|  | //===- llvm/CodeGen/GlobalISel/LegalizerInfo.h ------------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// Interface for Targets to specify which operations they can successfully | 
|  | /// select and how the others should be expanded most efficiently. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H | 
|  | #define LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H | 
|  |  | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallBitVector.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Support/LowLevelTypeImpl.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <tuple> | 
|  | #include <unordered_map> | 
|  | #include <utility> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | extern cl::opt<bool> DisableGISelLegalityCheck; | 
|  |  | 
|  | class MachineInstr; | 
|  | class MachineIRBuilder; | 
|  | class MachineRegisterInfo; | 
|  | class MCInstrInfo; | 
|  | class GISelChangeObserver; | 
|  |  | 
|  | namespace LegalizeActions { | 
|  | enum LegalizeAction : std::uint8_t { | 
|  | /// The operation is expected to be selectable directly by the target, and | 
|  | /// no transformation is necessary. | 
|  | Legal, | 
|  |  | 
|  | /// The operation should be synthesized from multiple instructions acting on | 
|  | /// a narrower scalar base-type. For example a 64-bit add might be | 
|  | /// implemented in terms of 32-bit add-with-carry. | 
|  | NarrowScalar, | 
|  |  | 
|  | /// The operation should be implemented in terms of a wider scalar | 
|  | /// base-type. For example a <2 x s8> add could be implemented as a <2 | 
|  | /// x s32> add (ignoring the high bits). | 
|  | WidenScalar, | 
|  |  | 
|  | /// The (vector) operation should be implemented by splitting it into | 
|  | /// sub-vectors where the operation is legal. For example a <8 x s64> add | 
|  | /// might be implemented as 4 separate <2 x s64> adds. | 
|  | FewerElements, | 
|  |  | 
|  | /// The (vector) operation should be implemented by widening the input | 
|  | /// vector and ignoring the lanes added by doing so. For example <2 x i8> is | 
|  | /// rarely legal, but you might perform an <8 x i8> and then only look at | 
|  | /// the first two results. | 
|  | MoreElements, | 
|  |  | 
|  | /// The operation itself must be expressed in terms of simpler actions on | 
|  | /// this target. E.g. a SREM replaced by an SDIV and subtraction. | 
|  | Lower, | 
|  |  | 
|  | /// The operation should be implemented as a call to some kind of runtime | 
|  | /// support library. For example this usually happens on machines that don't | 
|  | /// support floating-point operations natively. | 
|  | Libcall, | 
|  |  | 
|  | /// The target wants to do something special with this combination of | 
|  | /// operand and type. A callback will be issued when it is needed. | 
|  | Custom, | 
|  |  | 
|  | /// This operation is completely unsupported on the target. A programming | 
|  | /// error has occurred. | 
|  | Unsupported, | 
|  |  | 
|  | /// Sentinel value for when no action was found in the specified table. | 
|  | NotFound, | 
|  |  | 
|  | /// Fall back onto the old rules. | 
|  | /// TODO: Remove this once we've migrated | 
|  | UseLegacyRules, | 
|  | }; | 
|  | } // end namespace LegalizeActions | 
|  |  | 
|  | using LegalizeActions::LegalizeAction; | 
|  |  | 
|  | /// Legalization is decided based on an instruction's opcode, which type slot | 
|  | /// we're considering, and what the existing type is. These aspects are gathered | 
|  | /// together for convenience in the InstrAspect class. | 
|  | struct InstrAspect { | 
|  | unsigned Opcode; | 
|  | unsigned Idx = 0; | 
|  | LLT Type; | 
|  |  | 
|  | InstrAspect(unsigned Opcode, LLT Type) : Opcode(Opcode), Type(Type) {} | 
|  | InstrAspect(unsigned Opcode, unsigned Idx, LLT Type) | 
|  | : Opcode(Opcode), Idx(Idx), Type(Type) {} | 
|  |  | 
|  | bool operator==(const InstrAspect &RHS) const { | 
|  | return Opcode == RHS.Opcode && Idx == RHS.Idx && Type == RHS.Type; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// The LegalityQuery object bundles together all the information that's needed | 
|  | /// to decide whether a given operation is legal or not. | 
|  | /// For efficiency, it doesn't make a copy of Types so care must be taken not | 
|  | /// to free it before using the query. | 
|  | struct LegalityQuery { | 
|  | unsigned Opcode; | 
|  | ArrayRef<LLT> Types; | 
|  |  | 
|  | struct MemDesc { | 
|  | uint64_t SizeInBits; | 
|  | AtomicOrdering Ordering; | 
|  | }; | 
|  |  | 
|  | /// Operations which require memory can use this to place requirements on the | 
|  | /// memory type for each MMO. | 
|  | ArrayRef<MemDesc> MMODescrs; | 
|  |  | 
|  | constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types, | 
|  | const ArrayRef<MemDesc> MMODescrs) | 
|  | : Opcode(Opcode), Types(Types), MMODescrs(MMODescrs) {} | 
|  | constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types) | 
|  | : LegalityQuery(Opcode, Types, {}) {} | 
|  |  | 
|  | raw_ostream &print(raw_ostream &OS) const; | 
|  | }; | 
|  |  | 
|  | /// The result of a query. It either indicates a final answer of Legal or | 
|  | /// Unsupported or describes an action that must be taken to make an operation | 
|  | /// more legal. | 
|  | struct LegalizeActionStep { | 
|  | /// The action to take or the final answer. | 
|  | LegalizeAction Action; | 
|  | /// If describing an action, the type index to change. Otherwise zero. | 
|  | unsigned TypeIdx; | 
|  | /// If describing an action, the new type for TypeIdx. Otherwise LLT{}. | 
|  | LLT NewType; | 
|  |  | 
|  | LegalizeActionStep(LegalizeAction Action, unsigned TypeIdx, | 
|  | const LLT &NewType) | 
|  | : Action(Action), TypeIdx(TypeIdx), NewType(NewType) {} | 
|  |  | 
|  | bool operator==(const LegalizeActionStep &RHS) const { | 
|  | return std::tie(Action, TypeIdx, NewType) == | 
|  | std::tie(RHS.Action, RHS.TypeIdx, RHS.NewType); | 
|  | } | 
|  | }; | 
|  |  | 
|  | using LegalityPredicate = std::function<bool (const LegalityQuery &)>; | 
|  | using LegalizeMutation = | 
|  | std::function<std::pair<unsigned, LLT>(const LegalityQuery &)>; | 
|  |  | 
|  | namespace LegalityPredicates { | 
|  | struct TypePairAndMemSize { | 
|  | LLT Type0; | 
|  | LLT Type1; | 
|  | uint64_t MemSize; | 
|  |  | 
|  | bool operator==(const TypePairAndMemSize &Other) const { | 
|  | return Type0 == Other.Type0 && Type1 == Other.Type1 && | 
|  | MemSize == Other.MemSize; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// True iff P0 and P1 are true. | 
|  | template<typename Predicate> | 
|  | Predicate all(Predicate P0, Predicate P1) { | 
|  | return [=](const LegalityQuery &Query) { | 
|  | return P0(Query) && P1(Query); | 
|  | }; | 
|  | } | 
|  | /// True iff all given predicates are true. | 
|  | template<typename Predicate, typename... Args> | 
|  | Predicate all(Predicate P0, Predicate P1, Args... args) { | 
|  | return all(all(P0, P1), args...); | 
|  | } | 
|  | /// True iff the given type index is the specified types. | 
|  | LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit); | 
|  | /// True iff the given type index is one of the specified types. | 
|  | LegalityPredicate typeInSet(unsigned TypeIdx, | 
|  | std::initializer_list<LLT> TypesInit); | 
|  | /// True iff the given types for the given pair of type indexes is one of the | 
|  | /// specified type pairs. | 
|  | LegalityPredicate | 
|  | typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1, | 
|  | std::initializer_list<std::pair<LLT, LLT>> TypesInit); | 
|  | /// True iff the given types for the given pair of type indexes is one of the | 
|  | /// specified type pairs. | 
|  | LegalityPredicate typePairAndMemSizeInSet( | 
|  | unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx, | 
|  | std::initializer_list<TypePairAndMemSize> TypesAndMemSizeInit); | 
|  | /// True iff the specified type index is a scalar. | 
|  | LegalityPredicate isScalar(unsigned TypeIdx); | 
|  | /// True iff the specified type index is a scalar that's narrower than the given | 
|  | /// size. | 
|  | LegalityPredicate narrowerThan(unsigned TypeIdx, unsigned Size); | 
|  | /// True iff the specified type index is a scalar that's wider than the given | 
|  | /// size. | 
|  | LegalityPredicate widerThan(unsigned TypeIdx, unsigned Size); | 
|  | /// True iff the specified type index is a scalar whose size is not a power of | 
|  | /// 2. | 
|  | LegalityPredicate sizeNotPow2(unsigned TypeIdx); | 
|  | /// True iff the specified MMO index has a size that is not a power of 2 | 
|  | LegalityPredicate memSizeInBytesNotPow2(unsigned MMOIdx); | 
|  | /// True iff the specified type index is a vector whose element count is not a | 
|  | /// power of 2. | 
|  | LegalityPredicate numElementsNotPow2(unsigned TypeIdx); | 
|  | /// True iff the specified MMO index has at an atomic ordering of at Ordering or | 
|  | /// stronger. | 
|  | LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx, | 
|  | AtomicOrdering Ordering); | 
|  | } // end namespace LegalityPredicates | 
|  |  | 
|  | namespace LegalizeMutations { | 
|  | /// Select this specific type for the given type index. | 
|  | LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty); | 
|  | /// Keep the same type as the given type index. | 
|  | LegalizeMutation changeTo(unsigned TypeIdx, unsigned FromTypeIdx); | 
|  | /// Widen the type for the given type index to the next power of 2. | 
|  | LegalizeMutation widenScalarToNextPow2(unsigned TypeIdx, unsigned Min = 0); | 
|  | /// Add more elements to the type for the given type index to the next power of | 
|  | /// 2. | 
|  | LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min = 0); | 
|  | } // end namespace LegalizeMutations | 
|  |  | 
|  | /// A single rule in a legalizer info ruleset. | 
|  | /// The specified action is chosen when the predicate is true. Where appropriate | 
|  | /// for the action (e.g. for WidenScalar) the new type is selected using the | 
|  | /// given mutator. | 
|  | class LegalizeRule { | 
|  | LegalityPredicate Predicate; | 
|  | LegalizeAction Action; | 
|  | LegalizeMutation Mutation; | 
|  |  | 
|  | public: | 
|  | LegalizeRule(LegalityPredicate Predicate, LegalizeAction Action, | 
|  | LegalizeMutation Mutation = nullptr) | 
|  | : Predicate(Predicate), Action(Action), Mutation(Mutation) {} | 
|  |  | 
|  | /// Test whether the LegalityQuery matches. | 
|  | bool match(const LegalityQuery &Query) const { | 
|  | return Predicate(Query); | 
|  | } | 
|  |  | 
|  | LegalizeAction getAction() const { return Action; } | 
|  |  | 
|  | /// Determine the change to make. | 
|  | std::pair<unsigned, LLT> determineMutation(const LegalityQuery &Query) const { | 
|  | if (Mutation) | 
|  | return Mutation(Query); | 
|  | return std::make_pair(0, LLT{}); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class LegalizeRuleSet { | 
|  | /// When non-zero, the opcode we are an alias of | 
|  | unsigned AliasOf; | 
|  | /// If true, there is another opcode that aliases this one | 
|  | bool IsAliasedByAnother; | 
|  | SmallVector<LegalizeRule, 2> Rules; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | /// If bit I is set, this rule set contains a rule that may handle (predicate | 
|  | /// or perform an action upon (or both)) the type index I. The uncertainty | 
|  | /// comes from free-form rules executing user-provided lambda functions. We | 
|  | /// conservatively assume such rules do the right thing and cover all type | 
|  | /// indices. The bitset is intentionally 1 bit wider than it absolutely needs | 
|  | /// to be to distinguish such cases from the cases where all type indices are | 
|  | /// individually handled. | 
|  | SmallBitVector TypeIdxsCovered{MCOI::OPERAND_LAST_GENERIC - | 
|  | MCOI::OPERAND_FIRST_GENERIC + 2}; | 
|  | #endif | 
|  |  | 
|  | unsigned typeIdx(unsigned TypeIdx) { | 
|  | assert(TypeIdx <= | 
|  | (MCOI::OPERAND_LAST_GENERIC - MCOI::OPERAND_FIRST_GENERIC) && | 
|  | "Type Index is out of bounds"); | 
|  | #ifndef NDEBUG | 
|  | TypeIdxsCovered.set(TypeIdx); | 
|  | #endif | 
|  | return TypeIdx; | 
|  | } | 
|  | void markAllTypeIdxsAsCovered() { | 
|  | #ifndef NDEBUG | 
|  | TypeIdxsCovered.set(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void add(const LegalizeRule &Rule) { | 
|  | assert(AliasOf == 0 && | 
|  | "RuleSet is aliased, change the representative opcode instead"); | 
|  | Rules.push_back(Rule); | 
|  | } | 
|  |  | 
|  | static bool always(const LegalityQuery &) { return true; } | 
|  |  | 
|  | /// Use the given action when the predicate is true. | 
|  | /// Action should not be an action that requires mutation. | 
|  | LegalizeRuleSet &actionIf(LegalizeAction Action, | 
|  | LegalityPredicate Predicate) { | 
|  | add({Predicate, Action}); | 
|  | return *this; | 
|  | } | 
|  | /// Use the given action when the predicate is true. | 
|  | /// Action should be an action that requires mutation. | 
|  | LegalizeRuleSet &actionIf(LegalizeAction Action, LegalityPredicate Predicate, | 
|  | LegalizeMutation Mutation) { | 
|  | add({Predicate, Action, Mutation}); | 
|  | return *this; | 
|  | } | 
|  | /// Use the given action when type index 0 is any type in the given list. | 
|  | /// Action should not be an action that requires mutation. | 
|  | LegalizeRuleSet &actionFor(LegalizeAction Action, | 
|  | std::initializer_list<LLT> Types) { | 
|  | using namespace LegalityPredicates; | 
|  | return actionIf(Action, typeInSet(typeIdx(0), Types)); | 
|  | } | 
|  | /// Use the given action when type index 0 is any type in the given list. | 
|  | /// Action should be an action that requires mutation. | 
|  | LegalizeRuleSet &actionFor(LegalizeAction Action, | 
|  | std::initializer_list<LLT> Types, | 
|  | LegalizeMutation Mutation) { | 
|  | using namespace LegalityPredicates; | 
|  | return actionIf(Action, typeInSet(typeIdx(0), Types), Mutation); | 
|  | } | 
|  | /// Use the given action when type indexes 0 and 1 is any type pair in the | 
|  | /// given list. | 
|  | /// Action should not be an action that requires mutation. | 
|  | LegalizeRuleSet &actionFor(LegalizeAction Action, | 
|  | std::initializer_list<std::pair<LLT, LLT>> Types) { | 
|  | using namespace LegalityPredicates; | 
|  | return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types)); | 
|  | } | 
|  | /// Use the given action when type indexes 0 and 1 is any type pair in the | 
|  | /// given list. | 
|  | /// Action should be an action that requires mutation. | 
|  | LegalizeRuleSet &actionFor(LegalizeAction Action, | 
|  | std::initializer_list<std::pair<LLT, LLT>> Types, | 
|  | LegalizeMutation Mutation) { | 
|  | using namespace LegalityPredicates; | 
|  | return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types), | 
|  | Mutation); | 
|  | } | 
|  | /// Use the given action when type indexes 0 and 1 are both in the given list. | 
|  | /// That is, the type pair is in the cartesian product of the list. | 
|  | /// Action should not be an action that requires mutation. | 
|  | LegalizeRuleSet &actionForCartesianProduct(LegalizeAction Action, | 
|  | std::initializer_list<LLT> Types) { | 
|  | using namespace LegalityPredicates; | 
|  | return actionIf(Action, all(typeInSet(typeIdx(0), Types), | 
|  | typeInSet(typeIdx(1), Types))); | 
|  | } | 
|  | /// Use the given action when type indexes 0 and 1 are both in their | 
|  | /// respective lists. | 
|  | /// That is, the type pair is in the cartesian product of the lists | 
|  | /// Action should not be an action that requires mutation. | 
|  | LegalizeRuleSet & | 
|  | actionForCartesianProduct(LegalizeAction Action, | 
|  | std::initializer_list<LLT> Types0, | 
|  | std::initializer_list<LLT> Types1) { | 
|  | using namespace LegalityPredicates; | 
|  | return actionIf(Action, all(typeInSet(typeIdx(0), Types0), | 
|  | typeInSet(typeIdx(1), Types1))); | 
|  | } | 
|  | /// Use the given action when type indexes 0, 1, and 2 are all in their | 
|  | /// respective lists. | 
|  | /// That is, the type triple is in the cartesian product of the lists | 
|  | /// Action should not be an action that requires mutation. | 
|  | LegalizeRuleSet &actionForCartesianProduct( | 
|  | LegalizeAction Action, std::initializer_list<LLT> Types0, | 
|  | std::initializer_list<LLT> Types1, std::initializer_list<LLT> Types2) { | 
|  | using namespace LegalityPredicates; | 
|  | return actionIf(Action, all(typeInSet(typeIdx(0), Types0), | 
|  | all(typeInSet(typeIdx(1), Types1), | 
|  | typeInSet(typeIdx(2), Types2)))); | 
|  | } | 
|  |  | 
|  | public: | 
|  | LegalizeRuleSet() : AliasOf(0), IsAliasedByAnother(false), Rules() {} | 
|  |  | 
|  | bool isAliasedByAnother() { return IsAliasedByAnother; } | 
|  | void setIsAliasedByAnother() { IsAliasedByAnother = true; } | 
|  | void aliasTo(unsigned Opcode) { | 
|  | assert((AliasOf == 0 || AliasOf == Opcode) && | 
|  | "Opcode is already aliased to another opcode"); | 
|  | assert(Rules.empty() && "Aliasing will discard rules"); | 
|  | AliasOf = Opcode; | 
|  | } | 
|  | unsigned getAlias() const { return AliasOf; } | 
|  |  | 
|  | /// The instruction is legal if predicate is true. | 
|  | LegalizeRuleSet &legalIf(LegalityPredicate Predicate) { | 
|  | // We have no choice but conservatively assume that the free-form | 
|  | // user-provided Predicate properly handles all type indices: | 
|  | markAllTypeIdxsAsCovered(); | 
|  | return actionIf(LegalizeAction::Legal, Predicate); | 
|  | } | 
|  | /// The instruction is legal when type index 0 is any type in the given list. | 
|  | LegalizeRuleSet &legalFor(std::initializer_list<LLT> Types) { | 
|  | return actionFor(LegalizeAction::Legal, Types); | 
|  | } | 
|  | /// The instruction is legal when type indexes 0 and 1 is any type pair in the | 
|  | /// given list. | 
|  | LegalizeRuleSet &legalFor(std::initializer_list<std::pair<LLT, LLT>> Types) { | 
|  | return actionFor(LegalizeAction::Legal, Types); | 
|  | } | 
|  | /// The instruction is legal when type indexes 0 and 1 along with the memory | 
|  | /// size is any type and size tuple in the given list. | 
|  | LegalizeRuleSet &legalForTypesWithMemSize( | 
|  | std::initializer_list<LegalityPredicates::TypePairAndMemSize> | 
|  | TypesAndMemSize) { | 
|  | return actionIf(LegalizeAction::Legal, | 
|  | LegalityPredicates::typePairAndMemSizeInSet( | 
|  | typeIdx(0), typeIdx(1), /*MMOIdx*/ 0, TypesAndMemSize)); | 
|  | } | 
|  | /// The instruction is legal when type indexes 0 and 1 are both in the given | 
|  | /// list. That is, the type pair is in the cartesian product of the list. | 
|  | LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types) { | 
|  | return actionForCartesianProduct(LegalizeAction::Legal, Types); | 
|  | } | 
|  | /// The instruction is legal when type indexes 0 and 1 are both their | 
|  | /// respective lists. | 
|  | LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0, | 
|  | std::initializer_list<LLT> Types1) { | 
|  | return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1); | 
|  | } | 
|  |  | 
|  | /// The instruction is lowered. | 
|  | LegalizeRuleSet &lower() { | 
|  | using namespace LegalizeMutations; | 
|  | // We have no choice but conservatively assume that predicate-less lowering | 
|  | // properly handles all type indices by design: | 
|  | markAllTypeIdxsAsCovered(); | 
|  | return actionIf(LegalizeAction::Lower, always); | 
|  | } | 
|  | /// The instruction is lowered if predicate is true. Keep type index 0 as the | 
|  | /// same type. | 
|  | LegalizeRuleSet &lowerIf(LegalityPredicate Predicate) { | 
|  | using namespace LegalizeMutations; | 
|  | // We have no choice but conservatively assume that lowering with a | 
|  | // free-form user provided Predicate properly handles all type indices: | 
|  | markAllTypeIdxsAsCovered(); | 
|  | return actionIf(LegalizeAction::Lower, Predicate); | 
|  | } | 
|  | /// The instruction is lowered if predicate is true. | 
|  | LegalizeRuleSet &lowerIf(LegalityPredicate Predicate, | 
|  | LegalizeMutation Mutation) { | 
|  | // We have no choice but conservatively assume that lowering with a | 
|  | // free-form user provided Predicate properly handles all type indices: | 
|  | markAllTypeIdxsAsCovered(); | 
|  | return actionIf(LegalizeAction::Lower, Predicate, Mutation); | 
|  | } | 
|  | /// The instruction is lowered when type index 0 is any type in the given | 
|  | /// list. Keep type index 0 as the same type. | 
|  | LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types) { | 
|  | return actionFor(LegalizeAction::Lower, Types, | 
|  | LegalizeMutations::changeTo(0, 0)); | 
|  | } | 
|  | /// The instruction is lowered when type index 0 is any type in the given | 
|  | /// list. | 
|  | LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types, | 
|  | LegalizeMutation Mutation) { | 
|  | return actionFor(LegalizeAction::Lower, Types, Mutation); | 
|  | } | 
|  | /// The instruction is lowered when type indexes 0 and 1 is any type pair in | 
|  | /// the given list. Keep type index 0 as the same type. | 
|  | LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types) { | 
|  | return actionFor(LegalizeAction::Lower, Types, | 
|  | LegalizeMutations::changeTo(0, 0)); | 
|  | } | 
|  | /// The instruction is lowered when type indexes 0 and 1 is any type pair in | 
|  | /// the given list. | 
|  | LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types, | 
|  | LegalizeMutation Mutation) { | 
|  | return actionFor(LegalizeAction::Lower, Types, Mutation); | 
|  | } | 
|  | /// The instruction is lowered when type indexes 0 and 1 are both in their | 
|  | /// respective lists. | 
|  | LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0, | 
|  | std::initializer_list<LLT> Types1) { | 
|  | using namespace LegalityPredicates; | 
|  | return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1); | 
|  | } | 
|  | /// The instruction is lowered when when type indexes 0, 1, and 2 are all in | 
|  | /// their respective lists. | 
|  | LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0, | 
|  | std::initializer_list<LLT> Types1, | 
|  | std::initializer_list<LLT> Types2) { | 
|  | using namespace LegalityPredicates; | 
|  | return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1, | 
|  | Types2); | 
|  | } | 
|  |  | 
|  | /// Like legalIf, but for the Libcall action. | 
|  | LegalizeRuleSet &libcallIf(LegalityPredicate Predicate) { | 
|  | // We have no choice but conservatively assume that a libcall with a | 
|  | // free-form user provided Predicate properly handles all type indices: | 
|  | markAllTypeIdxsAsCovered(); | 
|  | return actionIf(LegalizeAction::Libcall, Predicate); | 
|  | } | 
|  | LegalizeRuleSet &libcallFor(std::initializer_list<LLT> Types) { | 
|  | return actionFor(LegalizeAction::Libcall, Types); | 
|  | } | 
|  | LegalizeRuleSet & | 
|  | libcallFor(std::initializer_list<std::pair<LLT, LLT>> Types) { | 
|  | return actionFor(LegalizeAction::Libcall, Types); | 
|  | } | 
|  | LegalizeRuleSet & | 
|  | libcallForCartesianProduct(std::initializer_list<LLT> Types) { | 
|  | return actionForCartesianProduct(LegalizeAction::Libcall, Types); | 
|  | } | 
|  | LegalizeRuleSet & | 
|  | libcallForCartesianProduct(std::initializer_list<LLT> Types0, | 
|  | std::initializer_list<LLT> Types1) { | 
|  | return actionForCartesianProduct(LegalizeAction::Libcall, Types0, Types1); | 
|  | } | 
|  |  | 
|  | /// Widen the scalar to the one selected by the mutation if the predicate is | 
|  | /// true. | 
|  | LegalizeRuleSet &widenScalarIf(LegalityPredicate Predicate, | 
|  | LegalizeMutation Mutation) { | 
|  | // We have no choice but conservatively assume that an action with a | 
|  | // free-form user provided Predicate properly handles all type indices: | 
|  | markAllTypeIdxsAsCovered(); | 
|  | return actionIf(LegalizeAction::WidenScalar, Predicate, Mutation); | 
|  | } | 
|  | /// Narrow the scalar to the one selected by the mutation if the predicate is | 
|  | /// true. | 
|  | LegalizeRuleSet &narrowScalarIf(LegalityPredicate Predicate, | 
|  | LegalizeMutation Mutation) { | 
|  | // We have no choice but conservatively assume that an action with a | 
|  | // free-form user provided Predicate properly handles all type indices: | 
|  | markAllTypeIdxsAsCovered(); | 
|  | return actionIf(LegalizeAction::NarrowScalar, Predicate, Mutation); | 
|  | } | 
|  |  | 
|  | /// Add more elements to reach the type selected by the mutation if the | 
|  | /// predicate is true. | 
|  | LegalizeRuleSet &moreElementsIf(LegalityPredicate Predicate, | 
|  | LegalizeMutation Mutation) { | 
|  | // We have no choice but conservatively assume that an action with a | 
|  | // free-form user provided Predicate properly handles all type indices: | 
|  | markAllTypeIdxsAsCovered(); | 
|  | return actionIf(LegalizeAction::MoreElements, Predicate, Mutation); | 
|  | } | 
|  | /// Remove elements to reach the type selected by the mutation if the | 
|  | /// predicate is true. | 
|  | LegalizeRuleSet &fewerElementsIf(LegalityPredicate Predicate, | 
|  | LegalizeMutation Mutation) { | 
|  | // We have no choice but conservatively assume that an action with a | 
|  | // free-form user provided Predicate properly handles all type indices: | 
|  | markAllTypeIdxsAsCovered(); | 
|  | return actionIf(LegalizeAction::FewerElements, Predicate, Mutation); | 
|  | } | 
|  |  | 
|  | /// The instruction is unsupported. | 
|  | LegalizeRuleSet &unsupported() { | 
|  | return actionIf(LegalizeAction::Unsupported, always); | 
|  | } | 
|  | LegalizeRuleSet &unsupportedIf(LegalityPredicate Predicate) { | 
|  | return actionIf(LegalizeAction::Unsupported, Predicate); | 
|  | } | 
|  | LegalizeRuleSet &unsupportedIfMemSizeNotPow2() { | 
|  | return actionIf(LegalizeAction::Unsupported, | 
|  | LegalityPredicates::memSizeInBytesNotPow2(0)); | 
|  | } | 
|  |  | 
|  | LegalizeRuleSet &customIf(LegalityPredicate Predicate) { | 
|  | // We have no choice but conservatively assume that a custom action with a | 
|  | // free-form user provided Predicate properly handles all type indices: | 
|  | markAllTypeIdxsAsCovered(); | 
|  | return actionIf(LegalizeAction::Custom, Predicate); | 
|  | } | 
|  | LegalizeRuleSet &customFor(std::initializer_list<LLT> Types) { | 
|  | return actionFor(LegalizeAction::Custom, Types); | 
|  | } | 
|  | LegalizeRuleSet &customForCartesianProduct(std::initializer_list<LLT> Types) { | 
|  | return actionForCartesianProduct(LegalizeAction::Custom, Types); | 
|  | } | 
|  | LegalizeRuleSet & | 
|  | customForCartesianProduct(std::initializer_list<LLT> Types0, | 
|  | std::initializer_list<LLT> Types1) { | 
|  | return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1); | 
|  | } | 
|  |  | 
|  | /// Widen the scalar to the next power of two that is at least MinSize. | 
|  | /// No effect if the type is not a scalar or is a power of two. | 
|  | LegalizeRuleSet &widenScalarToNextPow2(unsigned TypeIdx, | 
|  | unsigned MinSize = 0) { | 
|  | using namespace LegalityPredicates; | 
|  | return actionIf(LegalizeAction::WidenScalar, sizeNotPow2(typeIdx(TypeIdx)), | 
|  | LegalizeMutations::widenScalarToNextPow2(TypeIdx, MinSize)); | 
|  | } | 
|  |  | 
|  | LegalizeRuleSet &narrowScalar(unsigned TypeIdx, LegalizeMutation Mutation) { | 
|  | using namespace LegalityPredicates; | 
|  | return actionIf(LegalizeAction::NarrowScalar, isScalar(typeIdx(TypeIdx)), | 
|  | Mutation); | 
|  | } | 
|  |  | 
|  | /// Ensure the scalar is at least as wide as Ty. | 
|  | LegalizeRuleSet &minScalar(unsigned TypeIdx, const LLT &Ty) { | 
|  | using namespace LegalityPredicates; | 
|  | using namespace LegalizeMutations; | 
|  | return actionIf(LegalizeAction::WidenScalar, | 
|  | narrowerThan(TypeIdx, Ty.getSizeInBits()), | 
|  | changeTo(typeIdx(TypeIdx), Ty)); | 
|  | } | 
|  |  | 
|  | /// Ensure the scalar is at most as wide as Ty. | 
|  | LegalizeRuleSet &maxScalar(unsigned TypeIdx, const LLT &Ty) { | 
|  | using namespace LegalityPredicates; | 
|  | using namespace LegalizeMutations; | 
|  | return actionIf(LegalizeAction::NarrowScalar, | 
|  | widerThan(TypeIdx, Ty.getSizeInBits()), | 
|  | changeTo(typeIdx(TypeIdx), Ty)); | 
|  | } | 
|  |  | 
|  | /// Conditionally limit the maximum size of the scalar. | 
|  | /// For example, when the maximum size of one type depends on the size of | 
|  | /// another such as extracting N bits from an M bit container. | 
|  | LegalizeRuleSet &maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, | 
|  | const LLT &Ty) { | 
|  | using namespace LegalityPredicates; | 
|  | using namespace LegalizeMutations; | 
|  | return actionIf(LegalizeAction::NarrowScalar, | 
|  | [=](const LegalityQuery &Query) { | 
|  | return widerThan(TypeIdx, Ty.getSizeInBits()) && | 
|  | Predicate(Query); | 
|  | }, | 
|  | changeTo(typeIdx(TypeIdx), Ty)); | 
|  | } | 
|  |  | 
|  | /// Limit the range of scalar sizes to MinTy and MaxTy. | 
|  | LegalizeRuleSet &clampScalar(unsigned TypeIdx, const LLT &MinTy, | 
|  | const LLT &MaxTy) { | 
|  | assert(MinTy.isScalar() && MaxTy.isScalar() && "Expected scalar types"); | 
|  | return minScalar(TypeIdx, MinTy).maxScalar(TypeIdx, MaxTy); | 
|  | } | 
|  |  | 
|  | /// Widen the scalar to match the size of another. | 
|  | LegalizeRuleSet &minScalarSameAs(unsigned TypeIdx, unsigned LargeTypeIdx) { | 
|  | typeIdx(TypeIdx); | 
|  | return widenScalarIf( | 
|  | [=](const LegalityQuery &Query) { | 
|  | return Query.Types[LargeTypeIdx].getScalarSizeInBits() > | 
|  | Query.Types[TypeIdx].getSizeInBits(); | 
|  | }, | 
|  | [=](const LegalityQuery &Query) { | 
|  | return std::make_pair(TypeIdx, | 
|  | Query.Types[LargeTypeIdx].getElementType()); | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Add more elements to the vector to reach the next power of two. | 
|  | /// No effect if the type is not a vector or the element count is a power of | 
|  | /// two. | 
|  | LegalizeRuleSet &moreElementsToNextPow2(unsigned TypeIdx) { | 
|  | using namespace LegalityPredicates; | 
|  | return actionIf(LegalizeAction::MoreElements, | 
|  | numElementsNotPow2(typeIdx(TypeIdx)), | 
|  | LegalizeMutations::moreElementsToNextPow2(TypeIdx)); | 
|  | } | 
|  |  | 
|  | /// Limit the number of elements in EltTy vectors to at least MinElements. | 
|  | LegalizeRuleSet &clampMinNumElements(unsigned TypeIdx, const LLT &EltTy, | 
|  | unsigned MinElements) { | 
|  | // Mark the type index as covered: | 
|  | typeIdx(TypeIdx); | 
|  | return actionIf( | 
|  | LegalizeAction::MoreElements, | 
|  | [=](const LegalityQuery &Query) { | 
|  | LLT VecTy = Query.Types[TypeIdx]; | 
|  | return VecTy.isVector() && VecTy.getElementType() == EltTy && | 
|  | VecTy.getNumElements() < MinElements; | 
|  | }, | 
|  | [=](const LegalityQuery &Query) { | 
|  | LLT VecTy = Query.Types[TypeIdx]; | 
|  | return std::make_pair( | 
|  | TypeIdx, LLT::vector(MinElements, VecTy.getScalarSizeInBits())); | 
|  | }); | 
|  | } | 
|  | /// Limit the number of elements in EltTy vectors to at most MaxElements. | 
|  | LegalizeRuleSet &clampMaxNumElements(unsigned TypeIdx, const LLT &EltTy, | 
|  | unsigned MaxElements) { | 
|  | // Mark the type index as covered: | 
|  | typeIdx(TypeIdx); | 
|  | return actionIf( | 
|  | LegalizeAction::FewerElements, | 
|  | [=](const LegalityQuery &Query) { | 
|  | LLT VecTy = Query.Types[TypeIdx]; | 
|  | return VecTy.isVector() && VecTy.getElementType() == EltTy && | 
|  | VecTy.getNumElements() > MaxElements; | 
|  | }, | 
|  | [=](const LegalityQuery &Query) { | 
|  | LLT VecTy = Query.Types[TypeIdx]; | 
|  | if (MaxElements == 1) | 
|  | return std::make_pair(TypeIdx, VecTy.getElementType()); | 
|  | return std::make_pair( | 
|  | TypeIdx, LLT::vector(MaxElements, VecTy.getScalarSizeInBits())); | 
|  | }); | 
|  | } | 
|  | /// Limit the number of elements for the given vectors to at least MinTy's | 
|  | /// number of elements and at most MaxTy's number of elements. | 
|  | /// | 
|  | /// No effect if the type is not a vector or does not have the same element | 
|  | /// type as the constraints. | 
|  | /// The element type of MinTy and MaxTy must match. | 
|  | LegalizeRuleSet &clampNumElements(unsigned TypeIdx, const LLT &MinTy, | 
|  | const LLT &MaxTy) { | 
|  | assert(MinTy.getElementType() == MaxTy.getElementType() && | 
|  | "Expected element types to agree"); | 
|  |  | 
|  | const LLT &EltTy = MinTy.getElementType(); | 
|  | return clampMinNumElements(TypeIdx, EltTy, MinTy.getNumElements()) | 
|  | .clampMaxNumElements(TypeIdx, EltTy, MaxTy.getNumElements()); | 
|  | } | 
|  |  | 
|  | /// Fallback on the previous implementation. This should only be used while | 
|  | /// porting a rule. | 
|  | LegalizeRuleSet &fallback() { | 
|  | add({always, LegalizeAction::UseLegacyRules}); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /// Check if there is no type index which is obviously not handled by the | 
|  | /// LegalizeRuleSet in any way at all. | 
|  | /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set. | 
|  | bool verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const; | 
|  |  | 
|  | /// Apply the ruleset to the given LegalityQuery. | 
|  | LegalizeActionStep apply(const LegalityQuery &Query) const; | 
|  | }; | 
|  |  | 
|  | class LegalizerInfo { | 
|  | public: | 
|  | LegalizerInfo(); | 
|  | virtual ~LegalizerInfo() = default; | 
|  |  | 
|  | unsigned getOpcodeIdxForOpcode(unsigned Opcode) const; | 
|  | unsigned getActionDefinitionsIdx(unsigned Opcode) const; | 
|  |  | 
|  | /// Compute any ancillary tables needed to quickly decide how an operation | 
|  | /// should be handled. This must be called after all "set*Action"methods but | 
|  | /// before any query is made or incorrect results may be returned. | 
|  | void computeTables(); | 
|  |  | 
|  | /// Perform simple self-diagnostic and assert if there is anything obviously | 
|  | /// wrong with the actions set up. | 
|  | void verify(const MCInstrInfo &MII) const; | 
|  |  | 
|  | static bool needsLegalizingToDifferentSize(const LegalizeAction Action) { | 
|  | using namespace LegalizeActions; | 
|  | switch (Action) { | 
|  | case NarrowScalar: | 
|  | case WidenScalar: | 
|  | case FewerElements: | 
|  | case MoreElements: | 
|  | case Unsupported: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | using SizeAndAction = std::pair<uint16_t, LegalizeAction>; | 
|  | using SizeAndActionsVec = std::vector<SizeAndAction>; | 
|  | using SizeChangeStrategy = | 
|  | std::function<SizeAndActionsVec(const SizeAndActionsVec &v)>; | 
|  |  | 
|  | /// More friendly way to set an action for common types that have an LLT | 
|  | /// representation. | 
|  | /// The LegalizeAction must be one for which NeedsLegalizingToDifferentSize | 
|  | /// returns false. | 
|  | void setAction(const InstrAspect &Aspect, LegalizeAction Action) { | 
|  | assert(!needsLegalizingToDifferentSize(Action)); | 
|  | TablesInitialized = false; | 
|  | const unsigned OpcodeIdx = Aspect.Opcode - FirstOp; | 
|  | if (SpecifiedActions[OpcodeIdx].size() <= Aspect.Idx) | 
|  | SpecifiedActions[OpcodeIdx].resize(Aspect.Idx + 1); | 
|  | SpecifiedActions[OpcodeIdx][Aspect.Idx][Aspect.Type] = Action; | 
|  | } | 
|  |  | 
|  | /// The setAction calls record the non-size-changing legalization actions | 
|  | /// to take on specificly-sized types. The SizeChangeStrategy defines what | 
|  | /// to do when the size of the type needs to be changed to reach a legally | 
|  | /// sized type (i.e., one that was defined through a setAction call). | 
|  | /// e.g. | 
|  | /// setAction ({G_ADD, 0, LLT::scalar(32)}, Legal); | 
|  | /// setLegalizeScalarToDifferentSizeStrategy( | 
|  | ///   G_ADD, 0, widenToLargerTypesAndNarrowToLargest); | 
|  | /// will end up defining getAction({G_ADD, 0, T}) to return the following | 
|  | /// actions for different scalar types T: | 
|  | ///  LLT::scalar(1)..LLT::scalar(31): {WidenScalar, 0, LLT::scalar(32)} | 
|  | ///  LLT::scalar(32):                 {Legal, 0, LLT::scalar(32)} | 
|  | ///  LLT::scalar(33)..:               {NarrowScalar, 0, LLT::scalar(32)} | 
|  | /// | 
|  | /// If no SizeChangeAction gets defined, through this function, | 
|  | /// the default is unsupportedForDifferentSizes. | 
|  | void setLegalizeScalarToDifferentSizeStrategy(const unsigned Opcode, | 
|  | const unsigned TypeIdx, | 
|  | SizeChangeStrategy S) { | 
|  | const unsigned OpcodeIdx = Opcode - FirstOp; | 
|  | if (ScalarSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx) | 
|  | ScalarSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1); | 
|  | ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] = S; | 
|  | } | 
|  |  | 
|  | /// See also setLegalizeScalarToDifferentSizeStrategy. | 
|  | /// This function allows to set the SizeChangeStrategy for vector elements. | 
|  | void setLegalizeVectorElementToDifferentSizeStrategy(const unsigned Opcode, | 
|  | const unsigned TypeIdx, | 
|  | SizeChangeStrategy S) { | 
|  | const unsigned OpcodeIdx = Opcode - FirstOp; | 
|  | if (VectorElementSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx) | 
|  | VectorElementSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1); | 
|  | VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] = S; | 
|  | } | 
|  |  | 
|  | /// A SizeChangeStrategy for the common case where legalization for a | 
|  | /// particular operation consists of only supporting a specific set of type | 
|  | /// sizes. E.g. | 
|  | ///   setAction ({G_DIV, 0, LLT::scalar(32)}, Legal); | 
|  | ///   setAction ({G_DIV, 0, LLT::scalar(64)}, Legal); | 
|  | ///   setLegalizeScalarToDifferentSizeStrategy( | 
|  | ///     G_DIV, 0, unsupportedForDifferentSizes); | 
|  | /// will result in getAction({G_DIV, 0, T}) to return Legal for s32 and s64, | 
|  | /// and Unsupported for all other scalar types T. | 
|  | static SizeAndActionsVec | 
|  | unsupportedForDifferentSizes(const SizeAndActionsVec &v) { | 
|  | using namespace LegalizeActions; | 
|  | return increaseToLargerTypesAndDecreaseToLargest(v, Unsupported, | 
|  | Unsupported); | 
|  | } | 
|  |  | 
|  | /// A SizeChangeStrategy for the common case where legalization for a | 
|  | /// particular operation consists of widening the type to a large legal type, | 
|  | /// unless there is no such type and then instead it should be narrowed to the | 
|  | /// largest legal type. | 
|  | static SizeAndActionsVec | 
|  | widenToLargerTypesAndNarrowToLargest(const SizeAndActionsVec &v) { | 
|  | using namespace LegalizeActions; | 
|  | assert(v.size() > 0 && | 
|  | "At least one size that can be legalized towards is needed" | 
|  | " for this SizeChangeStrategy"); | 
|  | return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar, | 
|  | NarrowScalar); | 
|  | } | 
|  |  | 
|  | static SizeAndActionsVec | 
|  | widenToLargerTypesUnsupportedOtherwise(const SizeAndActionsVec &v) { | 
|  | using namespace LegalizeActions; | 
|  | return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar, | 
|  | Unsupported); | 
|  | } | 
|  |  | 
|  | static SizeAndActionsVec | 
|  | narrowToSmallerAndUnsupportedIfTooSmall(const SizeAndActionsVec &v) { | 
|  | using namespace LegalizeActions; | 
|  | return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar, | 
|  | Unsupported); | 
|  | } | 
|  |  | 
|  | static SizeAndActionsVec | 
|  | narrowToSmallerAndWidenToSmallest(const SizeAndActionsVec &v) { | 
|  | using namespace LegalizeActions; | 
|  | assert(v.size() > 0 && | 
|  | "At least one size that can be legalized towards is needed" | 
|  | " for this SizeChangeStrategy"); | 
|  | return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar, | 
|  | WidenScalar); | 
|  | } | 
|  |  | 
|  | /// A SizeChangeStrategy for the common case where legalization for a | 
|  | /// particular vector operation consists of having more elements in the | 
|  | /// vector, to a type that is legal. Unless there is no such type and then | 
|  | /// instead it should be legalized towards the widest vector that's still | 
|  | /// legal. E.g. | 
|  | ///   setAction({G_ADD, LLT::vector(8, 8)}, Legal); | 
|  | ///   setAction({G_ADD, LLT::vector(16, 8)}, Legal); | 
|  | ///   setAction({G_ADD, LLT::vector(2, 32)}, Legal); | 
|  | ///   setAction({G_ADD, LLT::vector(4, 32)}, Legal); | 
|  | ///   setLegalizeVectorElementToDifferentSizeStrategy( | 
|  | ///     G_ADD, 0, moreToWiderTypesAndLessToWidest); | 
|  | /// will result in the following getAction results: | 
|  | ///   * getAction({G_ADD, LLT::vector(8,8)}) returns | 
|  | ///       (Legal, vector(8,8)). | 
|  | ///   * getAction({G_ADD, LLT::vector(9,8)}) returns | 
|  | ///       (MoreElements, vector(16,8)). | 
|  | ///   * getAction({G_ADD, LLT::vector(8,32)}) returns | 
|  | ///       (FewerElements, vector(4,32)). | 
|  | static SizeAndActionsVec | 
|  | moreToWiderTypesAndLessToWidest(const SizeAndActionsVec &v) { | 
|  | using namespace LegalizeActions; | 
|  | return increaseToLargerTypesAndDecreaseToLargest(v, MoreElements, | 
|  | FewerElements); | 
|  | } | 
|  |  | 
|  | /// Helper function to implement many typical SizeChangeStrategy functions. | 
|  | static SizeAndActionsVec | 
|  | increaseToLargerTypesAndDecreaseToLargest(const SizeAndActionsVec &v, | 
|  | LegalizeAction IncreaseAction, | 
|  | LegalizeAction DecreaseAction); | 
|  | /// Helper function to implement many typical SizeChangeStrategy functions. | 
|  | static SizeAndActionsVec | 
|  | decreaseToSmallerTypesAndIncreaseToSmallest(const SizeAndActionsVec &v, | 
|  | LegalizeAction DecreaseAction, | 
|  | LegalizeAction IncreaseAction); | 
|  |  | 
|  | /// Get the action definitions for the given opcode. Use this to run a | 
|  | /// LegalityQuery through the definitions. | 
|  | const LegalizeRuleSet &getActionDefinitions(unsigned Opcode) const; | 
|  |  | 
|  | /// Get the action definition builder for the given opcode. Use this to define | 
|  | /// the action definitions. | 
|  | /// | 
|  | /// It is an error to request an opcode that has already been requested by the | 
|  | /// multiple-opcode variant. | 
|  | LegalizeRuleSet &getActionDefinitionsBuilder(unsigned Opcode); | 
|  |  | 
|  | /// Get the action definition builder for the given set of opcodes. Use this | 
|  | /// to define the action definitions for multiple opcodes at once. The first | 
|  | /// opcode given will be considered the representative opcode and will hold | 
|  | /// the definitions whereas the other opcodes will be configured to refer to | 
|  | /// the representative opcode. This lowers memory requirements and very | 
|  | /// slightly improves performance. | 
|  | /// | 
|  | /// It would be very easy to introduce unexpected side-effects as a result of | 
|  | /// this aliasing if it were permitted to request different but intersecting | 
|  | /// sets of opcodes but that is difficult to keep track of. It is therefore an | 
|  | /// error to request the same opcode twice using this API, to request an | 
|  | /// opcode that already has definitions, or to use the single-opcode API on an | 
|  | /// opcode that has already been requested by this API. | 
|  | LegalizeRuleSet & | 
|  | getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes); | 
|  | void aliasActionDefinitions(unsigned OpcodeTo, unsigned OpcodeFrom); | 
|  |  | 
|  | /// Determine what action should be taken to legalize the described | 
|  | /// instruction. Requires computeTables to have been called. | 
|  | /// | 
|  | /// \returns a description of the next legalization step to perform. | 
|  | LegalizeActionStep getAction(const LegalityQuery &Query) const; | 
|  |  | 
|  | /// Determine what action should be taken to legalize the given generic | 
|  | /// instruction. | 
|  | /// | 
|  | /// \returns a description of the next legalization step to perform. | 
|  | LegalizeActionStep getAction(const MachineInstr &MI, | 
|  | const MachineRegisterInfo &MRI) const; | 
|  |  | 
|  | bool isLegal(const MachineInstr &MI, const MachineRegisterInfo &MRI) const; | 
|  |  | 
|  | virtual bool legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI, | 
|  | MachineIRBuilder &MIRBuilder, | 
|  | GISelChangeObserver &Observer) const; | 
|  |  | 
|  | private: | 
|  | /// Determine what action should be taken to legalize the given generic | 
|  | /// instruction opcode, type-index and type. Requires computeTables to have | 
|  | /// been called. | 
|  | /// | 
|  | /// \returns a pair consisting of the kind of legalization that should be | 
|  | /// performed and the destination type. | 
|  | std::pair<LegalizeAction, LLT> | 
|  | getAspectAction(const InstrAspect &Aspect) const; | 
|  |  | 
|  | /// The SizeAndActionsVec is a representation mapping between all natural | 
|  | /// numbers and an Action. The natural number represents the bit size of | 
|  | /// the InstrAspect. For example, for a target with native support for 32-bit | 
|  | /// and 64-bit additions, you'd express that as: | 
|  | /// setScalarAction(G_ADD, 0, | 
|  | ///           {{1, WidenScalar},  // bit sizes [ 1, 31[ | 
|  | ///            {32, Legal},       // bit sizes [32, 33[ | 
|  | ///            {33, WidenScalar}, // bit sizes [33, 64[ | 
|  | ///            {64, Legal},       // bit sizes [64, 65[ | 
|  | ///            {65, NarrowScalar} // bit sizes [65, +inf[ | 
|  | ///           }); | 
|  | /// It may be that only 64-bit pointers are supported on your target: | 
|  | /// setPointerAction(G_GEP, 0, LLT:pointer(1), | 
|  | ///           {{1, Unsupported},  // bit sizes [ 1, 63[ | 
|  | ///            {64, Legal},       // bit sizes [64, 65[ | 
|  | ///            {65, Unsupported}, // bit sizes [65, +inf[ | 
|  | ///           }); | 
|  | void setScalarAction(const unsigned Opcode, const unsigned TypeIndex, | 
|  | const SizeAndActionsVec &SizeAndActions) { | 
|  | const unsigned OpcodeIdx = Opcode - FirstOp; | 
|  | SmallVector<SizeAndActionsVec, 1> &Actions = ScalarActions[OpcodeIdx]; | 
|  | setActions(TypeIndex, Actions, SizeAndActions); | 
|  | } | 
|  | void setPointerAction(const unsigned Opcode, const unsigned TypeIndex, | 
|  | const unsigned AddressSpace, | 
|  | const SizeAndActionsVec &SizeAndActions) { | 
|  | const unsigned OpcodeIdx = Opcode - FirstOp; | 
|  | if (AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace) == | 
|  | AddrSpace2PointerActions[OpcodeIdx].end()) | 
|  | AddrSpace2PointerActions[OpcodeIdx][AddressSpace] = {{}}; | 
|  | SmallVector<SizeAndActionsVec, 1> &Actions = | 
|  | AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace)->second; | 
|  | setActions(TypeIndex, Actions, SizeAndActions); | 
|  | } | 
|  |  | 
|  | /// If an operation on a given vector type (say <M x iN>) isn't explicitly | 
|  | /// specified, we proceed in 2 stages. First we legalize the underlying scalar | 
|  | /// (so that there's at least one legal vector with that scalar), then we | 
|  | /// adjust the number of elements in the vector so that it is legal. The | 
|  | /// desired action in the first step is controlled by this function. | 
|  | void setScalarInVectorAction(const unsigned Opcode, const unsigned TypeIndex, | 
|  | const SizeAndActionsVec &SizeAndActions) { | 
|  | unsigned OpcodeIdx = Opcode - FirstOp; | 
|  | SmallVector<SizeAndActionsVec, 1> &Actions = | 
|  | ScalarInVectorActions[OpcodeIdx]; | 
|  | setActions(TypeIndex, Actions, SizeAndActions); | 
|  | } | 
|  |  | 
|  | /// See also setScalarInVectorAction. | 
|  | /// This function let's you specify the number of elements in a vector that | 
|  | /// are legal for a legal element size. | 
|  | void setVectorNumElementAction(const unsigned Opcode, | 
|  | const unsigned TypeIndex, | 
|  | const unsigned ElementSize, | 
|  | const SizeAndActionsVec &SizeAndActions) { | 
|  | const unsigned OpcodeIdx = Opcode - FirstOp; | 
|  | if (NumElements2Actions[OpcodeIdx].find(ElementSize) == | 
|  | NumElements2Actions[OpcodeIdx].end()) | 
|  | NumElements2Actions[OpcodeIdx][ElementSize] = {{}}; | 
|  | SmallVector<SizeAndActionsVec, 1> &Actions = | 
|  | NumElements2Actions[OpcodeIdx].find(ElementSize)->second; | 
|  | setActions(TypeIndex, Actions, SizeAndActions); | 
|  | } | 
|  |  | 
|  | /// A partial SizeAndActionsVec potentially doesn't cover all bit sizes, | 
|  | /// i.e. it's OK if it doesn't start from size 1. | 
|  | static void checkPartialSizeAndActionsVector(const SizeAndActionsVec& v) { | 
|  | using namespace LegalizeActions; | 
|  | #ifndef NDEBUG | 
|  | // The sizes should be in increasing order | 
|  | int prev_size = -1; | 
|  | for(auto SizeAndAction: v) { | 
|  | assert(SizeAndAction.first > prev_size); | 
|  | prev_size = SizeAndAction.first; | 
|  | } | 
|  | // - for every Widen action, there should be a larger bitsize that | 
|  | //   can be legalized towards (e.g. Legal, Lower, Libcall or Custom | 
|  | //   action). | 
|  | // - for every Narrow action, there should be a smaller bitsize that | 
|  | //   can be legalized towards. | 
|  | int SmallestNarrowIdx = -1; | 
|  | int LargestWidenIdx = -1; | 
|  | int SmallestLegalizableToSameSizeIdx = -1; | 
|  | int LargestLegalizableToSameSizeIdx = -1; | 
|  | for(size_t i=0; i<v.size(); ++i) { | 
|  | switch (v[i].second) { | 
|  | case FewerElements: | 
|  | case NarrowScalar: | 
|  | if (SmallestNarrowIdx == -1) | 
|  | SmallestNarrowIdx = i; | 
|  | break; | 
|  | case WidenScalar: | 
|  | case MoreElements: | 
|  | LargestWidenIdx = i; | 
|  | break; | 
|  | case Unsupported: | 
|  | break; | 
|  | default: | 
|  | if (SmallestLegalizableToSameSizeIdx == -1) | 
|  | SmallestLegalizableToSameSizeIdx = i; | 
|  | LargestLegalizableToSameSizeIdx = i; | 
|  | } | 
|  | } | 
|  | if (SmallestNarrowIdx != -1) { | 
|  | assert(SmallestLegalizableToSameSizeIdx != -1); | 
|  | assert(SmallestNarrowIdx > SmallestLegalizableToSameSizeIdx); | 
|  | } | 
|  | if (LargestWidenIdx != -1) | 
|  | assert(LargestWidenIdx < LargestLegalizableToSameSizeIdx); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// A full SizeAndActionsVec must cover all bit sizes, i.e. must start with | 
|  | /// from size 1. | 
|  | static void checkFullSizeAndActionsVector(const SizeAndActionsVec& v) { | 
|  | #ifndef NDEBUG | 
|  | // Data structure invariant: The first bit size must be size 1. | 
|  | assert(v.size() >= 1); | 
|  | assert(v[0].first == 1); | 
|  | checkPartialSizeAndActionsVector(v); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// Sets actions for all bit sizes on a particular generic opcode, type | 
|  | /// index and scalar or pointer type. | 
|  | void setActions(unsigned TypeIndex, | 
|  | SmallVector<SizeAndActionsVec, 1> &Actions, | 
|  | const SizeAndActionsVec &SizeAndActions) { | 
|  | checkFullSizeAndActionsVector(SizeAndActions); | 
|  | if (Actions.size() <= TypeIndex) | 
|  | Actions.resize(TypeIndex + 1); | 
|  | Actions[TypeIndex] = SizeAndActions; | 
|  | } | 
|  |  | 
|  | static SizeAndAction findAction(const SizeAndActionsVec &Vec, | 
|  | const uint32_t Size); | 
|  |  | 
|  | /// Returns the next action needed to get the scalar or pointer type closer | 
|  | /// to being legal | 
|  | /// E.g. findLegalAction({G_REM, 13}) should return | 
|  | /// (WidenScalar, 32). After that, findLegalAction({G_REM, 32}) will | 
|  | /// probably be called, which should return (Lower, 32). | 
|  | /// This is assuming the setScalarAction on G_REM was something like: | 
|  | /// setScalarAction(G_REM, 0, | 
|  | ///           {{1, WidenScalar},  // bit sizes [ 1, 31[ | 
|  | ///            {32, Lower},       // bit sizes [32, 33[ | 
|  | ///            {33, NarrowScalar} // bit sizes [65, +inf[ | 
|  | ///           }); | 
|  | std::pair<LegalizeAction, LLT> | 
|  | findScalarLegalAction(const InstrAspect &Aspect) const; | 
|  |  | 
|  | /// Returns the next action needed towards legalizing the vector type. | 
|  | std::pair<LegalizeAction, LLT> | 
|  | findVectorLegalAction(const InstrAspect &Aspect) const; | 
|  |  | 
|  | static const int FirstOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_START; | 
|  | static const int LastOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_END; | 
|  |  | 
|  | // Data structures used temporarily during construction of legality data: | 
|  | using TypeMap = DenseMap<LLT, LegalizeAction>; | 
|  | SmallVector<TypeMap, 1> SpecifiedActions[LastOp - FirstOp + 1]; | 
|  | SmallVector<SizeChangeStrategy, 1> | 
|  | ScalarSizeChangeStrategies[LastOp - FirstOp + 1]; | 
|  | SmallVector<SizeChangeStrategy, 1> | 
|  | VectorElementSizeChangeStrategies[LastOp - FirstOp + 1]; | 
|  | bool TablesInitialized; | 
|  |  | 
|  | // Data structures used by getAction: | 
|  | SmallVector<SizeAndActionsVec, 1> ScalarActions[LastOp - FirstOp + 1]; | 
|  | SmallVector<SizeAndActionsVec, 1> ScalarInVectorActions[LastOp - FirstOp + 1]; | 
|  | std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>> | 
|  | AddrSpace2PointerActions[LastOp - FirstOp + 1]; | 
|  | std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>> | 
|  | NumElements2Actions[LastOp - FirstOp + 1]; | 
|  |  | 
|  | LegalizeRuleSet RulesForOpcode[LastOp - FirstOp + 1]; | 
|  | }; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | /// Checks that MIR is fully legal, returns an illegal instruction if it's not, | 
|  | /// nullptr otherwise | 
|  | const MachineInstr *machineFunctionIsIllegal(const MachineFunction &MF); | 
|  | #endif | 
|  |  | 
|  | } // end namespace llvm. | 
|  |  | 
|  | #endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H |