|  | //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the X86-specific support for the FastISel class. Much | 
|  | // of the target-specific code is generated by tablegen in the file | 
|  | // X86GenFastISel.inc, which is #included here. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86.h" | 
|  | #include "X86CallingConv.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86InstrInfo.h" | 
|  | #include "X86MachineFunctionInfo.h" | 
|  | #include "X86RegisterInfo.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/CodeGen/FastISel.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/DebugInfo.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class X86FastISel final : public FastISel { | 
|  | /// Subtarget - Keep a pointer to the X86Subtarget around so that we can | 
|  | /// make the right decision when generating code for different targets. | 
|  | const X86Subtarget *Subtarget; | 
|  |  | 
|  | /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 | 
|  | /// floating point ops. | 
|  | /// When SSE is available, use it for f32 operations. | 
|  | /// When SSE2 is available, use it for f64 operations. | 
|  | bool X86ScalarSSEf64; | 
|  | bool X86ScalarSSEf32; | 
|  |  | 
|  | public: | 
|  | explicit X86FastISel(FunctionLoweringInfo &funcInfo, | 
|  | const TargetLibraryInfo *libInfo) | 
|  | : FastISel(funcInfo, libInfo) { | 
|  | Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); | 
|  | X86ScalarSSEf64 = Subtarget->hasSSE2(); | 
|  | X86ScalarSSEf32 = Subtarget->hasSSE1(); | 
|  | } | 
|  |  | 
|  | bool fastSelectInstruction(const Instruction *I) override; | 
|  |  | 
|  | /// The specified machine instr operand is a vreg, and that | 
|  | /// vreg is being provided by the specified load instruction.  If possible, | 
|  | /// try to fold the load as an operand to the instruction, returning true if | 
|  | /// possible. | 
|  | bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, | 
|  | const LoadInst *LI) override; | 
|  |  | 
|  | bool fastLowerArguments() override; | 
|  | bool fastLowerCall(CallLoweringInfo &CLI) override; | 
|  | bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; | 
|  |  | 
|  | #include "X86GenFastISel.inc" | 
|  |  | 
|  | private: | 
|  | bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, | 
|  | const DebugLoc &DL); | 
|  |  | 
|  | bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO, | 
|  | unsigned &ResultReg, unsigned Alignment = 1); | 
|  |  | 
|  | bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, | 
|  | MachineMemOperand *MMO = nullptr, bool Aligned = false); | 
|  | bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, | 
|  | X86AddressMode &AM, | 
|  | MachineMemOperand *MMO = nullptr, bool Aligned = false); | 
|  |  | 
|  | bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, | 
|  | unsigned &ResultReg); | 
|  |  | 
|  | bool X86SelectAddress(const Value *V, X86AddressMode &AM); | 
|  | bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); | 
|  |  | 
|  | bool X86SelectLoad(const Instruction *I); | 
|  |  | 
|  | bool X86SelectStore(const Instruction *I); | 
|  |  | 
|  | bool X86SelectRet(const Instruction *I); | 
|  |  | 
|  | bool X86SelectCmp(const Instruction *I); | 
|  |  | 
|  | bool X86SelectZExt(const Instruction *I); | 
|  |  | 
|  | bool X86SelectSExt(const Instruction *I); | 
|  |  | 
|  | bool X86SelectBranch(const Instruction *I); | 
|  |  | 
|  | bool X86SelectShift(const Instruction *I); | 
|  |  | 
|  | bool X86SelectDivRem(const Instruction *I); | 
|  |  | 
|  | bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); | 
|  |  | 
|  | bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); | 
|  |  | 
|  | bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); | 
|  |  | 
|  | bool X86SelectSelect(const Instruction *I); | 
|  |  | 
|  | bool X86SelectTrunc(const Instruction *I); | 
|  |  | 
|  | bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, | 
|  | const TargetRegisterClass *RC); | 
|  |  | 
|  | bool X86SelectFPExt(const Instruction *I); | 
|  | bool X86SelectFPTrunc(const Instruction *I); | 
|  | bool X86SelectSIToFP(const Instruction *I); | 
|  | bool X86SelectUIToFP(const Instruction *I); | 
|  | bool X86SelectIntToFP(const Instruction *I, bool IsSigned); | 
|  |  | 
|  | const X86InstrInfo *getInstrInfo() const { | 
|  | return Subtarget->getInstrInfo(); | 
|  | } | 
|  | const X86TargetMachine *getTargetMachine() const { | 
|  | return static_cast<const X86TargetMachine *>(&TM); | 
|  | } | 
|  |  | 
|  | bool handleConstantAddresses(const Value *V, X86AddressMode &AM); | 
|  |  | 
|  | unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); | 
|  | unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); | 
|  | unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); | 
|  | unsigned fastMaterializeConstant(const Constant *C) override; | 
|  |  | 
|  | unsigned fastMaterializeAlloca(const AllocaInst *C) override; | 
|  |  | 
|  | unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; | 
|  |  | 
|  | /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is | 
|  | /// computed in an SSE register, not on the X87 floating point stack. | 
|  | bool isScalarFPTypeInSSEReg(EVT VT) const { | 
|  | return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 | 
|  | (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1 | 
|  | } | 
|  |  | 
|  | bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); | 
|  |  | 
|  | bool IsMemcpySmall(uint64_t Len); | 
|  |  | 
|  | bool TryEmitSmallMemcpy(X86AddressMode DestAM, | 
|  | X86AddressMode SrcAM, uint64_t Len); | 
|  |  | 
|  | bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, | 
|  | const Value *Cond); | 
|  |  | 
|  | const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, | 
|  | X86AddressMode &AM); | 
|  |  | 
|  | unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, unsigned Op0, | 
|  | bool Op0IsKill, unsigned Op1, bool Op1IsKill, | 
|  | unsigned Op2, bool Op2IsKill, unsigned Op3, | 
|  | bool Op3IsKill); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace. | 
|  |  | 
|  | static std::pair<unsigned, bool> | 
|  | getX86SSEConditionCode(CmpInst::Predicate Predicate) { | 
|  | unsigned CC; | 
|  | bool NeedSwap = false; | 
|  |  | 
|  | // SSE Condition code mapping: | 
|  | //  0 - EQ | 
|  | //  1 - LT | 
|  | //  2 - LE | 
|  | //  3 - UNORD | 
|  | //  4 - NEQ | 
|  | //  5 - NLT | 
|  | //  6 - NLE | 
|  | //  7 - ORD | 
|  | switch (Predicate) { | 
|  | default: llvm_unreachable("Unexpected predicate"); | 
|  | case CmpInst::FCMP_OEQ: CC = 0;          break; | 
|  | case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH; | 
|  | case CmpInst::FCMP_OLT: CC = 1;          break; | 
|  | case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH; | 
|  | case CmpInst::FCMP_OLE: CC = 2;          break; | 
|  | case CmpInst::FCMP_UNO: CC = 3;          break; | 
|  | case CmpInst::FCMP_UNE: CC = 4;          break; | 
|  | case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH; | 
|  | case CmpInst::FCMP_UGE: CC = 5;          break; | 
|  | case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH; | 
|  | case CmpInst::FCMP_UGT: CC = 6;          break; | 
|  | case CmpInst::FCMP_ORD: CC = 7;          break; | 
|  | case CmpInst::FCMP_UEQ: CC = 8;          break; | 
|  | case CmpInst::FCMP_ONE: CC = 12;         break; | 
|  | } | 
|  |  | 
|  | return std::make_pair(CC, NeedSwap); | 
|  | } | 
|  |  | 
|  | /// Adds a complex addressing mode to the given machine instr builder. | 
|  | /// Note, this will constrain the index register.  If its not possible to | 
|  | /// constrain the given index register, then a new one will be created.  The | 
|  | /// IndexReg field of the addressing mode will be updated to match in this case. | 
|  | const MachineInstrBuilder & | 
|  | X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, | 
|  | X86AddressMode &AM) { | 
|  | // First constrain the index register.  It needs to be a GR64_NOSP. | 
|  | AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, | 
|  | MIB->getNumOperands() + | 
|  | X86::AddrIndexReg); | 
|  | return ::addFullAddress(MIB, AM); | 
|  | } | 
|  |  | 
|  | /// Check if it is possible to fold the condition from the XALU intrinsic | 
|  | /// into the user. The condition code will only be updated on success. | 
|  | bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, | 
|  | const Value *Cond) { | 
|  | if (!isa<ExtractValueInst>(Cond)) | 
|  | return false; | 
|  |  | 
|  | const auto *EV = cast<ExtractValueInst>(Cond); | 
|  | if (!isa<IntrinsicInst>(EV->getAggregateOperand())) | 
|  | return false; | 
|  |  | 
|  | const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); | 
|  | MVT RetVT; | 
|  | const Function *Callee = II->getCalledFunction(); | 
|  | Type *RetTy = | 
|  | cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); | 
|  | if (!isTypeLegal(RetTy, RetVT)) | 
|  | return false; | 
|  |  | 
|  | if (RetVT != MVT::i32 && RetVT != MVT::i64) | 
|  | return false; | 
|  |  | 
|  | X86::CondCode TmpCC; | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: return false; | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | case Intrinsic::smul_with_overflow: | 
|  | case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; | 
|  | } | 
|  |  | 
|  | // Check if both instructions are in the same basic block. | 
|  | if (II->getParent() != I->getParent()) | 
|  | return false; | 
|  |  | 
|  | // Make sure nothing is in the way | 
|  | BasicBlock::const_iterator Start(I); | 
|  | BasicBlock::const_iterator End(II); | 
|  | for (auto Itr = std::prev(Start); Itr != End; --Itr) { | 
|  | // We only expect extractvalue instructions between the intrinsic and the | 
|  | // instruction to be selected. | 
|  | if (!isa<ExtractValueInst>(Itr)) | 
|  | return false; | 
|  |  | 
|  | // Check that the extractvalue operand comes from the intrinsic. | 
|  | const auto *EVI = cast<ExtractValueInst>(Itr); | 
|  | if (EVI->getAggregateOperand() != II) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CC = TmpCC; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { | 
|  | EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true); | 
|  | if (evt == MVT::Other || !evt.isSimple()) | 
|  | // Unhandled type. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | VT = evt.getSimpleVT(); | 
|  | // For now, require SSE/SSE2 for performing floating-point operations, | 
|  | // since x87 requires additional work. | 
|  | if (VT == MVT::f64 && !X86ScalarSSEf64) | 
|  | return false; | 
|  | if (VT == MVT::f32 && !X86ScalarSSEf32) | 
|  | return false; | 
|  | // Similarly, no f80 support yet. | 
|  | if (VT == MVT::f80) | 
|  | return false; | 
|  | // We only handle legal types. For example, on x86-32 the instruction | 
|  | // selector contains all of the 64-bit instructions from x86-64, | 
|  | // under the assumption that i64 won't be used if the target doesn't | 
|  | // support it. | 
|  | return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); | 
|  | } | 
|  |  | 
|  | #include "X86GenCallingConv.inc" | 
|  |  | 
|  | /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. | 
|  | /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. | 
|  | /// Return true and the result register by reference if it is possible. | 
|  | bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM, | 
|  | MachineMemOperand *MMO, unsigned &ResultReg, | 
|  | unsigned Alignment) { | 
|  | bool HasSSE41 = Subtarget->hasSSE41(); | 
|  | bool HasAVX = Subtarget->hasAVX(); | 
|  | bool HasAVX2 = Subtarget->hasAVX2(); | 
|  | bool HasAVX512 = Subtarget->hasAVX512(); | 
|  | bool HasVLX = Subtarget->hasVLX(); | 
|  | bool IsNonTemporal = MMO && MMO->isNonTemporal(); | 
|  |  | 
|  | // Get opcode and regclass of the output for the given load instruction. | 
|  | unsigned Opc = 0; | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: return false; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | Opc = X86::MOV8rm; | 
|  | RC  = &X86::GR8RegClass; | 
|  | break; | 
|  | case MVT::i16: | 
|  | Opc = X86::MOV16rm; | 
|  | RC  = &X86::GR16RegClass; | 
|  | break; | 
|  | case MVT::i32: | 
|  | Opc = X86::MOV32rm; | 
|  | RC  = &X86::GR32RegClass; | 
|  | break; | 
|  | case MVT::i64: | 
|  | // Must be in x86-64 mode. | 
|  | Opc = X86::MOV64rm; | 
|  | RC  = &X86::GR64RegClass; | 
|  | break; | 
|  | case MVT::f32: | 
|  | if (X86ScalarSSEf32) { | 
|  | Opc = HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm; | 
|  | RC  = HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass; | 
|  | } else { | 
|  | Opc = X86::LD_Fp32m; | 
|  | RC  = &X86::RFP32RegClass; | 
|  | } | 
|  | break; | 
|  | case MVT::f64: | 
|  | if (X86ScalarSSEf64) { | 
|  | Opc = HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm; | 
|  | RC  = HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass; | 
|  | } else { | 
|  | Opc = X86::LD_Fp64m; | 
|  | RC  = &X86::RFP64RegClass; | 
|  | } | 
|  | break; | 
|  | case MVT::f80: | 
|  | // No f80 support yet. | 
|  | return false; | 
|  | case MVT::v4f32: | 
|  | if (IsNonTemporal && Alignment >= 16 && HasSSE41) | 
|  | Opc = HasVLX ? X86::VMOVNTDQAZ128rm : | 
|  | HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; | 
|  | else if (Alignment >= 16) | 
|  | Opc = HasVLX ? X86::VMOVAPSZ128rm : | 
|  | HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; | 
|  | else | 
|  | Opc = HasVLX ? X86::VMOVUPSZ128rm : | 
|  | HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; | 
|  | RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass; | 
|  | break; | 
|  | case MVT::v2f64: | 
|  | if (IsNonTemporal && Alignment >= 16 && HasSSE41) | 
|  | Opc = HasVLX ? X86::VMOVNTDQAZ128rm : | 
|  | HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; | 
|  | else if (Alignment >= 16) | 
|  | Opc = HasVLX ? X86::VMOVAPDZ128rm : | 
|  | HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; | 
|  | else | 
|  | Opc = HasVLX ? X86::VMOVUPDZ128rm : | 
|  | HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; | 
|  | RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass; | 
|  | break; | 
|  | case MVT::v4i32: | 
|  | case MVT::v2i64: | 
|  | case MVT::v8i16: | 
|  | case MVT::v16i8: | 
|  | if (IsNonTemporal && Alignment >= 16) | 
|  | Opc = HasVLX ? X86::VMOVNTDQAZ128rm : | 
|  | HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; | 
|  | else if (Alignment >= 16) | 
|  | Opc = HasVLX ? X86::VMOVDQA64Z128rm : | 
|  | HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; | 
|  | else | 
|  | Opc = HasVLX ? X86::VMOVDQU64Z128rm : | 
|  | HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; | 
|  | RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass; | 
|  | break; | 
|  | case MVT::v8f32: | 
|  | assert(HasAVX); | 
|  | if (IsNonTemporal && Alignment >= 32 && HasAVX2) | 
|  | Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; | 
|  | else if (IsNonTemporal && Alignment >= 16) | 
|  | return false; // Force split for X86::VMOVNTDQArm | 
|  | else if (Alignment >= 32) | 
|  | Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; | 
|  | else | 
|  | Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; | 
|  | RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass; | 
|  | break; | 
|  | case MVT::v4f64: | 
|  | assert(HasAVX); | 
|  | if (IsNonTemporal && Alignment >= 32 && HasAVX2) | 
|  | Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; | 
|  | else if (IsNonTemporal && Alignment >= 16) | 
|  | return false; // Force split for X86::VMOVNTDQArm | 
|  | else if (Alignment >= 32) | 
|  | Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; | 
|  | else | 
|  | Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; | 
|  | RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass; | 
|  | break; | 
|  | case MVT::v8i32: | 
|  | case MVT::v4i64: | 
|  | case MVT::v16i16: | 
|  | case MVT::v32i8: | 
|  | assert(HasAVX); | 
|  | if (IsNonTemporal && Alignment >= 32 && HasAVX2) | 
|  | Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; | 
|  | else if (IsNonTemporal && Alignment >= 16) | 
|  | return false; // Force split for X86::VMOVNTDQArm | 
|  | else if (Alignment >= 32) | 
|  | Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; | 
|  | else | 
|  | Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; | 
|  | RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass; | 
|  | break; | 
|  | case MVT::v16f32: | 
|  | assert(HasAVX512); | 
|  | if (IsNonTemporal && Alignment >= 64) | 
|  | Opc = X86::VMOVNTDQAZrm; | 
|  | else | 
|  | Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; | 
|  | RC  = &X86::VR512RegClass; | 
|  | break; | 
|  | case MVT::v8f64: | 
|  | assert(HasAVX512); | 
|  | if (IsNonTemporal && Alignment >= 64) | 
|  | Opc = X86::VMOVNTDQAZrm; | 
|  | else | 
|  | Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; | 
|  | RC  = &X86::VR512RegClass; | 
|  | break; | 
|  | case MVT::v8i64: | 
|  | case MVT::v16i32: | 
|  | case MVT::v32i16: | 
|  | case MVT::v64i8: | 
|  | assert(HasAVX512); | 
|  | // Note: There are a lot more choices based on type with AVX-512, but | 
|  | // there's really no advantage when the load isn't masked. | 
|  | if (IsNonTemporal && Alignment >= 64) | 
|  | Opc = X86::VMOVNTDQAZrm; | 
|  | else | 
|  | Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; | 
|  | RC  = &X86::VR512RegClass; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ResultReg = createResultReg(RC); | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); | 
|  | addFullAddress(MIB, AM); | 
|  | if (MMO) | 
|  | MIB->addMemOperand(*FuncInfo.MF, MMO); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// X86FastEmitStore - Emit a machine instruction to store a value Val of | 
|  | /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr | 
|  | /// and a displacement offset, or a GlobalAddress, | 
|  | /// i.e. V. Return true if it is possible. | 
|  | bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, | 
|  | X86AddressMode &AM, | 
|  | MachineMemOperand *MMO, bool Aligned) { | 
|  | bool HasSSE1 = Subtarget->hasSSE1(); | 
|  | bool HasSSE2 = Subtarget->hasSSE2(); | 
|  | bool HasSSE4A = Subtarget->hasSSE4A(); | 
|  | bool HasAVX = Subtarget->hasAVX(); | 
|  | bool HasAVX512 = Subtarget->hasAVX512(); | 
|  | bool HasVLX = Subtarget->hasVLX(); | 
|  | bool IsNonTemporal = MMO && MMO->isNonTemporal(); | 
|  |  | 
|  | // Get opcode and regclass of the output for the given store instruction. | 
|  | unsigned Opc = 0; | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::f80: // No f80 support yet. | 
|  | default: return false; | 
|  | case MVT::i1: { | 
|  | // Mask out all but lowest bit. | 
|  | unsigned AndResult = createResultReg(&X86::GR8RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(X86::AND8ri), AndResult) | 
|  | .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1); | 
|  | ValReg = AndResult; | 
|  | LLVM_FALLTHROUGH; // handle i1 as i8. | 
|  | } | 
|  | case MVT::i8:  Opc = X86::MOV8mr;  break; | 
|  | case MVT::i16: Opc = X86::MOV16mr; break; | 
|  | case MVT::i32: | 
|  | Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; | 
|  | break; | 
|  | case MVT::i64: | 
|  | // Must be in x86-64 mode. | 
|  | Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; | 
|  | break; | 
|  | case MVT::f32: | 
|  | if (X86ScalarSSEf32) { | 
|  | if (IsNonTemporal && HasSSE4A) | 
|  | Opc = X86::MOVNTSS; | 
|  | else | 
|  | Opc = HasAVX512 ? X86::VMOVSSZmr : | 
|  | HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; | 
|  | } else | 
|  | Opc = X86::ST_Fp32m; | 
|  | break; | 
|  | case MVT::f64: | 
|  | if (X86ScalarSSEf32) { | 
|  | if (IsNonTemporal && HasSSE4A) | 
|  | Opc = X86::MOVNTSD; | 
|  | else | 
|  | Opc = HasAVX512 ? X86::VMOVSDZmr : | 
|  | HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; | 
|  | } else | 
|  | Opc = X86::ST_Fp64m; | 
|  | break; | 
|  | case MVT::x86mmx: | 
|  | Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; | 
|  | break; | 
|  | case MVT::v4f32: | 
|  | if (Aligned) { | 
|  | if (IsNonTemporal) | 
|  | Opc = HasVLX ? X86::VMOVNTPSZ128mr : | 
|  | HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; | 
|  | else | 
|  | Opc = HasVLX ? X86::VMOVAPSZ128mr : | 
|  | HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; | 
|  | } else | 
|  | Opc = HasVLX ? X86::VMOVUPSZ128mr : | 
|  | HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; | 
|  | break; | 
|  | case MVT::v2f64: | 
|  | if (Aligned) { | 
|  | if (IsNonTemporal) | 
|  | Opc = HasVLX ? X86::VMOVNTPDZ128mr : | 
|  | HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; | 
|  | else | 
|  | Opc = HasVLX ? X86::VMOVAPDZ128mr : | 
|  | HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; | 
|  | } else | 
|  | Opc = HasVLX ? X86::VMOVUPDZ128mr : | 
|  | HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; | 
|  | break; | 
|  | case MVT::v4i32: | 
|  | case MVT::v2i64: | 
|  | case MVT::v8i16: | 
|  | case MVT::v16i8: | 
|  | if (Aligned) { | 
|  | if (IsNonTemporal) | 
|  | Opc = HasVLX ? X86::VMOVNTDQZ128mr : | 
|  | HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; | 
|  | else | 
|  | Opc = HasVLX ? X86::VMOVDQA64Z128mr : | 
|  | HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; | 
|  | } else | 
|  | Opc = HasVLX ? X86::VMOVDQU64Z128mr : | 
|  | HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; | 
|  | break; | 
|  | case MVT::v8f32: | 
|  | assert(HasAVX); | 
|  | if (Aligned) { | 
|  | if (IsNonTemporal) | 
|  | Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; | 
|  | else | 
|  | Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; | 
|  | } else | 
|  | Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; | 
|  | break; | 
|  | case MVT::v4f64: | 
|  | assert(HasAVX); | 
|  | if (Aligned) { | 
|  | if (IsNonTemporal) | 
|  | Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; | 
|  | else | 
|  | Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; | 
|  | } else | 
|  | Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; | 
|  | break; | 
|  | case MVT::v8i32: | 
|  | case MVT::v4i64: | 
|  | case MVT::v16i16: | 
|  | case MVT::v32i8: | 
|  | assert(HasAVX); | 
|  | if (Aligned) { | 
|  | if (IsNonTemporal) | 
|  | Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; | 
|  | else | 
|  | Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; | 
|  | } else | 
|  | Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; | 
|  | break; | 
|  | case MVT::v16f32: | 
|  | assert(HasAVX512); | 
|  | if (Aligned) | 
|  | Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; | 
|  | else | 
|  | Opc = X86::VMOVUPSZmr; | 
|  | break; | 
|  | case MVT::v8f64: | 
|  | assert(HasAVX512); | 
|  | if (Aligned) { | 
|  | Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; | 
|  | } else | 
|  | Opc = X86::VMOVUPDZmr; | 
|  | break; | 
|  | case MVT::v8i64: | 
|  | case MVT::v16i32: | 
|  | case MVT::v32i16: | 
|  | case MVT::v64i8: | 
|  | assert(HasAVX512); | 
|  | // Note: There are a lot more choices based on type with AVX-512, but | 
|  | // there's really no advantage when the store isn't masked. | 
|  | if (Aligned) | 
|  | Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; | 
|  | else | 
|  | Opc = X86::VMOVDQU64Zmr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | const MCInstrDesc &Desc = TII.get(Opc); | 
|  | // Some of the instructions in the previous switch use FR128 instead | 
|  | // of FR32 for ValReg. Make sure the register we feed the instruction | 
|  | // matches its register class constraints. | 
|  | // Note: This is fine to do a copy from FR32 to FR128, this is the | 
|  | // same registers behind the scene and actually why it did not trigger | 
|  | // any bugs before. | 
|  | ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc); | 
|  | addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill)); | 
|  | if (MMO) | 
|  | MIB->addMemOperand(*FuncInfo.MF, MMO); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, | 
|  | X86AddressMode &AM, | 
|  | MachineMemOperand *MMO, bool Aligned) { | 
|  | // Handle 'null' like i32/i64 0. | 
|  | if (isa<ConstantPointerNull>(Val)) | 
|  | Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); | 
|  |  | 
|  | // If this is a store of a simple constant, fold the constant into the store. | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { | 
|  | unsigned Opc = 0; | 
|  | bool Signed = true; | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: break; | 
|  | case MVT::i1: | 
|  | Signed = false; | 
|  | LLVM_FALLTHROUGH; // Handle as i8. | 
|  | case MVT::i8:  Opc = X86::MOV8mi;  break; | 
|  | case MVT::i16: Opc = X86::MOV16mi; break; | 
|  | case MVT::i32: Opc = X86::MOV32mi; break; | 
|  | case MVT::i64: | 
|  | // Must be a 32-bit sign extended value. | 
|  | if (isInt<32>(CI->getSExtValue())) | 
|  | Opc = X86::MOV64mi32; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Opc) { | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); | 
|  | addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() | 
|  | : CI->getZExtValue()); | 
|  | if (MMO) | 
|  | MIB->addMemOperand(*FuncInfo.MF, MMO); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned ValReg = getRegForValue(Val); | 
|  | if (ValReg == 0) | 
|  | return false; | 
|  |  | 
|  | bool ValKill = hasTrivialKill(Val); | 
|  | return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned); | 
|  | } | 
|  |  | 
|  | /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of | 
|  | /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. | 
|  | /// ISD::SIGN_EXTEND). | 
|  | bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, | 
|  | unsigned Src, EVT SrcVT, | 
|  | unsigned &ResultReg) { | 
|  | unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, | 
|  | Src, /*TODO: Kill=*/false); | 
|  | if (RR == 0) | 
|  | return false; | 
|  |  | 
|  | ResultReg = RR; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { | 
|  | // Handle constant address. | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
|  | // Can't handle alternate code models yet. | 
|  | if (TM.getCodeModel() != CodeModel::Small) | 
|  | return false; | 
|  |  | 
|  | // Can't handle TLS yet. | 
|  | if (GV->isThreadLocal()) | 
|  | return false; | 
|  |  | 
|  | // Can't handle !absolute_symbol references yet. | 
|  | if (GV->isAbsoluteSymbolRef()) | 
|  | return false; | 
|  |  | 
|  | // RIP-relative addresses can't have additional register operands, so if | 
|  | // we've already folded stuff into the addressing mode, just force the | 
|  | // global value into its own register, which we can use as the basereg. | 
|  | if (!Subtarget->isPICStyleRIPRel() || | 
|  | (AM.Base.Reg == 0 && AM.IndexReg == 0)) { | 
|  | // Okay, we've committed to selecting this global. Set up the address. | 
|  | AM.GV = GV; | 
|  |  | 
|  | // Allow the subtarget to classify the global. | 
|  | unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); | 
|  |  | 
|  | // If this reference is relative to the pic base, set it now. | 
|  | if (isGlobalRelativeToPICBase(GVFlags)) { | 
|  | // FIXME: How do we know Base.Reg is free?? | 
|  | AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); | 
|  | } | 
|  |  | 
|  | // Unless the ABI requires an extra load, return a direct reference to | 
|  | // the global. | 
|  | if (!isGlobalStubReference(GVFlags)) { | 
|  | if (Subtarget->isPICStyleRIPRel()) { | 
|  | // Use rip-relative addressing if we can.  Above we verified that the | 
|  | // base and index registers are unused. | 
|  | assert(AM.Base.Reg == 0 && AM.IndexReg == 0); | 
|  | AM.Base.Reg = X86::RIP; | 
|  | } | 
|  | AM.GVOpFlags = GVFlags; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Ok, we need to do a load from a stub.  If we've already loaded from | 
|  | // this stub, reuse the loaded pointer, otherwise emit the load now. | 
|  | DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V); | 
|  | unsigned LoadReg; | 
|  | if (I != LocalValueMap.end() && I->second != 0) { | 
|  | LoadReg = I->second; | 
|  | } else { | 
|  | // Issue load from stub. | 
|  | unsigned Opc = 0; | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  | X86AddressMode StubAM; | 
|  | StubAM.Base.Reg = AM.Base.Reg; | 
|  | StubAM.GV = GV; | 
|  | StubAM.GVOpFlags = GVFlags; | 
|  |  | 
|  | // Prepare for inserting code in the local-value area. | 
|  | SavePoint SaveInsertPt = enterLocalValueArea(); | 
|  |  | 
|  | if (TLI.getPointerTy(DL) == MVT::i64) { | 
|  | Opc = X86::MOV64rm; | 
|  | RC  = &X86::GR64RegClass; | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel()) | 
|  | StubAM.Base.Reg = X86::RIP; | 
|  | } else { | 
|  | Opc = X86::MOV32rm; | 
|  | RC  = &X86::GR32RegClass; | 
|  | } | 
|  |  | 
|  | LoadReg = createResultReg(RC); | 
|  | MachineInstrBuilder LoadMI = | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg); | 
|  | addFullAddress(LoadMI, StubAM); | 
|  |  | 
|  | // Ok, back to normal mode. | 
|  | leaveLocalValueArea(SaveInsertPt); | 
|  |  | 
|  | // Prevent loading GV stub multiple times in same MBB. | 
|  | LocalValueMap[V] = LoadReg; | 
|  | } | 
|  |  | 
|  | // Now construct the final address. Note that the Disp, Scale, | 
|  | // and Index values may already be set here. | 
|  | AM.Base.Reg = LoadReg; | 
|  | AM.GV = nullptr; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If all else fails, try to materialize the value in a register. | 
|  | if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { | 
|  | if (AM.Base.Reg == 0) { | 
|  | AM.Base.Reg = getRegForValue(V); | 
|  | return AM.Base.Reg != 0; | 
|  | } | 
|  | if (AM.IndexReg == 0) { | 
|  | assert(AM.Scale == 1 && "Scale with no index!"); | 
|  | AM.IndexReg = getRegForValue(V); | 
|  | return AM.IndexReg != 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// X86SelectAddress - Attempt to fill in an address from the given value. | 
|  | /// | 
|  | bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { | 
|  | SmallVector<const Value *, 32> GEPs; | 
|  | redo_gep: | 
|  | const User *U = nullptr; | 
|  | unsigned Opcode = Instruction::UserOp1; | 
|  | if (const Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | // Don't walk into other basic blocks; it's possible we haven't | 
|  | // visited them yet, so the instructions may not yet be assigned | 
|  | // virtual registers. | 
|  | if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || | 
|  | FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { | 
|  | Opcode = I->getOpcode(); | 
|  | U = I; | 
|  | } | 
|  | } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { | 
|  | Opcode = C->getOpcode(); | 
|  | U = C; | 
|  | } | 
|  |  | 
|  | if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) | 
|  | if (Ty->getAddressSpace() > 255) | 
|  | // Fast instruction selection doesn't support the special | 
|  | // address spaces. | 
|  | return false; | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case Instruction::BitCast: | 
|  | // Look past bitcasts. | 
|  | return X86SelectAddress(U->getOperand(0), AM); | 
|  |  | 
|  | case Instruction::IntToPtr: | 
|  | // Look past no-op inttoptrs. | 
|  | if (TLI.getValueType(DL, U->getOperand(0)->getType()) == | 
|  | TLI.getPointerTy(DL)) | 
|  | return X86SelectAddress(U->getOperand(0), AM); | 
|  | break; | 
|  |  | 
|  | case Instruction::PtrToInt: | 
|  | // Look past no-op ptrtoints. | 
|  | if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) | 
|  | return X86SelectAddress(U->getOperand(0), AM); | 
|  | break; | 
|  |  | 
|  | case Instruction::Alloca: { | 
|  | // Do static allocas. | 
|  | const AllocaInst *A = cast<AllocaInst>(V); | 
|  | DenseMap<const AllocaInst *, int>::iterator SI = | 
|  | FuncInfo.StaticAllocaMap.find(A); | 
|  | if (SI != FuncInfo.StaticAllocaMap.end()) { | 
|  | AM.BaseType = X86AddressMode::FrameIndexBase; | 
|  | AM.Base.FrameIndex = SI->second; | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::Add: { | 
|  | // Adds of constants are common and easy enough. | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { | 
|  | uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); | 
|  | // They have to fit in the 32-bit signed displacement field though. | 
|  | if (isInt<32>(Disp)) { | 
|  | AM.Disp = (uint32_t)Disp; | 
|  | return X86SelectAddress(U->getOperand(0), AM); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::GetElementPtr: { | 
|  | X86AddressMode SavedAM = AM; | 
|  |  | 
|  | // Pattern-match simple GEPs. | 
|  | uint64_t Disp = (int32_t)AM.Disp; | 
|  | unsigned IndexReg = AM.IndexReg; | 
|  | unsigned Scale = AM.Scale; | 
|  | gep_type_iterator GTI = gep_type_begin(U); | 
|  | // Iterate through the indices, folding what we can. Constants can be | 
|  | // folded, and one dynamic index can be handled, if the scale is supported. | 
|  | for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); | 
|  | i != e; ++i, ++GTI) { | 
|  | const Value *Op = *i; | 
|  | if (StructType *STy = GTI.getStructTypeOrNull()) { | 
|  | const StructLayout *SL = DL.getStructLayout(STy); | 
|  | Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // A array/variable index is always of the form i*S where S is the | 
|  | // constant scale size.  See if we can push the scale into immediates. | 
|  | uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); | 
|  | for (;;) { | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { | 
|  | // Constant-offset addressing. | 
|  | Disp += CI->getSExtValue() * S; | 
|  | break; | 
|  | } | 
|  | if (canFoldAddIntoGEP(U, Op)) { | 
|  | // A compatible add with a constant operand. Fold the constant. | 
|  | ConstantInt *CI = | 
|  | cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); | 
|  | Disp += CI->getSExtValue() * S; | 
|  | // Iterate on the other operand. | 
|  | Op = cast<AddOperator>(Op)->getOperand(0); | 
|  | continue; | 
|  | } | 
|  | if (IndexReg == 0 && | 
|  | (!AM.GV || !Subtarget->isPICStyleRIPRel()) && | 
|  | (S == 1 || S == 2 || S == 4 || S == 8)) { | 
|  | // Scaled-index addressing. | 
|  | Scale = S; | 
|  | IndexReg = getRegForGEPIndex(Op).first; | 
|  | if (IndexReg == 0) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | // Unsupported. | 
|  | goto unsupported_gep; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for displacement overflow. | 
|  | if (!isInt<32>(Disp)) | 
|  | break; | 
|  |  | 
|  | AM.IndexReg = IndexReg; | 
|  | AM.Scale = Scale; | 
|  | AM.Disp = (uint32_t)Disp; | 
|  | GEPs.push_back(V); | 
|  |  | 
|  | if (const GetElementPtrInst *GEP = | 
|  | dyn_cast<GetElementPtrInst>(U->getOperand(0))) { | 
|  | // Ok, the GEP indices were covered by constant-offset and scaled-index | 
|  | // addressing. Update the address state and move on to examining the base. | 
|  | V = GEP; | 
|  | goto redo_gep; | 
|  | } else if (X86SelectAddress(U->getOperand(0), AM)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we couldn't merge the gep value into this addr mode, revert back to | 
|  | // our address and just match the value instead of completely failing. | 
|  | AM = SavedAM; | 
|  |  | 
|  | for (const Value *I : reverse(GEPs)) | 
|  | if (handleConstantAddresses(I, AM)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | unsupported_gep: | 
|  | // Ok, the GEP indices weren't all covered. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return handleConstantAddresses(V, AM); | 
|  | } | 
|  |  | 
|  | /// X86SelectCallAddress - Attempt to fill in an address from the given value. | 
|  | /// | 
|  | bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { | 
|  | const User *U = nullptr; | 
|  | unsigned Opcode = Instruction::UserOp1; | 
|  | const Instruction *I = dyn_cast<Instruction>(V); | 
|  | // Record if the value is defined in the same basic block. | 
|  | // | 
|  | // This information is crucial to know whether or not folding an | 
|  | // operand is valid. | 
|  | // Indeed, FastISel generates or reuses a virtual register for all | 
|  | // operands of all instructions it selects. Obviously, the definition and | 
|  | // its uses must use the same virtual register otherwise the produced | 
|  | // code is incorrect. | 
|  | // Before instruction selection, FunctionLoweringInfo::set sets the virtual | 
|  | // registers for values that are alive across basic blocks. This ensures | 
|  | // that the values are consistently set between across basic block, even | 
|  | // if different instruction selection mechanisms are used (e.g., a mix of | 
|  | // SDISel and FastISel). | 
|  | // For values local to a basic block, the instruction selection process | 
|  | // generates these virtual registers with whatever method is appropriate | 
|  | // for its needs. In particular, FastISel and SDISel do not share the way | 
|  | // local virtual registers are set. | 
|  | // Therefore, this is impossible (or at least unsafe) to share values | 
|  | // between basic blocks unless they use the same instruction selection | 
|  | // method, which is not guarantee for X86. | 
|  | // Moreover, things like hasOneUse could not be used accurately, if we | 
|  | // allow to reference values across basic blocks whereas they are not | 
|  | // alive across basic blocks initially. | 
|  | bool InMBB = true; | 
|  | if (I) { | 
|  | Opcode = I->getOpcode(); | 
|  | U = I; | 
|  | InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); | 
|  | } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { | 
|  | Opcode = C->getOpcode(); | 
|  | U = C; | 
|  | } | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case Instruction::BitCast: | 
|  | // Look past bitcasts if its operand is in the same BB. | 
|  | if (InMBB) | 
|  | return X86SelectCallAddress(U->getOperand(0), AM); | 
|  | break; | 
|  |  | 
|  | case Instruction::IntToPtr: | 
|  | // Look past no-op inttoptrs if its operand is in the same BB. | 
|  | if (InMBB && | 
|  | TLI.getValueType(DL, U->getOperand(0)->getType()) == | 
|  | TLI.getPointerTy(DL)) | 
|  | return X86SelectCallAddress(U->getOperand(0), AM); | 
|  | break; | 
|  |  | 
|  | case Instruction::PtrToInt: | 
|  | // Look past no-op ptrtoints if its operand is in the same BB. | 
|  | if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) | 
|  | return X86SelectCallAddress(U->getOperand(0), AM); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Handle constant address. | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
|  | // Can't handle alternate code models yet. | 
|  | if (TM.getCodeModel() != CodeModel::Small) | 
|  | return false; | 
|  |  | 
|  | // RIP-relative addresses can't have additional register operands. | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (AM.Base.Reg != 0 || AM.IndexReg != 0)) | 
|  | return false; | 
|  |  | 
|  | // Can't handle TLS. | 
|  | if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) | 
|  | if (GVar->isThreadLocal()) | 
|  | return false; | 
|  |  | 
|  | // Okay, we've committed to selecting this global. Set up the basic address. | 
|  | AM.GV = GV; | 
|  |  | 
|  | // Return a direct reference to the global. Fastisel can handle calls to | 
|  | // functions that require loads, such as dllimport and nonlazybind | 
|  | // functions. | 
|  | if (Subtarget->isPICStyleRIPRel()) { | 
|  | // Use rip-relative addressing if we can.  Above we verified that the | 
|  | // base and index registers are unused. | 
|  | assert(AM.Base.Reg == 0 && AM.IndexReg == 0); | 
|  | AM.Base.Reg = X86::RIP; | 
|  | } else { | 
|  | AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If all else fails, try to materialize the value in a register. | 
|  | if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { | 
|  | if (AM.Base.Reg == 0) { | 
|  | AM.Base.Reg = getRegForValue(V); | 
|  | return AM.Base.Reg != 0; | 
|  | } | 
|  | if (AM.IndexReg == 0) { | 
|  | assert(AM.Scale == 1 && "Scale with no index!"); | 
|  | AM.IndexReg = getRegForValue(V); | 
|  | return AM.IndexReg != 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// X86SelectStore - Select and emit code to implement store instructions. | 
|  | bool X86FastISel::X86SelectStore(const Instruction *I) { | 
|  | // Atomic stores need special handling. | 
|  | const StoreInst *S = cast<StoreInst>(I); | 
|  |  | 
|  | if (S->isAtomic()) | 
|  | return false; | 
|  |  | 
|  | const Value *PtrV = I->getOperand(1); | 
|  | if (TLI.supportSwiftError()) { | 
|  | // Swifterror values can come from either a function parameter with | 
|  | // swifterror attribute or an alloca with swifterror attribute. | 
|  | if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { | 
|  | if (Arg->hasSwiftErrorAttr()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { | 
|  | if (Alloca->isSwiftError()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | const Value *Val = S->getValueOperand(); | 
|  | const Value *Ptr = S->getPointerOperand(); | 
|  |  | 
|  | MVT VT; | 
|  | if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) | 
|  | return false; | 
|  |  | 
|  | unsigned Alignment = S->getAlignment(); | 
|  | unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType()); | 
|  | if (Alignment == 0) // Ensure that codegen never sees alignment 0 | 
|  | Alignment = ABIAlignment; | 
|  | bool Aligned = Alignment >= ABIAlignment; | 
|  |  | 
|  | X86AddressMode AM; | 
|  | if (!X86SelectAddress(Ptr, AM)) | 
|  | return false; | 
|  |  | 
|  | return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); | 
|  | } | 
|  |  | 
|  | /// X86SelectRet - Select and emit code to implement ret instructions. | 
|  | bool X86FastISel::X86SelectRet(const Instruction *I) { | 
|  | const ReturnInst *Ret = cast<ReturnInst>(I); | 
|  | const Function &F = *I->getParent()->getParent(); | 
|  | const X86MachineFunctionInfo *X86MFInfo = | 
|  | FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); | 
|  |  | 
|  | if (!FuncInfo.CanLowerReturn) | 
|  | return false; | 
|  |  | 
|  | if (TLI.supportSwiftError() && | 
|  | F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) | 
|  | return false; | 
|  |  | 
|  | if (TLI.supportSplitCSR(FuncInfo.MF)) | 
|  | return false; | 
|  |  | 
|  | CallingConv::ID CC = F.getCallingConv(); | 
|  | if (CC != CallingConv::C && | 
|  | CC != CallingConv::Fast && | 
|  | CC != CallingConv::X86_FastCall && | 
|  | CC != CallingConv::X86_StdCall && | 
|  | CC != CallingConv::X86_ThisCall && | 
|  | CC != CallingConv::X86_64_SysV && | 
|  | CC != CallingConv::Win64) | 
|  | return false; | 
|  |  | 
|  | // Don't handle popping bytes if they don't fit the ret's immediate. | 
|  | if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) | 
|  | return false; | 
|  |  | 
|  | // fastcc with -tailcallopt is intended to provide a guaranteed | 
|  | // tail call optimization. Fastisel doesn't know how to do that. | 
|  | if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) | 
|  | return false; | 
|  |  | 
|  | // Let SDISel handle vararg functions. | 
|  | if (F.isVarArg()) | 
|  | return false; | 
|  |  | 
|  | // Build a list of return value registers. | 
|  | SmallVector<unsigned, 4> RetRegs; | 
|  |  | 
|  | if (Ret->getNumOperands() > 0) { | 
|  | SmallVector<ISD::OutputArg, 4> Outs; | 
|  | GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); | 
|  |  | 
|  | // Analyze operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ValLocs; | 
|  | CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); | 
|  | CCInfo.AnalyzeReturn(Outs, RetCC_X86); | 
|  |  | 
|  | const Value *RV = Ret->getOperand(0); | 
|  | unsigned Reg = getRegForValue(RV); | 
|  | if (Reg == 0) | 
|  | return false; | 
|  |  | 
|  | // Only handle a single return value for now. | 
|  | if (ValLocs.size() != 1) | 
|  | return false; | 
|  |  | 
|  | CCValAssign &VA = ValLocs[0]; | 
|  |  | 
|  | // Don't bother handling odd stuff for now. | 
|  | if (VA.getLocInfo() != CCValAssign::Full) | 
|  | return false; | 
|  | // Only handle register returns for now. | 
|  | if (!VA.isRegLoc()) | 
|  | return false; | 
|  |  | 
|  | // The calling-convention tables for x87 returns don't tell | 
|  | // the whole story. | 
|  | if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) | 
|  | return false; | 
|  |  | 
|  | unsigned SrcReg = Reg + VA.getValNo(); | 
|  | EVT SrcVT = TLI.getValueType(DL, RV->getType()); | 
|  | EVT DstVT = VA.getValVT(); | 
|  | // Special handling for extended integers. | 
|  | if (SrcVT != DstVT) { | 
|  | if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) | 
|  | return false; | 
|  |  | 
|  | if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) | 
|  | return false; | 
|  |  | 
|  | assert(DstVT == MVT::i32 && "X86 should always ext to i32"); | 
|  |  | 
|  | if (SrcVT == MVT::i1) { | 
|  | if (Outs[0].Flags.isSExt()) | 
|  | return false; | 
|  | SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false); | 
|  | SrcVT = MVT::i8; | 
|  | } | 
|  | unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : | 
|  | ISD::SIGN_EXTEND; | 
|  | SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, | 
|  | SrcReg, /*TODO: Kill=*/false); | 
|  | } | 
|  |  | 
|  | // Make the copy. | 
|  | unsigned DstReg = VA.getLocReg(); | 
|  | const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); | 
|  | // Avoid a cross-class copy. This is very unlikely. | 
|  | if (!SrcRC->contains(DstReg)) | 
|  | return false; | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); | 
|  |  | 
|  | // Add register to return instruction. | 
|  | RetRegs.push_back(VA.getLocReg()); | 
|  | } | 
|  |  | 
|  | // Swift calling convention does not require we copy the sret argument | 
|  | // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. | 
|  |  | 
|  | // All x86 ABIs require that for returning structs by value we copy | 
|  | // the sret argument into %rax/%eax (depending on ABI) for the return. | 
|  | // We saved the argument into a virtual register in the entry block, | 
|  | // so now we copy the value out and into %rax/%eax. | 
|  | if (F.hasStructRetAttr() && CC != CallingConv::Swift) { | 
|  | unsigned Reg = X86MFInfo->getSRetReturnReg(); | 
|  | assert(Reg && | 
|  | "SRetReturnReg should have been set in LowerFormalArguments()!"); | 
|  | unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); | 
|  | RetRegs.push_back(RetReg); | 
|  | } | 
|  |  | 
|  | // Now emit the RET. | 
|  | MachineInstrBuilder MIB; | 
|  | if (X86MFInfo->getBytesToPopOnReturn()) { | 
|  | MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL)) | 
|  | .addImm(X86MFInfo->getBytesToPopOnReturn()); | 
|  | } else { | 
|  | MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL)); | 
|  | } | 
|  | for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) | 
|  | MIB.addReg(RetRegs[i], RegState::Implicit); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// X86SelectLoad - Select and emit code to implement load instructions. | 
|  | /// | 
|  | bool X86FastISel::X86SelectLoad(const Instruction *I) { | 
|  | const LoadInst *LI = cast<LoadInst>(I); | 
|  |  | 
|  | // Atomic loads need special handling. | 
|  | if (LI->isAtomic()) | 
|  | return false; | 
|  |  | 
|  | const Value *SV = I->getOperand(0); | 
|  | if (TLI.supportSwiftError()) { | 
|  | // Swifterror values can come from either a function parameter with | 
|  | // swifterror attribute or an alloca with swifterror attribute. | 
|  | if (const Argument *Arg = dyn_cast<Argument>(SV)) { | 
|  | if (Arg->hasSwiftErrorAttr()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { | 
|  | if (Alloca->isSwiftError()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | MVT VT; | 
|  | if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) | 
|  | return false; | 
|  |  | 
|  | const Value *Ptr = LI->getPointerOperand(); | 
|  |  | 
|  | X86AddressMode AM; | 
|  | if (!X86SelectAddress(Ptr, AM)) | 
|  | return false; | 
|  |  | 
|  | unsigned Alignment = LI->getAlignment(); | 
|  | unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType()); | 
|  | if (Alignment == 0) // Ensure that codegen never sees alignment 0 | 
|  | Alignment = ABIAlignment; | 
|  |  | 
|  | unsigned ResultReg = 0; | 
|  | if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, | 
|  | Alignment)) | 
|  | return false; | 
|  |  | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { | 
|  | bool HasAVX512 = Subtarget->hasAVX512(); | 
|  | bool HasAVX = Subtarget->hasAVX(); | 
|  | bool X86ScalarSSEf32 = Subtarget->hasSSE1(); | 
|  | bool X86ScalarSSEf64 = Subtarget->hasSSE2(); | 
|  |  | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default:       return 0; | 
|  | case MVT::i8:  return X86::CMP8rr; | 
|  | case MVT::i16: return X86::CMP16rr; | 
|  | case MVT::i32: return X86::CMP32rr; | 
|  | case MVT::i64: return X86::CMP64rr; | 
|  | case MVT::f32: | 
|  | return X86ScalarSSEf32 | 
|  | ? (HasAVX512 ? X86::VUCOMISSZrr | 
|  | : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) | 
|  | : 0; | 
|  | case MVT::f64: | 
|  | return X86ScalarSSEf64 | 
|  | ? (HasAVX512 ? X86::VUCOMISDZrr | 
|  | : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) | 
|  | : 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If we have a comparison with RHS as the RHS  of the comparison, return an | 
|  | /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. | 
|  | static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { | 
|  | int64_t Val = RHSC->getSExtValue(); | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | // Otherwise, we can't fold the immediate into this comparison. | 
|  | default: | 
|  | return 0; | 
|  | case MVT::i8: | 
|  | return X86::CMP8ri; | 
|  | case MVT::i16: | 
|  | if (isInt<8>(Val)) | 
|  | return X86::CMP16ri8; | 
|  | return X86::CMP16ri; | 
|  | case MVT::i32: | 
|  | if (isInt<8>(Val)) | 
|  | return X86::CMP32ri8; | 
|  | return X86::CMP32ri; | 
|  | case MVT::i64: | 
|  | if (isInt<8>(Val)) | 
|  | return X86::CMP64ri8; | 
|  | // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext | 
|  | // field. | 
|  | if (isInt<32>(Val)) | 
|  | return X86::CMP64ri32; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, | 
|  | const DebugLoc &CurDbgLoc) { | 
|  | unsigned Op0Reg = getRegForValue(Op0); | 
|  | if (Op0Reg == 0) return false; | 
|  |  | 
|  | // Handle 'null' like i32/i64 0. | 
|  | if (isa<ConstantPointerNull>(Op1)) | 
|  | Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); | 
|  |  | 
|  | // We have two options: compare with register or immediate.  If the RHS of | 
|  | // the compare is an immediate that we can fold into this compare, use | 
|  | // CMPri, otherwise use CMPrr. | 
|  | if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { | 
|  | if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc)) | 
|  | .addReg(Op0Reg) | 
|  | .addImm(Op1C->getSExtValue()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); | 
|  | if (CompareOpc == 0) return false; | 
|  |  | 
|  | unsigned Op1Reg = getRegForValue(Op1); | 
|  | if (Op1Reg == 0) return false; | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc)) | 
|  | .addReg(Op0Reg) | 
|  | .addReg(Op1Reg); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86SelectCmp(const Instruction *I) { | 
|  | const CmpInst *CI = cast<CmpInst>(I); | 
|  |  | 
|  | MVT VT; | 
|  | if (!isTypeLegal(I->getOperand(0)->getType(), VT)) | 
|  | return false; | 
|  |  | 
|  | // Try to optimize or fold the cmp. | 
|  | CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); | 
|  | unsigned ResultReg = 0; | 
|  | switch (Predicate) { | 
|  | default: break; | 
|  | case CmpInst::FCMP_FALSE: { | 
|  | ResultReg = createResultReg(&X86::GR32RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0), | 
|  | ResultReg); | 
|  | ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true, | 
|  | X86::sub_8bit); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | case CmpInst::FCMP_TRUE: { | 
|  | ResultReg = createResultReg(&X86::GR8RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), | 
|  | ResultReg).addImm(1); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ResultReg) { | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const Value *LHS = CI->getOperand(0); | 
|  | const Value *RHS = CI->getOperand(1); | 
|  |  | 
|  | // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. | 
|  | // We don't have to materialize a zero constant for this case and can just use | 
|  | // %x again on the RHS. | 
|  | if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { | 
|  | const auto *RHSC = dyn_cast<ConstantFP>(RHS); | 
|  | if (RHSC && RHSC->isNullValue()) | 
|  | RHS = LHS; | 
|  | } | 
|  |  | 
|  | // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. | 
|  | static const uint16_t SETFOpcTable[2][3] = { | 
|  | { X86::SETEr,  X86::SETNPr, X86::AND8rr }, | 
|  | { X86::SETNEr, X86::SETPr,  X86::OR8rr  } | 
|  | }; | 
|  | const uint16_t *SETFOpc = nullptr; | 
|  | switch (Predicate) { | 
|  | default: break; | 
|  | case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; | 
|  | case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; | 
|  | } | 
|  |  | 
|  | ResultReg = createResultReg(&X86::GR8RegClass); | 
|  | if (SETFOpc) { | 
|  | if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) | 
|  | return false; | 
|  |  | 
|  | unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); | 
|  | unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]), | 
|  | FlagReg1); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]), | 
|  | FlagReg2); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]), | 
|  | ResultReg).addReg(FlagReg1).addReg(FlagReg2); | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | X86::CondCode CC; | 
|  | bool SwapArgs; | 
|  | std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); | 
|  | assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); | 
|  | unsigned Opc = X86::getSETFromCond(CC); | 
|  |  | 
|  | if (SwapArgs) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | // Emit a compare of LHS/RHS. | 
|  | if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) | 
|  | return false; | 
|  |  | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86SelectZExt(const Instruction *I) { | 
|  | EVT DstVT = TLI.getValueType(DL, I->getType()); | 
|  | if (!TLI.isTypeLegal(DstVT)) | 
|  | return false; | 
|  |  | 
|  | unsigned ResultReg = getRegForValue(I->getOperand(0)); | 
|  | if (ResultReg == 0) | 
|  | return false; | 
|  |  | 
|  | // Handle zero-extension from i1 to i8, which is common. | 
|  | MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); | 
|  | if (SrcVT == MVT::i1) { | 
|  | // Set the high bits to zero. | 
|  | ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); | 
|  | SrcVT = MVT::i8; | 
|  |  | 
|  | if (ResultReg == 0) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (DstVT == MVT::i64) { | 
|  | // Handle extension to 64-bits via sub-register shenanigans. | 
|  | unsigned MovInst; | 
|  |  | 
|  | switch (SrcVT.SimpleTy) { | 
|  | case MVT::i8:  MovInst = X86::MOVZX32rr8;  break; | 
|  | case MVT::i16: MovInst = X86::MOVZX32rr16; break; | 
|  | case MVT::i32: MovInst = X86::MOV32rr;     break; | 
|  | default: llvm_unreachable("Unexpected zext to i64 source type"); | 
|  | } | 
|  |  | 
|  | unsigned Result32 = createResultReg(&X86::GR32RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32) | 
|  | .addReg(ResultReg); | 
|  |  | 
|  | ResultReg = createResultReg(&X86::GR64RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG), | 
|  | ResultReg) | 
|  | .addImm(0).addReg(Result32).addImm(X86::sub_32bit); | 
|  | } else if (DstVT == MVT::i16) { | 
|  | // i8->i16 doesn't exist in the autogenerated isel table. Need to zero | 
|  | // extend to 32-bits and then extract down to 16-bits. | 
|  | unsigned Result32 = createResultReg(&X86::GR32RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8), | 
|  | Result32).addReg(ResultReg); | 
|  |  | 
|  | ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, | 
|  | X86::sub_16bit); | 
|  | } else if (DstVT != MVT::i8) { | 
|  | ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, | 
|  | ResultReg, /*Kill=*/true); | 
|  | if (ResultReg == 0) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86SelectSExt(const Instruction *I) { | 
|  | EVT DstVT = TLI.getValueType(DL, I->getType()); | 
|  | if (!TLI.isTypeLegal(DstVT)) | 
|  | return false; | 
|  |  | 
|  | unsigned ResultReg = getRegForValue(I->getOperand(0)); | 
|  | if (ResultReg == 0) | 
|  | return false; | 
|  |  | 
|  | // Handle sign-extension from i1 to i8. | 
|  | MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); | 
|  | if (SrcVT == MVT::i1) { | 
|  | // Set the high bits to zero. | 
|  | unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg, | 
|  | /*TODO: Kill=*/false); | 
|  | if (ZExtReg == 0) | 
|  | return false; | 
|  |  | 
|  | // Negate the result to make an 8-bit sign extended value. | 
|  | ResultReg = createResultReg(&X86::GR8RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r), | 
|  | ResultReg).addReg(ZExtReg); | 
|  |  | 
|  | SrcVT = MVT::i8; | 
|  | } | 
|  |  | 
|  | if (DstVT == MVT::i16) { | 
|  | // i8->i16 doesn't exist in the autogenerated isel table. Need to sign | 
|  | // extend to 32-bits and then extract down to 16-bits. | 
|  | unsigned Result32 = createResultReg(&X86::GR32RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8), | 
|  | Result32).addReg(ResultReg); | 
|  |  | 
|  | ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, | 
|  | X86::sub_16bit); | 
|  | } else if (DstVT != MVT::i8) { | 
|  | ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, | 
|  | ResultReg, /*Kill=*/true); | 
|  | if (ResultReg == 0) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86SelectBranch(const Instruction *I) { | 
|  | // Unconditional branches are selected by tablegen-generated code. | 
|  | // Handle a conditional branch. | 
|  | const BranchInst *BI = cast<BranchInst>(I); | 
|  | MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; | 
|  | MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; | 
|  |  | 
|  | // Fold the common case of a conditional branch with a comparison | 
|  | // in the same block (values defined on other blocks may not have | 
|  | // initialized registers). | 
|  | X86::CondCode CC; | 
|  | if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { | 
|  | if (CI->hasOneUse() && CI->getParent() == I->getParent()) { | 
|  | EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); | 
|  |  | 
|  | // Try to optimize or fold the cmp. | 
|  | CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); | 
|  | switch (Predicate) { | 
|  | default: break; | 
|  | case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true; | 
|  | case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, DbgLoc); return true; | 
|  | } | 
|  |  | 
|  | const Value *CmpLHS = CI->getOperand(0); | 
|  | const Value *CmpRHS = CI->getOperand(1); | 
|  |  | 
|  | // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, | 
|  | // 0.0. | 
|  | // We don't have to materialize a zero constant for this case and can just | 
|  | // use %x again on the RHS. | 
|  | if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { | 
|  | const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); | 
|  | if (CmpRHSC && CmpRHSC->isNullValue()) | 
|  | CmpRHS = CmpLHS; | 
|  | } | 
|  |  | 
|  | // Try to take advantage of fallthrough opportunities. | 
|  | if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { | 
|  | std::swap(TrueMBB, FalseMBB); | 
|  | Predicate = CmpInst::getInversePredicate(Predicate); | 
|  | } | 
|  |  | 
|  | // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition | 
|  | // code check. Instead two branch instructions are required to check all | 
|  | // the flags. First we change the predicate to a supported condition code, | 
|  | // which will be the first branch. Later one we will emit the second | 
|  | // branch. | 
|  | bool NeedExtraBranch = false; | 
|  | switch (Predicate) { | 
|  | default: break; | 
|  | case CmpInst::FCMP_OEQ: | 
|  | std::swap(TrueMBB, FalseMBB); | 
|  | LLVM_FALLTHROUGH; | 
|  | case CmpInst::FCMP_UNE: | 
|  | NeedExtraBranch = true; | 
|  | Predicate = CmpInst::FCMP_ONE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | bool SwapArgs; | 
|  | unsigned BranchOpc; | 
|  | std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); | 
|  | assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); | 
|  |  | 
|  | BranchOpc = X86::GetCondBranchFromCond(CC); | 
|  | if (SwapArgs) | 
|  | std::swap(CmpLHS, CmpRHS); | 
|  |  | 
|  | // Emit a compare of the LHS and RHS, setting the flags. | 
|  | if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) | 
|  | return false; | 
|  |  | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc)) | 
|  | .addMBB(TrueMBB); | 
|  |  | 
|  | // X86 requires a second branch to handle UNE (and OEQ, which is mapped | 
|  | // to UNE above). | 
|  | if (NeedExtraBranch) { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1)) | 
|  | .addMBB(TrueMBB); | 
|  | } | 
|  |  | 
|  | finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); | 
|  | return true; | 
|  | } | 
|  | } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { | 
|  | // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which | 
|  | // typically happen for _Bool and C++ bools. | 
|  | MVT SourceVT; | 
|  | if (TI->hasOneUse() && TI->getParent() == I->getParent() && | 
|  | isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { | 
|  | unsigned TestOpc = 0; | 
|  | switch (SourceVT.SimpleTy) { | 
|  | default: break; | 
|  | case MVT::i8:  TestOpc = X86::TEST8ri; break; | 
|  | case MVT::i16: TestOpc = X86::TEST16ri; break; | 
|  | case MVT::i32: TestOpc = X86::TEST32ri; break; | 
|  | case MVT::i64: TestOpc = X86::TEST64ri32; break; | 
|  | } | 
|  | if (TestOpc) { | 
|  | unsigned OpReg = getRegForValue(TI->getOperand(0)); | 
|  | if (OpReg == 0) return false; | 
|  |  | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc)) | 
|  | .addReg(OpReg).addImm(1); | 
|  |  | 
|  | unsigned JmpOpc = X86::JNE_1; | 
|  | if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { | 
|  | std::swap(TrueMBB, FalseMBB); | 
|  | JmpOpc = X86::JE_1; | 
|  | } | 
|  |  | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc)) | 
|  | .addMBB(TrueMBB); | 
|  |  | 
|  | finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { | 
|  | // Fake request the condition, otherwise the intrinsic might be completely | 
|  | // optimized away. | 
|  | unsigned TmpReg = getRegForValue(BI->getCondition()); | 
|  | if (TmpReg == 0) | 
|  | return false; | 
|  |  | 
|  | unsigned BranchOpc = X86::GetCondBranchFromCond(CC); | 
|  |  | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc)) | 
|  | .addMBB(TrueMBB); | 
|  | finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise do a clumsy setcc and re-test it. | 
|  | // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used | 
|  | // in an explicit cast, so make sure to handle that correctly. | 
|  | unsigned OpReg = getRegForValue(BI->getCondition()); | 
|  | if (OpReg == 0) return false; | 
|  |  | 
|  | // In case OpReg is a K register, COPY to a GPR | 
|  | if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { | 
|  | unsigned KOpReg = OpReg; | 
|  | OpReg = createResultReg(&X86::GR32RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), OpReg) | 
|  | .addReg(KOpReg); | 
|  | OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true, | 
|  | X86::sub_8bit); | 
|  | } | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) | 
|  | .addReg(OpReg) | 
|  | .addImm(1); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1)) | 
|  | .addMBB(TrueMBB); | 
|  | finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86SelectShift(const Instruction *I) { | 
|  | unsigned CReg = 0, OpReg = 0; | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  | if (I->getType()->isIntegerTy(8)) { | 
|  | CReg = X86::CL; | 
|  | RC = &X86::GR8RegClass; | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::LShr: OpReg = X86::SHR8rCL; break; | 
|  | case Instruction::AShr: OpReg = X86::SAR8rCL; break; | 
|  | case Instruction::Shl:  OpReg = X86::SHL8rCL; break; | 
|  | default: return false; | 
|  | } | 
|  | } else if (I->getType()->isIntegerTy(16)) { | 
|  | CReg = X86::CX; | 
|  | RC = &X86::GR16RegClass; | 
|  | switch (I->getOpcode()) { | 
|  | default: llvm_unreachable("Unexpected shift opcode"); | 
|  | case Instruction::LShr: OpReg = X86::SHR16rCL; break; | 
|  | case Instruction::AShr: OpReg = X86::SAR16rCL; break; | 
|  | case Instruction::Shl:  OpReg = X86::SHL16rCL; break; | 
|  | } | 
|  | } else if (I->getType()->isIntegerTy(32)) { | 
|  | CReg = X86::ECX; | 
|  | RC = &X86::GR32RegClass; | 
|  | switch (I->getOpcode()) { | 
|  | default: llvm_unreachable("Unexpected shift opcode"); | 
|  | case Instruction::LShr: OpReg = X86::SHR32rCL; break; | 
|  | case Instruction::AShr: OpReg = X86::SAR32rCL; break; | 
|  | case Instruction::Shl:  OpReg = X86::SHL32rCL; break; | 
|  | } | 
|  | } else if (I->getType()->isIntegerTy(64)) { | 
|  | CReg = X86::RCX; | 
|  | RC = &X86::GR64RegClass; | 
|  | switch (I->getOpcode()) { | 
|  | default: llvm_unreachable("Unexpected shift opcode"); | 
|  | case Instruction::LShr: OpReg = X86::SHR64rCL; break; | 
|  | case Instruction::AShr: OpReg = X86::SAR64rCL; break; | 
|  | case Instruction::Shl:  OpReg = X86::SHL64rCL; break; | 
|  | } | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MVT VT; | 
|  | if (!isTypeLegal(I->getType(), VT)) | 
|  | return false; | 
|  |  | 
|  | unsigned Op0Reg = getRegForValue(I->getOperand(0)); | 
|  | if (Op0Reg == 0) return false; | 
|  |  | 
|  | unsigned Op1Reg = getRegForValue(I->getOperand(1)); | 
|  | if (Op1Reg == 0) return false; | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), | 
|  | CReg).addReg(Op1Reg); | 
|  |  | 
|  | // The shift instruction uses X86::CL. If we defined a super-register | 
|  | // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. | 
|  | if (CReg != X86::CL) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::KILL), X86::CL) | 
|  | .addReg(CReg, RegState::Kill); | 
|  |  | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg) | 
|  | .addReg(Op0Reg); | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86SelectDivRem(const Instruction *I) { | 
|  | const static unsigned NumTypes = 4; // i8, i16, i32, i64 | 
|  | const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem | 
|  | const static bool S = true;  // IsSigned | 
|  | const static bool U = false; // !IsSigned | 
|  | const static unsigned Copy = TargetOpcode::COPY; | 
|  | // For the X86 DIV/IDIV instruction, in most cases the dividend | 
|  | // (numerator) must be in a specific register pair highreg:lowreg, | 
|  | // producing the quotient in lowreg and the remainder in highreg. | 
|  | // For most data types, to set up the instruction, the dividend is | 
|  | // copied into lowreg, and lowreg is sign-extended or zero-extended | 
|  | // into highreg.  The exception is i8, where the dividend is defined | 
|  | // as a single register rather than a register pair, and we | 
|  | // therefore directly sign-extend or zero-extend the dividend into | 
|  | // lowreg, instead of copying, and ignore the highreg. | 
|  | const static struct DivRemEntry { | 
|  | // The following portion depends only on the data type. | 
|  | const TargetRegisterClass *RC; | 
|  | unsigned LowInReg;  // low part of the register pair | 
|  | unsigned HighInReg; // high part of the register pair | 
|  | // The following portion depends on both the data type and the operation. | 
|  | struct DivRemResult { | 
|  | unsigned OpDivRem;        // The specific DIV/IDIV opcode to use. | 
|  | unsigned OpSignExtend;    // Opcode for sign-extending lowreg into | 
|  | // highreg, or copying a zero into highreg. | 
|  | unsigned OpCopy;          // Opcode for copying dividend into lowreg, or | 
|  | // zero/sign-extending into lowreg for i8. | 
|  | unsigned DivRemResultReg; // Register containing the desired result. | 
|  | bool IsOpSigned;          // Whether to use signed or unsigned form. | 
|  | } ResultTable[NumOps]; | 
|  | } OpTable[NumTypes] = { | 
|  | { &X86::GR8RegClass,  X86::AX,  0, { | 
|  | { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv | 
|  | { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem | 
|  | { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv | 
|  | { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem | 
|  | } | 
|  | }, // i8 | 
|  | { &X86::GR16RegClass, X86::AX,  X86::DX, { | 
|  | { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv | 
|  | { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem | 
|  | { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv | 
|  | { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem | 
|  | } | 
|  | }, // i16 | 
|  | { &X86::GR32RegClass, X86::EAX, X86::EDX, { | 
|  | { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv | 
|  | { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem | 
|  | { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv | 
|  | { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem | 
|  | } | 
|  | }, // i32 | 
|  | { &X86::GR64RegClass, X86::RAX, X86::RDX, { | 
|  | { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv | 
|  | { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem | 
|  | { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv | 
|  | { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem | 
|  | } | 
|  | }, // i64 | 
|  | }; | 
|  |  | 
|  | MVT VT; | 
|  | if (!isTypeLegal(I->getType(), VT)) | 
|  | return false; | 
|  |  | 
|  | unsigned TypeIndex, OpIndex; | 
|  | switch (VT.SimpleTy) { | 
|  | default: return false; | 
|  | case MVT::i8:  TypeIndex = 0; break; | 
|  | case MVT::i16: TypeIndex = 1; break; | 
|  | case MVT::i32: TypeIndex = 2; break; | 
|  | case MVT::i64: TypeIndex = 3; | 
|  | if (!Subtarget->is64Bit()) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | default: llvm_unreachable("Unexpected div/rem opcode"); | 
|  | case Instruction::SDiv: OpIndex = 0; break; | 
|  | case Instruction::SRem: OpIndex = 1; break; | 
|  | case Instruction::UDiv: OpIndex = 2; break; | 
|  | case Instruction::URem: OpIndex = 3; break; | 
|  | } | 
|  |  | 
|  | const DivRemEntry &TypeEntry = OpTable[TypeIndex]; | 
|  | const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; | 
|  | unsigned Op0Reg = getRegForValue(I->getOperand(0)); | 
|  | if (Op0Reg == 0) | 
|  | return false; | 
|  | unsigned Op1Reg = getRegForValue(I->getOperand(1)); | 
|  | if (Op1Reg == 0) | 
|  | return false; | 
|  |  | 
|  | // Move op0 into low-order input register. | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); | 
|  | // Zero-extend or sign-extend into high-order input register. | 
|  | if (OpEntry.OpSignExtend) { | 
|  | if (OpEntry.IsOpSigned) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(OpEntry.OpSignExtend)); | 
|  | else { | 
|  | unsigned Zero32 = createResultReg(&X86::GR32RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(X86::MOV32r0), Zero32); | 
|  |  | 
|  | // Copy the zero into the appropriate sub/super/identical physical | 
|  | // register. Unfortunately the operations needed are not uniform enough | 
|  | // to fit neatly into the table above. | 
|  | if (VT == MVT::i16) { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Copy), TypeEntry.HighInReg) | 
|  | .addReg(Zero32, 0, X86::sub_16bit); | 
|  | } else if (VT == MVT::i32) { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Copy), TypeEntry.HighInReg) | 
|  | .addReg(Zero32); | 
|  | } else if (VT == MVT::i64) { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) | 
|  | .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Generate the DIV/IDIV instruction. | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); | 
|  | // For i8 remainder, we can't reference ah directly, as we'll end | 
|  | // up with bogus copies like %r9b = COPY %ah. Reference ax | 
|  | // instead to prevent ah references in a rex instruction. | 
|  | // | 
|  | // The current assumption of the fast register allocator is that isel | 
|  | // won't generate explicit references to the GR8_NOREX registers. If | 
|  | // the allocator and/or the backend get enhanced to be more robust in | 
|  | // that regard, this can be, and should be, removed. | 
|  | unsigned ResultReg = 0; | 
|  | if ((I->getOpcode() == Instruction::SRem || | 
|  | I->getOpcode() == Instruction::URem) && | 
|  | OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { | 
|  | unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass); | 
|  | unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Copy), SourceSuperReg).addReg(X86::AX); | 
|  |  | 
|  | // Shift AX right by 8 bits instead of using AH. | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri), | 
|  | ResultSuperReg).addReg(SourceSuperReg).addImm(8); | 
|  |  | 
|  | // Now reference the 8-bit subreg of the result. | 
|  | ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, | 
|  | /*Kill=*/true, X86::sub_8bit); | 
|  | } | 
|  | // Copy the result out of the physreg if we haven't already. | 
|  | if (!ResultReg) { | 
|  | ResultReg = createResultReg(TypeEntry.RC); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg) | 
|  | .addReg(OpEntry.DivRemResultReg); | 
|  | } | 
|  | updateValueMap(I, ResultReg); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Emit a conditional move instruction (if the are supported) to lower | 
|  | /// the select. | 
|  | bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { | 
|  | // Check if the subtarget supports these instructions. | 
|  | if (!Subtarget->hasCMov()) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Add support for i8. | 
|  | if (RetVT < MVT::i16 || RetVT > MVT::i64) | 
|  | return false; | 
|  |  | 
|  | const Value *Cond = I->getOperand(0); | 
|  | const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); | 
|  | bool NeedTest = true; | 
|  | X86::CondCode CC = X86::COND_NE; | 
|  |  | 
|  | // Optimize conditions coming from a compare if both instructions are in the | 
|  | // same basic block (values defined in other basic blocks may not have | 
|  | // initialized registers). | 
|  | const auto *CI = dyn_cast<CmpInst>(Cond); | 
|  | if (CI && (CI->getParent() == I->getParent())) { | 
|  | CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); | 
|  |  | 
|  | // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. | 
|  | static const uint16_t SETFOpcTable[2][3] = { | 
|  | { X86::SETNPr, X86::SETEr , X86::TEST8rr }, | 
|  | { X86::SETPr,  X86::SETNEr, X86::OR8rr   } | 
|  | }; | 
|  | const uint16_t *SETFOpc = nullptr; | 
|  | switch (Predicate) { | 
|  | default: break; | 
|  | case CmpInst::FCMP_OEQ: | 
|  | SETFOpc = &SETFOpcTable[0][0]; | 
|  | Predicate = CmpInst::ICMP_NE; | 
|  | break; | 
|  | case CmpInst::FCMP_UNE: | 
|  | SETFOpc = &SETFOpcTable[1][0]; | 
|  | Predicate = CmpInst::ICMP_NE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | bool NeedSwap; | 
|  | std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); | 
|  | assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); | 
|  |  | 
|  | const Value *CmpLHS = CI->getOperand(0); | 
|  | const Value *CmpRHS = CI->getOperand(1); | 
|  | if (NeedSwap) | 
|  | std::swap(CmpLHS, CmpRHS); | 
|  |  | 
|  | EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); | 
|  | // Emit a compare of the LHS and RHS, setting the flags. | 
|  | if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) | 
|  | return false; | 
|  |  | 
|  | if (SETFOpc) { | 
|  | unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); | 
|  | unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]), | 
|  | FlagReg1); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]), | 
|  | FlagReg2); | 
|  | auto const &II = TII.get(SETFOpc[2]); | 
|  | if (II.getNumDefs()) { | 
|  | unsigned TmpReg = createResultReg(&X86::GR8RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg) | 
|  | .addReg(FlagReg2).addReg(FlagReg1); | 
|  | } else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(FlagReg2).addReg(FlagReg1); | 
|  | } | 
|  | } | 
|  | NeedTest = false; | 
|  | } else if (foldX86XALUIntrinsic(CC, I, Cond)) { | 
|  | // Fake request the condition, otherwise the intrinsic might be completely | 
|  | // optimized away. | 
|  | unsigned TmpReg = getRegForValue(Cond); | 
|  | if (TmpReg == 0) | 
|  | return false; | 
|  |  | 
|  | NeedTest = false; | 
|  | } | 
|  |  | 
|  | if (NeedTest) { | 
|  | // Selects operate on i1, however, CondReg is 8 bits width and may contain | 
|  | // garbage. Indeed, only the less significant bit is supposed to be | 
|  | // accurate. If we read more than the lsb, we may see non-zero values | 
|  | // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for | 
|  | // the select. This is achieved by performing TEST against 1. | 
|  | unsigned CondReg = getRegForValue(Cond); | 
|  | if (CondReg == 0) | 
|  | return false; | 
|  | bool CondIsKill = hasTrivialKill(Cond); | 
|  |  | 
|  | // In case OpReg is a K register, COPY to a GPR | 
|  | if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { | 
|  | unsigned KCondReg = CondReg; | 
|  | CondReg = createResultReg(&X86::GR32RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), CondReg) | 
|  | .addReg(KCondReg, getKillRegState(CondIsKill)); | 
|  | CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, | 
|  | X86::sub_8bit); | 
|  | } | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) | 
|  | .addReg(CondReg, getKillRegState(CondIsKill)) | 
|  | .addImm(1); | 
|  | } | 
|  |  | 
|  | const Value *LHS = I->getOperand(1); | 
|  | const Value *RHS = I->getOperand(2); | 
|  |  | 
|  | unsigned RHSReg = getRegForValue(RHS); | 
|  | bool RHSIsKill = hasTrivialKill(RHS); | 
|  |  | 
|  | unsigned LHSReg = getRegForValue(LHS); | 
|  | bool LHSIsKill = hasTrivialKill(LHS); | 
|  |  | 
|  | if (!LHSReg || !RHSReg) | 
|  | return false; | 
|  |  | 
|  | const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); | 
|  | unsigned Opc = X86::getCMovFromCond(CC, TRI.getRegSizeInBits(*RC)/8); | 
|  | unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill, | 
|  | LHSReg, LHSIsKill); | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Emit SSE or AVX instructions to lower the select. | 
|  | /// | 
|  | /// Try to use SSE1/SSE2 instructions to simulate a select without branches. | 
|  | /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary | 
|  | /// SSE instructions are available. If AVX is available, try to use a VBLENDV. | 
|  | bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { | 
|  | // Optimize conditions coming from a compare if both instructions are in the | 
|  | // same basic block (values defined in other basic blocks may not have | 
|  | // initialized registers). | 
|  | const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); | 
|  | if (!CI || (CI->getParent() != I->getParent())) | 
|  | return false; | 
|  |  | 
|  | if (I->getType() != CI->getOperand(0)->getType() || | 
|  | !((Subtarget->hasSSE1() && RetVT == MVT::f32) || | 
|  | (Subtarget->hasSSE2() && RetVT == MVT::f64))) | 
|  | return false; | 
|  |  | 
|  | const Value *CmpLHS = CI->getOperand(0); | 
|  | const Value *CmpRHS = CI->getOperand(1); | 
|  | CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); | 
|  |  | 
|  | // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. | 
|  | // We don't have to materialize a zero constant for this case and can just use | 
|  | // %x again on the RHS. | 
|  | if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { | 
|  | const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); | 
|  | if (CmpRHSC && CmpRHSC->isNullValue()) | 
|  | CmpRHS = CmpLHS; | 
|  | } | 
|  |  | 
|  | unsigned CC; | 
|  | bool NeedSwap; | 
|  | std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); | 
|  | if (CC > 7 && !Subtarget->hasAVX()) | 
|  | return false; | 
|  |  | 
|  | if (NeedSwap) | 
|  | std::swap(CmpLHS, CmpRHS); | 
|  |  | 
|  | // Choose the SSE instruction sequence based on data type (float or double). | 
|  | static const uint16_t OpcTable[2][4] = { | 
|  | { X86::CMPSSrr,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  }, | 
|  | { X86::CMPSDrr,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  } | 
|  | }; | 
|  |  | 
|  | const uint16_t *Opc = nullptr; | 
|  | switch (RetVT.SimpleTy) { | 
|  | default: return false; | 
|  | case MVT::f32: Opc = &OpcTable[0][0]; break; | 
|  | case MVT::f64: Opc = &OpcTable[1][0]; break; | 
|  | } | 
|  |  | 
|  | const Value *LHS = I->getOperand(1); | 
|  | const Value *RHS = I->getOperand(2); | 
|  |  | 
|  | unsigned LHSReg = getRegForValue(LHS); | 
|  | bool LHSIsKill = hasTrivialKill(LHS); | 
|  |  | 
|  | unsigned RHSReg = getRegForValue(RHS); | 
|  | bool RHSIsKill = hasTrivialKill(RHS); | 
|  |  | 
|  | unsigned CmpLHSReg = getRegForValue(CmpLHS); | 
|  | bool CmpLHSIsKill = hasTrivialKill(CmpLHS); | 
|  |  | 
|  | unsigned CmpRHSReg = getRegForValue(CmpRHS); | 
|  | bool CmpRHSIsKill = hasTrivialKill(CmpRHS); | 
|  |  | 
|  | if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS) | 
|  | return false; | 
|  |  | 
|  | const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); | 
|  | unsigned ResultReg; | 
|  |  | 
|  | if (Subtarget->hasAVX512()) { | 
|  | // If we have AVX512 we can use a mask compare and masked movss/sd. | 
|  | const TargetRegisterClass *VR128X = &X86::VR128XRegClass; | 
|  | const TargetRegisterClass *VK1 = &X86::VK1RegClass; | 
|  |  | 
|  | unsigned CmpOpcode = | 
|  | (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr; | 
|  | unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill, | 
|  | CmpRHSReg, CmpRHSIsKill, CC); | 
|  |  | 
|  | // Need an IMPLICIT_DEF for the input that is used to generate the upper | 
|  | // bits of the result register since its not based on any of the inputs. | 
|  | unsigned ImplicitDefReg = createResultReg(VR128X); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); | 
|  |  | 
|  | // Place RHSReg is the passthru of the masked movss/sd operation and put | 
|  | // LHS in the input. The mask input comes from the compare. | 
|  | unsigned MovOpcode = | 
|  | (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; | 
|  | unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill, | 
|  | CmpReg, true, ImplicitDefReg, true, | 
|  | LHSReg, LHSIsKill); | 
|  |  | 
|  | ResultReg = createResultReg(RC); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); | 
|  |  | 
|  | } else if (Subtarget->hasAVX()) { | 
|  | const TargetRegisterClass *VR128 = &X86::VR128RegClass; | 
|  |  | 
|  | // If we have AVX, create 1 blendv instead of 3 logic instructions. | 
|  | // Blendv was introduced with SSE 4.1, but the 2 register form implicitly | 
|  | // uses XMM0 as the selection register. That may need just as many | 
|  | // instructions as the AND/ANDN/OR sequence due to register moves, so | 
|  | // don't bother. | 
|  | unsigned CmpOpcode = | 
|  | (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr; | 
|  | unsigned BlendOpcode = | 
|  | (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr; | 
|  |  | 
|  | unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill, | 
|  | CmpRHSReg, CmpRHSIsKill, CC); | 
|  | unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill, | 
|  | LHSReg, LHSIsKill, CmpReg, true); | 
|  | ResultReg = createResultReg(RC); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); | 
|  | } else { | 
|  | const TargetRegisterClass *VR128 = &X86::VR128RegClass; | 
|  | unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill, | 
|  | CmpRHSReg, CmpRHSIsKill, CC); | 
|  | unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false, | 
|  | LHSReg, LHSIsKill); | 
|  | unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true, | 
|  | RHSReg, RHSIsKill); | 
|  | unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true, | 
|  | AndReg, /*IsKill=*/true); | 
|  | ResultReg = createResultReg(RC); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); | 
|  | } | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { | 
|  | // These are pseudo CMOV instructions and will be later expanded into control- | 
|  | // flow. | 
|  | unsigned Opc; | 
|  | switch (RetVT.SimpleTy) { | 
|  | default: return false; | 
|  | case MVT::i8:  Opc = X86::CMOV_GR8;  break; | 
|  | case MVT::i16: Opc = X86::CMOV_GR16; break; | 
|  | case MVT::i32: Opc = X86::CMOV_GR32; break; | 
|  | case MVT::f32: Opc = X86::CMOV_FR32; break; | 
|  | case MVT::f64: Opc = X86::CMOV_FR64; break; | 
|  | } | 
|  |  | 
|  | const Value *Cond = I->getOperand(0); | 
|  | X86::CondCode CC = X86::COND_NE; | 
|  |  | 
|  | // Optimize conditions coming from a compare if both instructions are in the | 
|  | // same basic block (values defined in other basic blocks may not have | 
|  | // initialized registers). | 
|  | const auto *CI = dyn_cast<CmpInst>(Cond); | 
|  | if (CI && (CI->getParent() == I->getParent())) { | 
|  | bool NeedSwap; | 
|  | std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); | 
|  | if (CC > X86::LAST_VALID_COND) | 
|  | return false; | 
|  |  | 
|  | const Value *CmpLHS = CI->getOperand(0); | 
|  | const Value *CmpRHS = CI->getOperand(1); | 
|  |  | 
|  | if (NeedSwap) | 
|  | std::swap(CmpLHS, CmpRHS); | 
|  |  | 
|  | EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); | 
|  | if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) | 
|  | return false; | 
|  | } else { | 
|  | unsigned CondReg = getRegForValue(Cond); | 
|  | if (CondReg == 0) | 
|  | return false; | 
|  | bool CondIsKill = hasTrivialKill(Cond); | 
|  |  | 
|  | // In case OpReg is a K register, COPY to a GPR | 
|  | if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { | 
|  | unsigned KCondReg = CondReg; | 
|  | CondReg = createResultReg(&X86::GR32RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), CondReg) | 
|  | .addReg(KCondReg, getKillRegState(CondIsKill)); | 
|  | CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, | 
|  | X86::sub_8bit); | 
|  | } | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) | 
|  | .addReg(CondReg, getKillRegState(CondIsKill)) | 
|  | .addImm(1); | 
|  | } | 
|  |  | 
|  | const Value *LHS = I->getOperand(1); | 
|  | const Value *RHS = I->getOperand(2); | 
|  |  | 
|  | unsigned LHSReg = getRegForValue(LHS); | 
|  | bool LHSIsKill = hasTrivialKill(LHS); | 
|  |  | 
|  | unsigned RHSReg = getRegForValue(RHS); | 
|  | bool RHSIsKill = hasTrivialKill(RHS); | 
|  |  | 
|  | if (!LHSReg || !RHSReg) | 
|  | return false; | 
|  |  | 
|  | const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); | 
|  |  | 
|  | unsigned ResultReg = | 
|  | fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC); | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86SelectSelect(const Instruction *I) { | 
|  | MVT RetVT; | 
|  | if (!isTypeLegal(I->getType(), RetVT)) | 
|  | return false; | 
|  |  | 
|  | // Check if we can fold the select. | 
|  | if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { | 
|  | CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); | 
|  | const Value *Opnd = nullptr; | 
|  | switch (Predicate) { | 
|  | default:                              break; | 
|  | case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; | 
|  | case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break; | 
|  | } | 
|  | // No need for a select anymore - this is an unconditional move. | 
|  | if (Opnd) { | 
|  | unsigned OpReg = getRegForValue(Opnd); | 
|  | if (OpReg == 0) | 
|  | return false; | 
|  | bool OpIsKill = hasTrivialKill(Opnd); | 
|  | const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg) | 
|  | .addReg(OpReg, getKillRegState(OpIsKill)); | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // First try to use real conditional move instructions. | 
|  | if (X86FastEmitCMoveSelect(RetVT, I)) | 
|  | return true; | 
|  |  | 
|  | // Try to use a sequence of SSE instructions to simulate a conditional move. | 
|  | if (X86FastEmitSSESelect(RetVT, I)) | 
|  | return true; | 
|  |  | 
|  | // Fall-back to pseudo conditional move instructions, which will be later | 
|  | // converted to control-flow. | 
|  | if (X86FastEmitPseudoSelect(RetVT, I)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Common code for X86SelectSIToFP and X86SelectUIToFP. | 
|  | bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { | 
|  | // The target-independent selection algorithm in FastISel already knows how | 
|  | // to select a SINT_TO_FP if the target is SSE but not AVX. | 
|  | // Early exit if the subtarget doesn't have AVX. | 
|  | // Unsigned conversion requires avx512. | 
|  | bool HasAVX512 = Subtarget->hasAVX512(); | 
|  | if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) | 
|  | return false; | 
|  |  | 
|  | // TODO: We could sign extend narrower types. | 
|  | MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); | 
|  | if (SrcVT != MVT::i32 && SrcVT != MVT::i64) | 
|  | return false; | 
|  |  | 
|  | // Select integer to float/double conversion. | 
|  | unsigned OpReg = getRegForValue(I->getOperand(0)); | 
|  | if (OpReg == 0) | 
|  | return false; | 
|  |  | 
|  | unsigned Opcode; | 
|  |  | 
|  | static const uint16_t SCvtOpc[2][2][2] = { | 
|  | { { X86::VCVTSI2SSrr,  X86::VCVTSI642SSrr }, | 
|  | { X86::VCVTSI2SDrr,  X86::VCVTSI642SDrr } }, | 
|  | { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, | 
|  | { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, | 
|  | }; | 
|  | static const uint16_t UCvtOpc[2][2] = { | 
|  | { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, | 
|  | { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, | 
|  | }; | 
|  | bool Is64Bit = SrcVT == MVT::i64; | 
|  |  | 
|  | if (I->getType()->isDoubleTy()) { | 
|  | // s/uitofp int -> double | 
|  | Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; | 
|  | } else if (I->getType()->isFloatTy()) { | 
|  | // s/uitofp int -> float | 
|  | Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); | 
|  | const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); | 
|  | unsigned ImplicitDefReg = createResultReg(RC); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); | 
|  | unsigned ResultReg = | 
|  | fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false); | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86SelectSIToFP(const Instruction *I) { | 
|  | return X86SelectIntToFP(I, /*IsSigned*/true); | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86SelectUIToFP(const Instruction *I) { | 
|  | return X86SelectIntToFP(I, /*IsSigned*/false); | 
|  | } | 
|  |  | 
|  | // Helper method used by X86SelectFPExt and X86SelectFPTrunc. | 
|  | bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, | 
|  | unsigned TargetOpc, | 
|  | const TargetRegisterClass *RC) { | 
|  | assert((I->getOpcode() == Instruction::FPExt || | 
|  | I->getOpcode() == Instruction::FPTrunc) && | 
|  | "Instruction must be an FPExt or FPTrunc!"); | 
|  |  | 
|  | unsigned OpReg = getRegForValue(I->getOperand(0)); | 
|  | if (OpReg == 0) | 
|  | return false; | 
|  |  | 
|  | unsigned ImplicitDefReg; | 
|  | if (Subtarget->hasAVX()) { | 
|  | ImplicitDefReg = createResultReg(RC); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); | 
|  |  | 
|  | } | 
|  |  | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | MachineInstrBuilder MIB; | 
|  | MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc), | 
|  | ResultReg); | 
|  |  | 
|  | if (Subtarget->hasAVX()) | 
|  | MIB.addReg(ImplicitDefReg); | 
|  |  | 
|  | MIB.addReg(OpReg); | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86SelectFPExt(const Instruction *I) { | 
|  | if (X86ScalarSSEf64 && I->getType()->isDoubleTy() && | 
|  | I->getOperand(0)->getType()->isFloatTy()) { | 
|  | bool HasAVX512 = Subtarget->hasAVX512(); | 
|  | // fpext from float to double. | 
|  | unsigned Opc = | 
|  | HasAVX512 ? X86::VCVTSS2SDZrr | 
|  | : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; | 
|  | return X86SelectFPExtOrFPTrunc( | 
|  | I, Opc, HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { | 
|  | if (X86ScalarSSEf64 && I->getType()->isFloatTy() && | 
|  | I->getOperand(0)->getType()->isDoubleTy()) { | 
|  | bool HasAVX512 = Subtarget->hasAVX512(); | 
|  | // fptrunc from double to float. | 
|  | unsigned Opc = | 
|  | HasAVX512 ? X86::VCVTSD2SSZrr | 
|  | : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; | 
|  | return X86SelectFPExtOrFPTrunc( | 
|  | I, Opc, HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::X86SelectTrunc(const Instruction *I) { | 
|  | EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); | 
|  | EVT DstVT = TLI.getValueType(DL, I->getType()); | 
|  |  | 
|  | // This code only handles truncation to byte. | 
|  | if (DstVT != MVT::i8 && DstVT != MVT::i1) | 
|  | return false; | 
|  | if (!TLI.isTypeLegal(SrcVT)) | 
|  | return false; | 
|  |  | 
|  | unsigned InputReg = getRegForValue(I->getOperand(0)); | 
|  | if (!InputReg) | 
|  | // Unhandled operand.  Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | if (SrcVT == MVT::i8) { | 
|  | // Truncate from i8 to i1; no code needed. | 
|  | updateValueMap(I, InputReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Issue an extract_subreg. | 
|  | unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8, | 
|  | InputReg, false, | 
|  | X86::sub_8bit); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::IsMemcpySmall(uint64_t Len) { | 
|  | return Len <= (Subtarget->is64Bit() ? 32 : 16); | 
|  | } | 
|  |  | 
|  | bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, | 
|  | X86AddressMode SrcAM, uint64_t Len) { | 
|  |  | 
|  | // Make sure we don't bloat code by inlining very large memcpy's. | 
|  | if (!IsMemcpySmall(Len)) | 
|  | return false; | 
|  |  | 
|  | bool i64Legal = Subtarget->is64Bit(); | 
|  |  | 
|  | // We don't care about alignment here since we just emit integer accesses. | 
|  | while (Len) { | 
|  | MVT VT; | 
|  | if (Len >= 8 && i64Legal) | 
|  | VT = MVT::i64; | 
|  | else if (Len >= 4) | 
|  | VT = MVT::i32; | 
|  | else if (Len >= 2) | 
|  | VT = MVT::i16; | 
|  | else | 
|  | VT = MVT::i8; | 
|  |  | 
|  | unsigned Reg; | 
|  | bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); | 
|  | RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM); | 
|  | assert(RV && "Failed to emit load or store??"); | 
|  |  | 
|  | unsigned Size = VT.getSizeInBits()/8; | 
|  | Len -= Size; | 
|  | DestAM.Disp += Size; | 
|  | SrcAM.Disp += Size; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { | 
|  | // FIXME: Handle more intrinsics. | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: return false; | 
|  | case Intrinsic::convert_from_fp16: | 
|  | case Intrinsic::convert_to_fp16: { | 
|  | if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) | 
|  | return false; | 
|  |  | 
|  | const Value *Op = II->getArgOperand(0); | 
|  | unsigned InputReg = getRegForValue(Op); | 
|  | if (InputReg == 0) | 
|  | return false; | 
|  |  | 
|  | // F16C only allows converting from float to half and from half to float. | 
|  | bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; | 
|  | if (IsFloatToHalf) { | 
|  | if (!Op->getType()->isFloatTy()) | 
|  | return false; | 
|  | } else { | 
|  | if (!II->getType()->isFloatTy()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned ResultReg = 0; | 
|  | const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); | 
|  | if (IsFloatToHalf) { | 
|  | // 'InputReg' is implicitly promoted from register class FR32 to | 
|  | // register class VR128 by method 'constrainOperandRegClass' which is | 
|  | // directly called by 'fastEmitInst_ri'. | 
|  | // Instruction VCVTPS2PHrr takes an extra immediate operand which is | 
|  | // used to provide rounding control: use MXCSR.RC, encoded as 0b100. | 
|  | // It's consistent with the other FP instructions, which are usually | 
|  | // controlled by MXCSR. | 
|  | InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4); | 
|  |  | 
|  | // Move the lower 32-bits of ResultReg to another register of class GR32. | 
|  | ResultReg = createResultReg(&X86::GR32RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(X86::VMOVPDI2DIrr), ResultReg) | 
|  | .addReg(InputReg, RegState::Kill); | 
|  |  | 
|  | // The result value is in the lower 16-bits of ResultReg. | 
|  | unsigned RegIdx = X86::sub_16bit; | 
|  | ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx); | 
|  | } else { | 
|  | assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); | 
|  | // Explicitly sign-extend the input to 32-bit. | 
|  | InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg, | 
|  | /*Kill=*/false); | 
|  |  | 
|  | // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. | 
|  | InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, | 
|  | InputReg, /*Kill=*/true); | 
|  |  | 
|  | InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true); | 
|  |  | 
|  | // The result value is in the lower 32-bits of ResultReg. | 
|  | // Emit an explicit copy from register class VR128 to register class FR32. | 
|  | ResultReg = createResultReg(&X86::FR32RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg) | 
|  | .addReg(InputReg, RegState::Kill); | 
|  | } | 
|  |  | 
|  | updateValueMap(II, ResultReg); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::frameaddress: { | 
|  | MachineFunction *MF = FuncInfo.MF; | 
|  | if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) | 
|  | return false; | 
|  |  | 
|  | Type *RetTy = II->getCalledFunction()->getReturnType(); | 
|  |  | 
|  | MVT VT; | 
|  | if (!isTypeLegal(RetTy, VT)) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc; | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  |  | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Invalid result type for frameaddress."); | 
|  | case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; | 
|  | case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; | 
|  | } | 
|  |  | 
|  | // This needs to be set before we call getPtrSizedFrameRegister, otherwise | 
|  | // we get the wrong frame register. | 
|  | MachineFrameInfo &MFI = MF->getFrameInfo(); | 
|  | MFI.setFrameAddressIsTaken(true); | 
|  |  | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); | 
|  | assert(((FrameReg == X86::RBP && VT == MVT::i64) || | 
|  | (FrameReg == X86::EBP && VT == MVT::i32)) && | 
|  | "Invalid Frame Register!"); | 
|  |  | 
|  | // Always make a copy of the frame register to a vreg first, so that we | 
|  | // never directly reference the frame register (the TwoAddressInstruction- | 
|  | // Pass doesn't like that). | 
|  | unsigned SrcReg = createResultReg(RC); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); | 
|  |  | 
|  | // Now recursively load from the frame address. | 
|  | // movq (%rbp), %rax | 
|  | // movq (%rax), %rax | 
|  | // movq (%rax), %rax | 
|  | // ... | 
|  | unsigned DestReg; | 
|  | unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); | 
|  | while (Depth--) { | 
|  | DestReg = createResultReg(RC); | 
|  | addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), DestReg), SrcReg); | 
|  | SrcReg = DestReg; | 
|  | } | 
|  |  | 
|  | updateValueMap(II, SrcReg); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::memcpy: { | 
|  | const MemCpyInst *MCI = cast<MemCpyInst>(II); | 
|  | // Don't handle volatile or variable length memcpys. | 
|  | if (MCI->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | if (isa<ConstantInt>(MCI->getLength())) { | 
|  | // Small memcpy's are common enough that we want to do them | 
|  | // without a call if possible. | 
|  | uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); | 
|  | if (IsMemcpySmall(Len)) { | 
|  | X86AddressMode DestAM, SrcAM; | 
|  | if (!X86SelectAddress(MCI->getRawDest(), DestAM) || | 
|  | !X86SelectAddress(MCI->getRawSource(), SrcAM)) | 
|  | return false; | 
|  | TryEmitSmallMemcpy(DestAM, SrcAM, Len); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; | 
|  | if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) | 
|  | return false; | 
|  |  | 
|  | if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) | 
|  | return false; | 
|  |  | 
|  | return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1); | 
|  | } | 
|  | case Intrinsic::memset: { | 
|  | const MemSetInst *MSI = cast<MemSetInst>(II); | 
|  |  | 
|  | if (MSI->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; | 
|  | if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) | 
|  | return false; | 
|  |  | 
|  | if (MSI->getDestAddressSpace() > 255) | 
|  | return false; | 
|  |  | 
|  | return lowerCallTo(II, "memset", II->getNumArgOperands() - 1); | 
|  | } | 
|  | case Intrinsic::stackprotector: { | 
|  | // Emit code to store the stack guard onto the stack. | 
|  | EVT PtrTy = TLI.getPointerTy(DL); | 
|  |  | 
|  | const Value *Op1 = II->getArgOperand(0); // The guard's value. | 
|  | const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); | 
|  |  | 
|  | MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); | 
|  |  | 
|  | // Grab the frame index. | 
|  | X86AddressMode AM; | 
|  | if (!X86SelectAddress(Slot, AM)) return false; | 
|  | if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::dbg_declare: { | 
|  | const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); | 
|  | X86AddressMode AM; | 
|  | assert(DI->getAddress() && "Null address should be checked earlier!"); | 
|  | if (!X86SelectAddress(DI->getAddress(), AM)) | 
|  | return false; | 
|  | const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); | 
|  | // FIXME may need to add RegState::Debug to any registers produced, | 
|  | // although ESP/EBP should be the only ones at the moment. | 
|  | assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && | 
|  | "Expected inlined-at fields to agree"); | 
|  | addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM) | 
|  | .addImm(0) | 
|  | .addMetadata(DI->getVariable()) | 
|  | .addMetadata(DI->getExpression()); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::trap: { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP)); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::sqrt: { | 
|  | if (!Subtarget->hasSSE1()) | 
|  | return false; | 
|  |  | 
|  | Type *RetTy = II->getCalledFunction()->getReturnType(); | 
|  |  | 
|  | MVT VT; | 
|  | if (!isTypeLegal(RetTy, VT)) | 
|  | return false; | 
|  |  | 
|  | // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT | 
|  | // is not generated by FastISel yet. | 
|  | // FIXME: Update this code once tablegen can handle it. | 
|  | static const uint16_t SqrtOpc[3][2] = { | 
|  | { X86::SQRTSSr,   X86::SQRTSDr }, | 
|  | { X86::VSQRTSSr,  X86::VSQRTSDr }, | 
|  | { X86::VSQRTSSZr, X86::VSQRTSDZr }, | 
|  | }; | 
|  | unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : | 
|  | Subtarget->hasAVX()    ? 1 : | 
|  | 0; | 
|  | unsigned Opc; | 
|  | switch (VT.SimpleTy) { | 
|  | default: return false; | 
|  | case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; | 
|  | case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; | 
|  | } | 
|  |  | 
|  | const Value *SrcVal = II->getArgOperand(0); | 
|  | unsigned SrcReg = getRegForValue(SrcVal); | 
|  |  | 
|  | if (SrcReg == 0) | 
|  | return false; | 
|  |  | 
|  | const TargetRegisterClass *RC = TLI.getRegClassFor(VT); | 
|  | unsigned ImplicitDefReg = 0; | 
|  | if (AVXLevel > 0) { | 
|  | ImplicitDefReg = createResultReg(RC); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); | 
|  | } | 
|  |  | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | MachineInstrBuilder MIB; | 
|  | MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), | 
|  | ResultReg); | 
|  |  | 
|  | if (ImplicitDefReg) | 
|  | MIB.addReg(ImplicitDefReg); | 
|  |  | 
|  | MIB.addReg(SrcReg); | 
|  |  | 
|  | updateValueMap(II, ResultReg); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | case Intrinsic::usub_with_overflow: | 
|  | case Intrinsic::smul_with_overflow: | 
|  | case Intrinsic::umul_with_overflow: { | 
|  | // This implements the basic lowering of the xalu with overflow intrinsics | 
|  | // into add/sub/mul followed by either seto or setb. | 
|  | const Function *Callee = II->getCalledFunction(); | 
|  | auto *Ty = cast<StructType>(Callee->getReturnType()); | 
|  | Type *RetTy = Ty->getTypeAtIndex(0U); | 
|  | assert(Ty->getTypeAtIndex(1)->isIntegerTy() && | 
|  | Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && | 
|  | "Overflow value expected to be an i1"); | 
|  |  | 
|  | MVT VT; | 
|  | if (!isTypeLegal(RetTy, VT)) | 
|  | return false; | 
|  |  | 
|  | if (VT < MVT::i8 || VT > MVT::i64) | 
|  | return false; | 
|  |  | 
|  | const Value *LHS = II->getArgOperand(0); | 
|  | const Value *RHS = II->getArgOperand(1); | 
|  |  | 
|  | // Canonicalize immediate to the RHS. | 
|  | if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && | 
|  | isCommutativeIntrinsic(II)) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | bool UseIncDec = false; | 
|  | if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne()) | 
|  | UseIncDec = true; | 
|  |  | 
|  | unsigned BaseOpc, CondOpc; | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: llvm_unreachable("Unexpected intrinsic!"); | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD); | 
|  | CondOpc = X86::SETOr; | 
|  | break; | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break; | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB); | 
|  | CondOpc = X86::SETOr; | 
|  | break; | 
|  | case Intrinsic::usub_with_overflow: | 
|  | BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break; | 
|  | case Intrinsic::smul_with_overflow: | 
|  | BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break; | 
|  | case Intrinsic::umul_with_overflow: | 
|  | BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break; | 
|  | } | 
|  |  | 
|  | unsigned LHSReg = getRegForValue(LHS); | 
|  | if (LHSReg == 0) | 
|  | return false; | 
|  | bool LHSIsKill = hasTrivialKill(LHS); | 
|  |  | 
|  | unsigned ResultReg = 0; | 
|  | // Check if we have an immediate version. | 
|  | if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { | 
|  | static const uint16_t Opc[2][4] = { | 
|  | { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, | 
|  | { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } | 
|  | }; | 
|  |  | 
|  | if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) { | 
|  | ResultReg = createResultReg(TLI.getRegClassFor(VT)); | 
|  | bool IsDec = BaseOpc == X86ISD::DEC; | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) | 
|  | .addReg(LHSReg, getKillRegState(LHSIsKill)); | 
|  | } else | 
|  | ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill, | 
|  | CI->getZExtValue()); | 
|  | } | 
|  |  | 
|  | unsigned RHSReg; | 
|  | bool RHSIsKill; | 
|  | if (!ResultReg) { | 
|  | RHSReg = getRegForValue(RHS); | 
|  | if (RHSReg == 0) | 
|  | return false; | 
|  | RHSIsKill = hasTrivialKill(RHS); | 
|  | ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg, | 
|  | RHSIsKill); | 
|  | } | 
|  |  | 
|  | // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit | 
|  | // it manually. | 
|  | if (BaseOpc == X86ISD::UMUL && !ResultReg) { | 
|  | static const uint16_t MULOpc[] = | 
|  | { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; | 
|  | static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; | 
|  | // First copy the first operand into RAX, which is an implicit input to | 
|  | // the X86::MUL*r instruction. | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) | 
|  | .addReg(LHSReg, getKillRegState(LHSIsKill)); | 
|  | ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], | 
|  | TLI.getRegClassFor(VT), RHSReg, RHSIsKill); | 
|  | } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { | 
|  | static const uint16_t MULOpc[] = | 
|  | { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; | 
|  | if (VT == MVT::i8) { | 
|  | // Copy the first operand into AL, which is an implicit input to the | 
|  | // X86::IMUL8r instruction. | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), X86::AL) | 
|  | .addReg(LHSReg, getKillRegState(LHSIsKill)); | 
|  | ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg, | 
|  | RHSIsKill); | 
|  | } else | 
|  | ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], | 
|  | TLI.getRegClassFor(VT), LHSReg, LHSIsKill, | 
|  | RHSReg, RHSIsKill); | 
|  | } | 
|  |  | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | // Assign to a GPR since the overflow return value is lowered to a SETcc. | 
|  | unsigned ResultReg2 = createResultReg(&X86::GR8RegClass); | 
|  | assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc), | 
|  | ResultReg2); | 
|  |  | 
|  | updateValueMap(II, ResultReg, 2); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::x86_sse_cvttss2si: | 
|  | case Intrinsic::x86_sse_cvttss2si64: | 
|  | case Intrinsic::x86_sse2_cvttsd2si: | 
|  | case Intrinsic::x86_sse2_cvttsd2si64: { | 
|  | bool IsInputDouble; | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: llvm_unreachable("Unexpected intrinsic."); | 
|  | case Intrinsic::x86_sse_cvttss2si: | 
|  | case Intrinsic::x86_sse_cvttss2si64: | 
|  | if (!Subtarget->hasSSE1()) | 
|  | return false; | 
|  | IsInputDouble = false; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_cvttsd2si: | 
|  | case Intrinsic::x86_sse2_cvttsd2si64: | 
|  | if (!Subtarget->hasSSE2()) | 
|  | return false; | 
|  | IsInputDouble = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Type *RetTy = II->getCalledFunction()->getReturnType(); | 
|  | MVT VT; | 
|  | if (!isTypeLegal(RetTy, VT)) | 
|  | return false; | 
|  |  | 
|  | static const uint16_t CvtOpc[3][2][2] = { | 
|  | { { X86::CVTTSS2SIrr,   X86::CVTTSS2SI64rr }, | 
|  | { X86::CVTTSD2SIrr,   X86::CVTTSD2SI64rr } }, | 
|  | { { X86::VCVTTSS2SIrr,  X86::VCVTTSS2SI64rr }, | 
|  | { X86::VCVTTSD2SIrr,  X86::VCVTTSD2SI64rr } }, | 
|  | { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, | 
|  | { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, | 
|  | }; | 
|  | unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : | 
|  | Subtarget->hasAVX()    ? 1 : | 
|  | 0; | 
|  | unsigned Opc; | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected result type."); | 
|  | case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; | 
|  | case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; | 
|  | } | 
|  |  | 
|  | // Check if we can fold insertelement instructions into the convert. | 
|  | const Value *Op = II->getArgOperand(0); | 
|  | while (auto *IE = dyn_cast<InsertElementInst>(Op)) { | 
|  | const Value *Index = IE->getOperand(2); | 
|  | if (!isa<ConstantInt>(Index)) | 
|  | break; | 
|  | unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); | 
|  |  | 
|  | if (Idx == 0) { | 
|  | Op = IE->getOperand(1); | 
|  | break; | 
|  | } | 
|  | Op = IE->getOperand(0); | 
|  | } | 
|  |  | 
|  | unsigned Reg = getRegForValue(Op); | 
|  | if (Reg == 0) | 
|  | return false; | 
|  |  | 
|  | unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) | 
|  | .addReg(Reg); | 
|  |  | 
|  | updateValueMap(II, ResultReg); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86FastISel::fastLowerArguments() { | 
|  | if (!FuncInfo.CanLowerReturn) | 
|  | return false; | 
|  |  | 
|  | const Function *F = FuncInfo.Fn; | 
|  | if (F->isVarArg()) | 
|  | return false; | 
|  |  | 
|  | CallingConv::ID CC = F->getCallingConv(); | 
|  | if (CC != CallingConv::C) | 
|  | return false; | 
|  |  | 
|  | if (Subtarget->isCallingConvWin64(CC)) | 
|  | return false; | 
|  |  | 
|  | if (!Subtarget->is64Bit()) | 
|  | return false; | 
|  |  | 
|  | if (Subtarget->useSoftFloat()) | 
|  | return false; | 
|  |  | 
|  | // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. | 
|  | unsigned GPRCnt = 0; | 
|  | unsigned FPRCnt = 0; | 
|  | for (auto const &Arg : F->args()) { | 
|  | if (Arg.hasAttribute(Attribute::ByVal) || | 
|  | Arg.hasAttribute(Attribute::InReg) || | 
|  | Arg.hasAttribute(Attribute::StructRet) || | 
|  | Arg.hasAttribute(Attribute::SwiftSelf) || | 
|  | Arg.hasAttribute(Attribute::SwiftError) || | 
|  | Arg.hasAttribute(Attribute::Nest)) | 
|  | return false; | 
|  |  | 
|  | Type *ArgTy = Arg.getType(); | 
|  | if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) | 
|  | return false; | 
|  |  | 
|  | EVT ArgVT = TLI.getValueType(DL, ArgTy); | 
|  | if (!ArgVT.isSimple()) return false; | 
|  | switch (ArgVT.getSimpleVT().SimpleTy) { | 
|  | default: return false; | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | ++GPRCnt; | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | if (!Subtarget->hasSSE1()) | 
|  | return false; | 
|  | ++FPRCnt; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (GPRCnt > 6) | 
|  | return false; | 
|  |  | 
|  | if (FPRCnt > 8) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static const MCPhysReg GPR32ArgRegs[] = { | 
|  | X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D | 
|  | }; | 
|  | static const MCPhysReg GPR64ArgRegs[] = { | 
|  | X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 | 
|  | }; | 
|  | static const MCPhysReg XMMArgRegs[] = { | 
|  | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, | 
|  | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 | 
|  | }; | 
|  |  | 
|  | unsigned GPRIdx = 0; | 
|  | unsigned FPRIdx = 0; | 
|  | for (auto const &Arg : F->args()) { | 
|  | MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); | 
|  | const TargetRegisterClass *RC = TLI.getRegClassFor(VT); | 
|  | unsigned SrcReg; | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected value type."); | 
|  | case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; | 
|  | case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; | 
|  | case MVT::f32: LLVM_FALLTHROUGH; | 
|  | case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; | 
|  | } | 
|  | unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); | 
|  | // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. | 
|  | // Without this, EmitLiveInCopies may eliminate the livein if its only | 
|  | // use is a bitcast (which isn't turned into an instruction). | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg) | 
|  | .addReg(DstReg, getKillRegState(true)); | 
|  | updateValueMap(&Arg, ResultReg); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, | 
|  | CallingConv::ID CC, | 
|  | ImmutableCallSite *CS) { | 
|  | if (Subtarget->is64Bit()) | 
|  | return 0; | 
|  | if (Subtarget->getTargetTriple().isOSMSVCRT()) | 
|  | return 0; | 
|  | if (CC == CallingConv::Fast || CC == CallingConv::GHC || | 
|  | CC == CallingConv::HiPE) | 
|  | return 0; | 
|  |  | 
|  | if (CS) | 
|  | if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) || | 
|  | CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) | 
|  | return 0; | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { | 
|  | auto &OutVals       = CLI.OutVals; | 
|  | auto &OutFlags      = CLI.OutFlags; | 
|  | auto &OutRegs       = CLI.OutRegs; | 
|  | auto &Ins           = CLI.Ins; | 
|  | auto &InRegs        = CLI.InRegs; | 
|  | CallingConv::ID CC  = CLI.CallConv; | 
|  | bool &IsTailCall    = CLI.IsTailCall; | 
|  | bool IsVarArg       = CLI.IsVarArg; | 
|  | const Value *Callee = CLI.Callee; | 
|  | MCSymbol *Symbol = CLI.Symbol; | 
|  |  | 
|  | bool Is64Bit        = Subtarget->is64Bit(); | 
|  | bool IsWin64        = Subtarget->isCallingConvWin64(CC); | 
|  |  | 
|  | const CallInst *CI = | 
|  | CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr; | 
|  | const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr; | 
|  |  | 
|  | // Call / invoke instructions with NoCfCheck attribute require special | 
|  | // handling. | 
|  | const auto *II = | 
|  | CLI.CS ? dyn_cast<InvokeInst>(CLI.CS->getInstruction()) : nullptr; | 
|  | if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck())) | 
|  | return false; | 
|  |  | 
|  | // Functions with no_caller_saved_registers that need special handling. | 
|  | if ((CI && CI->hasFnAttr("no_caller_saved_registers")) || | 
|  | (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers"))) | 
|  | return false; | 
|  |  | 
|  | // Functions using retpoline for indirect calls need to use SDISel. | 
|  | if (Subtarget->useRetpolineIndirectCalls()) | 
|  | return false; | 
|  |  | 
|  | // Handle only C, fastcc, and webkit_js calling conventions for now. | 
|  | switch (CC) { | 
|  | default: return false; | 
|  | case CallingConv::C: | 
|  | case CallingConv::Fast: | 
|  | case CallingConv::WebKit_JS: | 
|  | case CallingConv::Swift: | 
|  | case CallingConv::X86_FastCall: | 
|  | case CallingConv::X86_StdCall: | 
|  | case CallingConv::X86_ThisCall: | 
|  | case CallingConv::Win64: | 
|  | case CallingConv::X86_64_SysV: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Allow SelectionDAG isel to handle tail calls. | 
|  | if (IsTailCall) | 
|  | return false; | 
|  |  | 
|  | // fastcc with -tailcallopt is intended to provide a guaranteed | 
|  | // tail call optimization. Fastisel doesn't know how to do that. | 
|  | if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) | 
|  | return false; | 
|  |  | 
|  | // Don't know how to handle Win64 varargs yet.  Nothing special needed for | 
|  | // x86-32. Special handling for x86-64 is implemented. | 
|  | if (IsVarArg && IsWin64) | 
|  | return false; | 
|  |  | 
|  | // Don't know about inalloca yet. | 
|  | if (CLI.CS && CLI.CS->hasInAllocaArgument()) | 
|  | return false; | 
|  |  | 
|  | for (auto Flag : CLI.OutFlags) | 
|  | if (Flag.isSwiftError()) | 
|  | return false; | 
|  |  | 
|  | SmallVector<MVT, 16> OutVTs; | 
|  | SmallVector<unsigned, 16> ArgRegs; | 
|  |  | 
|  | // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra | 
|  | // instruction. This is safe because it is common to all FastISel supported | 
|  | // calling conventions on x86. | 
|  | for (int i = 0, e = OutVals.size(); i != e; ++i) { | 
|  | Value *&Val = OutVals[i]; | 
|  | ISD::ArgFlagsTy Flags = OutFlags[i]; | 
|  | if (auto *CI = dyn_cast<ConstantInt>(Val)) { | 
|  | if (CI->getBitWidth() < 32) { | 
|  | if (Flags.isSExt()) | 
|  | Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext())); | 
|  | else | 
|  | Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Passing bools around ends up doing a trunc to i1 and passing it. | 
|  | // Codegen this as an argument + "and 1". | 
|  | MVT VT; | 
|  | auto *TI = dyn_cast<TruncInst>(Val); | 
|  | unsigned ResultReg; | 
|  | if (TI && TI->getType()->isIntegerTy(1) && CLI.CS && | 
|  | (TI->getParent() == CLI.CS->getInstruction()->getParent()) && | 
|  | TI->hasOneUse()) { | 
|  | Value *PrevVal = TI->getOperand(0); | 
|  | ResultReg = getRegForValue(PrevVal); | 
|  |  | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | if (!isTypeLegal(PrevVal->getType(), VT)) | 
|  | return false; | 
|  |  | 
|  | ResultReg = | 
|  | fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1); | 
|  | } else { | 
|  | if (!isTypeLegal(Val->getType(), VT)) | 
|  | return false; | 
|  | ResultReg = getRegForValue(Val); | 
|  | } | 
|  |  | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | ArgRegs.push_back(ResultReg); | 
|  | OutVTs.push_back(VT); | 
|  | } | 
|  |  | 
|  | // Analyze operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); | 
|  |  | 
|  | // Allocate shadow area for Win64 | 
|  | if (IsWin64) | 
|  | CCInfo.AllocateStack(32, 8); | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); | 
|  |  | 
|  | // Get a count of how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); | 
|  |  | 
|  | // Issue CALLSEQ_START | 
|  | unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) | 
|  | .addImm(NumBytes).addImm(0).addImm(0); | 
|  |  | 
|  | // Walk the register/memloc assignments, inserting copies/loads. | 
|  | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign const &VA = ArgLocs[i]; | 
|  | const Value *ArgVal = OutVals[VA.getValNo()]; | 
|  | MVT ArgVT = OutVTs[VA.getValNo()]; | 
|  |  | 
|  | if (ArgVT == MVT::x86mmx) | 
|  | return false; | 
|  |  | 
|  | unsigned ArgReg = ArgRegs[VA.getValNo()]; | 
|  |  | 
|  | // Promote the value if needed. | 
|  | switch (VA.getLocInfo()) { | 
|  | case CCValAssign::Full: break; | 
|  | case CCValAssign::SExt: { | 
|  | assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && | 
|  | "Unexpected extend"); | 
|  |  | 
|  | if (ArgVT == MVT::i1) | 
|  | return false; | 
|  |  | 
|  | bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, | 
|  | ArgVT, ArgReg); | 
|  | assert(Emitted && "Failed to emit a sext!"); (void)Emitted; | 
|  | ArgVT = VA.getLocVT(); | 
|  | break; | 
|  | } | 
|  | case CCValAssign::ZExt: { | 
|  | assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && | 
|  | "Unexpected extend"); | 
|  |  | 
|  | // Handle zero-extension from i1 to i8, which is common. | 
|  | if (ArgVT == MVT::i1) { | 
|  | // Set the high bits to zero. | 
|  | ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false); | 
|  | ArgVT = MVT::i8; | 
|  |  | 
|  | if (ArgReg == 0) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, | 
|  | ArgVT, ArgReg); | 
|  | assert(Emitted && "Failed to emit a zext!"); (void)Emitted; | 
|  | ArgVT = VA.getLocVT(); | 
|  | break; | 
|  | } | 
|  | case CCValAssign::AExt: { | 
|  | assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && | 
|  | "Unexpected extend"); | 
|  | bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, | 
|  | ArgVT, ArgReg); | 
|  | if (!Emitted) | 
|  | Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, | 
|  | ArgVT, ArgReg); | 
|  | if (!Emitted) | 
|  | Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, | 
|  | ArgVT, ArgReg); | 
|  |  | 
|  | assert(Emitted && "Failed to emit a aext!"); (void)Emitted; | 
|  | ArgVT = VA.getLocVT(); | 
|  | break; | 
|  | } | 
|  | case CCValAssign::BCvt: { | 
|  | ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg, | 
|  | /*TODO: Kill=*/false); | 
|  | assert(ArgReg && "Failed to emit a bitcast!"); | 
|  | ArgVT = VA.getLocVT(); | 
|  | break; | 
|  | } | 
|  | case CCValAssign::VExt: | 
|  | // VExt has not been implemented, so this should be impossible to reach | 
|  | // for now.  However, fallback to Selection DAG isel once implemented. | 
|  | return false; | 
|  | case CCValAssign::AExtUpper: | 
|  | case CCValAssign::SExtUpper: | 
|  | case CCValAssign::ZExtUpper: | 
|  | case CCValAssign::FPExt: | 
|  | llvm_unreachable("Unexpected loc info!"); | 
|  | case CCValAssign::Indirect: | 
|  | // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully | 
|  | // support this. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); | 
|  | OutRegs.push_back(VA.getLocReg()); | 
|  | } else { | 
|  | assert(VA.isMemLoc()); | 
|  |  | 
|  | // Don't emit stores for undef values. | 
|  | if (isa<UndefValue>(ArgVal)) | 
|  | continue; | 
|  |  | 
|  | unsigned LocMemOffset = VA.getLocMemOffset(); | 
|  | X86AddressMode AM; | 
|  | AM.Base.Reg = RegInfo->getStackRegister(); | 
|  | AM.Disp = LocMemOffset; | 
|  | ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; | 
|  | unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType()); | 
|  | MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( | 
|  | MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), | 
|  | MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); | 
|  | if (Flags.isByVal()) { | 
|  | X86AddressMode SrcAM; | 
|  | SrcAM.Base.Reg = ArgReg; | 
|  | if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) | 
|  | return false; | 
|  | } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { | 
|  | // If this is a really simple value, emit this with the Value* version | 
|  | // of X86FastEmitStore.  If it isn't simple, we don't want to do this, | 
|  | // as it can cause us to reevaluate the argument. | 
|  | if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) | 
|  | return false; | 
|  | } else { | 
|  | bool ValIsKill = hasTrivialKill(ArgVal); | 
|  | if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // ELF / PIC requires GOT in the EBX register before function calls via PLT | 
|  | // GOT pointer. | 
|  | if (Subtarget->isPICStyleGOT()) { | 
|  | unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); | 
|  | } | 
|  |  | 
|  | if (Is64Bit && IsVarArg && !IsWin64) { | 
|  | // From AMD64 ABI document: | 
|  | // For calls that may call functions that use varargs or stdargs | 
|  | // (prototype-less calls or calls to functions containing ellipsis (...) in | 
|  | // the declaration) %al is used as hidden argument to specify the number | 
|  | // of SSE registers used. The contents of %al do not need to match exactly | 
|  | // the number of registers, but must be an ubound on the number of SSE | 
|  | // registers used and is in the range 0 - 8 inclusive. | 
|  |  | 
|  | // Count the number of XMM registers allocated. | 
|  | static const MCPhysReg XMMArgRegs[] = { | 
|  | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, | 
|  | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 | 
|  | }; | 
|  | unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); | 
|  | assert((Subtarget->hasSSE1() || !NumXMMRegs) | 
|  | && "SSE registers cannot be used when SSE is disabled"); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), | 
|  | X86::AL).addImm(NumXMMRegs); | 
|  | } | 
|  |  | 
|  | // Materialize callee address in a register. FIXME: GV address can be | 
|  | // handled with a CALLpcrel32 instead. | 
|  | X86AddressMode CalleeAM; | 
|  | if (!X86SelectCallAddress(Callee, CalleeAM)) | 
|  | return false; | 
|  |  | 
|  | unsigned CalleeOp = 0; | 
|  | const GlobalValue *GV = nullptr; | 
|  | if (CalleeAM.GV != nullptr) { | 
|  | GV = CalleeAM.GV; | 
|  | } else if (CalleeAM.Base.Reg != 0) { | 
|  | CalleeOp = CalleeAM.Base.Reg; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // Issue the call. | 
|  | MachineInstrBuilder MIB; | 
|  | if (CalleeOp) { | 
|  | // Register-indirect call. | 
|  | unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; | 
|  | MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)) | 
|  | .addReg(CalleeOp); | 
|  | } else { | 
|  | // Direct call. | 
|  | assert(GV && "Not a direct call"); | 
|  | // See if we need any target-specific flags on the GV operand. | 
|  | unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); | 
|  |  | 
|  | // This will be a direct call, or an indirect call through memory for | 
|  | // NonLazyBind calls or dllimport calls. | 
|  | bool NeedLoad = | 
|  | OpFlags == X86II::MO_DLLIMPORT || OpFlags == X86II::MO_GOTPCREL; | 
|  | unsigned CallOpc = NeedLoad | 
|  | ? (Is64Bit ? X86::CALL64m : X86::CALL32m) | 
|  | : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); | 
|  |  | 
|  | MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)); | 
|  | if (NeedLoad) | 
|  | MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0); | 
|  | if (Symbol) | 
|  | MIB.addSym(Symbol, OpFlags); | 
|  | else | 
|  | MIB.addGlobalAddress(GV, 0, OpFlags); | 
|  | if (NeedLoad) | 
|  | MIB.addReg(0); | 
|  | } | 
|  |  | 
|  | // Add a register mask operand representing the call-preserved registers. | 
|  | // Proper defs for return values will be added by setPhysRegsDeadExcept(). | 
|  | MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); | 
|  |  | 
|  | // Add an implicit use GOT pointer in EBX. | 
|  | if (Subtarget->isPICStyleGOT()) | 
|  | MIB.addReg(X86::EBX, RegState::Implicit); | 
|  |  | 
|  | if (Is64Bit && IsVarArg && !IsWin64) | 
|  | MIB.addReg(X86::AL, RegState::Implicit); | 
|  |  | 
|  | // Add implicit physical register uses to the call. | 
|  | for (auto Reg : OutRegs) | 
|  | MIB.addReg(Reg, RegState::Implicit); | 
|  |  | 
|  | // Issue CALLSEQ_END | 
|  | unsigned NumBytesForCalleeToPop = | 
|  | X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, | 
|  | TM.Options.GuaranteedTailCallOpt) | 
|  | ? NumBytes // Callee pops everything. | 
|  | : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS); | 
|  | unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) | 
|  | .addImm(NumBytes).addImm(NumBytesForCalleeToPop); | 
|  |  | 
|  | // Now handle call return values. | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, | 
|  | CLI.RetTy->getContext()); | 
|  | CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy); | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | EVT CopyVT = VA.getValVT(); | 
|  | unsigned CopyReg = ResultReg + i; | 
|  | unsigned SrcReg = VA.getLocReg(); | 
|  |  | 
|  | // If this is x86-64, and we disabled SSE, we can't return FP values | 
|  | if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && | 
|  | ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { | 
|  | report_fatal_error("SSE register return with SSE disabled"); | 
|  | } | 
|  |  | 
|  | // If we prefer to use the value in xmm registers, copy it out as f80 and | 
|  | // use a truncate to move it from fp stack reg to xmm reg. | 
|  | if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && | 
|  | isScalarFPTypeInSSEReg(VA.getValVT())) { | 
|  | CopyVT = MVT::f80; | 
|  | CopyReg = createResultReg(&X86::RFP80RegClass); | 
|  | } | 
|  |  | 
|  | // Copy out the result. | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); | 
|  | InRegs.push_back(VA.getLocReg()); | 
|  |  | 
|  | // Round the f80 to the right size, which also moves it to the appropriate | 
|  | // xmm register. This is accomplished by storing the f80 value in memory | 
|  | // and then loading it back. | 
|  | if (CopyVT != VA.getValVT()) { | 
|  | EVT ResVT = VA.getValVT(); | 
|  | unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; | 
|  | unsigned MemSize = ResVT.getSizeInBits()/8; | 
|  | int FI = MFI.CreateStackObject(MemSize, MemSize, false); | 
|  | addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc)), FI) | 
|  | .addReg(CopyReg); | 
|  | Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm; | 
|  | addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ResultReg + i), FI); | 
|  | } | 
|  | } | 
|  |  | 
|  | CLI.ResultReg = ResultReg; | 
|  | CLI.NumResultRegs = RVLocs.size(); | 
|  | CLI.Call = MIB; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86FastISel::fastSelectInstruction(const Instruction *I)  { | 
|  | switch (I->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::Load: | 
|  | return X86SelectLoad(I); | 
|  | case Instruction::Store: | 
|  | return X86SelectStore(I); | 
|  | case Instruction::Ret: | 
|  | return X86SelectRet(I); | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | return X86SelectCmp(I); | 
|  | case Instruction::ZExt: | 
|  | return X86SelectZExt(I); | 
|  | case Instruction::SExt: | 
|  | return X86SelectSExt(I); | 
|  | case Instruction::Br: | 
|  | return X86SelectBranch(I); | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::Shl: | 
|  | return X86SelectShift(I); | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SRem: | 
|  | case Instruction::URem: | 
|  | return X86SelectDivRem(I); | 
|  | case Instruction::Select: | 
|  | return X86SelectSelect(I); | 
|  | case Instruction::Trunc: | 
|  | return X86SelectTrunc(I); | 
|  | case Instruction::FPExt: | 
|  | return X86SelectFPExt(I); | 
|  | case Instruction::FPTrunc: | 
|  | return X86SelectFPTrunc(I); | 
|  | case Instruction::SIToFP: | 
|  | return X86SelectSIToFP(I); | 
|  | case Instruction::UIToFP: | 
|  | return X86SelectUIToFP(I); | 
|  | case Instruction::IntToPtr: // Deliberate fall-through. | 
|  | case Instruction::PtrToInt: { | 
|  | EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); | 
|  | EVT DstVT = TLI.getValueType(DL, I->getType()); | 
|  | if (DstVT.bitsGT(SrcVT)) | 
|  | return X86SelectZExt(I); | 
|  | if (DstVT.bitsLT(SrcVT)) | 
|  | return X86SelectTrunc(I); | 
|  | unsigned Reg = getRegForValue(I->getOperand(0)); | 
|  | if (Reg == 0) return false; | 
|  | updateValueMap(I, Reg); | 
|  | return true; | 
|  | } | 
|  | case Instruction::BitCast: { | 
|  | // Select SSE2/AVX bitcasts between 128/256 bit vector types. | 
|  | if (!Subtarget->hasSSE2()) | 
|  | return false; | 
|  |  | 
|  | EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); | 
|  | EVT DstVT = TLI.getValueType(DL, I->getType()); | 
|  |  | 
|  | if (!SrcVT.isSimple() || !DstVT.isSimple()) | 
|  | return false; | 
|  |  | 
|  | MVT SVT = SrcVT.getSimpleVT(); | 
|  | MVT DVT = DstVT.getSimpleVT(); | 
|  |  | 
|  | if (!SVT.is128BitVector() && | 
|  | !(Subtarget->hasAVX() && SVT.is256BitVector()) && | 
|  | !(Subtarget->hasAVX512() && SVT.is512BitVector() && | 
|  | (Subtarget->hasBWI() || (SVT.getScalarSizeInBits() >= 32 && | 
|  | DVT.getScalarSizeInBits() >= 32)))) | 
|  | return false; | 
|  |  | 
|  | unsigned Reg = getRegForValue(I->getOperand(0)); | 
|  | if (Reg == 0) | 
|  | return false; | 
|  |  | 
|  | // No instruction is needed for conversion. Reuse the register used by | 
|  | // the fist operand. | 
|  | updateValueMap(I, Reg); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { | 
|  | if (VT > MVT::i64) | 
|  | return 0; | 
|  |  | 
|  | uint64_t Imm = CI->getZExtValue(); | 
|  | if (Imm == 0) { | 
|  | unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected value type"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true, | 
|  | X86::sub_8bit); | 
|  | case MVT::i16: | 
|  | return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true, | 
|  | X86::sub_16bit); | 
|  | case MVT::i32: | 
|  | return SrcReg; | 
|  | case MVT::i64: { | 
|  | unsigned ResultReg = createResultReg(&X86::GR64RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) | 
|  | .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); | 
|  | return ResultReg; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned Opc = 0; | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected value type"); | 
|  | case MVT::i1: | 
|  | // TODO: Support this properly. | 
|  | if (Subtarget->hasAVX512()) | 
|  | return 0; | 
|  | VT = MVT::i8; | 
|  | LLVM_FALLTHROUGH; | 
|  | case MVT::i8:  Opc = X86::MOV8ri;  break; | 
|  | case MVT::i16: Opc = X86::MOV16ri; break; | 
|  | case MVT::i32: Opc = X86::MOV32ri; break; | 
|  | case MVT::i64: { | 
|  | if (isUInt<32>(Imm)) | 
|  | Opc = X86::MOV32ri; | 
|  | else if (isInt<32>(Imm)) | 
|  | Opc = X86::MOV64ri32; | 
|  | else | 
|  | Opc = X86::MOV64ri; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (VT == MVT::i64 && Opc == X86::MOV32ri) { | 
|  | unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm); | 
|  | unsigned ResultReg = createResultReg(&X86::GR64RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) | 
|  | .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); | 
|  | return ResultReg; | 
|  | } | 
|  | return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); | 
|  | } | 
|  |  | 
|  | unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { | 
|  | if (CFP->isNullValue()) | 
|  | return fastMaterializeFloatZero(CFP); | 
|  |  | 
|  | // Can't handle alternate code models yet. | 
|  | CodeModel::Model CM = TM.getCodeModel(); | 
|  | if (CM != CodeModel::Small && CM != CodeModel::Large) | 
|  | return 0; | 
|  |  | 
|  | // Get opcode and regclass of the output for the given load instruction. | 
|  | unsigned Opc = 0; | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  | switch (VT.SimpleTy) { | 
|  | default: return 0; | 
|  | case MVT::f32: | 
|  | if (X86ScalarSSEf32) { | 
|  | Opc = Subtarget->hasAVX512() | 
|  | ? X86::VMOVSSZrm | 
|  | : Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm; | 
|  | RC  = Subtarget->hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass; | 
|  | } else { | 
|  | Opc = X86::LD_Fp32m; | 
|  | RC  = &X86::RFP32RegClass; | 
|  | } | 
|  | break; | 
|  | case MVT::f64: | 
|  | if (X86ScalarSSEf64) { | 
|  | Opc = Subtarget->hasAVX512() | 
|  | ? X86::VMOVSDZrm | 
|  | : Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm; | 
|  | RC  = Subtarget->hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass; | 
|  | } else { | 
|  | Opc = X86::LD_Fp64m; | 
|  | RC  = &X86::RFP64RegClass; | 
|  | } | 
|  | break; | 
|  | case MVT::f80: | 
|  | // No f80 support yet. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // MachineConstantPool wants an explicit alignment. | 
|  | unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); | 
|  | if (Align == 0) { | 
|  | // Alignment of vector types. FIXME! | 
|  | Align = DL.getTypeAllocSize(CFP->getType()); | 
|  | } | 
|  |  | 
|  | // x86-32 PIC requires a PIC base register for constant pools. | 
|  | unsigned PICBase = 0; | 
|  | unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); | 
|  | if (OpFlag == X86II::MO_PIC_BASE_OFFSET) | 
|  | PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); | 
|  | else if (OpFlag == X86II::MO_GOTOFF) | 
|  | PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); | 
|  | else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small) | 
|  | PICBase = X86::RIP; | 
|  |  | 
|  | // Create the load from the constant pool. | 
|  | unsigned CPI = MCP.getConstantPoolIndex(CFP, Align); | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  |  | 
|  | if (CM == CodeModel::Large) { | 
|  | unsigned AddrReg = createResultReg(&X86::GR64RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), | 
|  | AddrReg) | 
|  | .addConstantPoolIndex(CPI, 0, OpFlag); | 
|  | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ResultReg); | 
|  | addDirectMem(MIB, AddrReg); | 
|  | MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( | 
|  | MachinePointerInfo::getConstantPool(*FuncInfo.MF), | 
|  | MachineMemOperand::MOLoad, DL.getPointerSize(), Align); | 
|  | MIB->addMemOperand(*FuncInfo.MF, MMO); | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ResultReg), | 
|  | CPI, PICBase, OpFlag); | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { | 
|  | // Can't handle alternate code models yet. | 
|  | if (TM.getCodeModel() != CodeModel::Small) | 
|  | return 0; | 
|  |  | 
|  | // Materialize addresses with LEA/MOV instructions. | 
|  | X86AddressMode AM; | 
|  | if (X86SelectAddress(GV, AM)) { | 
|  | // If the expression is just a basereg, then we're done, otherwise we need | 
|  | // to emit an LEA. | 
|  | if (AM.BaseType == X86AddressMode::RegBase && | 
|  | AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) | 
|  | return AM.Base.Reg; | 
|  |  | 
|  | unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); | 
|  | if (TM.getRelocationModel() == Reloc::Static && | 
|  | TLI.getPointerTy(DL) == MVT::i64) { | 
|  | // The displacement code could be more than 32 bits away so we need to use | 
|  | // an instruction with a 64 bit immediate | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), | 
|  | ResultReg) | 
|  | .addGlobalAddress(GV); | 
|  | } else { | 
|  | unsigned Opc = | 
|  | TLI.getPointerTy(DL) == MVT::i32 | 
|  | ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) | 
|  | : X86::LEA64r; | 
|  | addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ResultReg), AM); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { | 
|  | EVT CEVT = TLI.getValueType(DL, C->getType(), true); | 
|  |  | 
|  | // Only handle simple types. | 
|  | if (!CEVT.isSimple()) | 
|  | return 0; | 
|  | MVT VT = CEVT.getSimpleVT(); | 
|  |  | 
|  | if (const auto *CI = dyn_cast<ConstantInt>(C)) | 
|  | return X86MaterializeInt(CI, VT); | 
|  | else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) | 
|  | return X86MaterializeFP(CFP, VT); | 
|  | else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) | 
|  | return X86MaterializeGV(GV, VT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { | 
|  | // Fail on dynamic allocas. At this point, getRegForValue has already | 
|  | // checked its CSE maps, so if we're here trying to handle a dynamic | 
|  | // alloca, we're not going to succeed. X86SelectAddress has a | 
|  | // check for dynamic allocas, because it's called directly from | 
|  | // various places, but targetMaterializeAlloca also needs a check | 
|  | // in order to avoid recursion between getRegForValue, | 
|  | // X86SelectAddrss, and targetMaterializeAlloca. | 
|  | if (!FuncInfo.StaticAllocaMap.count(C)) | 
|  | return 0; | 
|  | assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); | 
|  |  | 
|  | X86AddressMode AM; | 
|  | if (!X86SelectAddress(C, AM)) | 
|  | return 0; | 
|  | unsigned Opc = | 
|  | TLI.getPointerTy(DL) == MVT::i32 | 
|  | ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) | 
|  | : X86::LEA64r; | 
|  | const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ResultReg), AM); | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { | 
|  | MVT VT; | 
|  | if (!isTypeLegal(CF->getType(), VT)) | 
|  | return 0; | 
|  |  | 
|  | // Get opcode and regclass for the given zero. | 
|  | bool HasAVX512 = Subtarget->hasAVX512(); | 
|  | unsigned Opc = 0; | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  | switch (VT.SimpleTy) { | 
|  | default: return 0; | 
|  | case MVT::f32: | 
|  | if (X86ScalarSSEf32) { | 
|  | Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS; | 
|  | RC  = HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass; | 
|  | } else { | 
|  | Opc = X86::LD_Fp032; | 
|  | RC  = &X86::RFP32RegClass; | 
|  | } | 
|  | break; | 
|  | case MVT::f64: | 
|  | if (X86ScalarSSEf64) { | 
|  | Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD; | 
|  | RC  = HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass; | 
|  | } else { | 
|  | Opc = X86::LD_Fp064; | 
|  | RC  = &X86::RFP64RegClass; | 
|  | } | 
|  | break; | 
|  | case MVT::f80: | 
|  | // No f80 support yet. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, | 
|  | const LoadInst *LI) { | 
|  | const Value *Ptr = LI->getPointerOperand(); | 
|  | X86AddressMode AM; | 
|  | if (!X86SelectAddress(Ptr, AM)) | 
|  | return false; | 
|  |  | 
|  | const X86InstrInfo &XII = (const X86InstrInfo &)TII; | 
|  |  | 
|  | unsigned Size = DL.getTypeAllocSize(LI->getType()); | 
|  | unsigned Alignment = LI->getAlignment(); | 
|  |  | 
|  | if (Alignment == 0)  // Ensure that codegen never sees alignment 0 | 
|  | Alignment = DL.getABITypeAlignment(LI->getType()); | 
|  |  | 
|  | SmallVector<MachineOperand, 8> AddrOps; | 
|  | AM.getFullAddress(AddrOps); | 
|  |  | 
|  | MachineInstr *Result = XII.foldMemoryOperandImpl( | 
|  | *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment, | 
|  | /*AllowCommute=*/true); | 
|  | if (!Result) | 
|  | return false; | 
|  |  | 
|  | // The index register could be in the wrong register class.  Unfortunately, | 
|  | // foldMemoryOperandImpl could have commuted the instruction so its not enough | 
|  | // to just look at OpNo + the offset to the index reg.  We actually need to | 
|  | // scan the instruction to find the index reg and see if its the correct reg | 
|  | // class. | 
|  | unsigned OperandNo = 0; | 
|  | for (MachineInstr::mop_iterator I = Result->operands_begin(), | 
|  | E = Result->operands_end(); I != E; ++I, ++OperandNo) { | 
|  | MachineOperand &MO = *I; | 
|  | if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) | 
|  | continue; | 
|  | // Found the index reg, now try to rewrite it. | 
|  | unsigned IndexReg = constrainOperandRegClass(Result->getDesc(), | 
|  | MO.getReg(), OperandNo); | 
|  | if (IndexReg == MO.getReg()) | 
|  | continue; | 
|  | MO.setReg(IndexReg); | 
|  | } | 
|  |  | 
|  | Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); | 
|  | MI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, bool Op0IsKill, | 
|  | unsigned Op1, bool Op1IsKill, | 
|  | unsigned Op2, bool Op2IsKill, | 
|  | unsigned Op3, bool Op3IsKill) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); | 
|  | Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); | 
|  | Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); | 
|  | Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) | 
|  | .addReg(Op0, getKillRegState(Op0IsKill)) | 
|  | .addReg(Op1, getKillRegState(Op1IsKill)) | 
|  | .addReg(Op2, getKillRegState(Op2IsKill)) | 
|  | .addReg(Op3, getKillRegState(Op3IsKill)); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(Op0, getKillRegState(Op0IsKill)) | 
|  | .addReg(Op1, getKillRegState(Op1IsKill)) | 
|  | .addReg(Op2, getKillRegState(Op2IsKill)) | 
|  | .addReg(Op3, getKillRegState(Op3IsKill)); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  |  | 
|  | namespace llvm { | 
|  | FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, | 
|  | const TargetLibraryInfo *libInfo) { | 
|  | return new X86FastISel(funcInfo, libInfo); | 
|  | } | 
|  | } |