|  | //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs loop invariant code motion, attempting to remove as much | 
|  | // code from the body of a loop as possible.  It does this by either hoisting | 
|  | // code into the preheader block, or by sinking code to the exit blocks if it is | 
|  | // safe.  This pass also promotes must-aliased memory locations in the loop to | 
|  | // live in registers, thus hoisting and sinking "invariant" loads and stores. | 
|  | // | 
|  | // This pass uses alias analysis for two purposes: | 
|  | // | 
|  | //  1. Moving loop invariant loads and calls out of loops.  If we can determine | 
|  | //     that a load or call inside of a loop never aliases anything stored to, | 
|  | //     we can hoist it or sink it like any other instruction. | 
|  | //  2. Scalar Promotion of Memory - If there is a store instruction inside of | 
|  | //     the loop, we try to move the store to happen AFTER the loop instead of | 
|  | //     inside of the loop.  This can only happen if a few conditions are true: | 
|  | //       A. The pointer stored through is loop invariant | 
|  | //       B. There are no stores or loads in the loop which _may_ alias the | 
|  | //          pointer.  There are no calls in the loop which mod/ref the pointer. | 
|  | //     If these conditions are true, we can promote the loads and stores in the | 
|  | //     loop of the pointer to use a temporary alloca'd variable.  We then use | 
|  | //     the SSAUpdater to construct the appropriate SSA form for the value. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "licm" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AliasSetTracker.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/Dominators.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/SSAUpdater.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumSunk      , "Number of instructions sunk out of loop"); | 
|  | STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop"); | 
|  | STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); | 
|  | STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); | 
|  | STATISTIC(NumPromoted  , "Number of memory locations promoted to registers"); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisablePromotion("disable-licm-promotion", cl::Hidden, | 
|  | cl::desc("Disable memory promotion in LICM pass")); | 
|  |  | 
|  | namespace { | 
|  | struct LICM : public LoopPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | LICM() : LoopPass(ID) { | 
|  | initializeLICMPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | virtual bool runOnLoop(Loop *L, LPPassManager &LPM); | 
|  |  | 
|  | /// This transformation requires natural loop information & requires that | 
|  | /// loop preheaders be inserted into the CFG... | 
|  | /// | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<DominatorTree>(); | 
|  | AU.addRequired<LoopInfo>(); | 
|  | AU.addRequiredID(LoopSimplifyID); | 
|  | AU.addRequired<AliasAnalysis>(); | 
|  | AU.addPreserved<AliasAnalysis>(); | 
|  | AU.addPreserved("scalar-evolution"); | 
|  | AU.addPreservedID(LoopSimplifyID); | 
|  | } | 
|  |  | 
|  | bool doFinalization() { | 
|  | assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | AliasAnalysis *AA;       // Current AliasAnalysis information | 
|  | LoopInfo      *LI;       // Current LoopInfo | 
|  | DominatorTree *DT;       // Dominator Tree for the current Loop. | 
|  |  | 
|  | // State that is updated as we process loops. | 
|  | bool Changed;            // Set to true when we change anything. | 
|  | BasicBlock *Preheader;   // The preheader block of the current loop... | 
|  | Loop *CurLoop;           // The current loop we are working on... | 
|  | AliasSetTracker *CurAST; // AliasSet information for the current loop... | 
|  | DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap; | 
|  |  | 
|  | /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. | 
|  | void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L); | 
|  |  | 
|  | /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias | 
|  | /// set. | 
|  | void deleteAnalysisValue(Value *V, Loop *L); | 
|  |  | 
|  | /// SinkRegion - Walk the specified region of the CFG (defined by all blocks | 
|  | /// dominated by the specified block, and that are in the current loop) in | 
|  | /// reverse depth first order w.r.t the DominatorTree.  This allows us to | 
|  | /// visit uses before definitions, allowing us to sink a loop body in one | 
|  | /// pass without iteration. | 
|  | /// | 
|  | void SinkRegion(DomTreeNode *N); | 
|  |  | 
|  | /// HoistRegion - Walk the specified region of the CFG (defined by all | 
|  | /// blocks dominated by the specified block, and that are in the current | 
|  | /// loop) in depth first order w.r.t the DominatorTree.  This allows us to | 
|  | /// visit definitions before uses, allowing us to hoist a loop body in one | 
|  | /// pass without iteration. | 
|  | /// | 
|  | void HoistRegion(DomTreeNode *N); | 
|  |  | 
|  | /// inSubLoop - Little predicate that returns true if the specified basic | 
|  | /// block is in a subloop of the current one, not the current one itself. | 
|  | /// | 
|  | bool inSubLoop(BasicBlock *BB) { | 
|  | assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); | 
|  | return LI->getLoopFor(BB) != CurLoop; | 
|  | } | 
|  |  | 
|  | /// sink - When an instruction is found to only be used outside of the loop, | 
|  | /// this function moves it to the exit blocks and patches up SSA form as | 
|  | /// needed. | 
|  | /// | 
|  | void sink(Instruction &I); | 
|  |  | 
|  | /// hoist - When an instruction is found to only use loop invariant operands | 
|  | /// that is safe to hoist, this instruction is called to do the dirty work. | 
|  | /// | 
|  | void hoist(Instruction &I); | 
|  |  | 
|  | /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it | 
|  | /// is not a trapping instruction or if it is a trapping instruction and is | 
|  | /// guaranteed to execute. | 
|  | /// | 
|  | bool isSafeToExecuteUnconditionally(Instruction &I); | 
|  |  | 
|  | /// pointerInvalidatedByLoop - Return true if the body of this loop may | 
|  | /// store into the memory location pointed to by V. | 
|  | /// | 
|  | bool pointerInvalidatedByLoop(Value *V, uint64_t Size, | 
|  | const MDNode *TBAAInfo) { | 
|  | // Check to see if any of the basic blocks in CurLoop invalidate *V. | 
|  | return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod(); | 
|  | } | 
|  |  | 
|  | bool canSinkOrHoistInst(Instruction &I); | 
|  | bool isNotUsedInLoop(Instruction &I); | 
|  |  | 
|  | void PromoteAliasSet(AliasSet &AS); | 
|  | }; | 
|  | } | 
|  |  | 
|  | char LICM::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTree) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfo) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopSimplify) | 
|  | INITIALIZE_AG_DEPENDENCY(AliasAnalysis) | 
|  | INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false) | 
|  |  | 
|  | Pass *llvm::createLICMPass() { return new LICM(); } | 
|  |  | 
|  | /// Hoist expressions out of the specified loop. Note, alias info for inner | 
|  | /// loop is not preserved so it is not a good idea to run LICM multiple | 
|  | /// times on one loop. | 
|  | /// | 
|  | bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) { | 
|  | Changed = false; | 
|  |  | 
|  | // Get our Loop and Alias Analysis information... | 
|  | LI = &getAnalysis<LoopInfo>(); | 
|  | AA = &getAnalysis<AliasAnalysis>(); | 
|  | DT = &getAnalysis<DominatorTree>(); | 
|  |  | 
|  | CurAST = new AliasSetTracker(*AA); | 
|  | // Collect Alias info from subloops. | 
|  | for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end(); | 
|  | LoopItr != LoopItrE; ++LoopItr) { | 
|  | Loop *InnerL = *LoopItr; | 
|  | AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL]; | 
|  | assert(InnerAST && "Where is my AST?"); | 
|  |  | 
|  | // What if InnerLoop was modified by other passes ? | 
|  | CurAST->add(*InnerAST); | 
|  |  | 
|  | // Once we've incorporated the inner loop's AST into ours, we don't need the | 
|  | // subloop's anymore. | 
|  | delete InnerAST; | 
|  | LoopToAliasSetMap.erase(InnerL); | 
|  | } | 
|  |  | 
|  | CurLoop = L; | 
|  |  | 
|  | // Get the preheader block to move instructions into... | 
|  | Preheader = L->getLoopPreheader(); | 
|  |  | 
|  | // Loop over the body of this loop, looking for calls, invokes, and stores. | 
|  | // Because subloops have already been incorporated into AST, we skip blocks in | 
|  | // subloops. | 
|  | // | 
|  | for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); | 
|  | I != E; ++I) { | 
|  | BasicBlock *BB = *I; | 
|  | if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops. | 
|  | CurAST->add(*BB);                 // Incorporate the specified basic block | 
|  | } | 
|  |  | 
|  | // We want to visit all of the instructions in this loop... that are not parts | 
|  | // of our subloops (they have already had their invariants hoisted out of | 
|  | // their loop, into this loop, so there is no need to process the BODIES of | 
|  | // the subloops). | 
|  | // | 
|  | // Traverse the body of the loop in depth first order on the dominator tree so | 
|  | // that we are guaranteed to see definitions before we see uses.  This allows | 
|  | // us to sink instructions in one pass, without iteration.  After sinking | 
|  | // instructions, we perform another pass to hoist them out of the loop. | 
|  | // | 
|  | if (L->hasDedicatedExits()) | 
|  | SinkRegion(DT->getNode(L->getHeader())); | 
|  | if (Preheader) | 
|  | HoistRegion(DT->getNode(L->getHeader())); | 
|  |  | 
|  | // Now that all loop invariants have been removed from the loop, promote any | 
|  | // memory references to scalars that we can. | 
|  | if (!DisablePromotion && Preheader && L->hasDedicatedExits()) { | 
|  | // Loop over all of the alias sets in the tracker object. | 
|  | for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end(); | 
|  | I != E; ++I) | 
|  | PromoteAliasSet(*I); | 
|  | } | 
|  |  | 
|  | // Clear out loops state information for the next iteration | 
|  | CurLoop = 0; | 
|  | Preheader = 0; | 
|  |  | 
|  | // If this loop is nested inside of another one, save the alias information | 
|  | // for when we process the outer loop. | 
|  | if (L->getParentLoop()) | 
|  | LoopToAliasSetMap[L] = CurAST; | 
|  | else | 
|  | delete CurAST; | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// SinkRegion - Walk the specified region of the CFG (defined by all blocks | 
|  | /// dominated by the specified block, and that are in the current loop) in | 
|  | /// reverse depth first order w.r.t the DominatorTree.  This allows us to visit | 
|  | /// uses before definitions, allowing us to sink a loop body in one pass without | 
|  | /// iteration. | 
|  | /// | 
|  | void LICM::SinkRegion(DomTreeNode *N) { | 
|  | assert(N != 0 && "Null dominator tree node?"); | 
|  | BasicBlock *BB = N->getBlock(); | 
|  |  | 
|  | // If this subregion is not in the top level loop at all, exit. | 
|  | if (!CurLoop->contains(BB)) return; | 
|  |  | 
|  | // We are processing blocks in reverse dfo, so process children first. | 
|  | const std::vector<DomTreeNode*> &Children = N->getChildren(); | 
|  | for (unsigned i = 0, e = Children.size(); i != e; ++i) | 
|  | SinkRegion(Children[i]); | 
|  |  | 
|  | // Only need to process the contents of this block if it is not part of a | 
|  | // subloop (which would already have been processed). | 
|  | if (inSubLoop(BB)) return; | 
|  |  | 
|  | for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) { | 
|  | Instruction &I = *--II; | 
|  |  | 
|  | // If the instruction is dead, we would try to sink it because it isn't used | 
|  | // in the loop, instead, just delete it. | 
|  | if (isInstructionTriviallyDead(&I)) { | 
|  | DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); | 
|  | ++II; | 
|  | CurAST->deleteValue(&I); | 
|  | I.eraseFromParent(); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check to see if we can sink this instruction to the exit blocks | 
|  | // of the loop.  We can do this if the all users of the instruction are | 
|  | // outside of the loop.  In this case, it doesn't even matter if the | 
|  | // operands of the instruction are loop invariant. | 
|  | // | 
|  | if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) { | 
|  | ++II; | 
|  | sink(I); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// HoistRegion - Walk the specified region of the CFG (defined by all blocks | 
|  | /// dominated by the specified block, and that are in the current loop) in depth | 
|  | /// first order w.r.t the DominatorTree.  This allows us to visit definitions | 
|  | /// before uses, allowing us to hoist a loop body in one pass without iteration. | 
|  | /// | 
|  | void LICM::HoistRegion(DomTreeNode *N) { | 
|  | assert(N != 0 && "Null dominator tree node?"); | 
|  | BasicBlock *BB = N->getBlock(); | 
|  |  | 
|  | // If this subregion is not in the top level loop at all, exit. | 
|  | if (!CurLoop->contains(BB)) return; | 
|  |  | 
|  | // Only need to process the contents of this block if it is not part of a | 
|  | // subloop (which would already have been processed). | 
|  | if (!inSubLoop(BB)) | 
|  | for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) { | 
|  | Instruction &I = *II++; | 
|  |  | 
|  | // Try constant folding this instruction.  If all the operands are | 
|  | // constants, it is technically hoistable, but it would be better to just | 
|  | // fold it. | 
|  | if (Constant *C = ConstantFoldInstruction(&I)) { | 
|  | DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n'); | 
|  | CurAST->copyValue(&I, C); | 
|  | CurAST->deleteValue(&I); | 
|  | I.replaceAllUsesWith(C); | 
|  | I.eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Try hoisting the instruction out to the preheader.  We can only do this | 
|  | // if all of the operands of the instruction are loop invariant and if it | 
|  | // is safe to hoist the instruction. | 
|  | // | 
|  | if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) && | 
|  | isSafeToExecuteUnconditionally(I)) | 
|  | hoist(I); | 
|  | } | 
|  |  | 
|  | const std::vector<DomTreeNode*> &Children = N->getChildren(); | 
|  | for (unsigned i = 0, e = Children.size(); i != e; ++i) | 
|  | HoistRegion(Children[i]); | 
|  | } | 
|  |  | 
|  | /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this | 
|  | /// instruction. | 
|  | /// | 
|  | bool LICM::canSinkOrHoistInst(Instruction &I) { | 
|  | // Loads have extra constraints we have to verify before we can hoist them. | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { | 
|  | if (LI->isVolatile()) | 
|  | return false;        // Don't hoist volatile loads! | 
|  |  | 
|  | // Loads from constant memory are always safe to move, even if they end up | 
|  | // in the same alias set as something that ends up being modified. | 
|  | if (AA->pointsToConstantMemory(LI->getOperand(0))) | 
|  | return true; | 
|  |  | 
|  | // Don't hoist loads which have may-aliased stores in loop. | 
|  | uint64_t Size = 0; | 
|  | if (LI->getType()->isSized()) | 
|  | Size = AA->getTypeStoreSize(LI->getType()); | 
|  | return !pointerInvalidatedByLoop(LI->getOperand(0), Size, | 
|  | LI->getMetadata(LLVMContext::MD_tbaa)); | 
|  | } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { | 
|  | // Handle obvious cases efficiently. | 
|  | AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI); | 
|  | if (Behavior == AliasAnalysis::DoesNotAccessMemory) | 
|  | return true; | 
|  | if (AliasAnalysis::onlyReadsMemory(Behavior)) { | 
|  | // If this call only reads from memory and there are no writes to memory | 
|  | // in the loop, we can hoist or sink the call as appropriate. | 
|  | bool FoundMod = false; | 
|  | for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end(); | 
|  | I != E; ++I) { | 
|  | AliasSet &AS = *I; | 
|  | if (!AS.isForwardingAliasSet() && AS.isMod()) { | 
|  | FoundMod = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!FoundMod) return true; | 
|  | } | 
|  |  | 
|  | // FIXME: This should use mod/ref information to see if we can hoist or sink | 
|  | // the call. | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise these instructions are hoistable/sinkable | 
|  | return isa<BinaryOperator>(I) || isa<CastInst>(I) || | 
|  | isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || | 
|  | isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || | 
|  | isa<ShuffleVectorInst>(I); | 
|  | } | 
|  |  | 
|  | /// isNotUsedInLoop - Return true if the only users of this instruction are | 
|  | /// outside of the loop.  If this is true, we can sink the instruction to the | 
|  | /// exit blocks of the loop. | 
|  | /// | 
|  | bool LICM::isNotUsedInLoop(Instruction &I) { | 
|  | for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) { | 
|  | Instruction *User = cast<Instruction>(*UI); | 
|  | if (PHINode *PN = dyn_cast<PHINode>(User)) { | 
|  | // PHI node uses occur in predecessor blocks! | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (PN->getIncomingValue(i) == &I) | 
|  | if (CurLoop->contains(PN->getIncomingBlock(i))) | 
|  | return false; | 
|  | } else if (CurLoop->contains(User)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// sink - When an instruction is found to only be used outside of the loop, | 
|  | /// this function moves it to the exit blocks and patches up SSA form as needed. | 
|  | /// This method is guaranteed to remove the original instruction from its | 
|  | /// position, and may either delete it or move it to outside of the loop. | 
|  | /// | 
|  | void LICM::sink(Instruction &I) { | 
|  | DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); | 
|  |  | 
|  | SmallVector<BasicBlock*, 8> ExitBlocks; | 
|  | CurLoop->getUniqueExitBlocks(ExitBlocks); | 
|  |  | 
|  | if (isa<LoadInst>(I)) ++NumMovedLoads; | 
|  | else if (isa<CallInst>(I)) ++NumMovedCalls; | 
|  | ++NumSunk; | 
|  | Changed = true; | 
|  |  | 
|  | // The case where there is only a single exit node of this loop is common | 
|  | // enough that we handle it as a special (more efficient) case.  It is more | 
|  | // efficient to handle because there are no PHI nodes that need to be placed. | 
|  | if (ExitBlocks.size() == 1) { | 
|  | if (!isa<DbgInfoIntrinsic>(I) && | 
|  | !DT->dominates(I.getParent(), ExitBlocks[0])) { | 
|  | // Instruction is not used, just delete it. | 
|  | CurAST->deleteValue(&I); | 
|  | // If I has users in unreachable blocks, eliminate. | 
|  | // If I is not void type then replaceAllUsesWith undef. | 
|  | // This allows ValueHandlers and custom metadata to adjust itself. | 
|  | if (!I.use_empty()) | 
|  | I.replaceAllUsesWith(UndefValue::get(I.getType())); | 
|  | I.eraseFromParent(); | 
|  | } else { | 
|  | // Move the instruction to the start of the exit block, after any PHI | 
|  | // nodes in it. | 
|  | I.moveBefore(ExitBlocks[0]->getFirstNonPHI()); | 
|  |  | 
|  | // This instruction is no longer in the AST for the current loop, because | 
|  | // we just sunk it out of the loop.  If we just sunk it into an outer | 
|  | // loop, we will rediscover the operation when we process it. | 
|  | CurAST->deleteValue(&I); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ExitBlocks.empty()) { | 
|  | // The instruction is actually dead if there ARE NO exit blocks. | 
|  | CurAST->deleteValue(&I); | 
|  | // If I has users in unreachable blocks, eliminate. | 
|  | // If I is not void type then replaceAllUsesWith undef. | 
|  | // This allows ValueHandlers and custom metadata to adjust itself. | 
|  | if (!I.use_empty()) | 
|  | I.replaceAllUsesWith(UndefValue::get(I.getType())); | 
|  | I.eraseFromParent(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the | 
|  | // hard work of inserting PHI nodes as necessary. | 
|  | SmallVector<PHINode*, 8> NewPHIs; | 
|  | SSAUpdater SSA(&NewPHIs); | 
|  |  | 
|  | if (!I.use_empty()) | 
|  | SSA.Initialize(I.getType(), I.getName()); | 
|  |  | 
|  | // Insert a copy of the instruction in each exit block of the loop that is | 
|  | // dominated by the instruction.  Each exit block is known to only be in the | 
|  | // ExitBlocks list once. | 
|  | BasicBlock *InstOrigBB = I.getParent(); | 
|  | unsigned NumInserted = 0; | 
|  |  | 
|  | for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { | 
|  | BasicBlock *ExitBlock = ExitBlocks[i]; | 
|  |  | 
|  | if (!DT->dominates(InstOrigBB, ExitBlock)) | 
|  | continue; | 
|  |  | 
|  | // Insert the code after the last PHI node. | 
|  | BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI(); | 
|  |  | 
|  | // If this is the first exit block processed, just move the original | 
|  | // instruction, otherwise clone the original instruction and insert | 
|  | // the copy. | 
|  | Instruction *New; | 
|  | if (NumInserted++ == 0) { | 
|  | I.moveBefore(InsertPt); | 
|  | New = &I; | 
|  | } else { | 
|  | New = I.clone(); | 
|  | if (!I.getName().empty()) | 
|  | New->setName(I.getName()+".le"); | 
|  | ExitBlock->getInstList().insert(InsertPt, New); | 
|  | } | 
|  |  | 
|  | // Now that we have inserted the instruction, inform SSAUpdater. | 
|  | if (!I.use_empty()) | 
|  | SSA.AddAvailableValue(ExitBlock, New); | 
|  | } | 
|  |  | 
|  | // If the instruction doesn't dominate any exit blocks, it must be dead. | 
|  | if (NumInserted == 0) { | 
|  | CurAST->deleteValue(&I); | 
|  | if (!I.use_empty()) | 
|  | I.replaceAllUsesWith(UndefValue::get(I.getType())); | 
|  | I.eraseFromParent(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Next, rewrite uses of the instruction, inserting PHI nodes as needed. | 
|  | for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) { | 
|  | // Grab the use before incrementing the iterator. | 
|  | Use &U = UI.getUse(); | 
|  | // Increment the iterator before removing the use from the list. | 
|  | ++UI; | 
|  | SSA.RewriteUseAfterInsertions(U); | 
|  | } | 
|  |  | 
|  | // Update CurAST for NewPHIs if I had pointer type. | 
|  | if (I.getType()->isPointerTy()) | 
|  | for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) | 
|  | CurAST->copyValue(&I, NewPHIs[i]); | 
|  |  | 
|  | // Finally, remove the instruction from CurAST.  It is no longer in the loop. | 
|  | CurAST->deleteValue(&I); | 
|  | } | 
|  |  | 
|  | /// hoist - When an instruction is found to only use loop invariant operands | 
|  | /// that is safe to hoist, this instruction is called to do the dirty work. | 
|  | /// | 
|  | void LICM::hoist(Instruction &I) { | 
|  | DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": " | 
|  | << I << "\n"); | 
|  |  | 
|  | // Move the new node to the Preheader, before its terminator. | 
|  | I.moveBefore(Preheader->getTerminator()); | 
|  |  | 
|  | if (isa<LoadInst>(I)) ++NumMovedLoads; | 
|  | else if (isa<CallInst>(I)) ++NumMovedCalls; | 
|  | ++NumHoisted; | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is | 
|  | /// not a trapping instruction or if it is a trapping instruction and is | 
|  | /// guaranteed to execute. | 
|  | /// | 
|  | bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) { | 
|  | // If it is not a trapping instruction, it is always safe to hoist. | 
|  | if (Inst.isSafeToSpeculativelyExecute()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise we have to check to make sure that the instruction dominates all | 
|  | // of the exit blocks.  If it doesn't, then there is a path out of the loop | 
|  | // which does not execute this instruction, so we can't hoist it. | 
|  |  | 
|  | // If the instruction is in the header block for the loop (which is very | 
|  | // common), it is always guaranteed to dominate the exit blocks.  Since this | 
|  | // is a common case, and can save some work, check it now. | 
|  | if (Inst.getParent() == CurLoop->getHeader()) | 
|  | return true; | 
|  |  | 
|  | // Get the exit blocks for the current loop. | 
|  | SmallVector<BasicBlock*, 8> ExitBlocks; | 
|  | CurLoop->getExitBlocks(ExitBlocks); | 
|  |  | 
|  | // Verify that the block dominates each of the exit blocks of the loop. | 
|  | for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) | 
|  | if (!DT->dominates(Inst.getParent(), ExitBlocks[i])) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class LoopPromoter : public LoadAndStorePromoter { | 
|  | Value *SomePtr;  // Designated pointer to store to. | 
|  | SmallPtrSet<Value*, 4> &PointerMustAliases; | 
|  | SmallVectorImpl<BasicBlock*> &LoopExitBlocks; | 
|  | AliasSetTracker &AST; | 
|  | public: | 
|  | LoopPromoter(Value *SP, | 
|  | const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S, | 
|  | SmallPtrSet<Value*, 4> &PMA, | 
|  | SmallVectorImpl<BasicBlock*> &LEB, AliasSetTracker &ast) | 
|  | : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA), | 
|  | LoopExitBlocks(LEB), AST(ast) {} | 
|  |  | 
|  | virtual bool isInstInList(Instruction *I, | 
|  | const SmallVectorImpl<Instruction*> &) const { | 
|  | Value *Ptr; | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) | 
|  | Ptr = LI->getOperand(0); | 
|  | else | 
|  | Ptr = cast<StoreInst>(I)->getPointerOperand(); | 
|  | return PointerMustAliases.count(Ptr); | 
|  | } | 
|  |  | 
|  | virtual void doExtraRewritesBeforeFinalDeletion() const { | 
|  | // Insert stores after in the loop exit blocks.  Each exit block gets a | 
|  | // store of the live-out values that feed them.  Since we've already told | 
|  | // the SSA updater about the defs in the loop and the preheader | 
|  | // definition, it is all set and we can start using it. | 
|  | for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { | 
|  | BasicBlock *ExitBlock = LoopExitBlocks[i]; | 
|  | Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); | 
|  | Instruction *InsertPos = ExitBlock->getFirstNonPHI(); | 
|  | new StoreInst(LiveInValue, SomePtr, InsertPos); | 
|  | } | 
|  | } | 
|  |  | 
|  | virtual void replaceLoadWithValue(LoadInst *LI, Value *V) const { | 
|  | // Update alias analysis. | 
|  | AST.copyValue(LI, V); | 
|  | } | 
|  | virtual void instructionDeleted(Instruction *I) const { | 
|  | AST.deleteValue(I); | 
|  | } | 
|  | }; | 
|  | } // end anon namespace | 
|  |  | 
|  | /// PromoteAliasSet - Try to promote memory values to scalars by sinking | 
|  | /// stores out of the loop and moving loads to before the loop.  We do this by | 
|  | /// looping over the stores in the loop, looking for stores to Must pointers | 
|  | /// which are loop invariant. | 
|  | /// | 
|  | void LICM::PromoteAliasSet(AliasSet &AS) { | 
|  | // We can promote this alias set if it has a store, if it is a "Must" alias | 
|  | // set, if the pointer is loop invariant, and if we are not eliminating any | 
|  | // volatile loads or stores. | 
|  | if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() || | 
|  | AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue())) | 
|  | return; | 
|  |  | 
|  | assert(!AS.empty() && | 
|  | "Must alias set should have at least one pointer element in it!"); | 
|  | Value *SomePtr = AS.begin()->getValue(); | 
|  |  | 
|  | // It isn't safe to promote a load/store from the loop if the load/store is | 
|  | // conditional.  For example, turning: | 
|  | // | 
|  | //    for () { if (c) *P += 1; } | 
|  | // | 
|  | // into: | 
|  | // | 
|  | //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp; | 
|  | // | 
|  | // is not safe, because *P may only be valid to access if 'c' is true. | 
|  | // | 
|  | // It is safe to promote P if all uses are direct load/stores and if at | 
|  | // least one is guaranteed to be executed. | 
|  | bool GuaranteedToExecute = false; | 
|  |  | 
|  | SmallVector<Instruction*, 64> LoopUses; | 
|  | SmallPtrSet<Value*, 4> PointerMustAliases; | 
|  |  | 
|  | // Check that all of the pointers in the alias set have the same type.  We | 
|  | // cannot (yet) promote a memory location that is loaded and stored in | 
|  | // different sizes. | 
|  | for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) { | 
|  | Value *ASIV = ASI->getValue(); | 
|  | PointerMustAliases.insert(ASIV); | 
|  |  | 
|  | // Check that all of the pointers in the alias set have the same type.  We | 
|  | // cannot (yet) promote a memory location that is loaded and stored in | 
|  | // different sizes. | 
|  | if (SomePtr->getType() != ASIV->getType()) | 
|  | return; | 
|  |  | 
|  | for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | // Ignore instructions that are outside the loop. | 
|  | Instruction *Use = dyn_cast<Instruction>(*UI); | 
|  | if (!Use || !CurLoop->contains(Use)) | 
|  | continue; | 
|  |  | 
|  | // If there is an non-load/store instruction in the loop, we can't promote | 
|  | // it. | 
|  | if (isa<LoadInst>(Use)) | 
|  | assert(!cast<LoadInst>(Use)->isVolatile() && "AST broken"); | 
|  | else if (isa<StoreInst>(Use)) { | 
|  | // Stores *of* the pointer are not interesting, only stores *to* the | 
|  | // pointer. | 
|  | if (Use->getOperand(1) != ASIV) | 
|  | continue; | 
|  | assert(!cast<StoreInst>(Use)->isVolatile() && "AST broken"); | 
|  | } else | 
|  | return; // Not a load or store. | 
|  |  | 
|  | if (!GuaranteedToExecute) | 
|  | GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use); | 
|  |  | 
|  | LoopUses.push_back(Use); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there isn't a guaranteed-to-execute instruction, we can't promote. | 
|  | if (!GuaranteedToExecute) | 
|  | return; | 
|  |  | 
|  | // Otherwise, this is safe to promote, lets do it! | 
|  | DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n'); | 
|  | Changed = true; | 
|  | ++NumPromoted; | 
|  |  | 
|  | SmallVector<BasicBlock*, 8> ExitBlocks; | 
|  | CurLoop->getUniqueExitBlocks(ExitBlocks); | 
|  |  | 
|  | // We use the SSAUpdater interface to insert phi nodes as required. | 
|  | SmallVector<PHINode*, 16> NewPHIs; | 
|  | SSAUpdater SSA(&NewPHIs); | 
|  | LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks, | 
|  | *CurAST); | 
|  |  | 
|  | // Set up the preheader to have a definition of the value.  It is the live-out | 
|  | // value from the preheader that uses in the loop will use. | 
|  | LoadInst *PreheaderLoad = | 
|  | new LoadInst(SomePtr, SomePtr->getName()+".promoted", | 
|  | Preheader->getTerminator()); | 
|  | SSA.AddAvailableValue(Preheader, PreheaderLoad); | 
|  |  | 
|  | // Copy any value stored to or loaded from a must-alias of the pointer. | 
|  | if (PreheaderLoad->getType()->isPointerTy()) { | 
|  | Value *SomeValue; | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(LoopUses[0])) | 
|  | SomeValue = LI; | 
|  | else | 
|  | SomeValue = cast<StoreInst>(LoopUses[0])->getValueOperand(); | 
|  |  | 
|  | CurAST->copyValue(SomeValue, PreheaderLoad); | 
|  | } | 
|  |  | 
|  | // Rewrite all the loads in the loop and remember all the definitions from | 
|  | // stores in the loop. | 
|  | Promoter.run(LoopUses); | 
|  |  | 
|  | // If the preheader load is itself a pointer, we need to tell alias analysis | 
|  | // about the new pointer we created in the preheader block and about any PHI | 
|  | // nodes that just got inserted. | 
|  | if (PreheaderLoad->getType()->isPointerTy()) { | 
|  | for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) | 
|  | CurAST->copyValue(PreheaderLoad, NewPHIs[i]); | 
|  | } | 
|  |  | 
|  | // fwew, we're done! | 
|  | } | 
|  |  | 
|  |  | 
|  | /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. | 
|  | void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) { | 
|  | AliasSetTracker *AST = LoopToAliasSetMap.lookup(L); | 
|  | if (!AST) | 
|  | return; | 
|  |  | 
|  | AST->copyValue(From, To); | 
|  | } | 
|  |  | 
|  | /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias | 
|  | /// set. | 
|  | void LICM::deleteAnalysisValue(Value *V, Loop *L) { | 
|  | AliasSetTracker *AST = LoopToAliasSetMap.lookup(L); | 
|  | if (!AST) | 
|  | return; | 
|  |  | 
|  | AST->deleteValue(V); | 
|  | } |