we don't 'load' so much as generate | 
|  | // the constant: | 
|  | if(cast<ConstantSDNode>(N)->getValue())  // true: | 
|  | BuildMI(BB, IA64::CMPEQ, 2, Result).addReg(IA64::r0).addReg(IA64::r0); | 
|  | else // false: | 
|  | BuildMI(BB, IA64::CMPNE, 2, Result).addReg(IA64::r0).addReg(IA64::r0); | 
|  | return Result; // early exit | 
|  | } | 
|  | case MVT::i64: break; | 
|  | } | 
|  |  | 
|  | int64_t immediate = cast<ConstantSDNode>(N)->getValue(); | 
|  |  | 
|  | if(immediate==0) { // if the constant is just zero, | 
|  | BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r0); // just copy r0 | 
|  | return Result; // early exit | 
|  | } | 
|  |  | 
|  | if (immediate <= 8191 && immediate >= -8192) { | 
|  | // if this constants fits in 14 bits, we use a mov the assembler will | 
|  | // turn into:   "adds rDest=imm,r0"  (and _not_ "andl"...) | 
|  | BuildMI(BB, IA64::MOVSIMM14, 1, Result).addSImm(immediate); | 
|  | return Result; // early exit | 
|  | } | 
|  |  | 
|  | if (immediate <= 2097151 && immediate >= -2097152) { | 
|  | // if this constants fits in 22 bits, we use a mov the assembler will | 
|  | // turn into:   "addl rDest=imm,r0" | 
|  | BuildMI(BB, IA64::MOVSIMM22, 1, Result).addSImm(immediate); | 
|  | return Result; // early exit | 
|  | } | 
|  |  | 
|  | /* otherwise, our immediate is big, so we use movl */ | 
|  | uint64_t Imm = immediate; | 
|  | BuildMI(BB, IA64::MOVLIMM64, 1, Result).addImm64(Imm); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::UNDEF: { | 
|  | BuildMI(BB, IA64::IDEF, 0, Result); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::GlobalAddress: { | 
|  | GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal(); | 
|  | unsigned Tmp1 = MakeReg(MVT::i64); | 
|  |  | 
|  | BuildMI(BB, IA64::ADD, 2, Tmp1).addGlobalAddress(GV).addReg(IA64::r1); | 
|  | BuildMI(BB, IA64::LD8, 1, Result).addReg(Tmp1); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::ExternalSymbol: { | 
|  | const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol(); | 
|  | // assert(0 && "sorry, but what did you want an ExternalSymbol for again?"); | 
|  | BuildMI(BB, IA64::MOV, 1, Result).addExternalSymbol(Sym); // XXX | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::FP_EXTEND: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, IA64::FMOV, 1, Result).addReg(Tmp1); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::ZERO_EXTEND: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); // value | 
|  |  | 
|  | assert(N.getOperand(0).getValueType() == MVT::i1 && | 
|  | "Cannot zero-extend this type!"); | 
|  |  | 
|  | // if the predicate reg has 1, we want a '1' in our GR. | 
|  | unsigned dummy = MakeReg(MVT::i64); | 
|  | // first load zero: | 
|  | BuildMI(BB, IA64::MOV, 1, dummy).addReg(IA64::r0); | 
|  | // ...then conditionally (PR:Tmp1) add 1: | 
|  | BuildMI(BB, IA64::TPCADDIMM22, 2, Result).addReg(dummy) | 
|  | .addImm(1).addReg(Tmp1); | 
|  | return Result; // XXX early exit! | 
|  | } | 
|  |  | 
|  | case ISD::SIGN_EXTEND: | 
|  | assert(N.getOperand(0).getValueType() == MVT::i1 && | 
|  | "Cannot zero-extend this type!"); | 
|  |  | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); // value | 
|  | assert(0 && "don't know how to sign_extend from bool yet!"); | 
|  | abort(); | 
|  |  | 
|  | case ISD::TRUNCATE: | 
|  | // we use the funky dep.z (deposit (zero)) instruction to deposit bits | 
|  | // of R0 appropriately. | 
|  | assert(N.getOperand(0).getValueType() == MVT::i64 && | 
|  | N.getValueType() == MVT::i1 && "Unknown truncate!"); | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  |  | 
|  | // if input (normal reg) is 0, 0!=0 -> false (0), if 1, 1!=0 ->true (1): | 
|  | BuildMI(BB, IA64::CMPNE, 2, Result).addReg(Tmp1).addReg(IA64::r0); | 
|  | return Result; // XXX early exit! | 
|  |  | 
|  | /* | 
|  | case ISD::FP_ROUND: { | 
|  | assert (DestType == MVT::f32 && N.getOperand(0).getValueType() == MVT::f64 && | 
|  | "error: trying to FP_ROUND something other than f64 -> f32!\n"); | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, IA64::FADDS, 2, Result).addReg(Tmp1).addReg(IA64::F0); | 
|  | // we add 0.0 using a single precision add to do rounding | 
|  | return Result; | 
|  | } | 
|  | */ | 
|  |  | 
|  | // FIXME: the following 4 cases need cleaning | 
|  | case ISD::SINT_TO_FP: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | Tmp2 = MakeReg(MVT::f64); | 
|  | unsigned dummy = MakeReg(MVT::f64); | 
|  | BuildMI(BB, IA64::SETFSIG, 1, Tmp2).addReg(Tmp1); | 
|  | BuildMI(BB, IA64::FCVTXF, 1, dummy).addReg(Tmp2); | 
|  | BuildMI(BB, IA64::FNORMD, 1, Result).addReg(dummy); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::UINT_TO_FP: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | Tmp2 = MakeReg(MVT::f64); | 
|  | unsigned dummy = MakeReg(MVT::f64); | 
|  | BuildMI(BB, IA64::SETFSIG, 1, Tmp2).addReg(Tmp1); | 
|  | BuildMI(BB, IA64::FCVTXUF, 1, dummy).addReg(Tmp2); | 
|  | BuildMI(BB, IA64::FNORMD, 1, Result).addReg(dummy); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::FP_TO_SINT: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | Tmp2 = MakeReg(MVT::f64); | 
|  | BuildMI(BB, IA64::FCVTFXTRUNC, 1, Tmp2).addReg(Tmp1); | 
|  | BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(Tmp2); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::FP_TO_UINT: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | Tmp2 = MakeReg(MVT::f64); | 
|  | BuildMI(BB, IA64::FCVTFXUTRUNC, 1, Tmp2).addReg(Tmp1); | 
|  | BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(Tmp2); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::FADD: { | 
|  | if (N.getOperand(0).getOpcode() == ISD::FMUL && | 
|  | N.getOperand(0).Val->hasOneUse()) { // if we can fold this add | 
|  | // into an fma, do so: | 
|  | // ++FusedFP; // Statistic | 
|  | Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); | 
|  | Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); | 
|  | Tmp3 = SelectExpr(N.getOperand(1)); | 
|  | BuildMI(BB, IA64::FMA, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); | 
|  | return Result; // early exit | 
|  | } | 
|  |  | 
|  | //else, fallthrough: | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | BuildMI(BB, IA64::FADD, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::ADD: { | 
|  | if (N.getOperand(0).getOpcode() == ISD::SHL && | 
|  | N.getOperand(0).Val->hasOneUse()) { // if we might be able to fold | 
|  | // this add into a shladd, try: | 
|  | ConstantSDNode *CSD = NULL; | 
|  | if((CSD = dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) && | 
|  | (CSD->getValue() >= 1) && (CSD->getValue() <= 4) ) { // we can: | 
|  |  | 
|  | // ++FusedSHLADD; // Statistic | 
|  | Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); | 
|  | int shl_amt = CSD->getValue(); | 
|  | Tmp3 = SelectExpr(N.getOperand(1)); | 
|  |  | 
|  | BuildMI(BB, IA64::SHLADD, 3, Result) | 
|  | .addReg(Tmp1).addImm(shl_amt).addReg(Tmp3); | 
|  | return Result; // early exit | 
|  | } | 
|  | } | 
|  |  | 
|  | //else, fallthrough: | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | switch (ponderIntegerAdditionWith(N.getOperand(1), Tmp3)) { | 
|  | case 1: // adding a constant that's 14 bits | 
|  | BuildMI(BB, IA64::ADDIMM14, 2, Result).addReg(Tmp1).addSImm(Tmp3); | 
|  | return Result; // early exit | 
|  | } // fallthrough and emit a reg+reg ADD: | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | BuildMI(BB, IA64::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::FMUL: | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | BuildMI(BB, IA64::FMPY, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | return Result; | 
|  |  | 
|  | case ISD::MUL: { | 
|  |  | 
|  | // TODO: speed! | 
|  | /* FIXME if(N.getOperand(1).getOpcode() != ISD::Constant) { // if not a const mul | 
|  | */ | 
|  | // boring old integer multiply with xma | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  |  | 
|  | unsigned TempFR1=MakeReg(MVT::f64); | 
|  | unsigned TempFR2=MakeReg(MVT::f64); | 
|  | unsigned TempFR3=MakeReg(MVT::f64); | 
|  | BuildMI(BB, IA64::SETFSIG, 1, TempFR1).addReg(Tmp1); | 
|  | BuildMI(BB, IA64::SETFSIG, 1, TempFR2).addReg(Tmp2); | 
|  | BuildMI(BB, IA64::XMAL, 1, TempFR3).addReg(TempFR1).addReg(TempFR2) | 
|  | .addReg(IA64::F0); | 
|  | BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(TempFR3); | 
|  | return Result; // early exit | 
|  | /* FIXME } else { // we are multiplying by an integer constant! yay | 
|  | return Reg = SelectExpr(BuildConstmulSequence(N)); // avert your eyes! | 
|  | } */ | 
|  | } | 
|  |  | 
|  | case ISD::FSUB: | 
|  | if(N.getOperand(0).getOpcode() == ISD::FMUL && | 
|  | N.getOperand(0).Val->hasOneUse()) { // if we can fold this sub | 
|  | // into an fms, do so: | 
|  | // ++FusedFP; // Statistic | 
|  | Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); | 
|  | Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); | 
|  | Tmp3 = SelectExpr(N.getOperand(1)); | 
|  | BuildMI(BB, IA64::FMS, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); | 
|  | return Result; // early exit | 
|  | } | 
|  |  | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, IA64::FSUB, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | return Result; | 
|  |  | 
|  | case ISD::SUB: { | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | switch (ponderIntegerSubtractionFrom(N.getOperand(0), Tmp3)) { | 
|  | case 1: // subtracting *from* an 8 bit constant: | 
|  | BuildMI(BB, IA64::SUBIMM8, 2, Result).addSImm(Tmp3).addReg(Tmp2); | 
|  | return Result; // early exit | 
|  | } // fallthrough and emit a reg+reg SUB: | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, IA64::SUB, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::FABS: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | assert(DestType == MVT::f64 && "trying to fabs something other than f64?"); | 
|  | BuildMI(BB, IA64::FABS, 1, Result).addReg(Tmp1); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::FNEG: { | 
|  | assert(DestType == MVT::f64 && "trying to fneg something other than f64?"); | 
|  |  | 
|  | if (ISD::FABS == N.getOperand(0).getOpcode()) { // && hasOneUse()? | 
|  | Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); | 
|  | BuildMI(BB, IA64::FNEGABS, 1, Result).addReg(Tmp1); // fold in abs | 
|  | } else { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, IA64::FNEG, 1, Result).addReg(Tmp1); // plain old fneg | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::AND: { | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot AND this type!"); | 
|  | case MVT::i1: { // if a bool, we emit a pseudocode AND | 
|  | unsigned pA = SelectExpr(N.getOperand(0)); | 
|  | unsigned pB = SelectExpr(N.getOperand(1)); | 
|  |  | 
|  | /* our pseudocode for AND is: | 
|  | * | 
|  | (pA) cmp.eq.unc pC,p0 = r0,r0   // pC = pA | 
|  | cmp.eq pTemp,p0 = r0,r0    // pTemp = NOT pB | 
|  | ;; | 
|  | (pB) cmp.ne pTemp,p0 = r0,r0 | 
|  | ;; | 
|  | (pTemp)cmp.ne pC,p0 = r0,r0    // if (NOT pB) pC = 0 | 
|  |  | 
|  | */ | 
|  | unsigned pTemp = MakeReg(MVT::i1); | 
|  |  | 
|  | unsigned bogusTemp1 = MakeReg(MVT::i1); | 
|  | unsigned bogusTemp2 = MakeReg(MVT::i1); | 
|  | unsigned bogusTemp3 = MakeReg(MVT::i1); | 
|  | unsigned bogusTemp4 = MakeReg(MVT::i1); | 
|  |  | 
|  | BuildMI(BB, IA64::PCMPEQUNC, 3, bogusTemp1) | 
|  | .addReg(IA64::r0).addReg(IA64::r0).addReg(pA); | 
|  | BuildMI(BB, IA64::CMPEQ, 2, bogusTemp2) | 
|  | .addReg(IA64::r0).addReg(IA64::r0); | 
|  | BuildMI(BB, IA64::TPCMPNE, 3, pTemp) | 
|  | .addReg(bogusTemp2).addReg(IA64::r0).addReg(IA64::r0).addReg(pB); | 
|  | BuildMI(BB, IA64::TPCMPNE, 3, Result) | 
|  | .addReg(bogusTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pTemp); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // if not a bool, we just AND away: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::i64: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | switch (ponderIntegerAndWith(N.getOperand(1), Tmp3)) { | 
|  | case 1: // ANDing a constant that is 2^n-1 for some n | 
|  | switch (Tmp3) { | 
|  | case 8:  // if AND 0x00000000000000FF, be quaint and use zxt1 | 
|  | BuildMI(BB, IA64::ZXT1, 1, Result).addReg(Tmp1); | 
|  | break; | 
|  | case 16: // if AND 0x000000000000FFFF, be quaint and use zxt2 | 
|  | BuildMI(BB, IA64::ZXT2, 1, Result).addReg(Tmp1); | 
|  | break; | 
|  | case 32: // if AND 0x00000000FFFFFFFF, be quaint and use zxt4 | 
|  | BuildMI(BB, IA64::ZXT4, 1, Result).addReg(Tmp1); | 
|  | break; | 
|  | default: // otherwise, use dep.z to paste zeros | 
|  | // FIXME: assert the dep.z is in bounds | 
|  | BuildMI(BB, IA64::DEPZ, 3, Result).addReg(Tmp1) | 
|  | .addImm(0).addImm(Tmp3); | 
|  | break; | 
|  | } | 
|  | return Result; // early exit | 
|  | } // fallthrough and emit a simple AND: | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | BuildMI(BB, IA64::AND, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | } | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::OR: { | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot OR this type!"); | 
|  | case MVT::i1: { // if a bool, we emit a pseudocode OR | 
|  | unsigned pA = SelectExpr(N.getOperand(0)); | 
|  | unsigned pB = SelectExpr(N.getOperand(1)); | 
|  |  | 
|  | unsigned pTemp1 = MakeReg(MVT::i1); | 
|  |  | 
|  | /* our pseudocode for OR is: | 
|  | * | 
|  |  | 
|  | pC = pA OR pB | 
|  | ------------- | 
|  |  | 
|  | (pA) cmp.eq.unc pC,p0 = r0,r0  // pC = pA | 
|  | ;; | 
|  | (pB) cmp.eq pC,p0 = r0,r0 // if (pB) pC = 1 | 
|  |  | 
|  | */ | 
|  | BuildMI(BB, IA64::PCMPEQUNC, 3, pTemp1) | 
|  | .addReg(IA64::r0).addReg(IA64::r0).addReg(pA); | 
|  | BuildMI(BB, IA64::TPCMPEQ, 4, Result) | 
|  | .addReg(pTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pB); | 
|  | break; | 
|  | } | 
|  | // if not a bool, we just OR away: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::i64: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | BuildMI(BB, IA64::OR, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::XOR: { | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot XOR this type!"); | 
|  | case MVT::i1: { // if a bool, we emit a pseudocode XOR | 
|  | unsigned pY = SelectExpr(N.getOperand(0)); | 
|  | unsigned pZ = SelectExpr(N.getOperand(1)); | 
|  |  | 
|  | /* one possible routine for XOR is: | 
|  |  | 
|  | // Compute px = py ^ pz | 
|  | // using sum of products: px = (py & !pz) | (pz & !py) | 
|  | // Uses 5 instructions in 3 cycles. | 
|  | // cycle 1 | 
|  | (pz)    cmp.eq.unc      px = r0, r0     // px = pz | 
|  | (py)    cmp.eq.unc      pt = r0, r0     // pt = py | 
|  | ;; | 
|  | // cycle 2 | 
|  | (pt)    cmp.ne.and      px = r0, r0     // px = px & !pt (px = pz & !pt) | 
|  | (pz)    cmp.ne.and      pt = r0, r0     // pt = pt & !pz | 
|  | ;; | 
|  | } { .mmi | 
|  | // cycle 3 | 
|  | (pt)    cmp.eq.or       px = r0, r0     // px = px | pt | 
|  |  | 
|  | *** Another, which we use here, requires one scratch GR. it is: | 
|  |  | 
|  | mov             rt = 0          // initialize rt off critical path | 
|  | ;; | 
|  |  | 
|  | // cycle 1 | 
|  | (pz)    cmp.eq.unc      px = r0, r0     // px = pz | 
|  | (pz)    mov             rt = 1          // rt = pz | 
|  | ;; | 
|  | // cycle 2 | 
|  | (py)    cmp.ne          px = 1, rt      // if (py) px = !pz | 
|  |  | 
|  | .. these routines kindly provided by Jim Hull | 
|  | */ | 
|  | unsigned rt = MakeReg(MVT::i64); | 
|  |  | 
|  | // these two temporaries will never actually appear, | 
|  | // due to the two-address form of some of the instructions below | 
|  | unsigned bogoPR = MakeReg(MVT::i1);  // becomes Result | 
|  | unsigned bogoGR = MakeReg(MVT::i64); // becomes rt | 
|  |  | 
|  | BuildMI(BB, IA64::MOV, 1, bogoGR).addReg(IA64::r0); | 
|  | BuildMI(BB, IA64::PCMPEQUNC, 3, bogoPR) | 
|  | .addReg(IA64::r0).addReg(IA64::r0).addReg(pZ); | 
|  | BuildMI(BB, IA64::TPCADDIMM22, 2, rt) | 
|  | .addReg(bogoGR).addImm(1).addReg(pZ); | 
|  | BuildMI(BB, IA64::TPCMPIMM8NE, 3, Result) | 
|  | .addReg(bogoPR).addImm(1).addReg(rt).addReg(pY); | 
|  | break; | 
|  | } | 
|  | // if not a bool, we just XOR away: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::i64: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | BuildMI(BB, IA64::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::CTPOP: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, IA64::POPCNT, 1, Result).addReg(Tmp1); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::SHL: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | Tmp2 = CN->getValue(); | 
|  | BuildMI(BB, IA64::SHLI, 2, Result).addReg(Tmp1).addImm(Tmp2); | 
|  | } else { | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | BuildMI(BB, IA64::SHL, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::SRL: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | Tmp2 = CN->getValue(); | 
|  | BuildMI(BB, IA64::SHRUI, 2, Result).addReg(Tmp1).addImm(Tmp2); | 
|  | } else { | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | BuildMI(BB, IA64::SHRU, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::SRA: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | Tmp2 = CN->getValue(); | 
|  | BuildMI(BB, IA64::SHRSI, 2, Result).addReg(Tmp1).addImm(Tmp2); | 
|  | } else { | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | BuildMI(BB, IA64::SHRS, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::FDIV: | 
|  | case ISD::SDIV: | 
|  | case ISD::UDIV: | 
|  | case ISD::SREM: | 
|  | case ISD::UREM: { | 
|  |  | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  |  | 
|  | bool isFP=false; | 
|  |  | 
|  | if(DestType == MVT::f64) // XXX: we're not gonna be fed MVT::f32, are we? | 
|  | isFP=true; | 
|  |  | 
|  | bool isModulus=false; // is it a division or a modulus? | 
|  | bool isSigned=false; | 
|  |  | 
|  | switch(N.getOpcode()) { | 
|  | case ISD::FDIV: | 
|  | case ISD::SDIV:  isModulus=false; isSigned=true;  break; | 
|  | case ISD::UDIV:  isModulus=false; isSigned=false; break; | 
|  | case ISD::FREM: | 
|  | case ISD::SREM:  isModulus=true;  isSigned=true;  break; | 
|  | case ISD::UREM:  isModulus=true;  isSigned=false; break; | 
|  | } | 
|  |  | 
|  | if(!isModulus && !isFP) { // if this is an integer divide, | 
|  | switch (ponderIntegerDivisionBy(N.getOperand(1), isSigned, Tmp3)) { | 
|  | case 1: // division by a constant that's a power of 2 | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | if(isSigned) {  // argument could be negative, so emit some code: | 
|  | unsigned divAmt=Tmp3; | 
|  | unsigned tempGR1=MakeReg(MVT::i64); | 
|  | unsigned tempGR2=MakeReg(MVT::i64); | 
|  | unsigned tempGR3=MakeReg(MVT::i64); | 
|  | BuildMI(BB, IA64::SHRS, 2, tempGR1) | 
|  | .addReg(Tmp1).addImm(divAmt-1); | 
|  | BuildMI(BB, IA64::EXTRU, 3, tempGR2) | 
|  | .addReg(tempGR1).addImm(64-divAmt).addImm(divAmt); | 
|  | BuildMI(BB, IA64::ADD, 2, tempGR3) | 
|  | .addReg(Tmp1).addReg(tempGR2); | 
|  | BuildMI(BB, IA64::SHRS, 2, Result) | 
|  | .addReg(tempGR3).addImm(divAmt); | 
|  | } | 
|  | else // unsigned div-by-power-of-2 becomes a simple shift right: | 
|  | BuildMI(BB, IA64::SHRU, 2, Result).addReg(Tmp1).addImm(Tmp3); | 
|  | return Result; // early exit | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned TmpPR=MakeReg(MVT::i1);  // we need two scratch | 
|  | unsigned TmpPR2=MakeReg(MVT::i1); // predicate registers, | 
|  | unsigned TmpF1=MakeReg(MVT::f64); // and one metric truckload of FP regs. | 
|  | unsigned TmpF2=MakeReg(MVT::f64); // lucky we have IA64? | 
|  | unsigned TmpF3=MakeReg(MVT::f64); // well, the real FIXME is to have | 
|  | unsigned TmpF4=MakeReg(MVT::f64); // isTwoAddress forms of these | 
|  | unsigned TmpF5=MakeReg(MVT::f64); // FP instructions so we can end up with | 
|  | unsigned TmpF6=MakeReg(MVT::f64); // stuff like setf.sig f10=f10 etc. | 
|  | unsigned TmpF7=MakeReg(MVT::f64); | 
|  | unsigned TmpF8=MakeReg(MVT::f64); | 
|  | unsigned TmpF9=MakeReg(MVT::f64); | 
|  | unsigned TmpF10=MakeReg(MVT::f64); | 
|  | unsigned TmpF11=MakeReg(MVT::f64); | 
|  | unsigned TmpF12=MakeReg(MVT::f64); | 
|  | unsigned TmpF13=MakeReg(MVT::f64); | 
|  | unsigned TmpF14=MakeReg(MVT::f64); | 
|  | unsigned TmpF15=MakeReg(MVT::f64); | 
|  |  | 
|  | // OK, emit some code: | 
|  |  | 
|  | if(!isFP) { | 
|  | // first, load the inputs into FP regs. | 
|  | BuildMI(BB, IA64::SETFSIG, 1, TmpF1).addReg(Tmp1); | 
|  | BuildMI(BB, IA64::SETFSIG, 1, TmpF2).addReg(Tmp2); | 
|  |  | 
|  | // next, convert the inputs to FP | 
|  | if(isSigned) { | 
|  | BuildMI(BB, IA64::FCVTXF, 1, TmpF3).addReg(TmpF1); | 
|  | BuildMI(BB, IA64::FCVTXF, 1, TmpF4).addReg(TmpF2); | 
|  | } else { | 
|  | BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF3).addReg(TmpF1); | 
|  | BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF4).addReg(TmpF2); | 
|  | } | 
|  |  | 
|  | } else { // this is an FP divide/remainder, so we 'leak' some temp | 
|  | // regs and assign TmpF3=Tmp1, TmpF4=Tmp2 | 
|  | TmpF3=Tmp1; | 
|  | TmpF4=Tmp2; | 
|  | } | 
|  |  | 
|  | // we start by computing an approximate reciprocal (good to 9 bits?) | 
|  | // note, this instruction writes _both_ TmpF5 (answer) and TmpPR (predicate) | 
|  | BuildMI(BB, IA64::FRCPAS1, 4) | 
|  | .addReg(TmpF5, MachineOperand::Def) | 
|  | .addReg(TmpPR, MachineOperand::Def) | 
|  | .addReg(TmpF3).addReg(TmpF4); | 
|  |  | 
|  | if(!isModulus) { // if this is a divide, we worry about div-by-zero | 
|  | unsigned bogusPR=MakeReg(MVT::i1); // won't appear, due to twoAddress | 
|  | // TPCMPNE below | 
|  | BuildMI(BB, IA64::CMPEQ, 2, bogusPR).addReg(IA64::r0).addReg(IA64::r0); | 
|  | BuildMI(BB, IA64::TPCMPNE, 3, TmpPR2).addReg(bogusPR) | 
|  | .addReg(IA64::r0).addReg(IA64::r0).addReg(TmpPR); | 
|  | } | 
|  |  | 
|  | // now we apply newton's method, thrice! (FIXME: this is ~72 bits of | 
|  | // precision, don't need this much for f32/i32) | 
|  | BuildMI(BB, IA64::CFNMAS1, 4, TmpF6) | 
|  | .addReg(TmpF4).addReg(TmpF5).addReg(IA64::F1).addReg(TmpPR); | 
|  | BuildMI(BB, IA64::CFMAS1,  4, TmpF7) | 
|  | .addReg(TmpF3).addReg(TmpF5).addReg(IA64::F0).addReg(TmpPR); | 
|  | BuildMI(BB, IA64::CFMAS1,  4, TmpF8) | 
|  | .addReg(TmpF6).addReg(TmpF6).addReg(IA64::F0).addReg(TmpPR); | 
|  | BuildMI(BB, IA64::CFMAS1,  4, TmpF9) | 
|  | .addReg(TmpF6).addReg(TmpF7).addReg(TmpF7).addReg(TmpPR); | 
|  | BuildMI(BB, IA64::CFMAS1,  4,TmpF10) | 
|  | .addReg(TmpF6).addReg(TmpF5).addReg(TmpF5).addReg(TmpPR); | 
|  | BuildMI(BB, IA64::CFMAS1,  4,TmpF11) | 
|  | .addReg(TmpF8).addReg(TmpF9).addReg(TmpF9).addReg(TmpPR); | 
|  | BuildMI(BB, IA64::CFMAS1,  4,TmpF12) | 
|  | .addReg(TmpF8).addReg(TmpF10).addReg(TmpF10).addReg(TmpPR); | 
|  | BuildMI(BB, IA64::CFNMAS1, 4,TmpF13) | 
|  | .addReg(TmpF4).addReg(TmpF11).addReg(TmpF3).addReg(TmpPR); | 
|  |  | 
|  | // FIXME: this is unfortunate :( | 
|  | // the story is that the dest reg of the fnma above and the fma below | 
|  | // (and therefore possibly the src of the fcvt.fx[u] as well) cannot | 
|  | // be the same register, or this code breaks if the first argument is | 
|  | // zero. (e.g. without this hack, 0%8 yields -64, not 0.) | 
|  | BuildMI(BB, IA64::CFMAS1,  4,TmpF14) | 
|  | .addReg(TmpF13).addReg(TmpF12).addReg(TmpF11).addReg(TmpPR); | 
|  |  | 
|  | if(isModulus) { // XXX: fragile! fixes _only_ mod, *breaks* div! ! | 
|  | BuildMI(BB, IA64::IUSE, 1).addReg(TmpF13); // hack :( | 
|  | } | 
|  |  | 
|  | if(!isFP) { | 
|  | // round to an integer | 
|  | if(isSigned) | 
|  | BuildMI(BB, IA64::FCVTFXTRUNCS1, 1, TmpF15).addReg(TmpF14); | 
|  | else | 
|  | BuildMI(BB, IA64::FCVTFXUTRUNCS1, 1, TmpF15).addReg(TmpF14); | 
|  | } else { | 
|  | BuildMI(BB, IA64::FMOV, 1, TmpF15).addReg(TmpF14); | 
|  | // EXERCISE: can you see why TmpF15=TmpF14 does not work here, and | 
|  | // we really do need the above FMOV? ;) | 
|  | } | 
|  |  | 
|  | if(!isModulus) { | 
|  | if(isFP) { // extra worrying about div-by-zero | 
|  | unsigned bogoResult=MakeReg(MVT::f64); | 
|  |  | 
|  | // we do a 'conditional fmov' (of the correct result, depending | 
|  | // on how the frcpa predicate turned out) | 
|  | BuildMI(BB, IA64::PFMOV, 2, bogoResult) | 
|  | .addReg(TmpF12).addReg(TmpPR2); | 
|  | BuildMI(BB, IA64::CFMOV, 2, Result) | 
|  | .addReg(bogoResult).addReg(TmpF15).addReg(TmpPR); | 
|  | } | 
|  | else { | 
|  | BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(TmpF15); | 
|  | } | 
|  | } else { // this is a modulus | 
|  | if(!isFP) { | 
|  | // answer = q * (-b) + a | 
|  | unsigned ModulusResult = MakeReg(MVT::f64); | 
|  | unsigned TmpF = MakeReg(MVT::f64); | 
|  | unsigned TmpI = MakeReg(MVT::i64); | 
|  |  | 
|  | BuildMI(BB, IA64::SUB, 2, TmpI).addReg(IA64::r0).addReg(Tmp2); | 
|  | BuildMI(BB, IA64::SETFSIG, 1, TmpF).addReg(TmpI); | 
|  | BuildMI(BB, IA64::XMAL, 3, ModulusResult) | 
|  | .addReg(TmpF15).addReg(TmpF).addReg(TmpF1); | 
|  | BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(ModulusResult); | 
|  | } else { // FP modulus! The horror... the horror.... | 
|  | assert(0 && "sorry, no FP modulus just yet!\n!\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::SIGN_EXTEND_INREG: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | switch(cast<VTSDNode>(Node->getOperand(1))->getVT()) { | 
|  | default: | 
|  | Node->dump(); | 
|  | assert(0 && "don't know how to sign extend this type"); | 
|  | break; | 
|  | case MVT::i8: Opc = IA64::SXT1; break; | 
|  | case MVT::i16: Opc = IA64::SXT2; break; | 
|  | case MVT::i32: Opc = IA64::SXT4; break; | 
|  | } | 
|  | BuildMI(BB, Opc, 1, Result).addReg(Tmp1); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::SETCC: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Node->getOperand(2))->get(); | 
|  | if (MVT::isInteger(N.getOperand(0).getValueType())) { | 
|  |  | 
|  | if(ConstantSDNode *CSDN = | 
|  | dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | // if we are comparing against a constant zero | 
|  | if(CSDN->getValue()==0) | 
|  | Tmp2 = IA64::r0; // then we can just compare against r0 | 
|  | else | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | } else // not comparing against a constant | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  |  | 
|  | switch (CC) { | 
|  | default: assert(0 && "Unknown integer comparison!"); | 
|  | case ISD::SETEQ: | 
|  | BuildMI(BB, IA64::CMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETGT: | 
|  | BuildMI(BB, IA64::CMPGT, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETGE: | 
|  | BuildMI(BB, IA64::CMPGE, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETLT: | 
|  | BuildMI(BB, IA64::CMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETLE: | 
|  | BuildMI(BB, IA64::CMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETNE: | 
|  | BuildMI(BB, IA64::CMPNE, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETULT: | 
|  | BuildMI(BB, IA64::CMPLTU, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETUGT: | 
|  | BuildMI(BB, IA64::CMPGTU, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETULE: | 
|  | BuildMI(BB, IA64::CMPLEU, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETUGE: | 
|  | BuildMI(BB, IA64::CMPGEU, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | } | 
|  | } else { // if not integer, should be FP. | 
|  | assert(N.getOperand(0).getValueType() != MVT::f32 && | 
|  | "error: SETCC should have had incoming f32 promoted to f64!\n"); | 
|  |  | 
|  | if(ConstantFPSDNode *CFPSDN = | 
|  | dyn_cast<ConstantFPSDNode>(N.getOperand(1))) { | 
|  |  | 
|  | // if we are comparing against a constant +0.0 or +1.0 | 
|  | if(CFPSDN->isExactlyValue(+0.0)) | 
|  | Tmp2 = IA64::F0; // then we can just compare against f0 | 
|  | else if(CFPSDN->isExactlyValue(+1.0)) | 
|  | Tmp2 = IA64::F1; // or f1 | 
|  | else | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | } else // not comparing against a constant | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  |  | 
|  | switch (CC) { | 
|  | default: assert(0 && "Unknown FP comparison!"); | 
|  | case ISD::SETEQ: | 
|  | BuildMI(BB, IA64::FCMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETGT: | 
|  | BuildMI(BB, IA64::FCMPGT, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETGE: | 
|  | BuildMI(BB, IA64::FCMPGE, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETLT: | 
|  | BuildMI(BB, IA64::FCMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETLE: | 
|  | BuildMI(BB, IA64::FCMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETNE: | 
|  | BuildMI(BB, IA64::FCMPNE, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETULT: | 
|  | BuildMI(BB, IA64::FCMPLTU, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETUGT: | 
|  | BuildMI(BB, IA64::FCMPGTU, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETULE: | 
|  | BuildMI(BB, IA64::FCMPLEU, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | case ISD::SETUGE: | 
|  | BuildMI(BB, IA64::FCMPGEU, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::EXTLOAD: | 
|  | case ISD::ZEXTLOAD: | 
|  | case ISD::LOAD: { | 
|  | // Make sure we generate both values. | 
|  | if (Result != 1) | 
|  | ExprMap[N.getValue(1)] = 1;   // Generate the token | 
|  | else | 
|  | Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); | 
|  |  | 
|  | bool isBool=false; | 
|  |  | 
|  | if(opcode == ISD::LOAD) { // this is a LOAD | 
|  | switch (Node->getValueType(0)) { | 
|  | default: assert(0 && "Cannot load this type!"); | 
|  | case MVT::i1:  Opc = IA64::LD1; isBool=true; break; | 
|  | // FIXME: for now, we treat bool loads the same as i8 loads */ | 
|  | case MVT::i8:  Opc = IA64::LD1; break; | 
|  | case MVT::i16: Opc = IA64::LD2; break; | 
|  | case MVT::i32: Opc = IA64::LD4; break; | 
|  | case MVT::i64: Opc = IA64::LD8; break; | 
|  |  | 
|  | case MVT::f32: Opc = IA64::LDF4; break; | 
|  | case MVT::f64: Opc = IA64::LDF8; break; | 
|  | } | 
|  | } else { // this is an EXTLOAD or ZEXTLOAD | 
|  | MVT::ValueType TypeBeingLoaded = | 
|  | cast<VTSDNode>(Node->getOperand(3))->getVT(); | 
|  | switch (TypeBeingLoaded) { | 
|  | default: assert(0 && "Cannot extload/zextload this type!"); | 
|  | // FIXME: bools? | 
|  | case MVT::i8: Opc = IA64::LD1; break; | 
|  | case MVT::i16: Opc = IA64::LD2; break; | 
|  | case MVT::i32: Opc = IA64::LD4; break; | 
|  | case MVT::f32: Opc = IA64::LDF4; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDOperand Chain = N.getOperand(0); | 
|  | SDOperand Address = N.getOperand(1); | 
|  |  | 
|  | if(Address.getOpcode() == ISD::GlobalAddress) { | 
|  | Select(Chain); | 
|  | unsigned dummy = MakeReg(MVT::i64); | 
|  | unsigned dummy2 = MakeReg(MVT::i64); | 
|  | BuildMI(BB, IA64::ADD, 2, dummy) | 
|  | .addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal()) | 
|  | .addReg(IA64::r1); | 
|  | BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy); | 
|  | if(!isBool) | 
|  | BuildMI(BB, Opc, 1, Result).addReg(dummy2); | 
|  | else { // emit a little pseudocode to load a bool (stored in one byte) | 
|  | // into a predicate register | 
|  | assert(Opc==IA64::LD1 && "problem loading a bool"); | 
|  | unsigned dummy3 = MakeReg(MVT::i64); | 
|  | BuildMI(BB, Opc, 1, dummy3).addReg(dummy2); | 
|  | // we compare to 0. true? 0. false? 1. | 
|  | BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0); | 
|  | } | 
|  | } else if(ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) { | 
|  | unsigned CPIdx = BB->getParent()->getConstantPool()-> | 
|  | getConstantPoolIndex(CP->get()); | 
|  | Select(Chain); | 
|  | IA64Lowering.restoreGP(BB); | 
|  | unsigned dummy = MakeReg(MVT::i64); | 
|  | unsigned dummy2 = MakeReg(MVT::i64); | 
|  | BuildMI(BB, IA64::MOVLIMM64, 1, dummy2).addConstantPoolIndex(CPIdx); | 
|  | BuildMI(BB, IA64::ADD, 2, dummy).addReg(dummy2).addReg(IA64::r1); //CPI+GP | 
|  |  | 
|  |  | 
|  | // OLD     BuildMI(BB, IA64::ADD, 2, dummy).addConstantPoolIndex(CPIdx) | 
|  | // (FIXME!)      .addReg(IA64::r1); // CPI+GP | 
|  | if(!isBool) | 
|  | BuildMI(BB, Opc, 1, Result).addReg(dummy); | 
|  | else { // emit a little pseudocode to load a bool (stored in one byte) | 
|  | // into a predicate register | 
|  | assert(Opc==IA64::LD1 && "problem loading a bool"); | 
|  | unsigned dummy3 = MakeReg(MVT::i64); | 
|  | BuildMI(BB, Opc, 1, dummy3).addReg(dummy); | 
|  | // we compare to 0. true? 0. false? 1. | 
|  | BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0); | 
|  | } | 
|  | } else if(Address.getOpcode() == ISD::FrameIndex) { | 
|  | Select(Chain);  // FIXME ? what about bools? | 
|  | unsigned dummy = MakeReg(MVT::i64); | 
|  | BuildMI(BB, IA64::MOV, 1, dummy) | 
|  | .addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex()); | 
|  | if(!isBool) | 
|  | BuildMI(BB, Opc, 1, Result).addReg(dummy); | 
|  | else { // emit a little pseudocode to load a bool (stored in one byte) | 
|  | // into a predicate register | 
|  | assert(Opc==IA64::LD1 && "problem loading a bool"); | 
|  | unsigned dummy3 = MakeReg(MVT::i64); | 
|  | BuildMI(BB, Opc, 1, dummy3).addReg(dummy); | 
|  | // we compare to 0. true? 0. false? 1. | 
|  | BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0); | 
|  | } | 
|  | } else { // none of the above... | 
|  | Select(Chain); | 
|  | Tmp2 = SelectExpr(Address); | 
|  | if(!isBool) | 
|  | BuildMI(BB, Opc, 1, Result).addReg(Tmp2); | 
|  | else { // emit a little pseudocode to load a bool (stored in one byte) | 
|  | // into a predicate register | 
|  | assert(Opc==IA64::LD1 && "problem loading a bool"); | 
|  | unsigned dummy = MakeReg(MVT::i64); | 
|  | BuildMI(BB, Opc, 1, dummy).addReg(Tmp2); | 
|  | // we compare to 0. true? 0. false? 1. | 
|  | BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy).addReg(IA64::r0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::CopyFromReg: { | 
|  | if (Result == 1) | 
|  | Result = ExprMap[N.getValue(0)] = | 
|  | MakeReg(N.getValue(0).getValueType()); | 
|  |  | 
|  | SDOperand Chain   = N.getOperand(0); | 
|  |  | 
|  | Select(Chain); | 
|  | unsigned r = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); | 
|  |  | 
|  | if(N.getValueType() == MVT::i1) // if a bool, we use pseudocode | 
|  | BuildMI(BB, IA64::PCMPEQUNC, 3, Result) | 
|  | .addReg(IA64::r0).addReg(IA64::r0).addReg(r); | 
|  | // (r) Result =cmp.eq.unc(r0,r0) | 
|  | else | 
|  | BuildMI(BB, IA64::MOV, 1, Result).addReg(r); // otherwise MOV | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::TAILCALL: | 
|  | case ISD::CALL: { | 
|  | Select(N.getOperand(0)); | 
|  |  | 
|  | // The chain for this call is now lowered. | 
|  | ExprMap.insert(std::make_pair(N.getValue(Node->getNumValues()-1), 1)); | 
|  |  | 
|  | //grab the arguments | 
|  | std::vector<unsigned> argvregs; | 
|  |  | 
|  | for(int i = 2, e = Node->getNumOperands(); i < e; ++i) | 
|  | argvregs.push_back(SelectExpr(N.getOperand(i))); | 
|  |  | 
|  | // see section 8.5.8 of "Itanium Software Conventions and | 
|  | // Runtime Architecture Guide to see some examples of what's going | 
|  | // on here. (in short: int args get mapped 1:1 'slot-wise' to out0->out7, | 
|  | // while FP args get mapped to F8->F15 as needed) | 
|  |  | 
|  | unsigned used_FPArgs=0; // how many FP Args have been used so far? | 
|  |  | 
|  | // in reg args | 
|  | for(int i = 0, e = std::min(8, (int)argvregs.size()); i < e; ++i) | 
|  | { | 
|  | unsigned intArgs[] = {IA64::out0, IA64::out1, IA64::out2, IA64::out3, | 
|  | IA64::out4, IA64::out5, IA64::out6, IA64::out7 }; | 
|  | unsigned FPArgs[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11, | 
|  | IA64::F12, IA64::F13, IA64::F14, IA64::F15 }; | 
|  |  | 
|  | switch(N.getOperand(i+2).getValueType()) | 
|  | { | 
|  | default:  // XXX do we need to support MVT::i1 here? | 
|  | Node->dump(); | 
|  | N.getOperand(i).Val->dump(); | 
|  | std::cerr << "Type for " << i << " is: " << | 
|  | N.getOperand(i+2).getValueType() << std::endl; | 
|  | assert(0 && "Unknown value type for call"); | 
|  | case MVT::i64: | 
|  | BuildMI(BB, IA64::MOV, 1, intArgs[i]).addReg(argvregs[i]); | 
|  | break; | 
|  | case MVT::f64: | 
|  | BuildMI(BB, IA64::FMOV, 1, FPArgs[used_FPArgs++]) | 
|  | .addReg(argvregs[i]); | 
|  | // FIXME: we don't need to do this _all_ the time: | 
|  | BuildMI(BB, IA64::GETFD, 1, intArgs[i]).addReg(argvregs[i]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | //in mem args | 
|  | for (int i = 8, e = argvregs.size(); i < e; ++i) | 
|  | { | 
|  | unsigned tempAddr = MakeReg(MVT::i64); | 
|  |  | 
|  | switch(N.getOperand(i+2).getValueType()) { | 
|  | default: | 
|  | Node->dump(); | 
|  | N.getOperand(i).Val->dump(); | 
|  | std::cerr << "Type for " << i << " is: " << | 
|  | N.getOperand(i+2).getValueType() << "\n"; | 
|  | assert(0 && "Unknown value type for call"); | 
|  | case MVT::i1: // FIXME? | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | BuildMI(BB, IA64::ADDIMM22, 2, tempAddr) | 
|  | .addReg(IA64::r12).addImm(16 + (i - 8) * 8); // r12 is SP | 
|  | BuildMI(BB, IA64::ST8, 2).addReg(tempAddr).addReg(argvregs[i]); | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | BuildMI(BB, IA64::ADDIMM22, 2, tempAddr) | 
|  | .addReg(IA64::r12).addImm(16 + (i - 8) * 8); // r12 is SP | 
|  | BuildMI(BB, IA64::STF8, 2).addReg(tempAddr).addReg(argvregs[i]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // build the right kind of call. if we can branch directly, do so: | 
|  | if (GlobalAddressSDNode *GASD = | 
|  | dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) | 
|  | { | 
|  | BuildMI(BB, IA64::BRCALL, 1).addGlobalAddress(GASD->getGlobal(),true); | 
|  | IA64Lowering.restoreGP_SP_RP(BB); | 
|  | } else | 
|  | if (ExternalSymbolSDNode *ESSDN = | 
|  | dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) | 
|  | { // FIXME : currently need this case for correctness, to avoid | 
|  | // "non-pic code with imm relocation against dynamic symbol" errors | 
|  | BuildMI(BB, IA64::BRCALL, 1) | 
|  | .addExternalSymbol(ESSDN->getSymbol(), true); | 
|  | IA64Lowering.restoreGP_SP_RP(BB); | 
|  | } | 
|  | else { // otherwise we need to get the function descriptor | 
|  | // load the branch target (function)'s entry point and | 
|  | // GP, then branch | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  |  | 
|  | unsigned targetEntryPoint=MakeReg(MVT::i64); | 
|  | unsigned targetGPAddr=MakeReg(MVT::i64); | 
|  | unsigned currentGP=MakeReg(MVT::i64); | 
|  |  | 
|  | // b6 is a scratch branch register, we load the target entry point | 
|  | // from the base of the function descriptor | 
|  | BuildMI(BB, IA64::LD8, 1, targetEntryPoint).addReg(Tmp1); | 
|  | BuildMI(BB, IA64::MOV, 1, IA64::B6).addReg(targetEntryPoint); | 
|  |  | 
|  | // save the current GP: | 
|  | BuildMI(BB, IA64::MOV, 1, currentGP).addReg(IA64::r1); | 
|  |  | 
|  | /* TODO: we need to make sure doing this never, ever loads a | 
|  | * bogus value into r1 (GP). */ | 
|  | // load the target GP (which is at mem[functiondescriptor+8]) | 
|  | BuildMI(BB, IA64::ADDIMM22, 2, targetGPAddr) | 
|  | .addReg(Tmp1).addImm(8); // FIXME: addimm22? why not postincrement ld | 
|  | BuildMI(BB, IA64::LD8, 1, IA64::r1).addReg(targetGPAddr); | 
|  |  | 
|  | // and then jump: (well, call) | 
|  | BuildMI(BB, IA64::BRCALL, 1).addReg(IA64::B6); | 
|  | // and finally restore the old GP | 
|  | BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(currentGP); | 
|  | IA64Lowering.restoreSP_RP(BB); | 
|  | } | 
|  |  | 
|  | switch (Node->getValueType(0)) { | 
|  | default: assert(0 && "Unknown value type for call result!"); | 
|  | case MVT::Other: return 1; | 
|  | case MVT::i1: | 
|  | BuildMI(BB, IA64::CMPNE, 2, Result) | 
|  | .addReg(IA64::r8).addReg(IA64::r0); | 
|  | break; | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r8); | 
|  | break; | 
|  | case MVT::f64: | 
|  | BuildMI(BB, IA64::FMOV, 1, Result).addReg(IA64::F8); | 
|  | break; | 
|  | } | 
|  | return Result+N.ResNo; | 
|  | } | 
|  |  | 
|  | } // <- uhhh XXX | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ISel::Select(SDOperand N) { | 
|  | unsigned Tmp1, Tmp2, Opc; | 
|  | unsigned opcode = N.getOpcode(); | 
|  |  | 
|  | if (!LoweredTokens.insert(N).second) | 
|  | return;  // Already selected. | 
|  |  | 
|  | SDNode *Node = N.Val; | 
|  |  | 
|  | switch (Node->getOpcode()) { | 
|  | default: | 
|  | Node->dump(); std::cerr << "\n"; | 
|  | assert(0 && "Node not handled yet!"); | 
|  |  | 
|  | case ISD::EntryToken: return;  // Noop | 
|  |  | 
|  | case ISD::TokenFactor: { | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) | 
|  | Select(Node->getOperand(i)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::CopyToReg: { | 
|  | Select(N.getOperand(0)); | 
|  | Tmp1 = SelectExpr(N.getOperand(2)); | 
|  | Tmp2 = cast<RegisterSDNode>(N.getOperand(1))->getReg(); | 
|  |  | 
|  | if (Tmp1 != Tmp2) { | 
|  | // if a bool, we use pseudocode | 
|  | if (N.getOperand(2).getValueType() == MVT::i1) | 
|  | BuildMI(BB, IA64::PCMPEQUNC, 3, Tmp2) | 
|  | .addReg(IA64::r0).addReg(IA64::r0).addReg(Tmp1); | 
|  | // (Tmp1) Tmp2 = cmp.eq.unc(r0,r0) | 
|  | else | 
|  | BuildMI(BB, IA64::MOV, 1, Tmp2).addReg(Tmp1); | 
|  | // XXX is this the right way 'round? ;) | 
|  | // FIXME: WHAT ABOUT FLOATING POINT? | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::RET: { | 
|  |  | 
|  | /* what the heck is going on here: | 
|  |  | 
|  | <_sabre_> ret with two operands is obvious: chain and value | 
|  | <camel_> yep | 
|  | <_sabre_> ret with 3 values happens when 'expansion' occurs | 
|  | <_sabre_> e.g. i64 gets split into 2x i32 | 
|  | <camel_> oh right | 
|  | <_sabre_> you don't have this case on ia64 | 
|  | <camel_> yep | 
|  | <_sabre_> so the two returned values go into EAX/EDX on ia32 | 
|  | <camel_> ahhh *memories* | 
|  | <_sabre_> :) | 
|  | <camel_> ok, thanks :) | 
|  | <_sabre_> so yeah, everything that has a side effect takes a 'token chain' | 
|  | <_sabre_> this is the first operand always | 
|  | <_sabre_> these operand often define chains, they are the last operand | 
|  | <_sabre_> they are printed as 'ch' if you do DAG.dump() | 
|  | */ | 
|  |  | 
|  | switch (N.getNumOperands()) { | 
|  | default: | 
|  | assert(0 && "Unknown return instruction!"); | 
|  | case 2: | 
|  | Select(N.getOperand(0)); | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | switch (N.getOperand(1).getValueType()) { | 
|  | default: assert(0 && "All other types should have been promoted!!"); | 
|  | // FIXME: do I need to add support for bools here? | 
|  | // (return '0' or '1' r8, basically...) | 
|  | // | 
|  | // FIXME: need to round floats - 80 bits is bad, the tester | 
|  | // told me so | 
|  | case MVT::i64: | 
|  | // we mark r8 as live on exit up above in LowerArguments() | 
|  | BuildMI(BB, IA64::MOV, 1, IA64::r8).addReg(Tmp1); | 
|  | break; | 
|  | case MVT::f64: | 
|  | // we mark F8 as live on exit up above in LowerArguments() | 
|  | BuildMI(BB, IA64::FMOV, 1, IA64::F8).addReg(Tmp1); | 
|  | } | 
|  | break; | 
|  | case 1: | 
|  | Select(N.getOperand(0)); | 
|  | break; | 
|  | } | 
|  | // before returning, restore the ar.pfs register (set by the 'alloc' up top) | 
|  | BuildMI(BB, IA64::MOV, 1).addReg(IA64::AR_PFS).addReg(IA64Lowering.VirtGPR); | 
|  | BuildMI(BB, IA64::RET, 0); // and then just emit a 'ret' instruction | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::BR: { | 
|  | Select(N.getOperand(0)); | 
|  | MachineBasicBlock *Dest = | 
|  | cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock(); | 
|  | BuildMI(BB, IA64::BRLCOND_NOTCALL, 1).addReg(IA64::p0).addMBB(Dest); | 
|  | // XXX HACK! we do _not_ need long branches all the time | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::ImplicitDef: { | 
|  | Select(N.getOperand(0)); | 
|  | BuildMI(BB, IA64::IDEF, 0, | 
|  | cast<RegisterSDNode>(N.getOperand(1))->getReg()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::BRCOND: { | 
|  | MachineBasicBlock *Dest = | 
|  | cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock(); | 
|  |  | 
|  | Select(N.getOperand(0)); | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | BuildMI(BB, IA64::BRLCOND_NOTCALL, 1).addReg(Tmp1).addMBB(Dest); | 
|  | // XXX HACK! we do _not_ need long branches all the time | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::EXTLOAD: | 
|  | case ISD::ZEXTLOAD: | 
|  | case ISD::SEXTLOAD: | 
|  | case ISD::LOAD: | 
|  | case ISD::TAILCALL: | 
|  | case ISD::CALL: | 
|  | case ISD::CopyFromReg: | 
|  | case ISD::DYNAMIC_STACKALLOC: | 
|  | SelectExpr(N); | 
|  | return; | 
|  |  | 
|  | case ISD::TRUNCSTORE: | 
|  | case ISD::STORE: { | 
|  | Select(N.getOperand(0)); | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); // value | 
|  |  | 
|  | bool isBool=false; | 
|  |  | 
|  | if(opcode == ISD::STORE) { | 
|  | switch (N.getOperand(1).getValueType()) { | 
|  | default: assert(0 && "Cannot store this type!"); | 
|  | case MVT::i1:  Opc = IA64::ST1; isBool=true; break; | 
|  | // FIXME?: for now, we treat bool loads the same as i8 stores */ | 
|  | case MVT::i8:  Opc = IA64::ST1; break; | 
|  | case MVT::i16: Opc = IA64::ST2; break; | 
|  | case MVT::i32: Opc = IA64::ST4; break; | 
|  | case MVT::i64: Opc = IA64::ST8; break; | 
|  |  | 
|  | case MVT::f32: Opc = IA64::STF4; break; | 
|  | case MVT::f64: Opc = IA64::STF8; break; | 
|  | } | 
|  | } else { // truncstore | 
|  | switch(cast<VTSDNode>(Node->getOperand(4))->getVT()) { | 
|  | default: assert(0 && "unknown type in truncstore"); | 
|  | case MVT::i1: Opc = IA64::ST1; isBool=true; break; | 
|  | //FIXME: DAG does not promote this load? | 
|  | case MVT::i8: Opc = IA64::ST1; break; | 
|  | case MVT::i16: Opc = IA64::ST2; break; | 
|  | case MVT::i32: Opc = IA64::ST4; break; | 
|  | case MVT::f32: Opc = IA64::STF4; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if(N.getOperand(2).getOpcode() == ISD::GlobalAddress) { | 
|  | unsigned dummy = MakeReg(MVT::i64); | 
|  | unsigned dummy2 = MakeReg(MVT::i64); | 
|  | BuildMI(BB, IA64::ADD, 2, dummy) | 
|  | .addGlobalAddress(cast<GlobalAddressSDNode> | 
|  | (N.getOperand(2))->getGlobal()).addReg(IA64::r1); | 
|  | BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy); | 
|  |  | 
|  | if(!isBool) | 
|  | BuildMI(BB, Opc, 2).addReg(dummy2).addReg(Tmp1); | 
|  | else { // we are storing a bool, so emit a little pseudocode | 
|  | // to store a predicate register as one byte | 
|  | assert(Opc==IA64::ST1); | 
|  | unsigned dummy3 = MakeReg(MVT::i64); | 
|  | unsigned dummy4 = MakeReg(MVT::i64); | 
|  | BuildMI(BB, IA64::MOV, 1, dummy3).addReg(IA64::r0); | 
|  | BuildMI(BB, IA64::TPCADDIMM22, 2, dummy4) | 
|  | .addReg(dummy3).addImm(1).addReg(Tmp1); // if(Tmp1) dummy=0+1; | 
|  | BuildMI(BB, Opc, 2).addReg(dummy2).addReg(dummy4); | 
|  | } | 
|  | } else if(N.getOperand(2).getOpcode() == ISD::FrameIndex) { | 
|  |  | 
|  | // FIXME? (what about bools?) | 
|  |  | 
|  | unsigned dummy = MakeReg(MVT::i64); | 
|  | BuildMI(BB, IA64::MOV, 1, dummy) | 
|  | .addFrameIndex(cast<FrameIndexSDNode>(N.getOperand(2))->getIndex()); | 
|  | BuildMI(BB, Opc, 2).addReg(dummy).addReg(Tmp1); | 
|  | } else { // otherwise | 
|  | Tmp2 = SelectExpr(N.getOperand(2)); //address | 
|  | if(!isBool) | 
|  | BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(Tmp1); | 
|  | else { // we are storing a bool, so emit a little pseudocode | 
|  | // to store a predicate register as one byte | 
|  | assert(Opc==IA64::ST1); | 
|  | unsigned dummy3 = MakeReg(MVT::i64); | 
|  | unsigned dummy4 = MakeReg(MVT::i64); | 
|  | BuildMI(BB, IA64::MOV, 1, dummy3).addReg(IA64::r0); | 
|  | BuildMI(BB, IA64::TPCADDIMM22, 2, dummy4) | 
|  | .addReg(dummy3).addImm(1).addReg(Tmp1); // if(Tmp1) dummy=0+1; | 
|  | BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(dummy4); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::CALLSEQ_START: | 
|  | case ISD::CALLSEQ_END: { | 
|  | Select(N.getOperand(0)); | 
|  | Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue(); | 
|  |  | 
|  | Opc = N.getOpcode() == ISD::CALLSEQ_START ? IA64::ADJUSTCALLSTACKDOWN : | 
|  | IA64::ADJUSTCALLSTACKUP; | 
|  | BuildMI(BB, Opc, 1).addImm(Tmp1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  | assert(0 && "GAME OVER. INSERT COIN?"); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// createIA64PatternInstructionSelector - This pass converts an LLVM function | 
|  | /// into a machine code representation using pattern matching and a machine | 
|  | /// description file. | 
|  | /// | 
|  | FunctionPass *llvm::createIA64PatternInstructionSelector(TargetMachine &TM) { | 
|  | return new ISel(TM); | 
|  | } | 
|  |  | 
|  |  |