|  | //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// Custom DAG lowering for SI | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #if defined(_MSC_VER) || defined(__MINGW32__) | 
|  | // Provide M_PI. | 
|  | #define _USE_MATH_DEFINES | 
|  | #endif | 
|  |  | 
|  | #include "SIISelLowering.h" | 
|  | #include "AMDGPU.h" | 
|  | #include "AMDGPUSubtarget.h" | 
|  | #include "AMDGPUTargetMachine.h" | 
|  | #include "SIDefines.h" | 
|  | #include "SIInstrInfo.h" | 
|  | #include "SIMachineFunctionInfo.h" | 
|  | #include "SIRegisterInfo.h" | 
|  | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" | 
|  | #include "Utils/AMDGPUBaseInfo.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/DAGCombine.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/TargetCallingConv.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/DiagnosticInfo.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CodeGen.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <cassert> | 
|  | #include <cmath> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "si-lower" | 
|  |  | 
|  | STATISTIC(NumTailCalls, "Number of tail calls"); | 
|  |  | 
|  | static cl::opt<bool> EnableVGPRIndexMode( | 
|  | "amdgpu-vgpr-index-mode", | 
|  | cl::desc("Use GPR indexing mode instead of movrel for vector indexing"), | 
|  | cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> DisableLoopAlignment( | 
|  | "amdgpu-disable-loop-alignment", | 
|  | cl::desc("Do not align and prefetch loops"), | 
|  | cl::init(false)); | 
|  |  | 
|  | static unsigned findFirstFreeSGPR(CCState &CCInfo) { | 
|  | unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); | 
|  | for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { | 
|  | if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { | 
|  | return AMDGPU::SGPR0 + Reg; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Cannot allocate sgpr"); | 
|  | } | 
|  |  | 
|  | SITargetLowering::SITargetLowering(const TargetMachine &TM, | 
|  | const GCNSubtarget &STI) | 
|  | : AMDGPUTargetLowering(TM, STI), | 
|  | Subtarget(&STI) { | 
|  | addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); | 
|  | addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass); | 
|  | addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); | 
|  | addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); | 
|  | addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); | 
|  | addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass); | 
|  | addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass); | 
|  | addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); | 
|  | addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass); | 
|  | addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass); | 
|  | addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); | 
|  |  | 
|  | if (Subtarget->has16BitInsts()) { | 
|  | addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass); | 
|  | addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass); | 
|  |  | 
|  | // Unless there are also VOP3P operations, not operations are really legal. | 
|  | addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass); | 
|  | addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass); | 
|  | addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); | 
|  | addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); | 
|  | } | 
|  |  | 
|  | computeRegisterProperties(Subtarget->getRegisterInfo()); | 
|  |  | 
|  | // We need to custom lower vector stores from local memory | 
|  | setOperationAction(ISD::LOAD, MVT::v2i32, Custom); | 
|  | setOperationAction(ISD::LOAD, MVT::v3i32, Custom); | 
|  | setOperationAction(ISD::LOAD, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::LOAD, MVT::v5i32, Custom); | 
|  | setOperationAction(ISD::LOAD, MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::LOAD, MVT::v16i32, Custom); | 
|  | setOperationAction(ISD::LOAD, MVT::i1, Custom); | 
|  | setOperationAction(ISD::LOAD, MVT::v32i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::v2i32, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::v3i32, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::v5i32, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::v16i32, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::i1, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::v32i32, Custom); | 
|  |  | 
|  | setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); | 
|  | setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); | 
|  | setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); | 
|  | setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); | 
|  | setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); | 
|  | setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); | 
|  | setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); | 
|  | setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); | 
|  | setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); | 
|  | setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); | 
|  |  | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SELECT, MVT::i1, Promote); | 
|  | setOperationAction(ISD::SELECT, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SELECT, MVT::f64, Promote); | 
|  | AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); | 
|  |  | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); | 
|  |  | 
|  | setOperationAction(ISD::SETCC, MVT::i1, Promote); | 
|  | setOperationAction(ISD::SETCC, MVT::v2i1, Expand); | 
|  | setOperationAction(ISD::SETCC, MVT::v4i1, Expand); | 
|  | AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); | 
|  |  | 
|  | setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); | 
|  |  | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); | 
|  |  | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::BRCOND, MVT::Other, Custom); | 
|  | setOperationAction(ISD::BR_CC, MVT::i1, Expand); | 
|  | setOperationAction(ISD::BR_CC, MVT::i32, Expand); | 
|  | setOperationAction(ISD::BR_CC, MVT::i64, Expand); | 
|  | setOperationAction(ISD::BR_CC, MVT::f32, Expand); | 
|  | setOperationAction(ISD::BR_CC, MVT::f64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::UADDO, MVT::i32, Legal); | 
|  | setOperationAction(ISD::USUBO, MVT::i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::ADDCARRY, MVT::i32, Legal); | 
|  | setOperationAction(ISD::SUBCARRY, MVT::i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); | 
|  |  | 
|  | #if 0 | 
|  | setOperationAction(ISD::ADDCARRY, MVT::i64, Legal); | 
|  | setOperationAction(ISD::SUBCARRY, MVT::i64, Legal); | 
|  | #endif | 
|  |  | 
|  | // We only support LOAD/STORE and vector manipulation ops for vectors | 
|  | // with > 4 elements. | 
|  | for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, | 
|  | MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, MVT::v32i32 }) { | 
|  | for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { | 
|  | switch (Op) { | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: | 
|  | case ISD::BUILD_VECTOR: | 
|  | case ISD::BITCAST: | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | case ISD::INSERT_SUBVECTOR: | 
|  | case ISD::EXTRACT_SUBVECTOR: | 
|  | case ISD::SCALAR_TO_VECTOR: | 
|  | break; | 
|  | case ISD::CONCAT_VECTORS: | 
|  | setOperationAction(Op, VT, Custom); | 
|  | break; | 
|  | default: | 
|  | setOperationAction(Op, VT, Expand); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); | 
|  |  | 
|  | // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that | 
|  | // is expanded to avoid having two separate loops in case the index is a VGPR. | 
|  |  | 
|  | // Most operations are naturally 32-bit vector operations. We only support | 
|  | // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. | 
|  | for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { | 
|  | setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); | 
|  | AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); | 
|  |  | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); | 
|  | AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); | 
|  |  | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); | 
|  | AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); | 
|  |  | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); | 
|  | AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); | 
|  |  | 
|  | // Avoid stack access for these. | 
|  | // TODO: Generalize to more vector types. | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); | 
|  |  | 
|  | // Deal with vec3 vector operations when widened to vec4. | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom); | 
|  |  | 
|  | // Deal with vec5 vector operations when widened to vec8. | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom); | 
|  |  | 
|  | // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, | 
|  | // and output demarshalling | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); | 
|  |  | 
|  | // We can't return success/failure, only the old value, | 
|  | // let LLVM add the comparison | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand); | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand); | 
|  |  | 
|  | if (Subtarget->hasFlatAddressSpace()) { | 
|  | setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::BSWAP, MVT::i32, Legal); | 
|  | setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); | 
|  |  | 
|  | // On SI this is s_memtime and s_memrealtime on VI. | 
|  | setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Custom); | 
|  | setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom); | 
|  |  | 
|  | if (Subtarget->has16BitInsts()) { | 
|  | setOperationAction(ISD::FLOG, MVT::f16, Custom); | 
|  | setOperationAction(ISD::FEXP, MVT::f16, Custom); | 
|  | setOperationAction(ISD::FLOG10, MVT::f16, Custom); | 
|  | } | 
|  |  | 
|  | // v_mad_f32 does not support denormals according to some sources. | 
|  | if (!Subtarget->hasFP32Denormals()) | 
|  | setOperationAction(ISD::FMAD, MVT::f32, Legal); | 
|  |  | 
|  | if (!Subtarget->hasBFI()) { | 
|  | // fcopysign can be done in a single instruction with BFI. | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | } | 
|  |  | 
|  | if (!Subtarget->hasBCNT(32)) | 
|  | setOperationAction(ISD::CTPOP, MVT::i32, Expand); | 
|  |  | 
|  | if (!Subtarget->hasBCNT(64)) | 
|  | setOperationAction(ISD::CTPOP, MVT::i64, Expand); | 
|  |  | 
|  | if (Subtarget->hasFFBH()) | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); | 
|  |  | 
|  | if (Subtarget->hasFFBL()) | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); | 
|  |  | 
|  | // We only really have 32-bit BFE instructions (and 16-bit on VI). | 
|  | // | 
|  | // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any | 
|  | // effort to match them now. We want this to be false for i64 cases when the | 
|  | // extraction isn't restricted to the upper or lower half. Ideally we would | 
|  | // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that | 
|  | // span the midpoint are probably relatively rare, so don't worry about them | 
|  | // for now. | 
|  | if (Subtarget->hasBFE()) | 
|  | setHasExtractBitsInsn(true); | 
|  |  | 
|  | setOperationAction(ISD::FMINNUM, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FMAXNUM, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FMINNUM, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FMAXNUM, MVT::f64, Custom); | 
|  |  | 
|  |  | 
|  | // These are really only legal for ieee_mode functions. We should be avoiding | 
|  | // them for functions that don't have ieee_mode enabled, so just say they are | 
|  | // legal. | 
|  | setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); | 
|  | setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); | 
|  | setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); | 
|  |  | 
|  |  | 
|  | if (Subtarget->haveRoundOpsF64()) { | 
|  | setOperationAction(ISD::FTRUNC, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FCEIL, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FRINT, MVT::f64, Legal); | 
|  | } else { | 
|  | setOperationAction(ISD::FCEIL, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FTRUNC, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FRINT, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FFLOOR, MVT::f64, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FFLOOR, MVT::f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FSIN, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FCOS, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FDIV, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FDIV, MVT::f64, Custom); | 
|  |  | 
|  | if (Subtarget->has16BitInsts()) { | 
|  | setOperationAction(ISD::Constant, MVT::i16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SMIN, MVT::i16, Legal); | 
|  | setOperationAction(ISD::SMAX, MVT::i16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::UMIN, MVT::i16, Legal); | 
|  | setOperationAction(ISD::UMAX, MVT::i16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote); | 
|  | AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); | 
|  |  | 
|  | setOperationAction(ISD::ROTR, MVT::i16, Promote); | 
|  | setOperationAction(ISD::ROTL, MVT::i16, Promote); | 
|  |  | 
|  | setOperationAction(ISD::SDIV, MVT::i16, Promote); | 
|  | setOperationAction(ISD::UDIV, MVT::i16, Promote); | 
|  | setOperationAction(ISD::SREM, MVT::i16, Promote); | 
|  | setOperationAction(ISD::UREM, MVT::i16, Promote); | 
|  |  | 
|  | setOperationAction(ISD::BSWAP, MVT::i16, Promote); | 
|  | setOperationAction(ISD::BITREVERSE, MVT::i16, Promote); | 
|  |  | 
|  | setOperationAction(ISD::CTTZ, MVT::i16, Promote); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); | 
|  | setOperationAction(ISD::CTLZ, MVT::i16, Promote); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); | 
|  | setOperationAction(ISD::CTPOP, MVT::i16, Promote); | 
|  |  | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i16, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BR_CC, MVT::i16, Expand); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::i16, Custom); | 
|  |  | 
|  | setTruncStoreAction(MVT::i64, MVT::i16, Expand); | 
|  |  | 
|  | setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); | 
|  | AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); | 
|  | setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); | 
|  | AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); | 
|  |  | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); | 
|  |  | 
|  | // F16 - Constant Actions. | 
|  | setOperationAction(ISD::ConstantFP, MVT::f16, Legal); | 
|  |  | 
|  | // F16 - Load/Store Actions. | 
|  | setOperationAction(ISD::LOAD, MVT::f16, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); | 
|  | setOperationAction(ISD::STORE, MVT::f16, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); | 
|  |  | 
|  | // F16 - VOP1 Actions. | 
|  | setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); | 
|  | setOperationAction(ISD::FCOS, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FSIN, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FROUND, MVT::f16, Custom); | 
|  |  | 
|  | // F16 - VOP2 Actions. | 
|  | setOperationAction(ISD::BR_CC, MVT::f16, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); | 
|  |  | 
|  | setOperationAction(ISD::FDIV, MVT::f16, Custom); | 
|  |  | 
|  | // F16 - VOP3 Actions. | 
|  | setOperationAction(ISD::FMA, MVT::f16, Legal); | 
|  | if (!Subtarget->hasFP16Denormals() && STI.hasMadF16()) | 
|  | setOperationAction(ISD::FMAD, MVT::f16, Legal); | 
|  |  | 
|  | for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) { | 
|  | for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { | 
|  | switch (Op) { | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: | 
|  | case ISD::BUILD_VECTOR: | 
|  | case ISD::BITCAST: | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | case ISD::INSERT_SUBVECTOR: | 
|  | case ISD::EXTRACT_SUBVECTOR: | 
|  | case ISD::SCALAR_TO_VECTOR: | 
|  | break; | 
|  | case ISD::CONCAT_VECTORS: | 
|  | setOperationAction(Op, VT, Custom); | 
|  | break; | 
|  | default: | 
|  | setOperationAction(Op, VT, Expand); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // XXX - Do these do anything? Vector constants turn into build_vector. | 
|  | setOperationAction(ISD::Constant, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::UNDEF, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::UNDEF, MVT::v2f16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::v2i16, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); | 
|  | setOperationAction(ISD::STORE, MVT::v2f16, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::v2i16, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); | 
|  | setOperationAction(ISD::LOAD, MVT::v2f16, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); | 
|  |  | 
|  | setOperationAction(ISD::AND, MVT::v2i16, Promote); | 
|  | AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); | 
|  | setOperationAction(ISD::OR, MVT::v2i16, Promote); | 
|  | AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); | 
|  | setOperationAction(ISD::XOR, MVT::v2i16, Promote); | 
|  | AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::v4i16, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); | 
|  | setOperationAction(ISD::LOAD, MVT::v4f16, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::v4i16, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); | 
|  | setOperationAction(ISD::STORE, MVT::v4f16, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); | 
|  |  | 
|  | setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); | 
|  |  | 
|  | setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand); | 
|  | setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand); | 
|  |  | 
|  | if (!Subtarget->hasVOP3PInsts()) { | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FNEG, MVT::v2f16, Legal); | 
|  | // This isn't really legal, but this avoids the legalizer unrolling it (and | 
|  | // allows matching fneg (fabs x) patterns) | 
|  | setOperationAction(ISD::FABS, MVT::v2f16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FMAXNUM, MVT::f16, Custom); | 
|  | setOperationAction(ISD::FMINNUM, MVT::f16, Custom); | 
|  | setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal); | 
|  | setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom); | 
|  | setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand); | 
|  | setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasVOP3PInsts()) { | 
|  | setOperationAction(ISD::ADD, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::SUB, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::MUL, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::SHL, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::SRL, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::SRA, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::SMIN, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::UMIN, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::SMAX, MVT::v2i16, Legal); | 
|  | setOperationAction(ISD::UMAX, MVT::v2i16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FADD, MVT::v2f16, Legal); | 
|  | setOperationAction(ISD::FMUL, MVT::v2f16, Legal); | 
|  | setOperationAction(ISD::FMA, MVT::v2f16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal); | 
|  | setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SHL, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::SRA, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::SRL, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::ADD, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::SUB, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::MUL, MVT::v4i16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SMIN, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::SMAX, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::UMIN, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::UMAX, MVT::v4i16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FADD, MVT::v4f16, Custom); | 
|  | setOperationAction(ISD::FMUL, MVT::v4f16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom); | 
|  | setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom); | 
|  | setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom); | 
|  | setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FEXP, MVT::v2f16, Custom); | 
|  | setOperationAction(ISD::SELECT, MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::SELECT, MVT::v4f16, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FNEG, MVT::v4f16, Custom); | 
|  | setOperationAction(ISD::FABS, MVT::v4f16, Custom); | 
|  |  | 
|  | if (Subtarget->has16BitInsts()) { | 
|  | setOperationAction(ISD::SELECT, MVT::v2i16, Promote); | 
|  | AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); | 
|  | setOperationAction(ISD::SELECT, MVT::v2f16, Promote); | 
|  | AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); | 
|  | } else { | 
|  | // Legalization hack. | 
|  | setOperationAction(ISD::SELECT, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::SELECT, MVT::v2f16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FNEG, MVT::v2f16, Custom); | 
|  | setOperationAction(ISD::FABS, MVT::v2f16, Custom); | 
|  | } | 
|  |  | 
|  | for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) { | 
|  | setOperationAction(ISD::SELECT, VT, Custom); | 
|  | } | 
|  |  | 
|  | setTargetDAGCombine(ISD::ADD); | 
|  | setTargetDAGCombine(ISD::ADDCARRY); | 
|  | setTargetDAGCombine(ISD::SUB); | 
|  | setTargetDAGCombine(ISD::SUBCARRY); | 
|  | setTargetDAGCombine(ISD::FADD); | 
|  | setTargetDAGCombine(ISD::FSUB); | 
|  | setTargetDAGCombine(ISD::FMINNUM); | 
|  | setTargetDAGCombine(ISD::FMAXNUM); | 
|  | setTargetDAGCombine(ISD::FMINNUM_IEEE); | 
|  | setTargetDAGCombine(ISD::FMAXNUM_IEEE); | 
|  | setTargetDAGCombine(ISD::FMA); | 
|  | setTargetDAGCombine(ISD::SMIN); | 
|  | setTargetDAGCombine(ISD::SMAX); | 
|  | setTargetDAGCombine(ISD::UMIN); | 
|  | setTargetDAGCombine(ISD::UMAX); | 
|  | setTargetDAGCombine(ISD::SETCC); | 
|  | setTargetDAGCombine(ISD::AND); | 
|  | setTargetDAGCombine(ISD::OR); | 
|  | setTargetDAGCombine(ISD::XOR); | 
|  | setTargetDAGCombine(ISD::SINT_TO_FP); | 
|  | setTargetDAGCombine(ISD::UINT_TO_FP); | 
|  | setTargetDAGCombine(ISD::FCANONICALIZE); | 
|  | setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); | 
|  | setTargetDAGCombine(ISD::ZERO_EXTEND); | 
|  | setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); | 
|  | setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); | 
|  | setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); | 
|  |  | 
|  | // All memory operations. Some folding on the pointer operand is done to help | 
|  | // matching the constant offsets in the addressing modes. | 
|  | setTargetDAGCombine(ISD::LOAD); | 
|  | setTargetDAGCombine(ISD::STORE); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD); | 
|  | setTargetDAGCombine(ISD::ATOMIC_STORE); | 
|  | setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); | 
|  | setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); | 
|  | setTargetDAGCombine(ISD::ATOMIC_SWAP); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD); | 
|  |  | 
|  | setSchedulingPreference(Sched::RegPressure); | 
|  | } | 
|  |  | 
|  | const GCNSubtarget *SITargetLowering::getSubtarget() const { | 
|  | return Subtarget; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // TargetLowering queries | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // v_mad_mix* support a conversion from f16 to f32. | 
|  | // | 
|  | // There is only one special case when denormals are enabled we don't currently, | 
|  | // where this is OK to use. | 
|  | bool SITargetLowering::isFPExtFoldable(unsigned Opcode, | 
|  | EVT DestVT, EVT SrcVT) const { | 
|  | return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || | 
|  | (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && | 
|  | DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() && | 
|  | SrcVT.getScalarType() == MVT::f16; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { | 
|  | // SI has some legal vector types, but no legal vector operations. Say no | 
|  | // shuffles are legal in order to prefer scalarizing some vector operations. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, | 
|  | CallingConv::ID CC, | 
|  | EVT VT) const { | 
|  | // TODO: Consider splitting all arguments into 32-bit pieces. | 
|  | if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { | 
|  | EVT ScalarVT = VT.getScalarType(); | 
|  | unsigned Size = ScalarVT.getSizeInBits(); | 
|  | if (Size == 32) | 
|  | return ScalarVT.getSimpleVT(); | 
|  |  | 
|  | if (Size == 64) | 
|  | return MVT::i32; | 
|  |  | 
|  | if (Size == 16 && Subtarget->has16BitInsts()) | 
|  | return VT.isInteger() ? MVT::v2i16 : MVT::v2f16; | 
|  | } | 
|  |  | 
|  | return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); | 
|  | } | 
|  |  | 
|  | unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, | 
|  | CallingConv::ID CC, | 
|  | EVT VT) const { | 
|  | if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | EVT ScalarVT = VT.getScalarType(); | 
|  | unsigned Size = ScalarVT.getSizeInBits(); | 
|  |  | 
|  | if (Size == 32) | 
|  | return NumElts; | 
|  |  | 
|  | if (Size == 64) | 
|  | return 2 * NumElts; | 
|  |  | 
|  | if (Size == 16 && Subtarget->has16BitInsts()) | 
|  | return (VT.getVectorNumElements() + 1) / 2; | 
|  | } | 
|  |  | 
|  | return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); | 
|  | } | 
|  |  | 
|  | unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( | 
|  | LLVMContext &Context, CallingConv::ID CC, | 
|  | EVT VT, EVT &IntermediateVT, | 
|  | unsigned &NumIntermediates, MVT &RegisterVT) const { | 
|  | if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | EVT ScalarVT = VT.getScalarType(); | 
|  | unsigned Size = ScalarVT.getSizeInBits(); | 
|  | if (Size == 32) { | 
|  | RegisterVT = ScalarVT.getSimpleVT(); | 
|  | IntermediateVT = RegisterVT; | 
|  | NumIntermediates = NumElts; | 
|  | return NumIntermediates; | 
|  | } | 
|  |  | 
|  | if (Size == 64) { | 
|  | RegisterVT = MVT::i32; | 
|  | IntermediateVT = RegisterVT; | 
|  | NumIntermediates = 2 * NumElts; | 
|  | return NumIntermediates; | 
|  | } | 
|  |  | 
|  | // FIXME: We should fix the ABI to be the same on targets without 16-bit | 
|  | // support, but unless we can properly handle 3-vectors, it will be still be | 
|  | // inconsistent. | 
|  | if (Size == 16 && Subtarget->has16BitInsts()) { | 
|  | RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; | 
|  | IntermediateVT = RegisterVT; | 
|  | NumIntermediates = (NumElts + 1) / 2; | 
|  | return NumIntermediates; | 
|  | } | 
|  | } | 
|  |  | 
|  | return TargetLowering::getVectorTypeBreakdownForCallingConv( | 
|  | Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); | 
|  | } | 
|  |  | 
|  | static MVT memVTFromAggregate(Type *Ty) { | 
|  | // Only limited forms of aggregate type currently expected. | 
|  | assert(Ty->isStructTy() && "Expected struct type"); | 
|  |  | 
|  |  | 
|  | Type *ElementType = nullptr; | 
|  | unsigned NumElts; | 
|  | if (Ty->getContainedType(0)->isVectorTy()) { | 
|  | VectorType *VecComponent = cast<VectorType>(Ty->getContainedType(0)); | 
|  | ElementType = VecComponent->getElementType(); | 
|  | NumElts = VecComponent->getNumElements(); | 
|  | } else { | 
|  | ElementType = Ty->getContainedType(0); | 
|  | NumElts = 1; | 
|  | } | 
|  |  | 
|  | assert((Ty->getContainedType(1) && Ty->getContainedType(1)->isIntegerTy(32)) && "Expected int32 type"); | 
|  |  | 
|  | // Calculate the size of the memVT type from the aggregate | 
|  | unsigned Pow2Elts = 0; | 
|  | unsigned ElementSize; | 
|  | switch (ElementType->getTypeID()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown type!"); | 
|  | case Type::IntegerTyID: | 
|  | ElementSize = cast<IntegerType>(ElementType)->getBitWidth(); | 
|  | break; | 
|  | case Type::HalfTyID: | 
|  | ElementSize = 16; | 
|  | break; | 
|  | case Type::FloatTyID: | 
|  | ElementSize = 32; | 
|  | break; | 
|  | } | 
|  | unsigned AdditionalElts = ElementSize == 16 ? 2 : 1; | 
|  | Pow2Elts = 1 << Log2_32_Ceil(NumElts + AdditionalElts); | 
|  |  | 
|  | return MVT::getVectorVT(MVT::getVT(ElementType, false), | 
|  | Pow2Elts); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, | 
|  | const CallInst &CI, | 
|  | MachineFunction &MF, | 
|  | unsigned IntrID) const { | 
|  | if (const AMDGPU::RsrcIntrinsic *RsrcIntr = | 
|  | AMDGPU::lookupRsrcIntrinsic(IntrID)) { | 
|  | AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), | 
|  | (Intrinsic::ID)IntrID); | 
|  | if (Attr.hasFnAttribute(Attribute::ReadNone)) | 
|  | return false; | 
|  |  | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | if (RsrcIntr->IsImage) { | 
|  | Info.ptrVal = MFI->getImagePSV( | 
|  | *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), | 
|  | CI.getArgOperand(RsrcIntr->RsrcArg)); | 
|  | Info.align = 0; | 
|  | } else { | 
|  | Info.ptrVal = MFI->getBufferPSV( | 
|  | *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), | 
|  | CI.getArgOperand(RsrcIntr->RsrcArg)); | 
|  | } | 
|  |  | 
|  | Info.flags = MachineMemOperand::MODereferenceable; | 
|  | if (Attr.hasFnAttribute(Attribute::ReadOnly)) { | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::getVT(CI.getType(), true); | 
|  | if (Info.memVT == MVT::Other) { | 
|  | // Some intrinsics return an aggregate type - special case to work out | 
|  | // the correct memVT | 
|  | Info.memVT = memVTFromAggregate(CI.getType()); | 
|  | } | 
|  | Info.flags |= MachineMemOperand::MOLoad; | 
|  | } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) { | 
|  | Info.opc = ISD::INTRINSIC_VOID; | 
|  | Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); | 
|  | Info.flags |= MachineMemOperand::MOStore; | 
|  | } else { | 
|  | // Atomic | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::getVT(CI.getType()); | 
|  | Info.flags = MachineMemOperand::MOLoad | | 
|  | MachineMemOperand::MOStore | | 
|  | MachineMemOperand::MODereferenceable; | 
|  |  | 
|  | // XXX - Should this be volatile without known ordering? | 
|  | Info.flags |= MachineMemOperand::MOVolatile; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_atomic_inc: | 
|  | case Intrinsic::amdgcn_atomic_dec: | 
|  | case Intrinsic::amdgcn_ds_ordered_add: | 
|  | case Intrinsic::amdgcn_ds_ordered_swap: | 
|  | case Intrinsic::amdgcn_ds_fadd: | 
|  | case Intrinsic::amdgcn_ds_fmin: | 
|  | case Intrinsic::amdgcn_ds_fmax: { | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::getVT(CI.getType()); | 
|  | Info.ptrVal = CI.getOperand(0); | 
|  | Info.align = 0; | 
|  | Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; | 
|  |  | 
|  | const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); | 
|  | if (!Vol->isZero()) | 
|  | Info.flags |= MachineMemOperand::MOVolatile; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::amdgcn_ds_append: | 
|  | case Intrinsic::amdgcn_ds_consume: { | 
|  | Info.opc = ISD::INTRINSIC_W_CHAIN; | 
|  | Info.memVT = MVT::getVT(CI.getType()); | 
|  | Info.ptrVal = CI.getOperand(0); | 
|  | Info.align = 0; | 
|  | Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; | 
|  |  | 
|  | const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); | 
|  | if (!Vol->isZero()) | 
|  | Info.flags |= MachineMemOperand::MOVolatile; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::amdgcn_ds_gws_init: | 
|  | case Intrinsic::amdgcn_ds_gws_barrier: | 
|  | case Intrinsic::amdgcn_ds_gws_sema_v: | 
|  | case Intrinsic::amdgcn_ds_gws_sema_br: | 
|  | case Intrinsic::amdgcn_ds_gws_sema_p: | 
|  | case Intrinsic::amdgcn_ds_gws_sema_release_all: { | 
|  | Info.opc = ISD::INTRINSIC_VOID; | 
|  |  | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | Info.ptrVal = | 
|  | MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); | 
|  |  | 
|  | // This is an abstract access, but we need to specify a type and size. | 
|  | Info.memVT = MVT::i32; | 
|  | Info.size = 4; | 
|  | Info.align = 4; | 
|  |  | 
|  | Info.flags = MachineMemOperand::MOStore; | 
|  | if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) | 
|  | Info.flags = MachineMemOperand::MOLoad; | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, | 
|  | SmallVectorImpl<Value*> &Ops, | 
|  | Type *&AccessTy) const { | 
|  | switch (II->getIntrinsicID()) { | 
|  | case Intrinsic::amdgcn_atomic_inc: | 
|  | case Intrinsic::amdgcn_atomic_dec: | 
|  | case Intrinsic::amdgcn_ds_ordered_add: | 
|  | case Intrinsic::amdgcn_ds_ordered_swap: | 
|  | case Intrinsic::amdgcn_ds_fadd: | 
|  | case Intrinsic::amdgcn_ds_fmin: | 
|  | case Intrinsic::amdgcn_ds_fmax: { | 
|  | Value *Ptr = II->getArgOperand(0); | 
|  | AccessTy = II->getType(); | 
|  | Ops.push_back(Ptr); | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { | 
|  | if (!Subtarget->hasFlatInstOffsets()) { | 
|  | // Flat instructions do not have offsets, and only have the register | 
|  | // address. | 
|  | return AM.BaseOffs == 0 && AM.Scale == 0; | 
|  | } | 
|  |  | 
|  | // GFX9 added a 13-bit signed offset. When using regular flat instructions, | 
|  | // the sign bit is ignored and is treated as a 12-bit unsigned offset. | 
|  |  | 
|  | // GFX10 shrinked signed offset to 12 bits. When using regular flat | 
|  | // instructions, the sign bit is also ignored and is treated as 11-bit | 
|  | // unsigned offset. | 
|  |  | 
|  | if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) | 
|  | return isUInt<11>(AM.BaseOffs) && AM.Scale == 0; | 
|  |  | 
|  | // Just r + i | 
|  | return isUInt<12>(AM.BaseOffs) && AM.Scale == 0; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { | 
|  | if (Subtarget->hasFlatGlobalInsts()) | 
|  | return isInt<13>(AM.BaseOffs) && AM.Scale == 0; | 
|  |  | 
|  | if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { | 
|  | // Assume the we will use FLAT for all global memory accesses | 
|  | // on VI. | 
|  | // FIXME: This assumption is currently wrong.  On VI we still use | 
|  | // MUBUF instructions for the r + i addressing mode.  As currently | 
|  | // implemented, the MUBUF instructions only work on buffer < 4GB. | 
|  | // It may be possible to support > 4GB buffers with MUBUF instructions, | 
|  | // by setting the stride value in the resource descriptor which would | 
|  | // increase the size limit to (stride * 4GB).  However, this is risky, | 
|  | // because it has never been validated. | 
|  | return isLegalFlatAddressingMode(AM); | 
|  | } | 
|  |  | 
|  | return isLegalMUBUFAddressingMode(AM); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { | 
|  | // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and | 
|  | // additionally can do r + r + i with addr64. 32-bit has more addressing | 
|  | // mode options. Depending on the resource constant, it can also do | 
|  | // (i64 r0) + (i32 r1) * (i14 i). | 
|  | // | 
|  | // Private arrays end up using a scratch buffer most of the time, so also | 
|  | // assume those use MUBUF instructions. Scratch loads / stores are currently | 
|  | // implemented as mubuf instructions with offen bit set, so slightly | 
|  | // different than the normal addr64. | 
|  | if (!isUInt<12>(AM.BaseOffs)) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Since we can split immediate into soffset and immediate offset, | 
|  | // would it make sense to allow any immediate? | 
|  |  | 
|  | switch (AM.Scale) { | 
|  | case 0: // r + i or just i, depending on HasBaseReg. | 
|  | return true; | 
|  | case 1: | 
|  | return true; // We have r + r or r + i. | 
|  | case 2: | 
|  | if (AM.HasBaseReg) { | 
|  | // Reject 2 * r + r. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Allow 2 * r as r + r | 
|  | // Or  2 * r + i is allowed as r + r + i. | 
|  | return true; | 
|  | default: // Don't allow n * r | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, | 
|  | const AddrMode &AM, Type *Ty, | 
|  | unsigned AS, Instruction *I) const { | 
|  | // No global is ever allowed as a base. | 
|  | if (AM.BaseGV) | 
|  | return false; | 
|  |  | 
|  | if (AS == AMDGPUAS::GLOBAL_ADDRESS) | 
|  | return isLegalGlobalAddressingMode(AM); | 
|  |  | 
|  | if (AS == AMDGPUAS::CONSTANT_ADDRESS || | 
|  | AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || | 
|  | AS == AMDGPUAS::BUFFER_FAT_POINTER) { | 
|  | // If the offset isn't a multiple of 4, it probably isn't going to be | 
|  | // correctly aligned. | 
|  | // FIXME: Can we get the real alignment here? | 
|  | if (AM.BaseOffs % 4 != 0) | 
|  | return isLegalMUBUFAddressingMode(AM); | 
|  |  | 
|  | // There are no SMRD extloads, so if we have to do a small type access we | 
|  | // will use a MUBUF load. | 
|  | // FIXME?: We also need to do this if unaligned, but we don't know the | 
|  | // alignment here. | 
|  | if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) | 
|  | return isLegalGlobalAddressingMode(AM); | 
|  |  | 
|  | if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { | 
|  | // SMRD instructions have an 8-bit, dword offset on SI. | 
|  | if (!isUInt<8>(AM.BaseOffs / 4)) | 
|  | return false; | 
|  | } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { | 
|  | // On CI+, this can also be a 32-bit literal constant offset. If it fits | 
|  | // in 8-bits, it can use a smaller encoding. | 
|  | if (!isUInt<32>(AM.BaseOffs / 4)) | 
|  | return false; | 
|  | } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { | 
|  | // On VI, these use the SMEM format and the offset is 20-bit in bytes. | 
|  | if (!isUInt<20>(AM.BaseOffs)) | 
|  | return false; | 
|  | } else | 
|  | llvm_unreachable("unhandled generation"); | 
|  |  | 
|  | if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. | 
|  | return true; | 
|  |  | 
|  | if (AM.Scale == 1 && AM.HasBaseReg) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  |  | 
|  | } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { | 
|  | return isLegalMUBUFAddressingMode(AM); | 
|  | } else if (AS == AMDGPUAS::LOCAL_ADDRESS || | 
|  | AS == AMDGPUAS::REGION_ADDRESS) { | 
|  | // Basic, single offset DS instructions allow a 16-bit unsigned immediate | 
|  | // field. | 
|  | // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have | 
|  | // an 8-bit dword offset but we don't know the alignment here. | 
|  | if (!isUInt<16>(AM.BaseOffs)) | 
|  | return false; | 
|  |  | 
|  | if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. | 
|  | return true; | 
|  |  | 
|  | if (AM.Scale == 1 && AM.HasBaseReg) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } else if (AS == AMDGPUAS::FLAT_ADDRESS || | 
|  | AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { | 
|  | // For an unknown address space, this usually means that this is for some | 
|  | // reason being used for pure arithmetic, and not based on some addressing | 
|  | // computation. We don't have instructions that compute pointers with any | 
|  | // addressing modes, so treat them as having no offset like flat | 
|  | // instructions. | 
|  | return isLegalFlatAddressingMode(AM); | 
|  | } else { | 
|  | llvm_unreachable("unhandled address space"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, | 
|  | const SelectionDAG &DAG) const { | 
|  | if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { | 
|  | return (MemVT.getSizeInBits() <= 4 * 32); | 
|  | } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { | 
|  | unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); | 
|  | return (MemVT.getSizeInBits() <= MaxPrivateBits); | 
|  | } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { | 
|  | return (MemVT.getSizeInBits() <= 2 * 32); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::allowsMisalignedMemoryAccesses( | 
|  | EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags, | 
|  | bool *IsFast) const { | 
|  | if (IsFast) | 
|  | *IsFast = false; | 
|  |  | 
|  | // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, | 
|  | // which isn't a simple VT. | 
|  | // Until MVT is extended to handle this, simply check for the size and | 
|  | // rely on the condition below: allow accesses if the size is a multiple of 4. | 
|  | if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 && | 
|  | VT.getStoreSize() > 16)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || | 
|  | AddrSpace == AMDGPUAS::REGION_ADDRESS) { | 
|  | // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte | 
|  | // aligned, 8 byte access in a single operation using ds_read2/write2_b32 | 
|  | // with adjacent offsets. | 
|  | bool AlignedBy4 = (Align % 4 == 0); | 
|  | if (IsFast) | 
|  | *IsFast = AlignedBy4; | 
|  |  | 
|  | return AlignedBy4; | 
|  | } | 
|  |  | 
|  | // FIXME: We have to be conservative here and assume that flat operations | 
|  | // will access scratch.  If we had access to the IR function, then we | 
|  | // could determine if any private memory was used in the function. | 
|  | if (!Subtarget->hasUnalignedScratchAccess() && | 
|  | (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || | 
|  | AddrSpace == AMDGPUAS::FLAT_ADDRESS)) { | 
|  | bool AlignedBy4 = Align >= 4; | 
|  | if (IsFast) | 
|  | *IsFast = AlignedBy4; | 
|  |  | 
|  | return AlignedBy4; | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasUnalignedBufferAccess()) { | 
|  | // If we have an uniform constant load, it still requires using a slow | 
|  | // buffer instruction if unaligned. | 
|  | if (IsFast) { | 
|  | *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || | 
|  | AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? | 
|  | (Align % 4 == 0) : true; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Smaller than dword value must be aligned. | 
|  | if (VT.bitsLT(MVT::i32)) | 
|  | return false; | 
|  |  | 
|  | // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the | 
|  | // byte-address are ignored, thus forcing Dword alignment. | 
|  | // This applies to private, global, and constant memory. | 
|  | if (IsFast) | 
|  | *IsFast = true; | 
|  |  | 
|  | return VT.bitsGT(MVT::i32) && Align % 4 == 0; | 
|  | } | 
|  |  | 
|  | EVT SITargetLowering::getOptimalMemOpType( | 
|  | uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, | 
|  | bool ZeroMemset, bool MemcpyStrSrc, | 
|  | const AttributeList &FuncAttributes) const { | 
|  | // FIXME: Should account for address space here. | 
|  |  | 
|  | // The default fallback uses the private pointer size as a guess for a type to | 
|  | // use. Make sure we switch these to 64-bit accesses. | 
|  |  | 
|  | if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global | 
|  | return MVT::v4i32; | 
|  |  | 
|  | if (Size >= 8 && DstAlign >= 4) | 
|  | return MVT::v2i32; | 
|  |  | 
|  | // Use the default. | 
|  | return MVT::Other; | 
|  | } | 
|  |  | 
|  | static bool isFlatGlobalAddrSpace(unsigned AS) { | 
|  | return AS == AMDGPUAS::GLOBAL_ADDRESS || | 
|  | AS == AMDGPUAS::FLAT_ADDRESS || | 
|  | AS == AMDGPUAS::CONSTANT_ADDRESS || | 
|  | AS > AMDGPUAS::MAX_AMDGPU_ADDRESS; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, | 
|  | unsigned DestAS) const { | 
|  | return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { | 
|  | const MemSDNode *MemNode = cast<MemSDNode>(N); | 
|  | const Value *Ptr = MemNode->getMemOperand()->getValue(); | 
|  | const Instruction *I = dyn_cast_or_null<Instruction>(Ptr); | 
|  | return I && I->getMetadata("amdgpu.noclobber"); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, | 
|  | unsigned DestAS) const { | 
|  | // Flat -> private/local is a simple truncate. | 
|  | // Flat -> global is no-op | 
|  | if (SrcAS == AMDGPUAS::FLAT_ADDRESS) | 
|  | return true; | 
|  |  | 
|  | return isNoopAddrSpaceCast(SrcAS, DestAS); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isMemOpUniform(const SDNode *N) const { | 
|  | const MemSDNode *MemNode = cast<MemSDNode>(N); | 
|  |  | 
|  | return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); | 
|  | } | 
|  |  | 
|  | TargetLoweringBase::LegalizeTypeAction | 
|  | SITargetLowering::getPreferredVectorAction(MVT VT) const { | 
|  | if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16)) | 
|  | return TypeSplitVector; | 
|  |  | 
|  | return TargetLoweringBase::getPreferredVectorAction(VT); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, | 
|  | Type *Ty) const { | 
|  | // FIXME: Could be smarter if called for vector constants. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { | 
|  | if (Subtarget->has16BitInsts() && VT == MVT::i16) { | 
|  | switch (Op) { | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: | 
|  |  | 
|  | // These operations are done with 32-bit instructions anyway. | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::SELECT: | 
|  | // TODO: Extensions? | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // SimplifySetCC uses this function to determine whether or not it should | 
|  | // create setcc with i1 operands.  We don't have instructions for i1 setcc. | 
|  | if (VT == MVT::i1 && Op == ISD::SETCC) | 
|  | return false; | 
|  |  | 
|  | return TargetLowering::isTypeDesirableForOp(Op, VT); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, | 
|  | const SDLoc &SL, | 
|  | SDValue Chain, | 
|  | uint64_t Offset) const { | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | const ArgDescriptor *InputPtrReg; | 
|  | const TargetRegisterClass *RC; | 
|  |  | 
|  | std::tie(InputPtrReg, RC) | 
|  | = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); | 
|  |  | 
|  | MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); | 
|  | MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); | 
|  | SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, | 
|  | MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); | 
|  |  | 
|  | return DAG.getObjectPtrOffset(SL, BasePtr, Offset); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, | 
|  | const SDLoc &SL) const { | 
|  | uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), | 
|  | FIRST_IMPLICIT); | 
|  | return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, | 
|  | const SDLoc &SL, SDValue Val, | 
|  | bool Signed, | 
|  | const ISD::InputArg *Arg) const { | 
|  | // First, if it is a widened vector, narrow it. | 
|  | if (VT.isVector() && | 
|  | VT.getVectorNumElements() != MemVT.getVectorNumElements()) { | 
|  | EVT NarrowedVT = | 
|  | EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), | 
|  | VT.getVectorNumElements()); | 
|  | Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, | 
|  | DAG.getConstant(0, SL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | // Then convert the vector elements or scalar value. | 
|  | if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && | 
|  | VT.bitsLT(MemVT)) { | 
|  | unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; | 
|  | Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); | 
|  | } | 
|  |  | 
|  | if (MemVT.isFloatingPoint()) | 
|  | Val = getFPExtOrFPTrunc(DAG, Val, SL, VT); | 
|  | else if (Signed) | 
|  | Val = DAG.getSExtOrTrunc(Val, SL, VT); | 
|  | else | 
|  | Val = DAG.getZExtOrTrunc(Val, SL, VT); | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerKernargMemParameter( | 
|  | SelectionDAG &DAG, EVT VT, EVT MemVT, | 
|  | const SDLoc &SL, SDValue Chain, | 
|  | uint64_t Offset, unsigned Align, bool Signed, | 
|  | const ISD::InputArg *Arg) const { | 
|  | Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); | 
|  | PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); | 
|  | MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); | 
|  |  | 
|  | // Try to avoid using an extload by loading earlier than the argument address, | 
|  | // and extracting the relevant bits. The load should hopefully be merged with | 
|  | // the previous argument. | 
|  | if (MemVT.getStoreSize() < 4 && Align < 4) { | 
|  | // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). | 
|  | int64_t AlignDownOffset = alignDown(Offset, 4); | 
|  | int64_t OffsetDiff = Offset - AlignDownOffset; | 
|  |  | 
|  | EVT IntVT = MemVT.changeTypeToInteger(); | 
|  |  | 
|  | // TODO: If we passed in the base kernel offset we could have a better | 
|  | // alignment than 4, but we don't really need it. | 
|  | SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); | 
|  | SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4, | 
|  | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOInvariant); | 
|  |  | 
|  | SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); | 
|  | SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); | 
|  |  | 
|  | SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); | 
|  | ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); | 
|  | ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); | 
|  |  | 
|  |  | 
|  | return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); | 
|  | } | 
|  |  | 
|  | SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); | 
|  | SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align, | 
|  | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOInvariant); | 
|  |  | 
|  | SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); | 
|  | return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, | 
|  | const SDLoc &SL, SDValue Chain, | 
|  | const ISD::InputArg &Arg) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  |  | 
|  | if (Arg.Flags.isByVal()) { | 
|  | unsigned Size = Arg.Flags.getByValSize(); | 
|  | int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); | 
|  | return DAG.getFrameIndex(FrameIdx, MVT::i32); | 
|  | } | 
|  |  | 
|  | unsigned ArgOffset = VA.getLocMemOffset(); | 
|  | unsigned ArgSize = VA.getValVT().getStoreSize(); | 
|  |  | 
|  | int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); | 
|  |  | 
|  | // Create load nodes to retrieve arguments from the stack. | 
|  | SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); | 
|  | SDValue ArgValue; | 
|  |  | 
|  | // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) | 
|  | ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; | 
|  | MVT MemVT = VA.getValVT(); | 
|  |  | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | MemVT = VA.getLocVT(); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | ExtType = ISD::SEXTLOAD; | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | ExtType = ISD::ZEXTLOAD; | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | ExtType = ISD::EXTLOAD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ArgValue = DAG.getExtLoad( | 
|  | ExtType, SL, VA.getLocVT(), Chain, FIN, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), | 
|  | MemVT); | 
|  | return ArgValue; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, | 
|  | const SIMachineFunctionInfo &MFI, | 
|  | EVT VT, | 
|  | AMDGPUFunctionArgInfo::PreloadedValue PVID) const { | 
|  | const ArgDescriptor *Reg; | 
|  | const TargetRegisterClass *RC; | 
|  |  | 
|  | std::tie(Reg, RC) = MFI.getPreloadedValue(PVID); | 
|  | return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); | 
|  | } | 
|  |  | 
|  | static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, | 
|  | CallingConv::ID CallConv, | 
|  | ArrayRef<ISD::InputArg> Ins, | 
|  | BitVector &Skipped, | 
|  | FunctionType *FType, | 
|  | SIMachineFunctionInfo *Info) { | 
|  | for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { | 
|  | const ISD::InputArg *Arg = &Ins[I]; | 
|  |  | 
|  | assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && | 
|  | "vector type argument should have been split"); | 
|  |  | 
|  | // First check if it's a PS input addr. | 
|  | if (CallConv == CallingConv::AMDGPU_PS && | 
|  | !Arg->Flags.isInReg() && !Arg->Flags.isByVal() && PSInputNum <= 15) { | 
|  |  | 
|  | bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); | 
|  |  | 
|  | // Inconveniently only the first part of the split is marked as isSplit, | 
|  | // so skip to the end. We only want to increment PSInputNum once for the | 
|  | // entire split argument. | 
|  | if (Arg->Flags.isSplit()) { | 
|  | while (!Arg->Flags.isSplitEnd()) { | 
|  | assert(!Arg->VT.isVector() && | 
|  | "unexpected vector split in ps argument type"); | 
|  | if (!SkipArg) | 
|  | Splits.push_back(*Arg); | 
|  | Arg = &Ins[++I]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SkipArg) { | 
|  | // We can safely skip PS inputs. | 
|  | Skipped.set(Arg->getOrigArgIndex()); | 
|  | ++PSInputNum; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Info->markPSInputAllocated(PSInputNum); | 
|  | if (Arg->Used) | 
|  | Info->markPSInputEnabled(PSInputNum); | 
|  |  | 
|  | ++PSInputNum; | 
|  | } | 
|  |  | 
|  | Splits.push_back(*Arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allocate special inputs passed in VGPRs. | 
|  | static void allocateSpecialEntryInputVGPRs(CCState &CCInfo, | 
|  | MachineFunction &MF, | 
|  | const SIRegisterInfo &TRI, | 
|  | SIMachineFunctionInfo &Info) { | 
|  | if (Info.hasWorkItemIDX()) { | 
|  | unsigned Reg = AMDGPU::VGPR0; | 
|  | MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); | 
|  |  | 
|  | CCInfo.AllocateReg(Reg); | 
|  | Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg)); | 
|  | } | 
|  |  | 
|  | if (Info.hasWorkItemIDY()) { | 
|  | unsigned Reg = AMDGPU::VGPR1; | 
|  | MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); | 
|  |  | 
|  | CCInfo.AllocateReg(Reg); | 
|  | Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); | 
|  | } | 
|  |  | 
|  | if (Info.hasWorkItemIDZ()) { | 
|  | unsigned Reg = AMDGPU::VGPR2; | 
|  | MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); | 
|  |  | 
|  | CCInfo.AllocateReg(Reg); | 
|  | Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to allocate a VGPR at the end of the argument list, or if no argument | 
|  | // VGPRs are left allocating a stack slot. | 
|  | // If \p Mask is is given it indicates bitfield position in the register. | 
|  | // If \p Arg is given use it with new ]p Mask instead of allocating new. | 
|  | static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, | 
|  | ArgDescriptor Arg = ArgDescriptor()) { | 
|  | if (Arg.isSet()) | 
|  | return ArgDescriptor::createArg(Arg, Mask); | 
|  |  | 
|  | ArrayRef<MCPhysReg> ArgVGPRs | 
|  | = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); | 
|  | unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); | 
|  | if (RegIdx == ArgVGPRs.size()) { | 
|  | // Spill to stack required. | 
|  | int64_t Offset = CCInfo.AllocateStack(4, 4); | 
|  |  | 
|  | return ArgDescriptor::createStack(Offset, Mask); | 
|  | } | 
|  |  | 
|  | unsigned Reg = ArgVGPRs[RegIdx]; | 
|  | Reg = CCInfo.AllocateReg(Reg); | 
|  | assert(Reg != AMDGPU::NoRegister); | 
|  |  | 
|  | MachineFunction &MF = CCInfo.getMachineFunction(); | 
|  | MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); | 
|  | return ArgDescriptor::createRegister(Reg, Mask); | 
|  | } | 
|  |  | 
|  | static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned NumArgRegs) { | 
|  | ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); | 
|  | unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); | 
|  | if (RegIdx == ArgSGPRs.size()) | 
|  | report_fatal_error("ran out of SGPRs for arguments"); | 
|  |  | 
|  | unsigned Reg = ArgSGPRs[RegIdx]; | 
|  | Reg = CCInfo.AllocateReg(Reg); | 
|  | assert(Reg != AMDGPU::NoRegister); | 
|  |  | 
|  | MachineFunction &MF = CCInfo.getMachineFunction(); | 
|  | MF.addLiveIn(Reg, RC); | 
|  | return ArgDescriptor::createRegister(Reg); | 
|  | } | 
|  |  | 
|  | static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) { | 
|  | return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); | 
|  | } | 
|  |  | 
|  | static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) { | 
|  | return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); | 
|  | } | 
|  |  | 
|  | static void allocateSpecialInputVGPRs(CCState &CCInfo, | 
|  | MachineFunction &MF, | 
|  | const SIRegisterInfo &TRI, | 
|  | SIMachineFunctionInfo &Info) { | 
|  | const unsigned Mask = 0x3ff; | 
|  | ArgDescriptor Arg; | 
|  |  | 
|  | if (Info.hasWorkItemIDX()) { | 
|  | Arg = allocateVGPR32Input(CCInfo, Mask); | 
|  | Info.setWorkItemIDX(Arg); | 
|  | } | 
|  |  | 
|  | if (Info.hasWorkItemIDY()) { | 
|  | Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); | 
|  | Info.setWorkItemIDY(Arg); | 
|  | } | 
|  |  | 
|  | if (Info.hasWorkItemIDZ()) | 
|  | Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); | 
|  | } | 
|  |  | 
|  | static void allocateSpecialInputSGPRs(CCState &CCInfo, | 
|  | MachineFunction &MF, | 
|  | const SIRegisterInfo &TRI, | 
|  | SIMachineFunctionInfo &Info) { | 
|  | auto &ArgInfo = Info.getArgInfo(); | 
|  |  | 
|  | // TODO: Unify handling with private memory pointers. | 
|  |  | 
|  | if (Info.hasDispatchPtr()) | 
|  | ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo); | 
|  |  | 
|  | if (Info.hasQueuePtr()) | 
|  | ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo); | 
|  |  | 
|  | if (Info.hasKernargSegmentPtr()) | 
|  | ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo); | 
|  |  | 
|  | if (Info.hasDispatchID()) | 
|  | ArgInfo.DispatchID = allocateSGPR64Input(CCInfo); | 
|  |  | 
|  | // flat_scratch_init is not applicable for non-kernel functions. | 
|  |  | 
|  | if (Info.hasWorkGroupIDX()) | 
|  | ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo); | 
|  |  | 
|  | if (Info.hasWorkGroupIDY()) | 
|  | ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo); | 
|  |  | 
|  | if (Info.hasWorkGroupIDZ()) | 
|  | ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo); | 
|  |  | 
|  | if (Info.hasImplicitArgPtr()) | 
|  | ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo); | 
|  | } | 
|  |  | 
|  | // Allocate special inputs passed in user SGPRs. | 
|  | static void allocateHSAUserSGPRs(CCState &CCInfo, | 
|  | MachineFunction &MF, | 
|  | const SIRegisterInfo &TRI, | 
|  | SIMachineFunctionInfo &Info) { | 
|  | if (Info.hasImplicitBufferPtr()) { | 
|  | unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); | 
|  | MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(ImplicitBufferPtrReg); | 
|  | } | 
|  |  | 
|  | // FIXME: How should these inputs interact with inreg / custom SGPR inputs? | 
|  | if (Info.hasPrivateSegmentBuffer()) { | 
|  | unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); | 
|  | MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); | 
|  | CCInfo.AllocateReg(PrivateSegmentBufferReg); | 
|  | } | 
|  |  | 
|  | if (Info.hasDispatchPtr()) { | 
|  | unsigned DispatchPtrReg = Info.addDispatchPtr(TRI); | 
|  | MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(DispatchPtrReg); | 
|  | } | 
|  |  | 
|  | if (Info.hasQueuePtr()) { | 
|  | unsigned QueuePtrReg = Info.addQueuePtr(TRI); | 
|  | MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(QueuePtrReg); | 
|  | } | 
|  |  | 
|  | if (Info.hasKernargSegmentPtr()) { | 
|  | unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI); | 
|  | MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(InputPtrReg); | 
|  | } | 
|  |  | 
|  | if (Info.hasDispatchID()) { | 
|  | unsigned DispatchIDReg = Info.addDispatchID(TRI); | 
|  | MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(DispatchIDReg); | 
|  | } | 
|  |  | 
|  | if (Info.hasFlatScratchInit()) { | 
|  | unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI); | 
|  | MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); | 
|  | CCInfo.AllocateReg(FlatScratchInitReg); | 
|  | } | 
|  |  | 
|  | // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read | 
|  | // these from the dispatch pointer. | 
|  | } | 
|  |  | 
|  | // Allocate special input registers that are initialized per-wave. | 
|  | static void allocateSystemSGPRs(CCState &CCInfo, | 
|  | MachineFunction &MF, | 
|  | SIMachineFunctionInfo &Info, | 
|  | CallingConv::ID CallConv, | 
|  | bool IsShader) { | 
|  | if (Info.hasWorkGroupIDX()) { | 
|  | unsigned Reg = Info.addWorkGroupIDX(); | 
|  | MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); | 
|  | CCInfo.AllocateReg(Reg); | 
|  | } | 
|  |  | 
|  | if (Info.hasWorkGroupIDY()) { | 
|  | unsigned Reg = Info.addWorkGroupIDY(); | 
|  | MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); | 
|  | CCInfo.AllocateReg(Reg); | 
|  | } | 
|  |  | 
|  | if (Info.hasWorkGroupIDZ()) { | 
|  | unsigned Reg = Info.addWorkGroupIDZ(); | 
|  | MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); | 
|  | CCInfo.AllocateReg(Reg); | 
|  | } | 
|  |  | 
|  | if (Info.hasWorkGroupInfo()) { | 
|  | unsigned Reg = Info.addWorkGroupInfo(); | 
|  | MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); | 
|  | CCInfo.AllocateReg(Reg); | 
|  | } | 
|  |  | 
|  | if (Info.hasPrivateSegmentWaveByteOffset()) { | 
|  | // Scratch wave offset passed in system SGPR. | 
|  | unsigned PrivateSegmentWaveByteOffsetReg; | 
|  |  | 
|  | if (IsShader) { | 
|  | PrivateSegmentWaveByteOffsetReg = | 
|  | Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); | 
|  |  | 
|  | // This is true if the scratch wave byte offset doesn't have a fixed | 
|  | // location. | 
|  | if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { | 
|  | PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); | 
|  | Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); | 
|  | } | 
|  | } else | 
|  | PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); | 
|  |  | 
|  | MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); | 
|  | CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void reservePrivateMemoryRegs(const TargetMachine &TM, | 
|  | MachineFunction &MF, | 
|  | const SIRegisterInfo &TRI, | 
|  | SIMachineFunctionInfo &Info) { | 
|  | // Now that we've figured out where the scratch register inputs are, see if | 
|  | // should reserve the arguments and use them directly. | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | bool HasStackObjects = MFI.hasStackObjects(); | 
|  | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); | 
|  |  | 
|  | // Record that we know we have non-spill stack objects so we don't need to | 
|  | // check all stack objects later. | 
|  | if (HasStackObjects) | 
|  | Info.setHasNonSpillStackObjects(true); | 
|  |  | 
|  | // Everything live out of a block is spilled with fast regalloc, so it's | 
|  | // almost certain that spilling will be required. | 
|  | if (TM.getOptLevel() == CodeGenOpt::None) | 
|  | HasStackObjects = true; | 
|  |  | 
|  | // For now assume stack access is needed in any callee functions, so we need | 
|  | // the scratch registers to pass in. | 
|  | bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); | 
|  |  | 
|  | if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { | 
|  | // If we have stack objects, we unquestionably need the private buffer | 
|  | // resource. For the Code Object V2 ABI, this will be the first 4 user | 
|  | // SGPR inputs. We can reserve those and use them directly. | 
|  |  | 
|  | unsigned PrivateSegmentBufferReg = | 
|  | Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); | 
|  | Info.setScratchRSrcReg(PrivateSegmentBufferReg); | 
|  | } else { | 
|  | unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); | 
|  | // We tentatively reserve the last registers (skipping the last registers | 
|  | // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, | 
|  | // we'll replace these with the ones immediately after those which were | 
|  | // really allocated. In the prologue copies will be inserted from the | 
|  | // argument to these reserved registers. | 
|  |  | 
|  | // Without HSA, relocations are used for the scratch pointer and the | 
|  | // buffer resource setup is always inserted in the prologue. Scratch wave | 
|  | // offset is still in an input SGPR. | 
|  | Info.setScratchRSrcReg(ReservedBufferReg); | 
|  | } | 
|  |  | 
|  | // hasFP should be accurate for kernels even before the frame is finalized. | 
|  | if (ST.getFrameLowering()->hasFP(MF)) { | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | // Try to use s32 as the SP, but move it if it would interfere with input | 
|  | // arguments. This won't work with calls though. | 
|  | // | 
|  | // FIXME: Move SP to avoid any possible inputs, or find a way to spill input | 
|  | // registers. | 
|  | if (!MRI.isLiveIn(AMDGPU::SGPR32)) { | 
|  | Info.setStackPtrOffsetReg(AMDGPU::SGPR32); | 
|  | } else { | 
|  | assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); | 
|  |  | 
|  | if (MFI.hasCalls()) | 
|  | report_fatal_error("call in graphics shader with too many input SGPRs"); | 
|  |  | 
|  | for (unsigned Reg : AMDGPU::SGPR_32RegClass) { | 
|  | if (!MRI.isLiveIn(Reg)) { | 
|  | Info.setStackPtrOffsetReg(Reg); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) | 
|  | report_fatal_error("failed to find register for SP"); | 
|  | } | 
|  |  | 
|  | if (MFI.hasCalls()) { | 
|  | Info.setScratchWaveOffsetReg(AMDGPU::SGPR33); | 
|  | Info.setFrameOffsetReg(AMDGPU::SGPR33); | 
|  | } else { | 
|  | unsigned ReservedOffsetReg = | 
|  | TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); | 
|  | Info.setScratchWaveOffsetReg(ReservedOffsetReg); | 
|  | Info.setFrameOffsetReg(ReservedOffsetReg); | 
|  | } | 
|  | } else if (RequiresStackAccess) { | 
|  | assert(!MFI.hasCalls()); | 
|  | // We know there are accesses and they will be done relative to SP, so just | 
|  | // pin it to the input. | 
|  | // | 
|  | // FIXME: Should not do this if inline asm is reading/writing these | 
|  | // registers. | 
|  | unsigned PreloadedSP = Info.getPreloadedReg( | 
|  | AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET); | 
|  |  | 
|  | Info.setStackPtrOffsetReg(PreloadedSP); | 
|  | Info.setScratchWaveOffsetReg(PreloadedSP); | 
|  | Info.setFrameOffsetReg(PreloadedSP); | 
|  | } else { | 
|  | assert(!MFI.hasCalls()); | 
|  |  | 
|  | // There may not be stack access at all. There may still be spills, or | 
|  | // access of a constant pointer (in which cases an extra copy will be | 
|  | // emitted in the prolog). | 
|  | unsigned ReservedOffsetReg | 
|  | = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); | 
|  | Info.setStackPtrOffsetReg(ReservedOffsetReg); | 
|  | Info.setScratchWaveOffsetReg(ReservedOffsetReg); | 
|  | Info.setFrameOffsetReg(ReservedOffsetReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { | 
|  | const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); | 
|  | return !Info->isEntryFunction(); | 
|  | } | 
|  |  | 
|  | void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { | 
|  |  | 
|  | } | 
|  |  | 
|  | void SITargetLowering::insertCopiesSplitCSR( | 
|  | MachineBasicBlock *Entry, | 
|  | const SmallVectorImpl<MachineBasicBlock *> &Exits) const { | 
|  | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | 
|  |  | 
|  | const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); | 
|  | if (!IStart) | 
|  | return; | 
|  |  | 
|  | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | 
|  | MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); | 
|  | MachineBasicBlock::iterator MBBI = Entry->begin(); | 
|  | for (const MCPhysReg *I = IStart; *I; ++I) { | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  | if (AMDGPU::SReg_64RegClass.contains(*I)) | 
|  | RC = &AMDGPU::SGPR_64RegClass; | 
|  | else if (AMDGPU::SReg_32RegClass.contains(*I)) | 
|  | RC = &AMDGPU::SGPR_32RegClass; | 
|  | else | 
|  | llvm_unreachable("Unexpected register class in CSRsViaCopy!"); | 
|  |  | 
|  | unsigned NewVR = MRI->createVirtualRegister(RC); | 
|  | // Create copy from CSR to a virtual register. | 
|  | Entry->addLiveIn(*I); | 
|  | BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) | 
|  | .addReg(*I); | 
|  |  | 
|  | // Insert the copy-back instructions right before the terminator. | 
|  | for (auto *Exit : Exits) | 
|  | BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), *I) | 
|  | .addReg(NewVR); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFormalArguments( | 
|  | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | 
|  | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const Function &Fn = MF.getFunction(); | 
|  | FunctionType *FType = MF.getFunction().getFunctionType(); | 
|  | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) { | 
|  | DiagnosticInfoUnsupported NoGraphicsHSA( | 
|  | Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); | 
|  | DAG.getContext()->diagnose(NoGraphicsHSA); | 
|  | return DAG.getEntryNode(); | 
|  | } | 
|  |  | 
|  | SmallVector<ISD::InputArg, 16> Splits; | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | BitVector Skipped(Ins.size()); | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | bool IsShader = AMDGPU::isShader(CallConv); | 
|  | bool IsKernel = AMDGPU::isKernel(CallConv); | 
|  | bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); | 
|  |  | 
|  | if (IsShader) { | 
|  | processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); | 
|  |  | 
|  | // At least one interpolation mode must be enabled or else the GPU will | 
|  | // hang. | 
|  | // | 
|  | // Check PSInputAddr instead of PSInputEnable. The idea is that if the user | 
|  | // set PSInputAddr, the user wants to enable some bits after the compilation | 
|  | // based on run-time states. Since we can't know what the final PSInputEna | 
|  | // will look like, so we shouldn't do anything here and the user should take | 
|  | // responsibility for the correct programming. | 
|  | // | 
|  | // Otherwise, the following restrictions apply: | 
|  | // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. | 
|  | // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be | 
|  | //   enabled too. | 
|  | if (CallConv == CallingConv::AMDGPU_PS) { | 
|  | if ((Info->getPSInputAddr() & 0x7F) == 0 || | 
|  | ((Info->getPSInputAddr() & 0xF) == 0 && | 
|  | Info->isPSInputAllocated(11))) { | 
|  | CCInfo.AllocateReg(AMDGPU::VGPR0); | 
|  | CCInfo.AllocateReg(AMDGPU::VGPR1); | 
|  | Info->markPSInputAllocated(0); | 
|  | Info->markPSInputEnabled(0); | 
|  | } | 
|  | if (Subtarget->isAmdPalOS()) { | 
|  | // For isAmdPalOS, the user does not enable some bits after compilation | 
|  | // based on run-time states; the register values being generated here are | 
|  | // the final ones set in hardware. Therefore we need to apply the | 
|  | // workaround to PSInputAddr and PSInputEnable together.  (The case where | 
|  | // a bit is set in PSInputAddr but not PSInputEnable is where the | 
|  | // frontend set up an input arg for a particular interpolation mode, but | 
|  | // nothing uses that input arg. Really we should have an earlier pass | 
|  | // that removes such an arg.) | 
|  | unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); | 
|  | if ((PsInputBits & 0x7F) == 0 || | 
|  | ((PsInputBits & 0xF) == 0 && | 
|  | (PsInputBits >> 11 & 1))) | 
|  | Info->markPSInputEnabled( | 
|  | countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(!Info->hasDispatchPtr() && | 
|  | !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && | 
|  | !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && | 
|  | !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && | 
|  | !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && | 
|  | !Info->hasWorkItemIDZ()); | 
|  | } else if (IsKernel) { | 
|  | assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); | 
|  | } else { | 
|  | Splits.append(Ins.begin(), Ins.end()); | 
|  | } | 
|  |  | 
|  | if (IsEntryFunc) { | 
|  | allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); | 
|  | allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); | 
|  | } | 
|  |  | 
|  | if (IsKernel) { | 
|  | analyzeFormalArgumentsCompute(CCInfo, Ins); | 
|  | } else { | 
|  | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); | 
|  | CCInfo.AnalyzeFormalArguments(Splits, AssignFn); | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 16> Chains; | 
|  |  | 
|  | // FIXME: This is the minimum kernel argument alignment. We should improve | 
|  | // this to the maximum alignment of the arguments. | 
|  | // | 
|  | // FIXME: Alignment of explicit arguments totally broken with non-0 explicit | 
|  | // kern arg offset. | 
|  | const unsigned KernelArgBaseAlign = 16; | 
|  |  | 
|  | for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { | 
|  | const ISD::InputArg &Arg = Ins[i]; | 
|  | if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { | 
|  | InVals.push_back(DAG.getUNDEF(Arg.VT)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | CCValAssign &VA = ArgLocs[ArgIdx++]; | 
|  | MVT VT = VA.getLocVT(); | 
|  |  | 
|  | if (IsEntryFunc && VA.isMemLoc()) { | 
|  | VT = Ins[i].VT; | 
|  | EVT MemVT = VA.getLocVT(); | 
|  |  | 
|  | const uint64_t Offset = VA.getLocMemOffset(); | 
|  | unsigned Align = MinAlign(KernelArgBaseAlign, Offset); | 
|  |  | 
|  | SDValue Arg = lowerKernargMemParameter( | 
|  | DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]); | 
|  | Chains.push_back(Arg.getValue(1)); | 
|  |  | 
|  | auto *ParamTy = | 
|  | dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); | 
|  | if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && | 
|  | ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || | 
|  | ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { | 
|  | // On SI local pointers are just offsets into LDS, so they are always | 
|  | // less than 16-bits.  On CI and newer they could potentially be | 
|  | // real pointers, so we can't guarantee their size. | 
|  | Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, | 
|  | DAG.getValueType(MVT::i16)); | 
|  | } | 
|  |  | 
|  | InVals.push_back(Arg); | 
|  | continue; | 
|  | } else if (!IsEntryFunc && VA.isMemLoc()) { | 
|  | SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); | 
|  | InVals.push_back(Val); | 
|  | if (!Arg.Flags.isByVal()) | 
|  | Chains.push_back(Val.getValue(1)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(VA.isRegLoc() && "Parameter must be in a register!"); | 
|  |  | 
|  | unsigned Reg = VA.getLocReg(); | 
|  | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); | 
|  | EVT ValVT = VA.getValVT(); | 
|  |  | 
|  | Reg = MF.addLiveIn(Reg, RC); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); | 
|  |  | 
|  | if (Arg.Flags.isSRet()) { | 
|  | // The return object should be reasonably addressable. | 
|  |  | 
|  | // FIXME: This helps when the return is a real sret. If it is a | 
|  | // automatically inserted sret (i.e. CanLowerReturn returns false), an | 
|  | // extra copy is inserted in SelectionDAGBuilder which obscures this. | 
|  | unsigned NumBits | 
|  | = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); | 
|  | Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, | 
|  | DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); | 
|  | } | 
|  |  | 
|  | // If this is an 8 or 16-bit value, it is really passed promoted | 
|  | // to 32 bits. Insert an assert[sz]ext to capture this, then | 
|  | // truncate to the right size. | 
|  | switch (VA.getLocInfo()) { | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, | 
|  | DAG.getValueType(ValVT)); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, | 
|  | DAG.getValueType(ValVT)); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | } | 
|  |  | 
|  | InVals.push_back(Val); | 
|  | } | 
|  |  | 
|  | if (!IsEntryFunc) { | 
|  | // Special inputs come after user arguments. | 
|  | allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); | 
|  | } | 
|  |  | 
|  | // Start adding system SGPRs. | 
|  | if (IsEntryFunc) { | 
|  | allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader); | 
|  | } else { | 
|  | CCInfo.AllocateReg(Info->getScratchRSrcReg()); | 
|  | CCInfo.AllocateReg(Info->getScratchWaveOffsetReg()); | 
|  | CCInfo.AllocateReg(Info->getFrameOffsetReg()); | 
|  | allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); | 
|  | } | 
|  |  | 
|  | auto &ArgUsageInfo = | 
|  | DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); | 
|  | ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); | 
|  |  | 
|  | unsigned StackArgSize = CCInfo.getNextStackOffset(); | 
|  | Info->setBytesInStackArgArea(StackArgSize); | 
|  |  | 
|  | return Chains.empty() ? Chain : | 
|  | DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); | 
|  | } | 
|  |  | 
|  | // TODO: If return values can't fit in registers, we should return as many as | 
|  | // possible in registers before passing on stack. | 
|  | bool SITargetLowering::CanLowerReturn( | 
|  | CallingConv::ID CallConv, | 
|  | MachineFunction &MF, bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | LLVMContext &Context) const { | 
|  | // Replacing returns with sret/stack usage doesn't make sense for shaders. | 
|  | // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn | 
|  | // for shaders. Vector types should be explicitly handled by CC. | 
|  | if (AMDGPU::isEntryFunctionCC(CallConv)) | 
|  | return true; | 
|  |  | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); | 
|  | return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, | 
|  | bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SDLoc &DL, SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | if (AMDGPU::isKernel(CallConv)) { | 
|  | return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, | 
|  | OutVals, DL, DAG); | 
|  | } | 
|  |  | 
|  | bool IsShader = AMDGPU::isShader(CallConv); | 
|  |  | 
|  | Info->setIfReturnsVoid(Outs.empty()); | 
|  | bool IsWaveEnd = Info->returnsVoid() && IsShader; | 
|  |  | 
|  | // CCValAssign - represent the assignment of the return value to a location. | 
|  | SmallVector<CCValAssign, 48> RVLocs; | 
|  | SmallVector<ISD::OutputArg, 48> Splits; | 
|  |  | 
|  | // CCState - Info about the registers and stack slots. | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | // Analyze outgoing return values. | 
|  | CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); | 
|  |  | 
|  | SDValue Flag; | 
|  | SmallVector<SDValue, 48> RetOps; | 
|  | RetOps.push_back(Chain); // Operand #0 = Chain (updated below) | 
|  |  | 
|  | // Add return address for callable functions. | 
|  | if (!Info->isEntryFunction()) { | 
|  | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | 
|  | SDValue ReturnAddrReg = CreateLiveInRegister( | 
|  | DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); | 
|  |  | 
|  | SDValue ReturnAddrVirtualReg = DAG.getRegister( | 
|  | MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass), | 
|  | MVT::i64); | 
|  | Chain = | 
|  | DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | RetOps.push_back(ReturnAddrVirtualReg); | 
|  | } | 
|  |  | 
|  | // Copy the result values into the output registers. | 
|  | for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; | 
|  | ++I, ++RealRVLocIdx) { | 
|  | CCValAssign &VA = RVLocs[I]; | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  | // TODO: Partially return in registers if return values don't fit. | 
|  | SDValue Arg = OutVals[RealRVLocIdx]; | 
|  |  | 
|  | // Copied from other backends. | 
|  | switch (VA.getLocInfo()) { | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); | 
|  | } | 
|  |  | 
|  | // FIXME: Does sret work properly? | 
|  | if (!Info->isEntryFunction()) { | 
|  | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); | 
|  | const MCPhysReg *I = | 
|  | TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); | 
|  | if (I) { | 
|  | for (; *I; ++I) { | 
|  | if (AMDGPU::SReg_64RegClass.contains(*I)) | 
|  | RetOps.push_back(DAG.getRegister(*I, MVT::i64)); | 
|  | else if (AMDGPU::SReg_32RegClass.contains(*I)) | 
|  | RetOps.push_back(DAG.getRegister(*I, MVT::i32)); | 
|  | else | 
|  | llvm_unreachable("Unexpected register class in CSRsViaCopy!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update chain and glue. | 
|  | RetOps[0] = Chain; | 
|  | if (Flag.getNode()) | 
|  | RetOps.push_back(Flag); | 
|  |  | 
|  | unsigned Opc = AMDGPUISD::ENDPGM; | 
|  | if (!IsWaveEnd) | 
|  | Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; | 
|  | return DAG.getNode(Opc, DL, MVT::Other, RetOps); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerCallResult( | 
|  | SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, | 
|  | SDValue ThisVal) const { | 
|  | CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); | 
|  |  | 
|  | // Assign locations to each value returned by this call. | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, | 
|  | *DAG.getContext()); | 
|  | CCInfo.AnalyzeCallResult(Ins, RetCC); | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign VA = RVLocs[i]; | 
|  | SDValue Val; | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); | 
|  | Chain = Val.getValue(1); | 
|  | InFlag = Val.getValue(2); | 
|  | } else if (VA.isMemLoc()) { | 
|  | report_fatal_error("TODO: return values in memory"); | 
|  | } else | 
|  | llvm_unreachable("unknown argument location type"); | 
|  |  | 
|  | switch (VA.getLocInfo()) { | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | } | 
|  |  | 
|  | InVals.push_back(Val); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | // Add code to pass special inputs required depending on used features separate | 
|  | // from the explicit user arguments present in the IR. | 
|  | void SITargetLowering::passSpecialInputs( | 
|  | CallLoweringInfo &CLI, | 
|  | CCState &CCInfo, | 
|  | const SIMachineFunctionInfo &Info, | 
|  | SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, | 
|  | SmallVectorImpl<SDValue> &MemOpChains, | 
|  | SDValue Chain) const { | 
|  | // If we don't have a call site, this was a call inserted by | 
|  | // legalization. These can never use special inputs. | 
|  | if (!CLI.CS) | 
|  | return; | 
|  |  | 
|  | const Function *CalleeFunc = CLI.CS.getCalledFunction(); | 
|  | assert(CalleeFunc); | 
|  |  | 
|  | SelectionDAG &DAG = CLI.DAG; | 
|  | const SDLoc &DL = CLI.DL; | 
|  |  | 
|  | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); | 
|  |  | 
|  | auto &ArgUsageInfo = | 
|  | DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); | 
|  | const AMDGPUFunctionArgInfo &CalleeArgInfo | 
|  | = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); | 
|  |  | 
|  | const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); | 
|  |  | 
|  | // TODO: Unify with private memory register handling. This is complicated by | 
|  | // the fact that at least in kernels, the input argument is not necessarily | 
|  | // in the same location as the input. | 
|  | AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { | 
|  | AMDGPUFunctionArgInfo::DISPATCH_PTR, | 
|  | AMDGPUFunctionArgInfo::QUEUE_PTR, | 
|  | AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR, | 
|  | AMDGPUFunctionArgInfo::DISPATCH_ID, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_X, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_Z, | 
|  | AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR | 
|  | }; | 
|  |  | 
|  | for (auto InputID : InputRegs) { | 
|  | const ArgDescriptor *OutgoingArg; | 
|  | const TargetRegisterClass *ArgRC; | 
|  |  | 
|  | std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID); | 
|  | if (!OutgoingArg) | 
|  | continue; | 
|  |  | 
|  | const ArgDescriptor *IncomingArg; | 
|  | const TargetRegisterClass *IncomingArgRC; | 
|  | std::tie(IncomingArg, IncomingArgRC) | 
|  | = CallerArgInfo.getPreloadedValue(InputID); | 
|  | assert(IncomingArgRC == ArgRC); | 
|  |  | 
|  | // All special arguments are ints for now. | 
|  | EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; | 
|  | SDValue InputReg; | 
|  |  | 
|  | if (IncomingArg) { | 
|  | InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); | 
|  | } else { | 
|  | // The implicit arg ptr is special because it doesn't have a corresponding | 
|  | // input for kernels, and is computed from the kernarg segment pointer. | 
|  | assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); | 
|  | InputReg = getImplicitArgPtr(DAG, DL); | 
|  | } | 
|  |  | 
|  | if (OutgoingArg->isRegister()) { | 
|  | RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); | 
|  | } else { | 
|  | unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4); | 
|  | SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, | 
|  | SpecialArgOffset); | 
|  | MemOpChains.push_back(ArgStore); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pack workitem IDs into a single register or pass it as is if already | 
|  | // packed. | 
|  | const ArgDescriptor *OutgoingArg; | 
|  | const TargetRegisterClass *ArgRC; | 
|  |  | 
|  | std::tie(OutgoingArg, ArgRC) = | 
|  | CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); | 
|  | if (!OutgoingArg) | 
|  | std::tie(OutgoingArg, ArgRC) = | 
|  | CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); | 
|  | if (!OutgoingArg) | 
|  | std::tie(OutgoingArg, ArgRC) = | 
|  | CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); | 
|  | if (!OutgoingArg) | 
|  | return; | 
|  |  | 
|  | const ArgDescriptor *IncomingArgX | 
|  | = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X).first; | 
|  | const ArgDescriptor *IncomingArgY | 
|  | = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y).first; | 
|  | const ArgDescriptor *IncomingArgZ | 
|  | = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z).first; | 
|  |  | 
|  | SDValue InputReg; | 
|  | SDLoc SL; | 
|  |  | 
|  | // If incoming ids are not packed we need to pack them. | 
|  | if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo.WorkItemIDX) | 
|  | InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); | 
|  |  | 
|  | if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo.WorkItemIDY) { | 
|  | SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); | 
|  | Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, | 
|  | DAG.getShiftAmountConstant(10, MVT::i32, SL)); | 
|  | InputReg = InputReg.getNode() ? | 
|  | DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; | 
|  | } | 
|  |  | 
|  | if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo.WorkItemIDZ) { | 
|  | SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); | 
|  | Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, | 
|  | DAG.getShiftAmountConstant(20, MVT::i32, SL)); | 
|  | InputReg = InputReg.getNode() ? | 
|  | DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; | 
|  | } | 
|  |  | 
|  | if (!InputReg.getNode()) { | 
|  | // Workitem ids are already packed, any of present incoming arguments | 
|  | // will carry all required fields. | 
|  | ArgDescriptor IncomingArg = ArgDescriptor::createArg( | 
|  | IncomingArgX ? *IncomingArgX : | 
|  | IncomingArgY ? *IncomingArgY : | 
|  | *IncomingArgZ, ~0u); | 
|  | InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); | 
|  | } | 
|  |  | 
|  | if (OutgoingArg->isRegister()) { | 
|  | RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); | 
|  | } else { | 
|  | unsigned SpecialArgOffset = CCInfo.AllocateStack(4, 4); | 
|  | SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, | 
|  | SpecialArgOffset); | 
|  | MemOpChains.push_back(ArgStore); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool canGuaranteeTCO(CallingConv::ID CC) { | 
|  | return CC == CallingConv::Fast; | 
|  | } | 
|  |  | 
|  | /// Return true if we might ever do TCO for calls with this calling convention. | 
|  | static bool mayTailCallThisCC(CallingConv::ID CC) { | 
|  | switch (CC) { | 
|  | case CallingConv::C: | 
|  | return true; | 
|  | default: | 
|  | return canGuaranteeTCO(CC); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isEligibleForTailCallOptimization( | 
|  | SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { | 
|  | if (!mayTailCallThisCC(CalleeCC)) | 
|  | return false; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const Function &CallerF = MF.getFunction(); | 
|  | CallingConv::ID CallerCC = CallerF.getCallingConv(); | 
|  | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | 
|  | const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); | 
|  |  | 
|  | // Kernels aren't callable, and don't have a live in return address so it | 
|  | // doesn't make sense to do a tail call with entry functions. | 
|  | if (!CallerPreserved) | 
|  | return false; | 
|  |  | 
|  | bool CCMatch = CallerCC == CalleeCC; | 
|  |  | 
|  | if (DAG.getTarget().Options.GuaranteedTailCallOpt) { | 
|  | if (canGuaranteeTCO(CalleeCC) && CCMatch) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // TODO: Can we handle var args? | 
|  | if (IsVarArg) | 
|  | return false; | 
|  |  | 
|  | for (const Argument &Arg : CallerF.args()) { | 
|  | if (Arg.hasByValAttr()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  |  | 
|  | // Check that the call results are passed in the same way. | 
|  | if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, | 
|  | CCAssignFnForCall(CalleeCC, IsVarArg), | 
|  | CCAssignFnForCall(CallerCC, IsVarArg))) | 
|  | return false; | 
|  |  | 
|  | // The callee has to preserve all registers the caller needs to preserve. | 
|  | if (!CCMatch) { | 
|  | const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); | 
|  | if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Nothing more to check if the callee is taking no arguments. | 
|  | if (Outs.empty()) | 
|  | return true; | 
|  |  | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); | 
|  |  | 
|  | const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | // If the stack arguments for this call do not fit into our own save area then | 
|  | // the call cannot be made tail. | 
|  | // TODO: Is this really necessary? | 
|  | if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) | 
|  | return false; | 
|  |  | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { | 
|  | if (!CI->isTailCall()) | 
|  | return false; | 
|  |  | 
|  | const Function *ParentFn = CI->getParent()->getParent(); | 
|  | if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) | 
|  | return false; | 
|  |  | 
|  | auto Attr = ParentFn->getFnAttribute("disable-tail-calls"); | 
|  | return (Attr.getValueAsString() != "true"); | 
|  | } | 
|  |  | 
|  | // The wave scratch offset register is used as the global base pointer. | 
|  | SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | SelectionDAG &DAG = CLI.DAG; | 
|  | const SDLoc &DL = CLI.DL; | 
|  | SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; | 
|  | SmallVector<SDValue, 32> &OutVals = CLI.OutVals; | 
|  | SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; | 
|  | SDValue Chain = CLI.Chain; | 
|  | SDValue Callee = CLI.Callee; | 
|  | bool &IsTailCall = CLI.IsTailCall; | 
|  | CallingConv::ID CallConv = CLI.CallConv; | 
|  | bool IsVarArg = CLI.IsVarArg; | 
|  | bool IsSibCall = false; | 
|  | bool IsThisReturn = false; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | if (IsVarArg) { | 
|  | return lowerUnhandledCall(CLI, InVals, | 
|  | "unsupported call to variadic function "); | 
|  | } | 
|  |  | 
|  | if (!CLI.CS.getInstruction()) | 
|  | report_fatal_error("unsupported libcall legalization"); | 
|  |  | 
|  | if (!CLI.CS.getCalledFunction()) { | 
|  | return lowerUnhandledCall(CLI, InVals, | 
|  | "unsupported indirect call to function "); | 
|  | } | 
|  |  | 
|  | if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { | 
|  | return lowerUnhandledCall(CLI, InVals, | 
|  | "unsupported required tail call to function "); | 
|  | } | 
|  |  | 
|  | if (AMDGPU::isShader(MF.getFunction().getCallingConv())) { | 
|  | // Note the issue is with the CC of the calling function, not of the call | 
|  | // itself. | 
|  | return lowerUnhandledCall(CLI, InVals, | 
|  | "unsupported call from graphics shader of function "); | 
|  | } | 
|  |  | 
|  | if (IsTailCall) { | 
|  | IsTailCall = isEligibleForTailCallOptimization( | 
|  | Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); | 
|  | if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) { | 
|  | report_fatal_error("failed to perform tail call elimination on a call " | 
|  | "site marked musttail"); | 
|  | } | 
|  |  | 
|  | bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; | 
|  |  | 
|  | // A sibling call is one where we're under the usual C ABI and not planning | 
|  | // to change that but can still do a tail call: | 
|  | if (!TailCallOpt && IsTailCall) | 
|  | IsSibCall = true; | 
|  |  | 
|  | if (IsTailCall) | 
|  | ++NumTailCalls; | 
|  | } | 
|  |  | 
|  | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | // Analyze operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); | 
|  | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(Outs, AssignFn); | 
|  |  | 
|  | // Get a count of how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = CCInfo.getNextStackOffset(); | 
|  |  | 
|  | if (IsSibCall) { | 
|  | // Since we're not changing the ABI to make this a tail call, the memory | 
|  | // operands are already available in the caller's incoming argument space. | 
|  | NumBytes = 0; | 
|  | } | 
|  |  | 
|  | // FPDiff is the byte offset of the call's argument area from the callee's. | 
|  | // Stores to callee stack arguments will be placed in FixedStackSlots offset | 
|  | // by this amount for a tail call. In a sibling call it must be 0 because the | 
|  | // caller will deallocate the entire stack and the callee still expects its | 
|  | // arguments to begin at SP+0. Completely unused for non-tail calls. | 
|  | int32_t FPDiff = 0; | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | 
|  |  | 
|  | // Adjust the stack pointer for the new arguments... | 
|  | // These operations are automatically eliminated by the prolog/epilog pass | 
|  | if (!IsSibCall) { | 
|  | Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); | 
|  |  | 
|  | SmallVector<SDValue, 4> CopyFromChains; | 
|  |  | 
|  | // In the HSA case, this should be an identity copy. | 
|  | SDValue ScratchRSrcReg | 
|  | = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); | 
|  | RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); | 
|  | CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); | 
|  | Chain = DAG.getTokenFactor(DL, CopyFromChains); | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  | MVT PtrVT = MVT::i32; | 
|  |  | 
|  | // Walk the register/memloc assignments, inserting copies/loads. | 
|  | for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; | 
|  | ++i, ++realArgIdx) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | SDValue Arg = OutVals[realArgIdx]; | 
|  |  | 
|  | // Promote the value if needed. | 
|  | switch (VA.getLocInfo()) { | 
|  | case CCValAssign::Full: | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::SExt: | 
|  | Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::FPExt: | 
|  | Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown loc info!"); | 
|  | } | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | 
|  | } else { | 
|  | assert(VA.isMemLoc()); | 
|  |  | 
|  | SDValue DstAddr; | 
|  | MachinePointerInfo DstInfo; | 
|  |  | 
|  | unsigned LocMemOffset = VA.getLocMemOffset(); | 
|  | int32_t Offset = LocMemOffset; | 
|  |  | 
|  | SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); | 
|  | unsigned Align = 0; | 
|  |  | 
|  | if (IsTailCall) { | 
|  | ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; | 
|  | unsigned OpSize = Flags.isByVal() ? | 
|  | Flags.getByValSize() : VA.getValVT().getStoreSize(); | 
|  |  | 
|  | // FIXME: We can have better than the minimum byval required alignment. | 
|  | Align = Flags.isByVal() ? Flags.getByValAlign() : | 
|  | MinAlign(Subtarget->getStackAlignment(), Offset); | 
|  |  | 
|  | Offset = Offset + FPDiff; | 
|  | int FI = MFI.CreateFixedObject(OpSize, Offset, true); | 
|  |  | 
|  | DstAddr = DAG.getFrameIndex(FI, PtrVT); | 
|  | DstInfo = MachinePointerInfo::getFixedStack(MF, FI); | 
|  |  | 
|  | // Make sure any stack arguments overlapping with where we're storing | 
|  | // are loaded before this eventual operation. Otherwise they'll be | 
|  | // clobbered. | 
|  |  | 
|  | // FIXME: Why is this really necessary? This seems to just result in a | 
|  | // lot of code to copy the stack and write them back to the same | 
|  | // locations, which are supposed to be immutable? | 
|  | Chain = addTokenForArgument(Chain, DAG, MFI, FI); | 
|  | } else { | 
|  | DstAddr = PtrOff; | 
|  | DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); | 
|  | Align = MinAlign(Subtarget->getStackAlignment(), LocMemOffset); | 
|  | } | 
|  |  | 
|  | if (Outs[i].Flags.isByVal()) { | 
|  | SDValue SizeNode = | 
|  | DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); | 
|  | SDValue Cpy = DAG.getMemcpy( | 
|  | Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), | 
|  | /*isVol = */ false, /*AlwaysInline = */ true, | 
|  | /*isTailCall = */ false, DstInfo, | 
|  | MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy( | 
|  | *DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS)))); | 
|  |  | 
|  | MemOpChains.push_back(Cpy); | 
|  | } else { | 
|  | SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Align); | 
|  | MemOpChains.push_back(Store); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy special input registers after user input arguments. | 
|  | passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); | 
|  |  | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into the appropriate regs. | 
|  | SDValue InFlag; | 
|  | for (auto &RegToPass : RegsToPass) { | 
|  | Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, | 
|  | RegToPass.second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue PhysReturnAddrReg; | 
|  | if (IsTailCall) { | 
|  | // Since the return is being combined with the call, we need to pass on the | 
|  | // return address. | 
|  |  | 
|  | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | 
|  | SDValue ReturnAddrReg = CreateLiveInRegister( | 
|  | DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); | 
|  |  | 
|  | PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), | 
|  | MVT::i64); | 
|  | Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // We don't usually want to end the call-sequence here because we would tidy | 
|  | // the frame up *after* the call, however in the ABI-changing tail-call case | 
|  | // we've carefully laid out the parameters so that when sp is reset they'll be | 
|  | // in the correct location. | 
|  | if (IsTailCall && !IsSibCall) { | 
|  | Chain = DAG.getCALLSEQ_END(Chain, | 
|  | DAG.getTargetConstant(NumBytes, DL, MVT::i32), | 
|  | DAG.getTargetConstant(0, DL, MVT::i32), | 
|  | InFlag, DL); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | std::vector<SDValue> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  | // Add a redundant copy of the callee global which will not be legalized, as | 
|  | // we need direct access to the callee later. | 
|  | GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Callee); | 
|  | const GlobalValue *GV = GSD->getGlobal(); | 
|  | Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); | 
|  |  | 
|  | if (IsTailCall) { | 
|  | // Each tail call may have to adjust the stack by a different amount, so | 
|  | // this information must travel along with the operation for eventual | 
|  | // consumption by emitEpilogue. | 
|  | Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); | 
|  |  | 
|  | Ops.push_back(PhysReturnAddrReg); | 
|  | } | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are known live | 
|  | // into the call. | 
|  | for (auto &RegToPass : RegsToPass) { | 
|  | Ops.push_back(DAG.getRegister(RegToPass.first, | 
|  | RegToPass.second.getValueType())); | 
|  | } | 
|  |  | 
|  | // Add a register mask operand representing the call-preserved registers. | 
|  |  | 
|  | auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); | 
|  | const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); | 
|  | assert(Mask && "Missing call preserved mask for calling convention"); | 
|  | Ops.push_back(DAG.getRegisterMask(Mask)); | 
|  |  | 
|  | if (InFlag.getNode()) | 
|  | Ops.push_back(InFlag); | 
|  |  | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | // If we're doing a tall call, use a TC_RETURN here rather than an | 
|  | // actual call instruction. | 
|  | if (IsTailCall) { | 
|  | MFI.setHasTailCall(); | 
|  | return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); | 
|  | } | 
|  |  | 
|  | // Returns a chain and a flag for retval copy to use. | 
|  | SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); | 
|  | Chain = Call.getValue(0); | 
|  | InFlag = Call.getValue(1); | 
|  |  | 
|  | uint64_t CalleePopBytes = NumBytes; | 
|  | Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), | 
|  | DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), | 
|  | InFlag, DL); | 
|  | if (!Ins.empty()) | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Handle result values, copying them out of physregs into vregs that we | 
|  | // return. | 
|  | return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, | 
|  | InVals, IsThisReturn, | 
|  | IsThisReturn ? OutVals[0] : SDValue()); | 
|  | } | 
|  |  | 
|  | unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned Reg = StringSwitch<unsigned>(RegName) | 
|  | .Case("m0", AMDGPU::M0) | 
|  | .Case("exec", AMDGPU::EXEC) | 
|  | .Case("exec_lo", AMDGPU::EXEC_LO) | 
|  | .Case("exec_hi", AMDGPU::EXEC_HI) | 
|  | .Case("flat_scratch", AMDGPU::FLAT_SCR) | 
|  | .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) | 
|  | .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) | 
|  | .Default(AMDGPU::NoRegister); | 
|  |  | 
|  | if (Reg == AMDGPU::NoRegister) { | 
|  | report_fatal_error(Twine("invalid register name \"" | 
|  | + StringRef(RegName)  + "\".")); | 
|  |  | 
|  | } | 
|  |  | 
|  | if (!Subtarget->hasFlatScrRegister() && | 
|  | Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { | 
|  | report_fatal_error(Twine("invalid register \"" | 
|  | + StringRef(RegName)  + "\" for subtarget.")); | 
|  | } | 
|  |  | 
|  | switch (Reg) { | 
|  | case AMDGPU::M0: | 
|  | case AMDGPU::EXEC_LO: | 
|  | case AMDGPU::EXEC_HI: | 
|  | case AMDGPU::FLAT_SCR_LO: | 
|  | case AMDGPU::FLAT_SCR_HI: | 
|  | if (VT.getSizeInBits() == 32) | 
|  | return Reg; | 
|  | break; | 
|  | case AMDGPU::EXEC: | 
|  | case AMDGPU::FLAT_SCR: | 
|  | if (VT.getSizeInBits() == 64) | 
|  | return Reg; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("missing register type checking"); | 
|  | } | 
|  |  | 
|  | report_fatal_error(Twine("invalid type for register \"" | 
|  | + StringRef(RegName) + "\".")); | 
|  | } | 
|  |  | 
|  | // If kill is not the last instruction, split the block so kill is always a | 
|  | // proper terminator. | 
|  | MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  |  | 
|  | MachineBasicBlock::iterator SplitPoint(&MI); | 
|  | ++SplitPoint; | 
|  |  | 
|  | if (SplitPoint == BB->end()) { | 
|  | // Don't bother with a new block. | 
|  | MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineFunction *MF = BB->getParent(); | 
|  | MachineBasicBlock *SplitBB | 
|  | = MF->CreateMachineBasicBlock(BB->getBasicBlock()); | 
|  |  | 
|  | MF->insert(++MachineFunction::iterator(BB), SplitBB); | 
|  | SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end()); | 
|  |  | 
|  | SplitBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  | BB->addSuccessor(SplitBB); | 
|  |  | 
|  | MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); | 
|  | return SplitBB; | 
|  | } | 
|  |  | 
|  | // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, | 
|  | // \p MI will be the only instruction in the loop body block. Otherwise, it will | 
|  | // be the first instruction in the remainder block. | 
|  | // | 
|  | /// \returns { LoopBody, Remainder } | 
|  | static std::pair<MachineBasicBlock *, MachineBasicBlock *> | 
|  | splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { | 
|  | MachineFunction *MF = MBB.getParent(); | 
|  | MachineBasicBlock::iterator I(&MI); | 
|  |  | 
|  | // To insert the loop we need to split the block. Move everything after this | 
|  | // point to a new block, and insert a new empty block between the two. | 
|  | MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); | 
|  | MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); | 
|  | MachineFunction::iterator MBBI(MBB); | 
|  | ++MBBI; | 
|  |  | 
|  | MF->insert(MBBI, LoopBB); | 
|  | MF->insert(MBBI, RemainderBB); | 
|  |  | 
|  | LoopBB->addSuccessor(LoopBB); | 
|  | LoopBB->addSuccessor(RemainderBB); | 
|  |  | 
|  | // Move the rest of the block into a new block. | 
|  | RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); | 
|  |  | 
|  | if (InstInLoop) { | 
|  | auto Next = std::next(I); | 
|  |  | 
|  | // Move instruction to loop body. | 
|  | LoopBB->splice(LoopBB->begin(), &MBB, I, Next); | 
|  |  | 
|  | // Move the rest of the block. | 
|  | RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); | 
|  | } else { | 
|  | RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); | 
|  | } | 
|  |  | 
|  | MBB.addSuccessor(LoopBB); | 
|  |  | 
|  | return std::make_pair(LoopBB, RemainderBB); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  |  | 
|  | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | 
|  |  | 
|  | MachineBasicBlock *LoopBB; | 
|  | MachineBasicBlock *RemainderBB; | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  |  | 
|  | MachineBasicBlock::iterator Prev = std::prev(MI.getIterator()); | 
|  |  | 
|  | std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); | 
|  |  | 
|  | MachineBasicBlock::iterator I = LoopBB->end(); | 
|  | MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0); | 
|  |  | 
|  | const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( | 
|  | AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); | 
|  |  | 
|  | // Clear TRAP_STS.MEM_VIOL | 
|  | BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) | 
|  | .addImm(0) | 
|  | .addImm(EncodedReg); | 
|  |  | 
|  | // This is a pain, but we're not allowed to have physical register live-ins | 
|  | // yet. Insert a pair of copies if the VGPR0 hack is necessary. | 
|  | if (Src && TargetRegisterInfo::isPhysicalRegister(Src->getReg())) { | 
|  | unsigned Data0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  | BuildMI(*BB, std::next(Prev), DL, TII->get(AMDGPU::COPY), Data0) | 
|  | .add(*Src); | 
|  |  | 
|  | BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::COPY), Src->getReg()) | 
|  | .addReg(Data0); | 
|  |  | 
|  | MRI.setSimpleHint(Data0, Src->getReg()); | 
|  | } | 
|  |  | 
|  | BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_WAITCNT)) | 
|  | .addImm(0); | 
|  |  | 
|  | unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); | 
|  |  | 
|  | // Load and check TRAP_STS.MEM_VIOL | 
|  | BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) | 
|  | .addImm(EncodedReg); | 
|  |  | 
|  | // FIXME: Do we need to use an isel pseudo that may clobber scc? | 
|  | BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) | 
|  | .addReg(Reg, RegState::Kill) | 
|  | .addImm(0); | 
|  | BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) | 
|  | .addMBB(LoopBB); | 
|  |  | 
|  | return RemainderBB; | 
|  | } | 
|  |  | 
|  | // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the | 
|  | // wavefront. If the value is uniform and just happens to be in a VGPR, this | 
|  | // will only do one iteration. In the worst case, this will loop 64 times. | 
|  | // | 
|  | // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. | 
|  | static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop( | 
|  | const SIInstrInfo *TII, | 
|  | MachineRegisterInfo &MRI, | 
|  | MachineBasicBlock &OrigBB, | 
|  | MachineBasicBlock &LoopBB, | 
|  | const DebugLoc &DL, | 
|  | const MachineOperand &IdxReg, | 
|  | unsigned InitReg, | 
|  | unsigned ResultReg, | 
|  | unsigned PhiReg, | 
|  | unsigned InitSaveExecReg, | 
|  | int Offset, | 
|  | bool UseGPRIdxMode, | 
|  | bool IsIndirectSrc) { | 
|  | MachineFunction *MF = OrigBB.getParent(); | 
|  | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); | 
|  | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | 
|  | MachineBasicBlock::iterator I = LoopBB.begin(); | 
|  |  | 
|  | const TargetRegisterClass *BoolRC = TRI->getBoolRC(); | 
|  | unsigned PhiExec = MRI.createVirtualRegister(BoolRC); | 
|  | unsigned NewExec = MRI.createVirtualRegister(BoolRC); | 
|  | unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); | 
|  | unsigned CondReg = MRI.createVirtualRegister(BoolRC); | 
|  |  | 
|  | BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) | 
|  | .addReg(InitReg) | 
|  | .addMBB(&OrigBB) | 
|  | .addReg(ResultReg) | 
|  | .addMBB(&LoopBB); | 
|  |  | 
|  | BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) | 
|  | .addReg(InitSaveExecReg) | 
|  | .addMBB(&OrigBB) | 
|  | .addReg(NewExec) | 
|  | .addMBB(&LoopBB); | 
|  |  | 
|  | // Read the next variant <- also loop target. | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) | 
|  | .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef())); | 
|  |  | 
|  | // Compare the just read M0 value to all possible Idx values. | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) | 
|  | .addReg(CurrentIdxReg) | 
|  | .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg()); | 
|  |  | 
|  | // Update EXEC, save the original EXEC value to VCC. | 
|  | BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 | 
|  | : AMDGPU::S_AND_SAVEEXEC_B64), | 
|  | NewExec) | 
|  | .addReg(CondReg, RegState::Kill); | 
|  |  | 
|  | MRI.setSimpleHint(NewExec, CondReg); | 
|  |  | 
|  | if (UseGPRIdxMode) { | 
|  | unsigned IdxReg; | 
|  | if (Offset == 0) { | 
|  | IdxReg = CurrentIdxReg; | 
|  | } else { | 
|  | IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg) | 
|  | .addReg(CurrentIdxReg, RegState::Kill) | 
|  | .addImm(Offset); | 
|  | } | 
|  | unsigned IdxMode = IsIndirectSrc ? | 
|  | AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE; | 
|  | MachineInstr *SetOn = | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) | 
|  | .addReg(IdxReg, RegState::Kill) | 
|  | .addImm(IdxMode); | 
|  | SetOn->getOperand(3).setIsUndef(); | 
|  | } else { | 
|  | // Move index from VCC into M0 | 
|  | if (Offset == 0) { | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) | 
|  | .addReg(CurrentIdxReg, RegState::Kill); | 
|  | } else { | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) | 
|  | .addReg(CurrentIdxReg, RegState::Kill) | 
|  | .addImm(Offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update EXEC, switch all done bits to 0 and all todo bits to 1. | 
|  | unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; | 
|  | MachineInstr *InsertPt = | 
|  | BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term | 
|  | : AMDGPU::S_XOR_B64_term), Exec) | 
|  | .addReg(Exec) | 
|  | .addReg(NewExec); | 
|  |  | 
|  | // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use | 
|  | // s_cbranch_scc0? | 
|  |  | 
|  | // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. | 
|  | BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) | 
|  | .addMBB(&LoopBB); | 
|  |  | 
|  | return InsertPt->getIterator(); | 
|  | } | 
|  |  | 
|  | // This has slightly sub-optimal regalloc when the source vector is killed by | 
|  | // the read. The register allocator does not understand that the kill is | 
|  | // per-workitem, so is kept alive for the whole loop so we end up not re-using a | 
|  | // subregister from it, using 1 more VGPR than necessary. This was saved when | 
|  | // this was expanded after register allocation. | 
|  | static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, | 
|  | MachineBasicBlock &MBB, | 
|  | MachineInstr &MI, | 
|  | unsigned InitResultReg, | 
|  | unsigned PhiReg, | 
|  | int Offset, | 
|  | bool UseGPRIdxMode, | 
|  | bool IsIndirectSrc) { | 
|  | MachineFunction *MF = MBB.getParent(); | 
|  | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); | 
|  | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  | MachineBasicBlock::iterator I(&MI); | 
|  |  | 
|  | const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); | 
|  | unsigned DstReg = MI.getOperand(0).getReg(); | 
|  | unsigned SaveExec = MRI.createVirtualRegister(BoolXExecRC); | 
|  | unsigned TmpExec = MRI.createVirtualRegister(BoolXExecRC); | 
|  | unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; | 
|  | unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; | 
|  |  | 
|  | BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); | 
|  |  | 
|  | // Save the EXEC mask | 
|  | BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) | 
|  | .addReg(Exec); | 
|  |  | 
|  | MachineBasicBlock *LoopBB; | 
|  | MachineBasicBlock *RemainderBB; | 
|  | std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); | 
|  |  | 
|  | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); | 
|  |  | 
|  | auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, | 
|  | InitResultReg, DstReg, PhiReg, TmpExec, | 
|  | Offset, UseGPRIdxMode, IsIndirectSrc); | 
|  |  | 
|  | MachineBasicBlock::iterator First = RemainderBB->begin(); | 
|  | BuildMI(*RemainderBB, First, DL, TII->get(MovExecOpc), Exec) | 
|  | .addReg(SaveExec); | 
|  |  | 
|  | return InsPt; | 
|  | } | 
|  |  | 
|  | // Returns subreg index, offset | 
|  | static std::pair<unsigned, int> | 
|  | computeIndirectRegAndOffset(const SIRegisterInfo &TRI, | 
|  | const TargetRegisterClass *SuperRC, | 
|  | unsigned VecReg, | 
|  | int Offset) { | 
|  | int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; | 
|  |  | 
|  | // Skip out of bounds offsets, or else we would end up using an undefined | 
|  | // register. | 
|  | if (Offset >= NumElts || Offset < 0) | 
|  | return std::make_pair(AMDGPU::sub0, Offset); | 
|  |  | 
|  | return std::make_pair(AMDGPU::sub0 + Offset, 0); | 
|  | } | 
|  |  | 
|  | // Return true if the index is an SGPR and was set. | 
|  | static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII, | 
|  | MachineRegisterInfo &MRI, | 
|  | MachineInstr &MI, | 
|  | int Offset, | 
|  | bool UseGPRIdxMode, | 
|  | bool IsIndirectSrc) { | 
|  | MachineBasicBlock *MBB = MI.getParent(); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  | MachineBasicBlock::iterator I(&MI); | 
|  |  | 
|  | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); | 
|  | const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); | 
|  |  | 
|  | assert(Idx->getReg() != AMDGPU::NoRegister); | 
|  |  | 
|  | if (!TII->getRegisterInfo().isSGPRClass(IdxRC)) | 
|  | return false; | 
|  |  | 
|  | if (UseGPRIdxMode) { | 
|  | unsigned IdxMode = IsIndirectSrc ? | 
|  | AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE; | 
|  | if (Offset == 0) { | 
|  | MachineInstr *SetOn = | 
|  | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) | 
|  | .add(*Idx) | 
|  | .addImm(IdxMode); | 
|  |  | 
|  | SetOn->getOperand(3).setIsUndef(); | 
|  | } else { | 
|  | unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); | 
|  | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) | 
|  | .add(*Idx) | 
|  | .addImm(Offset); | 
|  | MachineInstr *SetOn = | 
|  | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) | 
|  | .addReg(Tmp, RegState::Kill) | 
|  | .addImm(IdxMode); | 
|  |  | 
|  | SetOn->getOperand(3).setIsUndef(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Offset == 0) { | 
|  | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) | 
|  | .add(*Idx); | 
|  | } else { | 
|  | BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) | 
|  | .add(*Idx) | 
|  | .addImm(Offset); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Control flow needs to be inserted if indexing with a VGPR. | 
|  | static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, | 
|  | MachineBasicBlock &MBB, | 
|  | const GCNSubtarget &ST) { | 
|  | const SIInstrInfo *TII = ST.getInstrInfo(); | 
|  | const SIRegisterInfo &TRI = TII->getRegisterInfo(); | 
|  | MachineFunction *MF = MBB.getParent(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | unsigned Dst = MI.getOperand(0).getReg(); | 
|  | unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); | 
|  | int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); | 
|  |  | 
|  | const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); | 
|  |  | 
|  | unsigned SubReg; | 
|  | std::tie(SubReg, Offset) | 
|  | = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); | 
|  |  | 
|  | bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode); | 
|  |  | 
|  | if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) { | 
|  | MachineBasicBlock::iterator I(&MI); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  |  | 
|  | if (UseGPRIdxMode) { | 
|  | // TODO: Look at the uses to avoid the copy. This may require rescheduling | 
|  | // to avoid interfering with other uses, so probably requires a new | 
|  | // optimization pass. | 
|  | BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) | 
|  | .addReg(SrcReg, RegState::Undef, SubReg) | 
|  | .addReg(SrcReg, RegState::Implicit) | 
|  | .addReg(AMDGPU::M0, RegState::Implicit); | 
|  | BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); | 
|  | } else { | 
|  | BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) | 
|  | .addReg(SrcReg, RegState::Undef, SubReg) | 
|  | .addReg(SrcReg, RegState::Implicit); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | return &MBB; | 
|  | } | 
|  |  | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  | MachineBasicBlock::iterator I(&MI); | 
|  |  | 
|  | unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  | unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  |  | 
|  | BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); | 
|  |  | 
|  | auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, | 
|  | Offset, UseGPRIdxMode, true); | 
|  | MachineBasicBlock *LoopBB = InsPt->getParent(); | 
|  |  | 
|  | if (UseGPRIdxMode) { | 
|  | BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) | 
|  | .addReg(SrcReg, RegState::Undef, SubReg) | 
|  | .addReg(SrcReg, RegState::Implicit) | 
|  | .addReg(AMDGPU::M0, RegState::Implicit); | 
|  | BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); | 
|  | } else { | 
|  | BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) | 
|  | .addReg(SrcReg, RegState::Undef, SubReg) | 
|  | .addReg(SrcReg, RegState::Implicit); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | return LoopBB; | 
|  | } | 
|  |  | 
|  | static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI, | 
|  | const TargetRegisterClass *VecRC) { | 
|  | switch (TRI.getRegSizeInBits(*VecRC)) { | 
|  | case 32: // 4 bytes | 
|  | return AMDGPU::V_MOVRELD_B32_V1; | 
|  | case 64: // 8 bytes | 
|  | return AMDGPU::V_MOVRELD_B32_V2; | 
|  | case 128: // 16 bytes | 
|  | return AMDGPU::V_MOVRELD_B32_V4; | 
|  | case 256: // 32 bytes | 
|  | return AMDGPU::V_MOVRELD_B32_V8; | 
|  | case 512: // 64 bytes | 
|  | return AMDGPU::V_MOVRELD_B32_V16; | 
|  | default: | 
|  | llvm_unreachable("unsupported size for MOVRELD pseudos"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, | 
|  | MachineBasicBlock &MBB, | 
|  | const GCNSubtarget &ST) { | 
|  | const SIInstrInfo *TII = ST.getInstrInfo(); | 
|  | const SIRegisterInfo &TRI = TII->getRegisterInfo(); | 
|  | MachineFunction *MF = MBB.getParent(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | unsigned Dst = MI.getOperand(0).getReg(); | 
|  | const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); | 
|  | const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); | 
|  | const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); | 
|  | int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); | 
|  | const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); | 
|  |  | 
|  | // This can be an immediate, but will be folded later. | 
|  | assert(Val->getReg()); | 
|  |  | 
|  | unsigned SubReg; | 
|  | std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, | 
|  | SrcVec->getReg(), | 
|  | Offset); | 
|  | bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode); | 
|  |  | 
|  | if (Idx->getReg() == AMDGPU::NoRegister) { | 
|  | MachineBasicBlock::iterator I(&MI); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  |  | 
|  | assert(Offset == 0); | 
|  |  | 
|  | BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) | 
|  | .add(*SrcVec) | 
|  | .add(*Val) | 
|  | .addImm(SubReg); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return &MBB; | 
|  | } | 
|  |  | 
|  | if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) { | 
|  | MachineBasicBlock::iterator I(&MI); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  |  | 
|  | if (UseGPRIdxMode) { | 
|  | BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect)) | 
|  | .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst | 
|  | .add(*Val) | 
|  | .addReg(Dst, RegState::ImplicitDefine) | 
|  | .addReg(SrcVec->getReg(), RegState::Implicit) | 
|  | .addReg(AMDGPU::M0, RegState::Implicit); | 
|  |  | 
|  | BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); | 
|  | } else { | 
|  | const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC)); | 
|  |  | 
|  | BuildMI(MBB, I, DL, MovRelDesc) | 
|  | .addReg(Dst, RegState::Define) | 
|  | .addReg(SrcVec->getReg()) | 
|  | .add(*Val) | 
|  | .addImm(SubReg - AMDGPU::sub0); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return &MBB; | 
|  | } | 
|  |  | 
|  | if (Val->isReg()) | 
|  | MRI.clearKillFlags(Val->getReg()); | 
|  |  | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  |  | 
|  | unsigned PhiReg = MRI.createVirtualRegister(VecRC); | 
|  |  | 
|  | auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, | 
|  | Offset, UseGPRIdxMode, false); | 
|  | MachineBasicBlock *LoopBB = InsPt->getParent(); | 
|  |  | 
|  | if (UseGPRIdxMode) { | 
|  | BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect)) | 
|  | .addReg(PhiReg, RegState::Undef, SubReg) // vdst | 
|  | .add(*Val)                               // src0 | 
|  | .addReg(Dst, RegState::ImplicitDefine) | 
|  | .addReg(PhiReg, RegState::Implicit) | 
|  | .addReg(AMDGPU::M0, RegState::Implicit); | 
|  | BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); | 
|  | } else { | 
|  | const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC)); | 
|  |  | 
|  | BuildMI(*LoopBB, InsPt, DL, MovRelDesc) | 
|  | .addReg(Dst, RegState::Define) | 
|  | .addReg(PhiReg) | 
|  | .add(*Val) | 
|  | .addImm(SubReg - AMDGPU::sub0); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | return LoopBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( | 
|  | MachineInstr &MI, MachineBasicBlock *BB) const { | 
|  |  | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  | MachineFunction *MF = BB->getParent(); | 
|  | SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | if (TII->isMIMG(MI)) { | 
|  | if (MI.memoperands_empty() && MI.mayLoadOrStore()) { | 
|  | report_fatal_error("missing mem operand from MIMG instruction"); | 
|  | } | 
|  | // Add a memoperand for mimg instructions so that they aren't assumed to | 
|  | // be ordered memory instuctions. | 
|  |  | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | case AMDGPU::S_ADD_U64_PSEUDO: | 
|  | case AMDGPU::S_SUB_U64_PSEUDO: { | 
|  | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | 
|  | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); | 
|  | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | 
|  | const TargetRegisterClass *BoolRC = TRI->getBoolRC(); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  |  | 
|  | MachineOperand &Dest = MI.getOperand(0); | 
|  | MachineOperand &Src0 = MI.getOperand(1); | 
|  | MachineOperand &Src1 = MI.getOperand(2); | 
|  |  | 
|  | unsigned DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); | 
|  | unsigned DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); | 
|  |  | 
|  | MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI, | 
|  | Src0, BoolRC, AMDGPU::sub0, | 
|  | &AMDGPU::SReg_32_XM0RegClass); | 
|  | MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI, | 
|  | Src0, BoolRC, AMDGPU::sub1, | 
|  | &AMDGPU::SReg_32_XM0RegClass); | 
|  |  | 
|  | MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI, | 
|  | Src1, BoolRC, AMDGPU::sub0, | 
|  | &AMDGPU::SReg_32_XM0RegClass); | 
|  | MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI, | 
|  | Src1, BoolRC, AMDGPU::sub1, | 
|  | &AMDGPU::SReg_32_XM0RegClass); | 
|  |  | 
|  | bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); | 
|  |  | 
|  | unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; | 
|  | unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; | 
|  | BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) | 
|  | .add(Src0Sub0) | 
|  | .add(Src1Sub0); | 
|  | BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) | 
|  | .add(Src0Sub1) | 
|  | .add(Src1Sub1); | 
|  | BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) | 
|  | .addReg(DestSub0) | 
|  | .addImm(AMDGPU::sub0) | 
|  | .addReg(DestSub1) | 
|  | .addImm(AMDGPU::sub1); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  | case AMDGPU::SI_INIT_M0: { | 
|  | BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), | 
|  | TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) | 
|  | .add(MI.getOperand(0)); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  | case AMDGPU::SI_INIT_EXEC: | 
|  | // This should be before all vector instructions. | 
|  | BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), | 
|  | AMDGPU::EXEC) | 
|  | .addImm(MI.getOperand(0).getImm()); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  |  | 
|  | case AMDGPU::SI_INIT_EXEC_LO: | 
|  | // This should be before all vector instructions. | 
|  | BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), | 
|  | AMDGPU::EXEC_LO) | 
|  | .addImm(MI.getOperand(0).getImm()); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  |  | 
|  | case AMDGPU::SI_INIT_EXEC_FROM_INPUT: { | 
|  | // Extract the thread count from an SGPR input and set EXEC accordingly. | 
|  | // Since BFM can't shift by 64, handle that case with CMP + CMOV. | 
|  | // | 
|  | // S_BFE_U32 count, input, {shift, 7} | 
|  | // S_BFM_B64 exec, count, 0 | 
|  | // S_CMP_EQ_U32 count, 64 | 
|  | // S_CMOV_B64 exec, -1 | 
|  | MachineInstr *FirstMI = &*BB->begin(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | unsigned InputReg = MI.getOperand(0).getReg(); | 
|  | unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); | 
|  | bool Found = false; | 
|  |  | 
|  | // Move the COPY of the input reg to the beginning, so that we can use it. | 
|  | for (auto I = BB->begin(); I != &MI; I++) { | 
|  | if (I->getOpcode() != TargetOpcode::COPY || | 
|  | I->getOperand(0).getReg() != InputReg) | 
|  | continue; | 
|  |  | 
|  | if (I == FirstMI) { | 
|  | FirstMI = &*++BB->begin(); | 
|  | } else { | 
|  | I->removeFromParent(); | 
|  | BB->insert(FirstMI, &*I); | 
|  | } | 
|  | Found = true; | 
|  | break; | 
|  | } | 
|  | assert(Found); | 
|  | (void)Found; | 
|  |  | 
|  | // This should be before all vector instructions. | 
|  | unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1; | 
|  | bool isWave32 = getSubtarget()->isWave32(); | 
|  | unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; | 
|  | BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg) | 
|  | .addReg(InputReg) | 
|  | .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000); | 
|  | BuildMI(*BB, FirstMI, DebugLoc(), | 
|  | TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64), | 
|  | Exec) | 
|  | .addReg(CountReg) | 
|  | .addImm(0); | 
|  | BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32)) | 
|  | .addReg(CountReg, RegState::Kill) | 
|  | .addImm(getSubtarget()->getWavefrontSize()); | 
|  | BuildMI(*BB, FirstMI, DebugLoc(), | 
|  | TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64), | 
|  | Exec) | 
|  | .addImm(-1); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | case AMDGPU::GET_GROUPSTATICSIZE: { | 
|  | assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || | 
|  | getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) | 
|  | .add(MI.getOperand(0)) | 
|  | .addImm(MFI->getLDSSize()); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  | case AMDGPU::SI_INDIRECT_SRC_V1: | 
|  | case AMDGPU::SI_INDIRECT_SRC_V2: | 
|  | case AMDGPU::SI_INDIRECT_SRC_V4: | 
|  | case AMDGPU::SI_INDIRECT_SRC_V8: | 
|  | case AMDGPU::SI_INDIRECT_SRC_V16: | 
|  | return emitIndirectSrc(MI, *BB, *getSubtarget()); | 
|  | case AMDGPU::SI_INDIRECT_DST_V1: | 
|  | case AMDGPU::SI_INDIRECT_DST_V2: | 
|  | case AMDGPU::SI_INDIRECT_DST_V4: | 
|  | case AMDGPU::SI_INDIRECT_DST_V8: | 
|  | case AMDGPU::SI_INDIRECT_DST_V16: | 
|  | return emitIndirectDst(MI, *BB, *getSubtarget()); | 
|  | case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: | 
|  | case AMDGPU::SI_KILL_I1_PSEUDO: | 
|  | return splitKillBlock(MI, BB); | 
|  | case AMDGPU::V_CNDMASK_B64_PSEUDO: { | 
|  | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | 
|  | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); | 
|  | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | 
|  |  | 
|  | unsigned Dst = MI.getOperand(0).getReg(); | 
|  | unsigned Src0 = MI.getOperand(1).getReg(); | 
|  | unsigned Src1 = MI.getOperand(2).getReg(); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  | unsigned SrcCond = MI.getOperand(3).getReg(); | 
|  |  | 
|  | unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  | unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  | const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); | 
|  | unsigned SrcCondCopy = MRI.createVirtualRegister(CondRC); | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) | 
|  | .addReg(SrcCond); | 
|  | BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) | 
|  | .addImm(0) | 
|  | .addReg(Src0, 0, AMDGPU::sub0) | 
|  | .addImm(0) | 
|  | .addReg(Src1, 0, AMDGPU::sub0) | 
|  | .addReg(SrcCondCopy); | 
|  | BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) | 
|  | .addImm(0) | 
|  | .addReg(Src0, 0, AMDGPU::sub1) | 
|  | .addImm(0) | 
|  | .addReg(Src1, 0, AMDGPU::sub1) | 
|  | .addReg(SrcCondCopy); | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) | 
|  | .addReg(DstLo) | 
|  | .addImm(AMDGPU::sub0) | 
|  | .addReg(DstHi) | 
|  | .addImm(AMDGPU::sub1); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  | case AMDGPU::SI_BR_UNDEF: { | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  | MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) | 
|  | .add(MI.getOperand(0)); | 
|  | Br->getOperand(1).setIsUndef(true); // read undef SCC | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  | case AMDGPU::ADJCALLSTACKUP: | 
|  | case AMDGPU::ADJCALLSTACKDOWN: { | 
|  | const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); | 
|  | MachineInstrBuilder MIB(*MF, &MI); | 
|  |  | 
|  | // Add an implicit use of the frame offset reg to prevent the restore copy | 
|  | // inserted after the call from being reorderd after stack operations in the | 
|  | // the caller's frame. | 
|  | MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) | 
|  | .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit) | 
|  | .addReg(Info->getFrameOffsetReg(), RegState::Implicit); | 
|  | return BB; | 
|  | } | 
|  | case AMDGPU::SI_CALL_ISEL: { | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  |  | 
|  | unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); | 
|  |  | 
|  | MachineInstrBuilder MIB; | 
|  | MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); | 
|  |  | 
|  | for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) | 
|  | MIB.add(MI.getOperand(I)); | 
|  |  | 
|  | MIB.cloneMemRefs(MI); | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  | case AMDGPU::V_ADD_I32_e32: | 
|  | case AMDGPU::V_SUB_I32_e32: | 
|  | case AMDGPU::V_SUBREV_I32_e32: { | 
|  | // TODO: Define distinct V_*_I32_Pseudo instructions instead. | 
|  | const DebugLoc &DL = MI.getDebugLoc(); | 
|  | unsigned Opc = MI.getOpcode(); | 
|  |  | 
|  | bool NeedClampOperand = false; | 
|  | if (TII->pseudoToMCOpcode(Opc) == -1) { | 
|  | Opc = AMDGPU::getVOPe64(Opc); | 
|  | NeedClampOperand = true; | 
|  | } | 
|  |  | 
|  | auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); | 
|  | if (TII->isVOP3(*I)) { | 
|  | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); | 
|  | const SIRegisterInfo *TRI = ST.getRegisterInfo(); | 
|  | I.addReg(TRI->getVCC(), RegState::Define); | 
|  | } | 
|  | I.add(MI.getOperand(1)) | 
|  | .add(MI.getOperand(2)); | 
|  | if (NeedClampOperand) | 
|  | I.addImm(0); // clamp bit for e64 encoding | 
|  |  | 
|  | TII->legalizeOperands(*I); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  | case AMDGPU::DS_GWS_INIT: | 
|  | case AMDGPU::DS_GWS_SEMA_V: | 
|  | case AMDGPU::DS_GWS_SEMA_BR: | 
|  | case AMDGPU::DS_GWS_SEMA_P: | 
|  | case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: | 
|  | case AMDGPU::DS_GWS_BARRIER: | 
|  | if (getSubtarget()->hasGWSAutoReplay()) | 
|  | return BB; | 
|  | return emitGWSMemViolTestLoop(MI, BB); | 
|  | default: | 
|  | return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { | 
|  | return isTypeLegal(VT.getScalarType()); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { | 
|  | // This currently forces unfolding various combinations of fsub into fma with | 
|  | // free fneg'd operands. As long as we have fast FMA (controlled by | 
|  | // isFMAFasterThanFMulAndFAdd), we should perform these. | 
|  |  | 
|  | // When fma is quarter rate, for f64 where add / sub are at best half rate, | 
|  | // most of these combines appear to be cycle neutral but save on instruction | 
|  | // count / code size. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, | 
|  | EVT VT) const { | 
|  | if (!VT.isVector()) { | 
|  | return MVT::i1; | 
|  | } | 
|  | return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); | 
|  | } | 
|  |  | 
|  | MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { | 
|  | // TODO: Should i16 be used always if legal? For now it would force VALU | 
|  | // shifts. | 
|  | return (VT == MVT::i16) ? MVT::i16 : MVT::i32; | 
|  | } | 
|  |  | 
|  | // Answering this is somewhat tricky and depends on the specific device which | 
|  | // have different rates for fma or all f64 operations. | 
|  | // | 
|  | // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other | 
|  | // regardless of which device (although the number of cycles differs between | 
|  | // devices), so it is always profitable for f64. | 
|  | // | 
|  | // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable | 
|  | // only on full rate devices. Normally, we should prefer selecting v_mad_f32 | 
|  | // which we can always do even without fused FP ops since it returns the same | 
|  | // result as the separate operations and since it is always full | 
|  | // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 | 
|  | // however does not support denormals, so we do report fma as faster if we have | 
|  | // a fast fma device and require denormals. | 
|  | // | 
|  | bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { | 
|  | VT = VT.getScalarType(); | 
|  |  | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::f32: { | 
|  | // This is as fast on some subtargets. However, we always have full rate f32 | 
|  | // mad available which returns the same result as the separate operations | 
|  | // which we should prefer over fma. We can't use this if we want to support | 
|  | // denormals, so only report this in these cases. | 
|  | if (Subtarget->hasFP32Denormals()) | 
|  | return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); | 
|  |  | 
|  | // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. | 
|  | return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); | 
|  | } | 
|  | case MVT::f64: | 
|  | return true; | 
|  | case MVT::f16: | 
|  | return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals(); | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Custom DAG Lowering Operations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the | 
|  | // wider vector type is legal. | 
|  | SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | EVT VT = Op.getValueType(); | 
|  | assert(VT == MVT::v4f16); | 
|  |  | 
|  | SDValue Lo, Hi; | 
|  | std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); | 
|  |  | 
|  | SDLoc SL(Op); | 
|  | SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, | 
|  | Op->getFlags()); | 
|  | SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, | 
|  | Op->getFlags()); | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); | 
|  | } | 
|  |  | 
|  | // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the | 
|  | // wider vector type is legal. | 
|  | SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | EVT VT = Op.getValueType(); | 
|  | assert(VT == MVT::v4i16 || VT == MVT::v4f16); | 
|  |  | 
|  | SDValue Lo0, Hi0; | 
|  | std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); | 
|  | SDValue Lo1, Hi1; | 
|  | std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); | 
|  |  | 
|  | SDLoc SL(Op); | 
|  |  | 
|  | SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, | 
|  | Op->getFlags()); | 
|  | SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, | 
|  | Op->getFlags()); | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | 
|  | switch (Op.getOpcode()) { | 
|  | default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); | 
|  | case ISD::BRCOND: return LowerBRCOND(Op, DAG); | 
|  | case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); | 
|  | case ISD::LOAD: { | 
|  | SDValue Result = LowerLOAD(Op, DAG); | 
|  | assert((!Result.getNode() || | 
|  | Result.getNode()->getNumValues() == 2) && | 
|  | "Load should return a value and a chain"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | return LowerTrig(Op, DAG); | 
|  | case ISD::SELECT: return LowerSELECT(Op, DAG); | 
|  | case ISD::FDIV: return LowerFDIV(Op, DAG); | 
|  | case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); | 
|  | case ISD::STORE: return LowerSTORE(Op, DAG); | 
|  | case ISD::GlobalAddress: { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | return LowerGlobalAddress(MFI, Op, DAG); | 
|  | } | 
|  | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); | 
|  | case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); | 
|  | case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); | 
|  | case ISD::INSERT_SUBVECTOR: | 
|  | return lowerINSERT_SUBVECTOR(Op, DAG); | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | return lowerINSERT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | return lowerEXTRACT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::VECTOR_SHUFFLE: | 
|  | return lowerVECTOR_SHUFFLE(Op, DAG); | 
|  | case ISD::BUILD_VECTOR: | 
|  | return lowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::FP_ROUND: | 
|  | return lowerFP_ROUND(Op, DAG); | 
|  | case ISD::TRAP: | 
|  | return lowerTRAP(Op, DAG); | 
|  | case ISD::DEBUGTRAP: | 
|  | return lowerDEBUGTRAP(Op, DAG); | 
|  | case ISD::FABS: | 
|  | case ISD::FNEG: | 
|  | case ISD::FCANONICALIZE: | 
|  | return splitUnaryVectorOp(Op, DAG); | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM: | 
|  | return lowerFMINNUM_FMAXNUM(Op, DAG); | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | case ISD::SMIN: | 
|  | case ISD::SMAX: | 
|  | case ISD::UMIN: | 
|  | case ISD::UMAX: | 
|  | case ISD::FADD: | 
|  | case ISD::FMUL: | 
|  | case ISD::FMINNUM_IEEE: | 
|  | case ISD::FMAXNUM_IEEE: | 
|  | return splitBinaryVectorOp(Op, DAG); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, | 
|  | const SDLoc &DL, | 
|  | SelectionDAG &DAG, bool Unpacked) { | 
|  | if (!LoadVT.isVector()) | 
|  | return Result; | 
|  |  | 
|  | if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. | 
|  | // Truncate to v2i16/v4i16. | 
|  | EVT IntLoadVT = LoadVT.changeTypeToInteger(); | 
|  |  | 
|  | // Workaround legalizer not scalarizing truncate after vector op | 
|  | // legalization byt not creating intermediate vector trunc. | 
|  | SmallVector<SDValue, 4> Elts; | 
|  | DAG.ExtractVectorElements(Result, Elts); | 
|  | for (SDValue &Elt : Elts) | 
|  | Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); | 
|  |  | 
|  | Result = DAG.getBuildVector(IntLoadVT, DL, Elts); | 
|  |  | 
|  | // Bitcast to original type (v2f16/v4f16). | 
|  | return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); | 
|  | } | 
|  |  | 
|  | // Cast back to the original packed type. | 
|  | return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, | 
|  | MemSDNode *M, | 
|  | SelectionDAG &DAG, | 
|  | ArrayRef<SDValue> Ops, | 
|  | bool IsIntrinsic) const { | 
|  | SDLoc DL(M); | 
|  |  | 
|  | bool Unpacked = Subtarget->hasUnpackedD16VMem(); | 
|  | EVT LoadVT = M->getValueType(0); | 
|  |  | 
|  | EVT EquivLoadVT = LoadVT; | 
|  | if (Unpacked && LoadVT.isVector()) { | 
|  | EquivLoadVT = LoadVT.isVector() ? | 
|  | EVT::getVectorVT(*DAG.getContext(), MVT::i32, | 
|  | LoadVT.getVectorNumElements()) : LoadVT; | 
|  | } | 
|  |  | 
|  | // Change from v4f16/v2f16 to EquivLoadVT. | 
|  | SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); | 
|  |  | 
|  | SDValue Load | 
|  | = DAG.getMemIntrinsicNode( | 
|  | IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, | 
|  | VTList, Ops, M->getMemoryVT(), | 
|  | M->getMemOperand()); | 
|  | if (!Unpacked) // Just adjusted the opcode. | 
|  | return Load; | 
|  |  | 
|  | SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); | 
|  |  | 
|  | return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); | 
|  | } | 
|  |  | 
|  | static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, | 
|  | SDNode *N, SelectionDAG &DAG) { | 
|  | EVT VT = N->getValueType(0); | 
|  | const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); | 
|  | int CondCode = CD->getSExtValue(); | 
|  | if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE || | 
|  | CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); | 
|  |  | 
|  | SDValue LHS = N->getOperand(1); | 
|  | SDValue RHS = N->getOperand(2); | 
|  |  | 
|  | SDLoc DL(N); | 
|  |  | 
|  | EVT CmpVT = LHS.getValueType(); | 
|  | if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { | 
|  | unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? | 
|  | ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); | 
|  | RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); | 
|  | } | 
|  |  | 
|  | ISD::CondCode CCOpcode = getICmpCondCode(IcInput); | 
|  |  | 
|  | unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); | 
|  | EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); | 
|  |  | 
|  | SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, | 
|  | DAG.getCondCode(CCOpcode)); | 
|  | if (VT.bitsEq(CCVT)) | 
|  | return SetCC; | 
|  | return DAG.getZExtOrTrunc(SetCC, DL, VT); | 
|  | } | 
|  |  | 
|  | static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, | 
|  | SDNode *N, SelectionDAG &DAG) { | 
|  | EVT VT = N->getValueType(0); | 
|  | const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); | 
|  |  | 
|  | int CondCode = CD->getSExtValue(); | 
|  | if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE || | 
|  | CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) { | 
|  | return DAG.getUNDEF(VT); | 
|  | } | 
|  |  | 
|  | SDValue Src0 = N->getOperand(1); | 
|  | SDValue Src1 = N->getOperand(2); | 
|  | EVT CmpVT = Src0.getValueType(); | 
|  | SDLoc SL(N); | 
|  |  | 
|  | if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { | 
|  | Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); | 
|  | Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); | 
|  | } | 
|  |  | 
|  | FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); | 
|  | ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); | 
|  | unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); | 
|  | EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); | 
|  | SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, | 
|  | Src1, DAG.getCondCode(CCOpcode)); | 
|  | if (VT.bitsEq(CCVT)) | 
|  | return SetCC; | 
|  | return DAG.getZExtOrTrunc(SetCC, SL, VT); | 
|  | } | 
|  |  | 
|  | void SITargetLowering::ReplaceNodeResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) const { | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::INSERT_VECTOR_ELT: { | 
|  | if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) | 
|  | Results.push_back(Res); | 
|  | return; | 
|  | } | 
|  | case ISD::EXTRACT_VECTOR_ELT: { | 
|  | if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) | 
|  | Results.push_back(Res); | 
|  | return; | 
|  | } | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | 
|  | switch (IID) { | 
|  | case Intrinsic::amdgcn_cvt_pkrtz: { | 
|  | SDValue Src0 = N->getOperand(1); | 
|  | SDValue Src1 = N->getOperand(2); | 
|  | SDLoc SL(N); | 
|  | SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, | 
|  | Src0, Src1); | 
|  | Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::amdgcn_cvt_pknorm_i16: | 
|  | case Intrinsic::amdgcn_cvt_pknorm_u16: | 
|  | case Intrinsic::amdgcn_cvt_pk_i16: | 
|  | case Intrinsic::amdgcn_cvt_pk_u16: { | 
|  | SDValue Src0 = N->getOperand(1); | 
|  | SDValue Src1 = N->getOperand(2); | 
|  | SDLoc SL(N); | 
|  | unsigned Opcode; | 
|  |  | 
|  | if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) | 
|  | Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; | 
|  | else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) | 
|  | Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; | 
|  | else if (IID == Intrinsic::amdgcn_cvt_pk_i16) | 
|  | Opcode = AMDGPUISD::CVT_PK_I16_I32; | 
|  | else | 
|  | Opcode = AMDGPUISD::CVT_PK_U16_U32; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (isTypeLegal(VT)) | 
|  | Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); | 
|  | else { | 
|  | SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); | 
|  | Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::INTRINSIC_W_CHAIN: { | 
|  | if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { | 
|  | Results.push_back(Res); | 
|  | Results.push_back(Res.getValue(1)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT: { | 
|  | SDLoc SL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); | 
|  | SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); | 
|  | SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); | 
|  |  | 
|  | EVT SelectVT = NewVT; | 
|  | if (NewVT.bitsLT(MVT::i32)) { | 
|  | LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); | 
|  | RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); | 
|  | SelectVT = MVT::i32; | 
|  | } | 
|  |  | 
|  | SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, | 
|  | N->getOperand(0), LHS, RHS); | 
|  |  | 
|  | if (NewVT != SelectVT) | 
|  | NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); | 
|  | Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); | 
|  | return; | 
|  | } | 
|  | case ISD::FNEG: { | 
|  | if (N->getValueType(0) != MVT::v2f16) | 
|  | break; | 
|  |  | 
|  | SDLoc SL(N); | 
|  | SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); | 
|  |  | 
|  | SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, | 
|  | BC, | 
|  | DAG.getConstant(0x80008000, SL, MVT::i32)); | 
|  | Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); | 
|  | return; | 
|  | } | 
|  | case ISD::FABS: { | 
|  | if (N->getValueType(0) != MVT::v2f16) | 
|  | break; | 
|  |  | 
|  | SDLoc SL(N); | 
|  | SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); | 
|  |  | 
|  | SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, | 
|  | BC, | 
|  | DAG.getConstant(0x7fff7fff, SL, MVT::i32)); | 
|  | Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); | 
|  | return; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Helper function for LowerBRCOND | 
|  | static SDNode *findUser(SDValue Value, unsigned Opcode) { | 
|  |  | 
|  | SDNode *Parent = Value.getNode(); | 
|  | for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); | 
|  | I != E; ++I) { | 
|  |  | 
|  | if (I.getUse().get() != Value) | 
|  | continue; | 
|  |  | 
|  | if (I->getOpcode() == Opcode) | 
|  | return *I; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { | 
|  | if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { | 
|  | switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { | 
|  | case Intrinsic::amdgcn_if: | 
|  | return AMDGPUISD::IF; | 
|  | case Intrinsic::amdgcn_else: | 
|  | return AMDGPUISD::ELSE; | 
|  | case Intrinsic::amdgcn_loop: | 
|  | return AMDGPUISD::LOOP; | 
|  | case Intrinsic::amdgcn_end_cf: | 
|  | llvm_unreachable("should not occur"); | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // break, if_break, else_break are all only used as inputs to loop, not | 
|  | // directly as branch conditions. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { | 
|  | const Triple &TT = getTargetMachine().getTargetTriple(); | 
|  | return (GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || | 
|  | GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && | 
|  | AMDGPU::shouldEmitConstantsToTextSection(TT); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { | 
|  | // FIXME: Either avoid relying on address space here or change the default | 
|  | // address space for functions to avoid the explicit check. | 
|  | return (GV->getValueType()->isFunctionTy() || | 
|  | GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || | 
|  | GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || | 
|  | GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && | 
|  | !shouldEmitFixup(GV) && | 
|  | !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { | 
|  | return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); | 
|  | } | 
|  |  | 
|  | /// This transforms the control flow intrinsics to get the branch destination as | 
|  | /// last parameter, also switches branch target with BR if the need arise | 
|  | SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(BRCOND); | 
|  |  | 
|  | SDNode *Intr = BRCOND.getOperand(1).getNode(); | 
|  | SDValue Target = BRCOND.getOperand(2); | 
|  | SDNode *BR = nullptr; | 
|  | SDNode *SetCC = nullptr; | 
|  |  | 
|  | if (Intr->getOpcode() == ISD::SETCC) { | 
|  | // As long as we negate the condition everything is fine | 
|  | SetCC = Intr; | 
|  | Intr = SetCC->getOperand(0).getNode(); | 
|  |  | 
|  | } else { | 
|  | // Get the target from BR if we don't negate the condition | 
|  | BR = findUser(BRCOND, ISD::BR); | 
|  | Target = BR->getOperand(1); | 
|  | } | 
|  |  | 
|  | // FIXME: This changes the types of the intrinsics instead of introducing new | 
|  | // nodes with the correct types. | 
|  | // e.g. llvm.amdgcn.loop | 
|  |  | 
|  | // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3 | 
|  | // =>     t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088> | 
|  |  | 
|  | unsigned CFNode = isCFIntrinsic(Intr); | 
|  | if (CFNode == 0) { | 
|  | // This is a uniform branch so we don't need to legalize. | 
|  | return BRCOND; | 
|  | } | 
|  |  | 
|  | bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || | 
|  | Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; | 
|  |  | 
|  | assert(!SetCC || | 
|  | (SetCC->getConstantOperandVal(1) == 1 && | 
|  | cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == | 
|  | ISD::SETNE)); | 
|  |  | 
|  | // operands of the new intrinsic call | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | if (HaveChain) | 
|  | Ops.push_back(BRCOND.getOperand(0)); | 
|  |  | 
|  | Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end()); | 
|  | Ops.push_back(Target); | 
|  |  | 
|  | ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); | 
|  |  | 
|  | // build the new intrinsic call | 
|  | SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); | 
|  |  | 
|  | if (!HaveChain) { | 
|  | SDValue Ops[] =  { | 
|  | SDValue(Result, 0), | 
|  | BRCOND.getOperand(0) | 
|  | }; | 
|  |  | 
|  | Result = DAG.getMergeValues(Ops, DL).getNode(); | 
|  | } | 
|  |  | 
|  | if (BR) { | 
|  | // Give the branch instruction our target | 
|  | SDValue Ops[] = { | 
|  | BR->getOperand(0), | 
|  | BRCOND.getOperand(2) | 
|  | }; | 
|  | SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); | 
|  | DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); | 
|  | BR = NewBR.getNode(); | 
|  | } | 
|  |  | 
|  | SDValue Chain = SDValue(Result, Result->getNumValues() - 1); | 
|  |  | 
|  | // Copy the intrinsic results to registers | 
|  | for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { | 
|  | SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); | 
|  | if (!CopyToReg) | 
|  | continue; | 
|  |  | 
|  | Chain = DAG.getCopyToReg( | 
|  | Chain, DL, | 
|  | CopyToReg->getOperand(1), | 
|  | SDValue(Result, i - 1), | 
|  | SDValue()); | 
|  |  | 
|  | DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); | 
|  | } | 
|  |  | 
|  | // Remove the old intrinsic from the chain | 
|  | DAG.ReplaceAllUsesOfValueWith( | 
|  | SDValue(Intr, Intr->getNumValues() - 1), | 
|  | Intr->getOperand(0)); | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc DL(Op); | 
|  | // Checking the depth | 
|  | if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | // Check for kernel and shader functions | 
|  | if (Info->isEntryFunction()) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  |  | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | // There is a call to @llvm.returnaddress in this function | 
|  | MFI.setReturnAddressIsTaken(true); | 
|  |  | 
|  | const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); | 
|  | // Get the return address reg and mark it as an implicit live-in | 
|  | unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); | 
|  |  | 
|  | return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG, | 
|  | SDValue Op, | 
|  | const SDLoc &DL, | 
|  | EVT VT) const { | 
|  | return Op.getValueType().bitsLE(VT) ? | 
|  | DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : | 
|  | DAG.getNode(ISD::FTRUNC, DL, VT, Op); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(Op.getValueType() == MVT::f16 && | 
|  | "Do not know how to custom lower FP_ROUND for non-f16 type"); | 
|  |  | 
|  | SDValue Src = Op.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | if (SrcVT != MVT::f64) | 
|  | return Op; | 
|  |  | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); | 
|  | return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | const MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | bool IsIEEEMode = Info->getMode().IEEE; | 
|  |  | 
|  | // FIXME: Assert during eslection that this is only selected for | 
|  | // ieee_mode. Currently a combine can produce the ieee version for non-ieee | 
|  | // mode functions, but this happens to be OK since it's only done in cases | 
|  | // where there is known no sNaN. | 
|  | if (IsIEEEMode) | 
|  | return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); | 
|  |  | 
|  | if (VT == MVT::v4f16) | 
|  | return splitBinaryVectorOp(Op, DAG); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  |  | 
|  | if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || | 
|  | !Subtarget->isTrapHandlerEnabled()) | 
|  | return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | unsigned UserSGPR = Info->getQueuePtrUserSGPR(); | 
|  | assert(UserSGPR != AMDGPU::NoRegister); | 
|  | SDValue QueuePtr = CreateLiveInRegister( | 
|  | DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); | 
|  | SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); | 
|  | SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, | 
|  | QueuePtr, SDValue()); | 
|  | SDValue Ops[] = { | 
|  | ToReg, | 
|  | DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16), | 
|  | SGPR01, | 
|  | ToReg.getValue(1) | 
|  | }; | 
|  | return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || | 
|  | !Subtarget->isTrapHandlerEnabled()) { | 
|  | DiagnosticInfoUnsupported NoTrap(MF.getFunction(), | 
|  | "debugtrap handler not supported", | 
|  | Op.getDebugLoc(), | 
|  | DS_Warning); | 
|  | LLVMContext &Ctx = MF.getFunction().getContext(); | 
|  | Ctx.diagnose(NoTrap); | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | Chain, | 
|  | DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16) | 
|  | }; | 
|  | return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, | 
|  | SelectionDAG &DAG) const { | 
|  | // FIXME: Use inline constants (src_{shared, private}_base) instead. | 
|  | if (Subtarget->hasApertureRegs()) { | 
|  | unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? | 
|  | AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : | 
|  | AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; | 
|  | unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? | 
|  | AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : | 
|  | AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; | 
|  | unsigned Encoding = | 
|  | AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | | 
|  | Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | | 
|  | WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; | 
|  |  | 
|  | SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); | 
|  | SDValue ApertureReg = SDValue( | 
|  | DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); | 
|  | SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); | 
|  | return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); | 
|  | } | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | unsigned UserSGPR = Info->getQueuePtrUserSGPR(); | 
|  | assert(UserSGPR != AMDGPU::NoRegister); | 
|  |  | 
|  | SDValue QueuePtr = CreateLiveInRegister( | 
|  | DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); | 
|  |  | 
|  | // Offset into amd_queue_t for group_segment_aperture_base_hi / | 
|  | // private_segment_aperture_base_hi. | 
|  | uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; | 
|  |  | 
|  | SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset); | 
|  |  | 
|  | // TODO: Use custom target PseudoSourceValue. | 
|  | // TODO: We should use the value from the IR intrinsic call, but it might not | 
|  | // be available and how do we get it? | 
|  | Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()), | 
|  | AMDGPUAS::CONSTANT_ADDRESS)); | 
|  |  | 
|  | MachinePointerInfo PtrInfo(V, StructOffset); | 
|  | return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, | 
|  | MinAlign(64, StructOffset), | 
|  | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOInvariant); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); | 
|  |  | 
|  | SDValue Src = ASC->getOperand(0); | 
|  | SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); | 
|  |  | 
|  | const AMDGPUTargetMachine &TM = | 
|  | static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); | 
|  |  | 
|  | // flat -> local/private | 
|  | if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { | 
|  | unsigned DestAS = ASC->getDestAddressSpace(); | 
|  |  | 
|  | if (DestAS == AMDGPUAS::LOCAL_ADDRESS || | 
|  | DestAS == AMDGPUAS::PRIVATE_ADDRESS) { | 
|  | unsigned NullVal = TM.getNullPointerValue(DestAS); | 
|  | SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); | 
|  | SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); | 
|  | SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); | 
|  |  | 
|  | return DAG.getNode(ISD::SELECT, SL, MVT::i32, | 
|  | NonNull, Ptr, SegmentNullPtr); | 
|  | } | 
|  | } | 
|  |  | 
|  | // local/private -> flat | 
|  | if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { | 
|  | unsigned SrcAS = ASC->getSrcAddressSpace(); | 
|  |  | 
|  | if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || | 
|  | SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { | 
|  | unsigned NullVal = TM.getNullPointerValue(SrcAS); | 
|  | SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); | 
|  |  | 
|  | SDValue NonNull | 
|  | = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); | 
|  |  | 
|  | SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); | 
|  | SDValue CvtPtr | 
|  | = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); | 
|  |  | 
|  | return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, | 
|  | DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr), | 
|  | FlatNullPtr); | 
|  | } | 
|  | } | 
|  |  | 
|  | // global <-> flat are no-ops and never emitted. | 
|  |  | 
|  | const MachineFunction &MF = DAG.getMachineFunction(); | 
|  | DiagnosticInfoUnsupported InvalidAddrSpaceCast( | 
|  | MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); | 
|  | DAG.getContext()->diagnose(InvalidAddrSpaceCast); | 
|  |  | 
|  | return DAG.getUNDEF(ASC->getValueType(0)); | 
|  | } | 
|  |  | 
|  | // This lowers an INSERT_SUBVECTOR by extracting the individual elements from | 
|  | // the small vector and inserting them into the big vector. That is better than | 
|  | // the default expansion of doing it via a stack slot. Even though the use of | 
|  | // the stack slot would be optimized away afterwards, the stack slot itself | 
|  | // remains. | 
|  | SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue Ins = Op.getOperand(1); | 
|  | SDValue Idx = Op.getOperand(2); | 
|  | EVT VecVT = Vec.getValueType(); | 
|  | EVT InsVT = Ins.getValueType(); | 
|  | EVT EltVT = VecVT.getVectorElementType(); | 
|  | unsigned InsNumElts = InsVT.getVectorNumElements(); | 
|  | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | SDLoc SL(Op); | 
|  |  | 
|  | for (unsigned I = 0; I != InsNumElts; ++I) { | 
|  | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, | 
|  | DAG.getConstant(I, SL, MVT::i32)); | 
|  | Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, | 
|  | DAG.getConstant(IdxVal + I, SL, MVT::i32)); | 
|  | } | 
|  | return Vec; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue InsVal = Op.getOperand(1); | 
|  | SDValue Idx = Op.getOperand(2); | 
|  | EVT VecVT = Vec.getValueType(); | 
|  | EVT EltVT = VecVT.getVectorElementType(); | 
|  | unsigned VecSize = VecVT.getSizeInBits(); | 
|  | unsigned EltSize = EltVT.getSizeInBits(); | 
|  |  | 
|  |  | 
|  | assert(VecSize <= 64); | 
|  |  | 
|  | unsigned NumElts = VecVT.getVectorNumElements(); | 
|  | SDLoc SL(Op); | 
|  | auto KIdx = dyn_cast<ConstantSDNode>(Idx); | 
|  |  | 
|  | if (NumElts == 4 && EltSize == 16 && KIdx) { | 
|  | SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); | 
|  |  | 
|  | SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, | 
|  | DAG.getConstant(0, SL, MVT::i32)); | 
|  | SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, | 
|  | DAG.getConstant(1, SL, MVT::i32)); | 
|  |  | 
|  | SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); | 
|  | SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); | 
|  |  | 
|  | unsigned Idx = KIdx->getZExtValue(); | 
|  | bool InsertLo = Idx < 2; | 
|  | SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, | 
|  | InsertLo ? LoVec : HiVec, | 
|  | DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), | 
|  | DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); | 
|  |  | 
|  | InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); | 
|  |  | 
|  | SDValue Concat = InsertLo ? | 
|  | DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : | 
|  | DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); | 
|  | } | 
|  |  | 
|  | if (isa<ConstantSDNode>(Idx)) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT IntVT = MVT::getIntegerVT(VecSize); | 
|  |  | 
|  | // Avoid stack access for dynamic indexing. | 
|  | // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec | 
|  |  | 
|  | // Create a congruent vector with the target value in each element so that | 
|  | // the required element can be masked and ORed into the target vector. | 
|  | SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, | 
|  | DAG.getSplatBuildVector(VecVT, SL, InsVal)); | 
|  |  | 
|  | assert(isPowerOf2_32(EltSize)); | 
|  | SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); | 
|  |  | 
|  | // Convert vector index to bit-index. | 
|  | SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); | 
|  |  | 
|  | SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); | 
|  | SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, | 
|  | DAG.getConstant(0xffff, SL, IntVT), | 
|  | ScaledIdx); | 
|  |  | 
|  | SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); | 
|  | SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, | 
|  | DAG.getNOT(SL, BFM, IntVT), BCVec); | 
|  |  | 
|  | SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); | 
|  | return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  |  | 
|  | EVT ResultVT = Op.getValueType(); | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue Idx = Op.getOperand(1); | 
|  | EVT VecVT = Vec.getValueType(); | 
|  | unsigned VecSize = VecVT.getSizeInBits(); | 
|  | EVT EltVT = VecVT.getVectorElementType(); | 
|  | assert(VecSize <= 64); | 
|  |  | 
|  | DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); | 
|  |  | 
|  | // Make sure we do any optimizations that will make it easier to fold | 
|  | // source modifiers before obscuring it with bit operations. | 
|  |  | 
|  | // XXX - Why doesn't this get called when vector_shuffle is expanded? | 
|  | if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) | 
|  | return Combined; | 
|  |  | 
|  | unsigned EltSize = EltVT.getSizeInBits(); | 
|  | assert(isPowerOf2_32(EltSize)); | 
|  |  | 
|  | MVT IntVT = MVT::getIntegerVT(VecSize); | 
|  | SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); | 
|  |  | 
|  | // Convert vector index to bit-index (* EltSize) | 
|  | SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); | 
|  |  | 
|  | SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); | 
|  | SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); | 
|  |  | 
|  | if (ResultVT == MVT::f16) { | 
|  | SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); | 
|  | return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); | 
|  | } | 
|  |  | 
|  | return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); | 
|  | } | 
|  |  | 
|  | static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { | 
|  | assert(Elt % 2 == 0); | 
|  | return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | EVT ResultVT = Op.getValueType(); | 
|  | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); | 
|  |  | 
|  | EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; | 
|  | EVT EltVT = PackVT.getVectorElementType(); | 
|  | int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); | 
|  |  | 
|  | // vector_shuffle <0,1,6,7> lhs, rhs | 
|  | // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) | 
|  | // | 
|  | // vector_shuffle <6,7,2,3> lhs, rhs | 
|  | // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) | 
|  | // | 
|  | // vector_shuffle <6,7,0,1> lhs, rhs | 
|  | // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) | 
|  |  | 
|  | // Avoid scalarizing when both halves are reading from consecutive elements. | 
|  | SmallVector<SDValue, 4> Pieces; | 
|  | for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { | 
|  | if (elementPairIsContiguous(SVN->getMask(), I)) { | 
|  | const int Idx = SVN->getMaskElt(I); | 
|  | int VecIdx = Idx < SrcNumElts ? 0 : 1; | 
|  | int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; | 
|  | SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, | 
|  | PackVT, SVN->getOperand(VecIdx), | 
|  | DAG.getConstant(EltIdx, SL, MVT::i32)); | 
|  | Pieces.push_back(SubVec); | 
|  | } else { | 
|  | const int Idx0 = SVN->getMaskElt(I); | 
|  | const int Idx1 = SVN->getMaskElt(I + 1); | 
|  | int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; | 
|  | int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; | 
|  | int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; | 
|  | int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; | 
|  |  | 
|  | SDValue Vec0 = SVN->getOperand(VecIdx0); | 
|  | SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, | 
|  | Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); | 
|  |  | 
|  | SDValue Vec1 = SVN->getOperand(VecIdx1); | 
|  | SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, | 
|  | Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); | 
|  | Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2); | 
|  |  | 
|  | // Turn into pair of packed build_vectors. | 
|  | // TODO: Special case for constants that can be materialized with s_mov_b64. | 
|  | SDValue Lo = DAG.getBuildVector(HalfVT, SL, | 
|  | { Op.getOperand(0), Op.getOperand(1) }); | 
|  | SDValue Hi = DAG.getBuildVector(HalfVT, SL, | 
|  | { Op.getOperand(2), Op.getOperand(3) }); | 
|  |  | 
|  | SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo); | 
|  | SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi); | 
|  |  | 
|  | SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi }); | 
|  | return DAG.getNode(ISD::BITCAST, SL, VT, Blend); | 
|  | } | 
|  |  | 
|  | assert(VT == MVT::v2f16 || VT == MVT::v2i16); | 
|  | assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); | 
|  |  | 
|  | SDValue Lo = Op.getOperand(0); | 
|  | SDValue Hi = Op.getOperand(1); | 
|  |  | 
|  | // Avoid adding defined bits with the zero_extend. | 
|  | if (Hi.isUndef()) { | 
|  | Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); | 
|  | SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); | 
|  | return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); | 
|  | } | 
|  |  | 
|  | Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); | 
|  | Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); | 
|  |  | 
|  | SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, | 
|  | DAG.getConstant(16, SL, MVT::i32)); | 
|  | if (Lo.isUndef()) | 
|  | return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); | 
|  |  | 
|  | Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); | 
|  | Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); | 
|  |  | 
|  | SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); | 
|  | return DAG.getNode(ISD::BITCAST, SL, VT, Or); | 
|  | } | 
|  |  | 
|  | bool | 
|  | SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { | 
|  | // We can fold offsets for anything that doesn't require a GOT relocation. | 
|  | return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || | 
|  | GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || | 
|  | GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && | 
|  | !shouldEmitGOTReloc(GA->getGlobal()); | 
|  | } | 
|  |  | 
|  | static SDValue | 
|  | buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, | 
|  | const SDLoc &DL, unsigned Offset, EVT PtrVT, | 
|  | unsigned GAFlags = SIInstrInfo::MO_NONE) { | 
|  | // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is | 
|  | // lowered to the following code sequence: | 
|  | // | 
|  | // For constant address space: | 
|  | //   s_getpc_b64 s[0:1] | 
|  | //   s_add_u32 s0, s0, $symbol | 
|  | //   s_addc_u32 s1, s1, 0 | 
|  | // | 
|  | //   s_getpc_b64 returns the address of the s_add_u32 instruction and then | 
|  | //   a fixup or relocation is emitted to replace $symbol with a literal | 
|  | //   constant, which is a pc-relative offset from the encoding of the $symbol | 
|  | //   operand to the global variable. | 
|  | // | 
|  | // For global address space: | 
|  | //   s_getpc_b64 s[0:1] | 
|  | //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo | 
|  | //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi | 
|  | // | 
|  | //   s_getpc_b64 returns the address of the s_add_u32 instruction and then | 
|  | //   fixups or relocations are emitted to replace $symbol@*@lo and | 
|  | //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, | 
|  | //   which is a 64-bit pc-relative offset from the encoding of the $symbol | 
|  | //   operand to the global variable. | 
|  | // | 
|  | // What we want here is an offset from the value returned by s_getpc | 
|  | // (which is the address of the s_add_u32 instruction) to the global | 
|  | // variable, but since the encoding of $symbol starts 4 bytes after the start | 
|  | // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too | 
|  | // small. This requires us to add 4 to the global variable offset in order to | 
|  | // compute the correct address. | 
|  | unsigned LoFlags = GAFlags; | 
|  | if (LoFlags == SIInstrInfo::MO_NONE) | 
|  | LoFlags = SIInstrInfo::MO_REL32; | 
|  | SDValue PtrLo = | 
|  | DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, LoFlags); | 
|  | SDValue PtrHi; | 
|  | if (GAFlags == SIInstrInfo::MO_NONE) { | 
|  | PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); | 
|  | } else { | 
|  | PtrHi = | 
|  | DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1); | 
|  | } | 
|  | return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, | 
|  | SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); | 
|  | const GlobalValue *GV = GSD->getGlobal(); | 
|  | if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && | 
|  | (!GV->hasExternalLinkage() || | 
|  | getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || | 
|  | getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)) || | 
|  | GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || | 
|  | GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) | 
|  | return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); | 
|  |  | 
|  | SDLoc DL(GSD); | 
|  | EVT PtrVT = Op.getValueType(); | 
|  |  | 
|  | if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { | 
|  | SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), | 
|  | SIInstrInfo::MO_ABS32_LO); | 
|  | return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); | 
|  | } | 
|  |  | 
|  | if (shouldEmitFixup(GV)) | 
|  | return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); | 
|  | else if (shouldEmitPCReloc(GV)) | 
|  | return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, | 
|  | SIInstrInfo::MO_REL32); | 
|  |  | 
|  | SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, | 
|  | SIInstrInfo::MO_GOTPCREL32); | 
|  |  | 
|  | Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); | 
|  | PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); | 
|  | const DataLayout &DataLayout = DAG.getDataLayout(); | 
|  | unsigned Align = DataLayout.getABITypeAlignment(PtrTy); | 
|  | MachinePointerInfo PtrInfo | 
|  | = MachinePointerInfo::getGOT(DAG.getMachineFunction()); | 
|  |  | 
|  | return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align, | 
|  | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOInvariant); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, | 
|  | const SDLoc &DL, SDValue V) const { | 
|  | // We can't use S_MOV_B32 directly, because there is no way to specify m0 as | 
|  | // the destination register. | 
|  | // | 
|  | // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, | 
|  | // so we will end up with redundant moves to m0. | 
|  | // | 
|  | // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. | 
|  |  | 
|  | // A Null SDValue creates a glue result. | 
|  | SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, | 
|  | V, Chain); | 
|  | return SDValue(M0, 0); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, | 
|  | SDValue Op, | 
|  | MVT VT, | 
|  | unsigned Offset) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL, | 
|  | DAG.getEntryNode(), Offset, 4, false); | 
|  | // The local size values will have the hi 16-bits as zero. | 
|  | return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, | 
|  | DAG.getValueType(VT)); | 
|  | } | 
|  |  | 
|  | static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, | 
|  | EVT VT) { | 
|  | DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), | 
|  | "non-hsa intrinsic with hsa target", | 
|  | DL.getDebugLoc()); | 
|  | DAG.getContext()->diagnose(BadIntrin); | 
|  | return DAG.getUNDEF(VT); | 
|  | } | 
|  |  | 
|  | static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, | 
|  | EVT VT) { | 
|  | DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), | 
|  | "intrinsic not supported on subtarget", | 
|  | DL.getDebugLoc()); | 
|  | DAG.getContext()->diagnose(BadIntrin); | 
|  | return DAG.getUNDEF(VT); | 
|  | } | 
|  |  | 
|  | static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, | 
|  | ArrayRef<SDValue> Elts) { | 
|  | assert(!Elts.empty()); | 
|  | MVT Type; | 
|  | unsigned NumElts; | 
|  |  | 
|  | if (Elts.size() == 1) { | 
|  | Type = MVT::f32; | 
|  | NumElts = 1; | 
|  | } else if (Elts.size() == 2) { | 
|  | Type = MVT::v2f32; | 
|  | NumElts = 2; | 
|  | } else if (Elts.size() <= 4) { | 
|  | Type = MVT::v4f32; | 
|  | NumElts = 4; | 
|  | } else if (Elts.size() <= 8) { | 
|  | Type = MVT::v8f32; | 
|  | NumElts = 8; | 
|  | } else { | 
|  | assert(Elts.size() <= 16); | 
|  | Type = MVT::v16f32; | 
|  | NumElts = 16; | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 16> VecElts(NumElts); | 
|  | for (unsigned i = 0; i < Elts.size(); ++i) { | 
|  | SDValue Elt = Elts[i]; | 
|  | if (Elt.getValueType() != MVT::f32) | 
|  | Elt = DAG.getBitcast(MVT::f32, Elt); | 
|  | VecElts[i] = Elt; | 
|  | } | 
|  | for (unsigned i = Elts.size(); i < NumElts; ++i) | 
|  | VecElts[i] = DAG.getUNDEF(MVT::f32); | 
|  |  | 
|  | if (NumElts == 1) | 
|  | return VecElts[0]; | 
|  | return DAG.getBuildVector(Type, DL, VecElts); | 
|  | } | 
|  |  | 
|  | static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG, | 
|  | SDValue *GLC, SDValue *SLC, SDValue *DLC) { | 
|  | auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode()); | 
|  |  | 
|  | uint64_t Value = CachePolicyConst->getZExtValue(); | 
|  | SDLoc DL(CachePolicy); | 
|  | if (GLC) { | 
|  | *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); | 
|  | Value &= ~(uint64_t)0x1; | 
|  | } | 
|  | if (SLC) { | 
|  | *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); | 
|  | Value &= ~(uint64_t)0x2; | 
|  | } | 
|  | if (DLC) { | 
|  | *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32); | 
|  | Value &= ~(uint64_t)0x4; | 
|  | } | 
|  |  | 
|  | return Value == 0; | 
|  | } | 
|  |  | 
|  | // Re-construct the required return value for a image load intrinsic. | 
|  | // This is more complicated due to the optional use TexFailCtrl which means the required | 
|  | // return type is an aggregate | 
|  | static SDValue constructRetValue(SelectionDAG &DAG, | 
|  | MachineSDNode *Result, | 
|  | ArrayRef<EVT> ResultTypes, | 
|  | bool IsTexFail, bool Unpacked, bool IsD16, | 
|  | int DMaskPop, int NumVDataDwords, | 
|  | const SDLoc &DL, LLVMContext &Context) { | 
|  | // Determine the required return type. This is the same regardless of IsTexFail flag | 
|  | EVT ReqRetVT = ResultTypes[0]; | 
|  | EVT ReqRetEltVT = ReqRetVT.isVector() ? ReqRetVT.getVectorElementType() : ReqRetVT; | 
|  | int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; | 
|  | EVT AdjEltVT = Unpacked && IsD16 ? MVT::i32 : ReqRetEltVT; | 
|  | EVT AdjVT = Unpacked ? ReqRetNumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, ReqRetNumElts) | 
|  | : AdjEltVT | 
|  | : ReqRetVT; | 
|  |  | 
|  | // Extract data part of the result | 
|  | // Bitcast the result to the same type as the required return type | 
|  | int NumElts; | 
|  | if (IsD16 && !Unpacked) | 
|  | NumElts = NumVDataDwords << 1; | 
|  | else | 
|  | NumElts = NumVDataDwords; | 
|  |  | 
|  | EVT CastVT = NumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, NumElts) | 
|  | : AdjEltVT; | 
|  |  | 
|  | // Special case for v6f16. Rather than add support for this, use v3i32 to | 
|  | // extract the data elements | 
|  | bool V6F16Special = false; | 
|  | if (NumElts == 6) { | 
|  | CastVT = EVT::getVectorVT(Context, MVT::i32, NumElts / 2); | 
|  | DMaskPop >>= 1; | 
|  | ReqRetNumElts >>= 1; | 
|  | V6F16Special = true; | 
|  | AdjVT = MVT::v2i32; | 
|  | } | 
|  |  | 
|  | SDValue N = SDValue(Result, 0); | 
|  | SDValue CastRes = DAG.getNode(ISD::BITCAST, DL, CastVT, N); | 
|  |  | 
|  | // Iterate over the result | 
|  | SmallVector<SDValue, 4> BVElts; | 
|  |  | 
|  | if (CastVT.isVector()) { | 
|  | DAG.ExtractVectorElements(CastRes, BVElts, 0, DMaskPop); | 
|  | } else { | 
|  | BVElts.push_back(CastRes); | 
|  | } | 
|  | int ExtraElts = ReqRetNumElts - DMaskPop; | 
|  | while(ExtraElts--) | 
|  | BVElts.push_back(DAG.getUNDEF(AdjEltVT)); | 
|  |  | 
|  | SDValue PreTFCRes; | 
|  | if (ReqRetNumElts > 1) { | 
|  | SDValue NewVec = DAG.getBuildVector(AdjVT, DL, BVElts); | 
|  | if (IsD16 && Unpacked) | 
|  | PreTFCRes = adjustLoadValueTypeImpl(NewVec, ReqRetVT, DL, DAG, Unpacked); | 
|  | else | 
|  | PreTFCRes = NewVec; | 
|  | } else { | 
|  | PreTFCRes = BVElts[0]; | 
|  | } | 
|  |  | 
|  | if (V6F16Special) | 
|  | PreTFCRes = DAG.getNode(ISD::BITCAST, DL, MVT::v4f16, PreTFCRes); | 
|  |  | 
|  | if (!IsTexFail) { | 
|  | if (Result->getNumValues() > 1) | 
|  | return DAG.getMergeValues({PreTFCRes, SDValue(Result, 1)}, DL); | 
|  | else | 
|  | return PreTFCRes; | 
|  | } | 
|  |  | 
|  | // Extract the TexFail result and insert into aggregate return | 
|  | SmallVector<SDValue, 1> TFCElt; | 
|  | DAG.ExtractVectorElements(N, TFCElt, DMaskPop, 1); | 
|  | SDValue TFCRes = DAG.getNode(ISD::BITCAST, DL, ResultTypes[1], TFCElt[0]); | 
|  | return DAG.getMergeValues({PreTFCRes, TFCRes, SDValue(Result, 1)}, DL); | 
|  | } | 
|  |  | 
|  | static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, | 
|  | SDValue *LWE, bool &IsTexFail) { | 
|  | auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); | 
|  |  | 
|  | uint64_t Value = TexFailCtrlConst->getZExtValue(); | 
|  | if (Value) { | 
|  | IsTexFail = true; | 
|  | } | 
|  |  | 
|  | SDLoc DL(TexFailCtrlConst); | 
|  | *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); | 
|  | Value &= ~(uint64_t)0x1; | 
|  | *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); | 
|  | Value &= ~(uint64_t)0x2; | 
|  |  | 
|  | return Value == 0; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerImage(SDValue Op, | 
|  | const AMDGPU::ImageDimIntrinsicInfo *Intr, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); | 
|  | const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = | 
|  | AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); | 
|  | const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); | 
|  | const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = | 
|  | AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode); | 
|  | const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo = | 
|  | AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode); | 
|  | unsigned IntrOpcode = Intr->BaseOpcode; | 
|  | bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10; | 
|  |  | 
|  | SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end()); | 
|  | SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end()); | 
|  | bool IsD16 = false; | 
|  | bool IsA16 = false; | 
|  | SDValue VData; | 
|  | int NumVDataDwords; | 
|  | bool AdjustRetType = false; | 
|  |  | 
|  | unsigned AddrIdx; // Index of first address argument | 
|  | unsigned DMask; | 
|  | unsigned DMaskLanes = 0; | 
|  |  | 
|  | if (BaseOpcode->Atomic) { | 
|  | VData = Op.getOperand(2); | 
|  |  | 
|  | bool Is64Bit = VData.getValueType() == MVT::i64; | 
|  | if (BaseOpcode->AtomicX2) { | 
|  | SDValue VData2 = Op.getOperand(3); | 
|  | VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, | 
|  | {VData, VData2}); | 
|  | if (Is64Bit) | 
|  | VData = DAG.getBitcast(MVT::v4i32, VData); | 
|  |  | 
|  | ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; | 
|  | DMask = Is64Bit ? 0xf : 0x3; | 
|  | NumVDataDwords = Is64Bit ? 4 : 2; | 
|  | AddrIdx = 4; | 
|  | } else { | 
|  | DMask = Is64Bit ? 0x3 : 0x1; | 
|  | NumVDataDwords = Is64Bit ? 2 : 1; | 
|  | AddrIdx = 3; | 
|  | } | 
|  | } else { | 
|  | unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1; | 
|  | auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx)); | 
|  | DMask = DMaskConst->getZExtValue(); | 
|  | DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask); | 
|  |  | 
|  | if (BaseOpcode->Store) { | 
|  | VData = Op.getOperand(2); | 
|  |  | 
|  | MVT StoreVT = VData.getSimpleValueType(); | 
|  | if (StoreVT.getScalarType() == MVT::f16) { | 
|  | if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) | 
|  | return Op; // D16 is unsupported for this instruction | 
|  |  | 
|  | IsD16 = true; | 
|  | VData = handleD16VData(VData, DAG); | 
|  | } | 
|  |  | 
|  | NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; | 
|  | } else { | 
|  | // Work out the num dwords based on the dmask popcount and underlying type | 
|  | // and whether packing is supported. | 
|  | MVT LoadVT = ResultTypes[0].getSimpleVT(); | 
|  | if (LoadVT.getScalarType() == MVT::f16) { | 
|  | if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) | 
|  | return Op; // D16 is unsupported for this instruction | 
|  |  | 
|  | IsD16 = true; | 
|  | } | 
|  |  | 
|  | // Confirm that the return type is large enough for the dmask specified | 
|  | if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || | 
|  | (!LoadVT.isVector() && DMaskLanes > 1)) | 
|  | return Op; | 
|  |  | 
|  | if (IsD16 && !Subtarget->hasUnpackedD16VMem()) | 
|  | NumVDataDwords = (DMaskLanes + 1) / 2; | 
|  | else | 
|  | NumVDataDwords = DMaskLanes; | 
|  |  | 
|  | AdjustRetType = true; | 
|  | } | 
|  |  | 
|  | AddrIdx = DMaskIdx + 1; | 
|  | } | 
|  |  | 
|  | unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0; | 
|  | unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0; | 
|  | unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0; | 
|  | unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients + | 
|  | NumCoords + NumLCM; | 
|  | unsigned NumMIVAddrs = NumVAddrs; | 
|  |  | 
|  | SmallVector<SDValue, 4> VAddrs; | 
|  |  | 
|  | // Optimize _L to _LZ when _L is zero | 
|  | if (LZMappingInfo) { | 
|  | if (auto ConstantLod = | 
|  | dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) { | 
|  | if (ConstantLod->isZero() || ConstantLod->isNegative()) { | 
|  | IntrOpcode = LZMappingInfo->LZ;  // set new opcode to _lz variant of _l | 
|  | NumMIVAddrs--;               // remove 'lod' | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Optimize _mip away, when 'lod' is zero | 
|  | if (MIPMappingInfo) { | 
|  | if (auto ConstantLod = | 
|  | dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) { | 
|  | if (ConstantLod->isNullValue()) { | 
|  | IntrOpcode = MIPMappingInfo->NONMIP;  // set new opcode to variant without _mip | 
|  | NumMIVAddrs--;               // remove 'lod' | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for 16 bit addresses and pack if true. | 
|  | unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs; | 
|  | MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType(); | 
|  | const MVT VAddrScalarVT = VAddrVT.getScalarType(); | 
|  | if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) && | 
|  | ST->hasFeature(AMDGPU::FeatureR128A16)) { | 
|  | IsA16 = true; | 
|  | const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; | 
|  | for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) { | 
|  | SDValue AddrLo, AddrHi; | 
|  | // Push back extra arguments. | 
|  | if (i < DimIdx) { | 
|  | AddrLo = Op.getOperand(i); | 
|  | } else { | 
|  | AddrLo = Op.getOperand(i); | 
|  | // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, | 
|  | // in 1D, derivatives dx/dh and dx/dv are packed with undef. | 
|  | if (((i + 1) >= (AddrIdx + NumMIVAddrs)) || | 
|  | ((NumGradients / 2) % 2 == 1 && | 
|  | (i == DimIdx + (NumGradients / 2) - 1 || | 
|  | i == DimIdx + NumGradients - 1))) { | 
|  | AddrHi = DAG.getUNDEF(MVT::f16); | 
|  | } else { | 
|  | AddrHi = Op.getOperand(i + 1); | 
|  | i++; | 
|  | } | 
|  | AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT, | 
|  | {AddrLo, AddrHi}); | 
|  | AddrLo = DAG.getBitcast(MVT::i32, AddrLo); | 
|  | } | 
|  | VAddrs.push_back(AddrLo); | 
|  | } | 
|  | } else { | 
|  | for (unsigned i = 0; i < NumMIVAddrs; ++i) | 
|  | VAddrs.push_back(Op.getOperand(AddrIdx + i)); | 
|  | } | 
|  |  | 
|  | // If the register allocator cannot place the address registers contiguously | 
|  | // without introducing moves, then using the non-sequential address encoding | 
|  | // is always preferable, since it saves VALU instructions and is usually a | 
|  | // wash in terms of code size or even better. | 
|  | // | 
|  | // However, we currently have no way of hinting to the register allocator that | 
|  | // MIMG addresses should be placed contiguously when it is possible to do so, | 
|  | // so force non-NSA for the common 2-address case as a heuristic. | 
|  | // | 
|  | // SIShrinkInstructions will convert NSA encodings to non-NSA after register | 
|  | // allocation when possible. | 
|  | bool UseNSA = | 
|  | ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3; | 
|  | SDValue VAddr; | 
|  | if (!UseNSA) | 
|  | VAddr = getBuildDwordsVector(DAG, DL, VAddrs); | 
|  |  | 
|  | SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); | 
|  | SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); | 
|  | unsigned CtrlIdx; // Index of texfailctrl argument | 
|  | SDValue Unorm; | 
|  | if (!BaseOpcode->Sampler) { | 
|  | Unorm = True; | 
|  | CtrlIdx = AddrIdx + NumVAddrs + 1; | 
|  | } else { | 
|  | auto UnormConst = | 
|  | cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2)); | 
|  |  | 
|  | Unorm = UnormConst->getZExtValue() ? True : False; | 
|  | CtrlIdx = AddrIdx + NumVAddrs + 3; | 
|  | } | 
|  |  | 
|  | SDValue TFE; | 
|  | SDValue LWE; | 
|  | SDValue TexFail = Op.getOperand(CtrlIdx); | 
|  | bool IsTexFail = false; | 
|  | if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) | 
|  | return Op; | 
|  |  | 
|  | if (IsTexFail) { | 
|  | if (!DMaskLanes) { | 
|  | // Expecting to get an error flag since TFC is on - and dmask is 0 | 
|  | // Force dmask to be at least 1 otherwise the instruction will fail | 
|  | DMask = 0x1; | 
|  | DMaskLanes = 1; | 
|  | NumVDataDwords = 1; | 
|  | } | 
|  | NumVDataDwords += 1; | 
|  | AdjustRetType = true; | 
|  | } | 
|  |  | 
|  | // Has something earlier tagged that the return type needs adjusting | 
|  | // This happens if the instruction is a load or has set TexFailCtrl flags | 
|  | if (AdjustRetType) { | 
|  | // NumVDataDwords reflects the true number of dwords required in the return type | 
|  | if (DMaskLanes == 0 && !BaseOpcode->Store) { | 
|  | // This is a no-op load. This can be eliminated | 
|  | SDValue Undef = DAG.getUNDEF(Op.getValueType()); | 
|  | if (isa<MemSDNode>(Op)) | 
|  | return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); | 
|  | return Undef; | 
|  | } | 
|  |  | 
|  | EVT NewVT = NumVDataDwords > 1 ? | 
|  | EVT::getVectorVT(*DAG.getContext(), MVT::f32, NumVDataDwords) | 
|  | : MVT::f32; | 
|  |  | 
|  | ResultTypes[0] = NewVT; | 
|  | if (ResultTypes.size() == 3) { | 
|  | // Original result was aggregate type used for TexFailCtrl results | 
|  | // The actual instruction returns as a vector type which has now been | 
|  | // created. Remove the aggregate result. | 
|  | ResultTypes.erase(&ResultTypes[1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue GLC; | 
|  | SDValue SLC; | 
|  | SDValue DLC; | 
|  | if (BaseOpcode->Atomic) { | 
|  | GLC = True; // TODO no-return optimization | 
|  | if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC, | 
|  | IsGFX10 ? &DLC : nullptr)) | 
|  | return Op; | 
|  | } else { | 
|  | if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC, | 
|  | IsGFX10 ? &DLC : nullptr)) | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 26> Ops; | 
|  | if (BaseOpcode->Store || BaseOpcode->Atomic) | 
|  | Ops.push_back(VData); // vdata | 
|  | if (UseNSA) { | 
|  | for (const SDValue &Addr : VAddrs) | 
|  | Ops.push_back(Addr); | 
|  | } else { | 
|  | Ops.push_back(VAddr); | 
|  | } | 
|  | Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc | 
|  | if (BaseOpcode->Sampler) | 
|  | Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler | 
|  | Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); | 
|  | if (IsGFX10) | 
|  | Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); | 
|  | Ops.push_back(Unorm); | 
|  | if (IsGFX10) | 
|  | Ops.push_back(DLC); | 
|  | Ops.push_back(GLC); | 
|  | Ops.push_back(SLC); | 
|  | Ops.push_back(IsA16 &&  // a16 or r128 | 
|  | ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); | 
|  | Ops.push_back(TFE); // tfe | 
|  | Ops.push_back(LWE); // lwe | 
|  | if (!IsGFX10) | 
|  | Ops.push_back(DimInfo->DA ? True : False); | 
|  | if (BaseOpcode->HasD16) | 
|  | Ops.push_back(IsD16 ? True : False); | 
|  | if (isa<MemSDNode>(Op)) | 
|  | Ops.push_back(Op.getOperand(0)); // chain | 
|  |  | 
|  | int NumVAddrDwords = | 
|  | UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; | 
|  | int Opcode = -1; | 
|  |  | 
|  | if (IsGFX10) { | 
|  | Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, | 
|  | UseNSA ? AMDGPU::MIMGEncGfx10NSA | 
|  | : AMDGPU::MIMGEncGfx10Default, | 
|  | NumVDataDwords, NumVAddrDwords); | 
|  | } else { | 
|  | if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) | 
|  | Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, | 
|  | NumVDataDwords, NumVAddrDwords); | 
|  | if (Opcode == -1) | 
|  | Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, | 
|  | NumVDataDwords, NumVAddrDwords); | 
|  | } | 
|  | assert(Opcode != -1); | 
|  |  | 
|  | MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); | 
|  | if (auto MemOp = dyn_cast<MemSDNode>(Op)) { | 
|  | MachineMemOperand *MemRef = MemOp->getMemOperand(); | 
|  | DAG.setNodeMemRefs(NewNode, {MemRef}); | 
|  | } | 
|  |  | 
|  | if (BaseOpcode->AtomicX2) { | 
|  | SmallVector<SDValue, 1> Elt; | 
|  | DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); | 
|  | return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); | 
|  | } else if (!BaseOpcode->Store) { | 
|  | return constructRetValue(DAG, NewNode, | 
|  | OrigResultTypes, IsTexFail, | 
|  | Subtarget->hasUnpackedD16VMem(), IsD16, | 
|  | DMaskLanes, NumVDataDwords, DL, | 
|  | *DAG.getContext()); | 
|  | } | 
|  |  | 
|  | return SDValue(NewNode, 0); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, | 
|  | SDValue Offset, SDValue GLC, SDValue DLC, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo(), | 
|  | MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOInvariant, | 
|  | VT.getStoreSize(), VT.getStoreSize()); | 
|  |  | 
|  | if (!Offset->isDivergent()) { | 
|  | SDValue Ops[] = { | 
|  | Rsrc, | 
|  | Offset, // Offset | 
|  | GLC, | 
|  | DLC, | 
|  | }; | 
|  | return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, | 
|  | DAG.getVTList(VT), Ops, VT, MMO); | 
|  | } | 
|  |  | 
|  | // We have a divergent offset. Emit a MUBUF buffer load instead. We can | 
|  | // assume that the buffer is unswizzled. | 
|  | SmallVector<SDValue, 4> Loads; | 
|  | unsigned NumLoads = 1; | 
|  | MVT LoadVT = VT.getSimpleVT(); | 
|  | unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; | 
|  | assert((LoadVT.getScalarType() == MVT::i32 || | 
|  | LoadVT.getScalarType() == MVT::f32) && | 
|  | isPowerOf2_32(NumElts)); | 
|  |  | 
|  | if (NumElts == 8 || NumElts == 16) { | 
|  | NumLoads = NumElts == 16 ? 4 : 2; | 
|  | LoadVT = MVT::v4i32; | 
|  | } | 
|  |  | 
|  | SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); | 
|  | unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue(); | 
|  | SDValue Ops[] = { | 
|  | DAG.getEntryNode(),                         // Chain | 
|  | Rsrc,                                       // rsrc | 
|  | DAG.getConstant(0, DL, MVT::i32),           // vindex | 
|  | {},                                         // voffset | 
|  | {},                                         // soffset | 
|  | {},                                         // offset | 
|  | DAG.getConstant(CachePolicy, DL, MVT::i32), // cachepolicy | 
|  | DAG.getConstant(0, DL, MVT::i1),            // idxen | 
|  | }; | 
|  |  | 
|  | // Use the alignment to ensure that the required offsets will fit into the | 
|  | // immediate offsets. | 
|  | setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4); | 
|  |  | 
|  | uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); | 
|  | for (unsigned i = 0; i < NumLoads; ++i) { | 
|  | Ops[5] = DAG.getConstant(InstOffset + 16 * i, DL, MVT::i32); | 
|  | Loads.push_back(DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, | 
|  | Ops, LoadVT, MMO)); | 
|  | } | 
|  |  | 
|  | if (VT == MVT::v8i32 || VT == MVT::v16i32) | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); | 
|  |  | 
|  | return Loads[0]; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | auto MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  | unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  |  | 
|  | // TODO: Should this propagate fast-math-flags? | 
|  |  | 
|  | switch (IntrinsicID) { | 
|  | case Intrinsic::amdgcn_implicit_buffer_ptr: { | 
|  | if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  | return getPreloadedValue(DAG, *MFI, VT, | 
|  | AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); | 
|  | } | 
|  | case Intrinsic::amdgcn_dispatch_ptr: | 
|  | case Intrinsic::amdgcn_queue_ptr: { | 
|  | if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { | 
|  | DiagnosticInfoUnsupported BadIntrin( | 
|  | MF.getFunction(), "unsupported hsa intrinsic without hsa target", | 
|  | DL.getDebugLoc()); | 
|  | DAG.getContext()->diagnose(BadIntrin); | 
|  | return DAG.getUNDEF(VT); | 
|  | } | 
|  |  | 
|  | auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? | 
|  | AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; | 
|  | return getPreloadedValue(DAG, *MFI, VT, RegID); | 
|  | } | 
|  | case Intrinsic::amdgcn_implicitarg_ptr: { | 
|  | if (MFI->isEntryFunction()) | 
|  | return getImplicitArgPtr(DAG, DL); | 
|  | return getPreloadedValue(DAG, *MFI, VT, | 
|  | AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); | 
|  | } | 
|  | case Intrinsic::amdgcn_kernarg_segment_ptr: { | 
|  | return getPreloadedValue(DAG, *MFI, VT, | 
|  | AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); | 
|  | } | 
|  | case Intrinsic::amdgcn_dispatch_id: { | 
|  | return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); | 
|  | } | 
|  | case Intrinsic::amdgcn_rcp: | 
|  | return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); | 
|  | case Intrinsic::amdgcn_rsq: | 
|  | return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); | 
|  | case Intrinsic::amdgcn_rsq_legacy: | 
|  | if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) | 
|  | return emitRemovedIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); | 
|  | case Intrinsic::amdgcn_rcp_legacy: | 
|  | if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) | 
|  | return emitRemovedIntrinsicError(DAG, DL, VT); | 
|  | return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); | 
|  | case Intrinsic::amdgcn_rsq_clamp: { | 
|  | if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) | 
|  | return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); | 
|  |  | 
|  | Type *Type = VT.getTypeForEVT(*DAG.getContext()); | 
|  | APFloat Max = APFloat::getLargest(Type->getFltSemantics()); | 
|  | APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); | 
|  |  | 
|  | SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); | 
|  | SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, | 
|  | DAG.getConstantFP(Max, DL, VT)); | 
|  | return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, | 
|  | DAG.getConstantFP(Min, DL, VT)); | 
|  | } | 
|  | case Intrinsic::r600_read_ngroups_x: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::NGROUPS_X, 4, false); | 
|  | case Intrinsic::r600_read_ngroups_y: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::NGROUPS_Y, 4, false); | 
|  | case Intrinsic::r600_read_ngroups_z: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::NGROUPS_Z, 4, false); | 
|  | case Intrinsic::r600_read_global_size_x: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false); | 
|  | case Intrinsic::r600_read_global_size_y: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false); | 
|  | case Intrinsic::r600_read_global_size_z: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false); | 
|  | case Intrinsic::r600_read_local_size_x: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerImplicitZextParam(DAG, Op, MVT::i16, | 
|  | SI::KernelInputOffsets::LOCAL_SIZE_X); | 
|  | case Intrinsic::r600_read_local_size_y: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerImplicitZextParam(DAG, Op, MVT::i16, | 
|  | SI::KernelInputOffsets::LOCAL_SIZE_Y); | 
|  | case Intrinsic::r600_read_local_size_z: | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | return emitNonHSAIntrinsicError(DAG, DL, VT); | 
|  |  | 
|  | return lowerImplicitZextParam(DAG, Op, MVT::i16, | 
|  | SI::KernelInputOffsets::LOCAL_SIZE_Z); | 
|  | case Intrinsic::amdgcn_workgroup_id_x: | 
|  | case Intrinsic::r600_read_tgid_x: | 
|  | return getPreloadedValue(DAG, *MFI, VT, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_X); | 
|  | case Intrinsic::amdgcn_workgroup_id_y: | 
|  | case Intrinsic::r600_read_tgid_y: | 
|  | return getPreloadedValue(DAG, *MFI, VT, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); | 
|  | case Intrinsic::amdgcn_workgroup_id_z: | 
|  | case Intrinsic::r600_read_tgid_z: | 
|  | return getPreloadedValue(DAG, *MFI, VT, | 
|  | AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); | 
|  | case Intrinsic::amdgcn_workitem_id_x: | 
|  | case Intrinsic::r600_read_tidig_x: | 
|  | return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, | 
|  | SDLoc(DAG.getEntryNode()), | 
|  | MFI->getArgInfo().WorkItemIDX); | 
|  | case Intrinsic::amdgcn_workitem_id_y: | 
|  | case Intrinsic::r600_read_tidig_y: | 
|  | return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, | 
|  | SDLoc(DAG.getEntryNode()), | 
|  | MFI->getArgInfo().WorkItemIDY); | 
|  | case Intrinsic::amdgcn_workitem_id_z: | 
|  | case Intrinsic::r600_read_tidig_z: | 
|  | return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, | 
|  | SDLoc(DAG.getEntryNode()), | 
|  | MFI->getArgInfo().WorkItemIDZ); | 
|  | case Intrinsic::amdgcn_wavefrontsize: | 
|  | return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), | 
|  | SDLoc(Op), MVT::i32); | 
|  | case Intrinsic::amdgcn_s_buffer_load: { | 
|  | bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10; | 
|  | SDValue GLC; | 
|  | SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1); | 
|  | if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr, | 
|  | IsGFX10 ? &DLC : nullptr)) | 
|  | return Op; | 
|  | return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), GLC, DLC, | 
|  | DAG); | 
|  | } | 
|  | case Intrinsic::amdgcn_fdiv_fast: | 
|  | return lowerFDIV_FAST(Op, DAG); | 
|  | case Intrinsic::amdgcn_interp_mov: { | 
|  | SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4)); | 
|  | SDValue Glue = M0.getValue(1); | 
|  | return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1), | 
|  | Op.getOperand(2), Op.getOperand(3), Glue); | 
|  | } | 
|  | case Intrinsic::amdgcn_interp_p1: { | 
|  | SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4)); | 
|  | SDValue Glue = M0.getValue(1); | 
|  | return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1), | 
|  | Op.getOperand(2), Op.getOperand(3), Glue); | 
|  | } | 
|  | case Intrinsic::amdgcn_interp_p2: { | 
|  | SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5)); | 
|  | SDValue Glue = SDValue(M0.getNode(), 1); | 
|  | return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1), | 
|  | Op.getOperand(2), Op.getOperand(3), Op.getOperand(4), | 
|  | Glue); | 
|  | } | 
|  | case Intrinsic::amdgcn_interp_p1_f16: { | 
|  | SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5)); | 
|  | SDValue Glue = M0.getValue(1); | 
|  | if (getSubtarget()->getLDSBankCount() == 16) { | 
|  | // 16 bank LDS | 
|  | SDValue S = DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, | 
|  | DAG.getConstant(2, DL, MVT::i32), // P0 | 
|  | Op.getOperand(2), // Attrchan | 
|  | Op.getOperand(3), // Attr | 
|  | Glue); | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(1), // Src0 | 
|  | Op.getOperand(2), // Attrchan | 
|  | Op.getOperand(3), // Attr | 
|  | DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers | 
|  | S, // Src2 - holds two f16 values selected by high | 
|  | DAG.getConstant(0, DL, MVT::i32), // $src2_modifiers | 
|  | Op.getOperand(4), // high | 
|  | DAG.getConstant(0, DL, MVT::i1), // $clamp | 
|  | DAG.getConstant(0, DL, MVT::i32) // $omod | 
|  | }; | 
|  | return DAG.getNode(AMDGPUISD::INTERP_P1LV_F16, DL, MVT::f32, Ops); | 
|  | } else { | 
|  | // 32 bank LDS | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(1), // Src0 | 
|  | Op.getOperand(2), // Attrchan | 
|  | Op.getOperand(3), // Attr | 
|  | DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers | 
|  | Op.getOperand(4), // high | 
|  | DAG.getConstant(0, DL, MVT::i1), // $clamp | 
|  | DAG.getConstant(0, DL, MVT::i32), // $omod | 
|  | Glue | 
|  | }; | 
|  | return DAG.getNode(AMDGPUISD::INTERP_P1LL_F16, DL, MVT::f32, Ops); | 
|  | } | 
|  | } | 
|  | case Intrinsic::amdgcn_interp_p2_f16: { | 
|  | SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(6)); | 
|  | SDValue Glue = SDValue(M0.getNode(), 1); | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(2), // Src0 | 
|  | Op.getOperand(3), // Attrchan | 
|  | Op.getOperand(4), // Attr | 
|  | DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers | 
|  | Op.getOperand(1), // Src2 | 
|  | DAG.getConstant(0, DL, MVT::i32), // $src2_modifiers | 
|  | Op.getOperand(5), // high | 
|  | DAG.getConstant(0, DL, MVT::i1), // $clamp | 
|  | Glue | 
|  | }; | 
|  | return DAG.getNode(AMDGPUISD::INTERP_P2_F16, DL, MVT::f16, Ops); | 
|  | } | 
|  | case Intrinsic::amdgcn_sin: | 
|  | return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); | 
|  |  | 
|  | case Intrinsic::amdgcn_cos: | 
|  | return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); | 
|  |  | 
|  | case Intrinsic::amdgcn_log_clamp: { | 
|  | if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) | 
|  | return SDValue(); | 
|  |  | 
|  | DiagnosticInfoUnsupported BadIntrin( | 
|  | MF.getFunction(), "intrinsic not supported on subtarget", | 
|  | DL.getDebugLoc()); | 
|  | DAG.getContext()->diagnose(BadIntrin); | 
|  | return DAG.getUNDEF(VT); | 
|  | } | 
|  | case Intrinsic::amdgcn_ldexp: | 
|  | return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  |  | 
|  | case Intrinsic::amdgcn_fract: | 
|  | return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); | 
|  |  | 
|  | case Intrinsic::amdgcn_class: | 
|  | return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | case Intrinsic::amdgcn_div_fmas: | 
|  | return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), | 
|  | Op.getOperand(4)); | 
|  |  | 
|  | case Intrinsic::amdgcn_div_fixup: | 
|  | return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | 
|  |  | 
|  | case Intrinsic::amdgcn_trig_preop: | 
|  | return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | case Intrinsic::amdgcn_div_scale: { | 
|  | const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); | 
|  |  | 
|  | // Translate to the operands expected by the machine instruction. The | 
|  | // first parameter must be the same as the first instruction. | 
|  | SDValue Numerator = Op.getOperand(1); | 
|  | SDValue Denominator = Op.getOperand(2); | 
|  |  | 
|  | // Note this order is opposite of the machine instruction's operations, | 
|  | // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The | 
|  | // intrinsic has the numerator as the first operand to match a normal | 
|  | // division operation. | 
|  |  | 
|  | SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, | 
|  | Denominator, Numerator); | 
|  | } | 
|  | case Intrinsic::amdgcn_icmp: { | 
|  | // There is a Pat that handles this variant, so return it as-is. | 
|  | if (Op.getOperand(1).getValueType() == MVT::i1 && | 
|  | Op.getConstantOperandVal(2) == 0 && | 
|  | Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) | 
|  | return Op; | 
|  | return lowerICMPIntrinsic(*this, Op.getNode(), DAG); | 
|  | } | 
|  | case Intrinsic::amdgcn_fcmp: { | 
|  | return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); | 
|  | } | 
|  | case Intrinsic::amdgcn_fmed3: | 
|  | return DAG.getNode(AMDGPUISD::FMED3, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | 
|  | case Intrinsic::amdgcn_fdot2: | 
|  | return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), | 
|  | Op.getOperand(4)); | 
|  | case Intrinsic::amdgcn_fmul_legacy: | 
|  | return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | case Intrinsic::amdgcn_sffbh: | 
|  | return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); | 
|  | case Intrinsic::amdgcn_sbfe: | 
|  | return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | 
|  | case Intrinsic::amdgcn_ubfe: | 
|  | return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | 
|  | case Intrinsic::amdgcn_cvt_pkrtz: | 
|  | case Intrinsic::amdgcn_cvt_pknorm_i16: | 
|  | case Intrinsic::amdgcn_cvt_pknorm_u16: | 
|  | case Intrinsic::amdgcn_cvt_pk_i16: | 
|  | case Intrinsic::amdgcn_cvt_pk_u16: { | 
|  | // FIXME: Stop adding cast if v2f16/v2i16 are legal. | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned Opcode; | 
|  |  | 
|  | if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) | 
|  | Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; | 
|  | else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) | 
|  | Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; | 
|  | else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) | 
|  | Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; | 
|  | else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) | 
|  | Opcode = AMDGPUISD::CVT_PK_I16_I32; | 
|  | else | 
|  | Opcode = AMDGPUISD::CVT_PK_U16_U32; | 
|  |  | 
|  | if (isTypeLegal(VT)) | 
|  | return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); | 
|  |  | 
|  | SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Node); | 
|  | } | 
|  | case Intrinsic::amdgcn_wqm: { | 
|  | SDValue Src = Op.getOperand(1); | 
|  | return SDValue(DAG.getMachineNode(AMDGPU::WQM, DL, Src.getValueType(), Src), | 
|  | 0); | 
|  | } | 
|  | case Intrinsic::amdgcn_wwm: { | 
|  | SDValue Src = Op.getOperand(1); | 
|  | return SDValue(DAG.getMachineNode(AMDGPU::WWM, DL, Src.getValueType(), Src), | 
|  | 0); | 
|  | } | 
|  | case Intrinsic::amdgcn_fmad_ftz: | 
|  | return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), | 
|  | Op.getOperand(2), Op.getOperand(3)); | 
|  |  | 
|  | case Intrinsic::amdgcn_if_break: | 
|  | return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, | 
|  | Op->getOperand(1), Op->getOperand(2)), 0); | 
|  |  | 
|  | case Intrinsic::amdgcn_groupstaticsize: { | 
|  | Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); | 
|  | if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) | 
|  | return Op; | 
|  |  | 
|  | const Module *M = MF.getFunction().getParent(); | 
|  | const GlobalValue *GV = | 
|  | M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); | 
|  | SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, | 
|  | SIInstrInfo::MO_ABS32_LO); | 
|  | return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; | 
|  | } | 
|  | default: | 
|  | if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = | 
|  | AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) | 
|  | return lowerImage(Op, ImageDimIntr, DAG); | 
|  |  | 
|  | return Op; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_ds_ordered_add: | 
|  | case Intrinsic::amdgcn_ds_ordered_swap: { | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | SDValue Chain = M->getOperand(0); | 
|  | SDValue M0 = M->getOperand(2); | 
|  | SDValue Value = M->getOperand(3); | 
|  | unsigned IndexOperand = M->getConstantOperandVal(7); | 
|  | unsigned WaveRelease = M->getConstantOperandVal(8); | 
|  | unsigned WaveDone = M->getConstantOperandVal(9); | 
|  | unsigned ShaderType; | 
|  | unsigned Instruction; | 
|  |  | 
|  | unsigned OrderedCountIndex = IndexOperand & 0x3f; | 
|  | IndexOperand &= ~0x3f; | 
|  | unsigned CountDw = 0; | 
|  |  | 
|  | if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { | 
|  | CountDw = (IndexOperand >> 24) & 0xf; | 
|  | IndexOperand &= ~(0xf << 24); | 
|  |  | 
|  | if (CountDw < 1 || CountDw > 4) { | 
|  | report_fatal_error( | 
|  | "ds_ordered_count: dword count must be between 1 and 4"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IndexOperand) | 
|  | report_fatal_error("ds_ordered_count: bad index operand"); | 
|  |  | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_ds_ordered_add: | 
|  | Instruction = 0; | 
|  | break; | 
|  | case Intrinsic::amdgcn_ds_ordered_swap: | 
|  | Instruction = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (WaveDone && !WaveRelease) | 
|  | report_fatal_error("ds_ordered_count: wave_done requires wave_release"); | 
|  |  | 
|  | switch (DAG.getMachineFunction().getFunction().getCallingConv()) { | 
|  | case CallingConv::AMDGPU_CS: | 
|  | case CallingConv::AMDGPU_KERNEL: | 
|  | ShaderType = 0; | 
|  | break; | 
|  | case CallingConv::AMDGPU_PS: | 
|  | ShaderType = 1; | 
|  | break; | 
|  | case CallingConv::AMDGPU_VS: | 
|  | ShaderType = 2; | 
|  | break; | 
|  | case CallingConv::AMDGPU_GS: | 
|  | ShaderType = 3; | 
|  | break; | 
|  | default: | 
|  | report_fatal_error("ds_ordered_count unsupported for this calling conv"); | 
|  | } | 
|  |  | 
|  | unsigned Offset0 = OrderedCountIndex << 2; | 
|  | unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) | | 
|  | (Instruction << 4); | 
|  |  | 
|  | if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) | 
|  | Offset1 |= (CountDw - 1) << 6; | 
|  |  | 
|  | unsigned Offset = Offset0 | (Offset1 << 8); | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | Chain, | 
|  | Value, | 
|  | DAG.getTargetConstant(Offset, DL, MVT::i16), | 
|  | copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue | 
|  | }; | 
|  | return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, | 
|  | M->getVTList(), Ops, M->getMemoryVT(), | 
|  | M->getMemOperand()); | 
|  | } | 
|  | case Intrinsic::amdgcn_ds_fadd: { | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | unsigned Opc; | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_ds_fadd: | 
|  | Opc = ISD::ATOMIC_LOAD_FADD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), | 
|  | M->getOperand(0), M->getOperand(2), M->getOperand(3), | 
|  | M->getMemOperand()); | 
|  | } | 
|  | case Intrinsic::amdgcn_atomic_inc: | 
|  | case Intrinsic::amdgcn_atomic_dec: | 
|  | case Intrinsic::amdgcn_ds_fmin: | 
|  | case Intrinsic::amdgcn_ds_fmax: { | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | unsigned Opc; | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_atomic_inc: | 
|  | Opc = AMDGPUISD::ATOMIC_INC; | 
|  | break; | 
|  | case Intrinsic::amdgcn_atomic_dec: | 
|  | Opc = AMDGPUISD::ATOMIC_DEC; | 
|  | break; | 
|  | case Intrinsic::amdgcn_ds_fmin: | 
|  | Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; | 
|  | break; | 
|  | case Intrinsic::amdgcn_ds_fmax: | 
|  | Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown intrinsic!"); | 
|  | } | 
|  | SDValue Ops[] = { | 
|  | M->getOperand(0), // Chain | 
|  | M->getOperand(2), // Ptr | 
|  | M->getOperand(3)  // Value | 
|  | }; | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, | 
|  | M->getMemoryVT(), M->getMemOperand()); | 
|  | } | 
|  | case Intrinsic::amdgcn_buffer_load: | 
|  | case Intrinsic::amdgcn_buffer_load_format: { | 
|  | unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); | 
|  | unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); | 
|  | unsigned IdxEn = 1; | 
|  | if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) | 
|  | IdxEn = Idx->getZExtValue() != 0; | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0), // Chain | 
|  | Op.getOperand(2), // rsrc | 
|  | Op.getOperand(3), // vindex | 
|  | SDValue(),        // voffset -- will be set by setBufferOffsets | 
|  | SDValue(),        // soffset -- will be set by setBufferOffsets | 
|  | SDValue(),        // offset -- will be set by setBufferOffsets | 
|  | DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy | 
|  | DAG.getConstant(IdxEn, DL, MVT::i1), // idxen | 
|  | }; | 
|  |  | 
|  | setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); | 
|  | unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? | 
|  | AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT IntVT = VT.changeTypeToInteger(); | 
|  | auto *M = cast<MemSDNode>(Op); | 
|  | EVT LoadVT = Op.getValueType(); | 
|  |  | 
|  | if (LoadVT.getScalarType() == MVT::f16) | 
|  | return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, | 
|  | M, DAG, Ops); | 
|  |  | 
|  | // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics | 
|  | if (LoadVT.getScalarType() == MVT::i8 || | 
|  | LoadVT.getScalarType() == MVT::i16) | 
|  | return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); | 
|  |  | 
|  | return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, | 
|  | M->getMemOperand(), DAG); | 
|  | } | 
|  | case Intrinsic::amdgcn_raw_buffer_load: | 
|  | case Intrinsic::amdgcn_raw_buffer_load_format: { | 
|  | auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0), // Chain | 
|  | Op.getOperand(2), // rsrc | 
|  | DAG.getConstant(0, DL, MVT::i32), // vindex | 
|  | Offsets.first,    // voffset | 
|  | Op.getOperand(4), // soffset | 
|  | Offsets.second,   // offset | 
|  | Op.getOperand(5), // cachepolicy | 
|  | DAG.getConstant(0, DL, MVT::i1), // idxen | 
|  | }; | 
|  |  | 
|  | unsigned Opc = (IntrID == Intrinsic::amdgcn_raw_buffer_load) ? | 
|  | AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT IntVT = VT.changeTypeToInteger(); | 
|  | auto *M = cast<MemSDNode>(Op); | 
|  | EVT LoadVT = Op.getValueType(); | 
|  |  | 
|  | if (LoadVT.getScalarType() == MVT::f16) | 
|  | return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, | 
|  | M, DAG, Ops); | 
|  |  | 
|  | // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics | 
|  | if (LoadVT.getScalarType() == MVT::i8 || | 
|  | LoadVT.getScalarType() == MVT::i16) | 
|  | return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); | 
|  |  | 
|  | return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, | 
|  | M->getMemOperand(), DAG); | 
|  | } | 
|  | case Intrinsic::amdgcn_struct_buffer_load: | 
|  | case Intrinsic::amdgcn_struct_buffer_load_format: { | 
|  | auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0), // Chain | 
|  | Op.getOperand(2), // rsrc | 
|  | Op.getOperand(3), // vindex | 
|  | Offsets.first,    // voffset | 
|  | Op.getOperand(5), // soffset | 
|  | Offsets.second,   // offset | 
|  | Op.getOperand(6), // cachepolicy | 
|  | DAG.getConstant(1, DL, MVT::i1), // idxen | 
|  | }; | 
|  |  | 
|  | unsigned Opc = (IntrID == Intrinsic::amdgcn_struct_buffer_load) ? | 
|  | AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT IntVT = VT.changeTypeToInteger(); | 
|  | auto *M = cast<MemSDNode>(Op); | 
|  | EVT LoadVT = Op.getValueType(); | 
|  |  | 
|  | if (LoadVT.getScalarType() == MVT::f16) | 
|  | return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, | 
|  | M, DAG, Ops); | 
|  |  | 
|  | // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics | 
|  | if (LoadVT.getScalarType() == MVT::i8 || | 
|  | LoadVT.getScalarType() == MVT::i16) | 
|  | return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); | 
|  |  | 
|  | return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, | 
|  | M->getMemOperand(), DAG); | 
|  | } | 
|  | case Intrinsic::amdgcn_tbuffer_load: { | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | EVT LoadVT = Op.getValueType(); | 
|  |  | 
|  | unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); | 
|  | unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); | 
|  | unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); | 
|  | unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); | 
|  | unsigned IdxEn = 1; | 
|  | if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) | 
|  | IdxEn = Idx->getZExtValue() != 0; | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0),  // Chain | 
|  | Op.getOperand(2),  // rsrc | 
|  | Op.getOperand(3),  // vindex | 
|  | Op.getOperand(4),  // voffset | 
|  | Op.getOperand(5),  // soffset | 
|  | Op.getOperand(6),  // offset | 
|  | DAG.getConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format | 
|  | DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy | 
|  | DAG.getConstant(IdxEn, DL, MVT::i1), // idxen | 
|  | }; | 
|  |  | 
|  | if (LoadVT.getScalarType() == MVT::f16) | 
|  | return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, | 
|  | M, DAG, Ops); | 
|  | return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, | 
|  | Op->getVTList(), Ops, LoadVT, M->getMemOperand(), | 
|  | DAG); | 
|  | } | 
|  | case Intrinsic::amdgcn_raw_tbuffer_load: { | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | EVT LoadVT = Op.getValueType(); | 
|  | auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0),  // Chain | 
|  | Op.getOperand(2),  // rsrc | 
|  | DAG.getConstant(0, DL, MVT::i32), // vindex | 
|  | Offsets.first,     // voffset | 
|  | Op.getOperand(4),  // soffset | 
|  | Offsets.second,    // offset | 
|  | Op.getOperand(5),  // format | 
|  | Op.getOperand(6),  // cachepolicy | 
|  | DAG.getConstant(0, DL, MVT::i1), // idxen | 
|  | }; | 
|  |  | 
|  | if (LoadVT.getScalarType() == MVT::f16) | 
|  | return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, | 
|  | M, DAG, Ops); | 
|  | return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, | 
|  | Op->getVTList(), Ops, LoadVT, M->getMemOperand(), | 
|  | DAG); | 
|  | } | 
|  | case Intrinsic::amdgcn_struct_tbuffer_load: { | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | EVT LoadVT = Op.getValueType(); | 
|  | auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0),  // Chain | 
|  | Op.getOperand(2),  // rsrc | 
|  | Op.getOperand(3),  // vindex | 
|  | Offsets.first,     // voffset | 
|  | Op.getOperand(5),  // soffset | 
|  | Offsets.second,    // offset | 
|  | Op.getOperand(6),  // format | 
|  | Op.getOperand(7),  // cachepolicy | 
|  | DAG.getConstant(1, DL, MVT::i1), // idxen | 
|  | }; | 
|  |  | 
|  | if (LoadVT.getScalarType() == MVT::f16) | 
|  | return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, | 
|  | M, DAG, Ops); | 
|  | return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, | 
|  | Op->getVTList(), Ops, LoadVT, M->getMemOperand(), | 
|  | DAG); | 
|  | } | 
|  | case Intrinsic::amdgcn_buffer_atomic_swap: | 
|  | case Intrinsic::amdgcn_buffer_atomic_add: | 
|  | case Intrinsic::amdgcn_buffer_atomic_sub: | 
|  | case Intrinsic::amdgcn_buffer_atomic_smin: | 
|  | case Intrinsic::amdgcn_buffer_atomic_umin: | 
|  | case Intrinsic::amdgcn_buffer_atomic_smax: | 
|  | case Intrinsic::amdgcn_buffer_atomic_umax: | 
|  | case Intrinsic::amdgcn_buffer_atomic_and: | 
|  | case Intrinsic::amdgcn_buffer_atomic_or: | 
|  | case Intrinsic::amdgcn_buffer_atomic_xor: { | 
|  | unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); | 
|  | unsigned IdxEn = 1; | 
|  | if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) | 
|  | IdxEn = Idx->getZExtValue() != 0; | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0), // Chain | 
|  | Op.getOperand(2), // vdata | 
|  | Op.getOperand(3), // rsrc | 
|  | Op.getOperand(4), // vindex | 
|  | SDValue(),        // voffset -- will be set by setBufferOffsets | 
|  | SDValue(),        // soffset -- will be set by setBufferOffsets | 
|  | SDValue(),        // offset -- will be set by setBufferOffsets | 
|  | DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy | 
|  | DAG.getConstant(IdxEn, DL, MVT::i1), // idxen | 
|  | }; | 
|  | setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | auto *M = cast<MemSDNode>(Op); | 
|  | unsigned Opcode = 0; | 
|  |  | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_buffer_atomic_swap: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_add: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_sub: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_smin: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_umin: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_smax: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_umax: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_and: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_or: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_atomic_xor: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unhandled atomic opcode"); | 
|  | } | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, | 
|  | M->getMemOperand()); | 
|  | } | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_swap: | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_add: | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_sub: | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_smin: | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_umin: | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_smax: | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_umax: | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_and: | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_or: | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_xor: { | 
|  | auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0), // Chain | 
|  | Op.getOperand(2), // vdata | 
|  | Op.getOperand(3), // rsrc | 
|  | DAG.getConstant(0, DL, MVT::i32), // vindex | 
|  | Offsets.first,    // voffset | 
|  | Op.getOperand(5), // soffset | 
|  | Offsets.second,   // offset | 
|  | Op.getOperand(6), // cachepolicy | 
|  | DAG.getConstant(0, DL, MVT::i1), // idxen | 
|  | }; | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | auto *M = cast<MemSDNode>(Op); | 
|  | unsigned Opcode = 0; | 
|  |  | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_swap: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; | 
|  | break; | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_add: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; | 
|  | break; | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_sub: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; | 
|  | break; | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_smin: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; | 
|  | break; | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_umin: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; | 
|  | break; | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_smax: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; | 
|  | break; | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_umax: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; | 
|  | break; | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_and: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; | 
|  | break; | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_or: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; | 
|  | break; | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_xor: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unhandled atomic opcode"); | 
|  | } | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, | 
|  | M->getMemOperand()); | 
|  | } | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_swap: | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_add: | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_sub: | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_smin: | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_umin: | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_smax: | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_umax: | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_and: | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_or: | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_xor: { | 
|  | auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0), // Chain | 
|  | Op.getOperand(2), // vdata | 
|  | Op.getOperand(3), // rsrc | 
|  | Op.getOperand(4), // vindex | 
|  | Offsets.first,    // voffset | 
|  | Op.getOperand(6), // soffset | 
|  | Offsets.second,   // offset | 
|  | Op.getOperand(7), // cachepolicy | 
|  | DAG.getConstant(1, DL, MVT::i1), // idxen | 
|  | }; | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | auto *M = cast<MemSDNode>(Op); | 
|  | unsigned Opcode = 0; | 
|  |  | 
|  | switch (IntrID) { | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_swap: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; | 
|  | break; | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_add: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; | 
|  | break; | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_sub: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; | 
|  | break; | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_smin: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; | 
|  | break; | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_umin: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; | 
|  | break; | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_smax: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; | 
|  | break; | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_umax: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; | 
|  | break; | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_and: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; | 
|  | break; | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_or: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; | 
|  | break; | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_xor: | 
|  | Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unhandled atomic opcode"); | 
|  | } | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, | 
|  | M->getMemOperand()); | 
|  | } | 
|  | case Intrinsic::amdgcn_buffer_atomic_cmpswap: { | 
|  | unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); | 
|  | unsigned IdxEn = 1; | 
|  | if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5))) | 
|  | IdxEn = Idx->getZExtValue() != 0; | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0), // Chain | 
|  | Op.getOperand(2), // src | 
|  | Op.getOperand(3), // cmp | 
|  | Op.getOperand(4), // rsrc | 
|  | Op.getOperand(5), // vindex | 
|  | SDValue(),        // voffset -- will be set by setBufferOffsets | 
|  | SDValue(),        // soffset -- will be set by setBufferOffsets | 
|  | SDValue(),        // offset -- will be set by setBufferOffsets | 
|  | DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy | 
|  | DAG.getConstant(IdxEn, DL, MVT::i1), // idxen | 
|  | }; | 
|  | setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); | 
|  | EVT VT = Op.getValueType(); | 
|  | auto *M = cast<MemSDNode>(Op); | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, | 
|  | Op->getVTList(), Ops, VT, M->getMemOperand()); | 
|  | } | 
|  | case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { | 
|  | auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0), // Chain | 
|  | Op.getOperand(2), // src | 
|  | Op.getOperand(3), // cmp | 
|  | Op.getOperand(4), // rsrc | 
|  | DAG.getConstant(0, DL, MVT::i32), // vindex | 
|  | Offsets.first,    // voffset | 
|  | Op.getOperand(6), // soffset | 
|  | Offsets.second,   // offset | 
|  | Op.getOperand(7), // cachepolicy | 
|  | DAG.getConstant(0, DL, MVT::i1), // idxen | 
|  | }; | 
|  | EVT VT = Op.getValueType(); | 
|  | auto *M = cast<MemSDNode>(Op); | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, | 
|  | Op->getVTList(), Ops, VT, M->getMemOperand()); | 
|  | } | 
|  | case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { | 
|  | auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(0), // Chain | 
|  | Op.getOperand(2), // src | 
|  | Op.getOperand(3), // cmp | 
|  | Op.getOperand(4), // rsrc | 
|  | Op.getOperand(5), // vindex | 
|  | Offsets.first,    // voffset | 
|  | Op.getOperand(7), // soffset | 
|  | Offsets.second,   // offset | 
|  | Op.getOperand(8), // cachepolicy | 
|  | DAG.getConstant(1, DL, MVT::i1), // idxen | 
|  | }; | 
|  | EVT VT = Op.getValueType(); | 
|  | auto *M = cast<MemSDNode>(Op); | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, | 
|  | Op->getVTList(), Ops, VT, M->getMemOperand()); | 
|  | } | 
|  |  | 
|  | default: | 
|  | if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = | 
|  | AMDGPU::getImageDimIntrinsicInfo(IntrID)) | 
|  | return lowerImage(Op, ImageDimIntr, DAG); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to | 
|  | // dwordx4 if on SI. | 
|  | SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, | 
|  | SDVTList VTList, | 
|  | ArrayRef<SDValue> Ops, EVT MemVT, | 
|  | MachineMemOperand *MMO, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = VTList.VTs[0]; | 
|  | EVT WidenedVT = VT; | 
|  | EVT WidenedMemVT = MemVT; | 
|  | if (!Subtarget->hasDwordx3LoadStores() && | 
|  | (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) { | 
|  | WidenedVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | WidenedVT.getVectorElementType(), 4); | 
|  | WidenedMemVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | WidenedMemVT.getVectorElementType(), 4); | 
|  | MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16); | 
|  | } | 
|  |  | 
|  | assert(VTList.NumVTs == 2); | 
|  | SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); | 
|  |  | 
|  | auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, | 
|  | WidenedMemVT, MMO); | 
|  | if (WidenedVT != VT) { | 
|  | auto Extract = DAG.getNode( | 
|  | ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp, | 
|  | DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); | 
|  | NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL); | 
|  | } | 
|  | return NewOp; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::handleD16VData(SDValue VData, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT StoreVT = VData.getValueType(); | 
|  |  | 
|  | // No change for f16 and legal vector D16 types. | 
|  | if (!StoreVT.isVector()) | 
|  | return VData; | 
|  |  | 
|  | SDLoc DL(VData); | 
|  | assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16"); | 
|  |  | 
|  | if (Subtarget->hasUnpackedD16VMem()) { | 
|  | // We need to unpack the packed data to store. | 
|  | EVT IntStoreVT = StoreVT.changeTypeToInteger(); | 
|  | SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); | 
|  |  | 
|  | EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, | 
|  | StoreVT.getVectorNumElements()); | 
|  | SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); | 
|  | return DAG.UnrollVectorOp(ZExt.getNode()); | 
|  | } | 
|  |  | 
|  | assert(isTypeLegal(StoreVT)); | 
|  | return VData; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | switch (IntrinsicID) { | 
|  | case Intrinsic::amdgcn_exp: { | 
|  | const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2)); | 
|  | const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3)); | 
|  | const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8)); | 
|  | const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9)); | 
|  |  | 
|  | const SDValue Ops[] = { | 
|  | Chain, | 
|  | DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt | 
|  | DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en | 
|  | Op.getOperand(4), // src0 | 
|  | Op.getOperand(5), // src1 | 
|  | Op.getOperand(6), // src2 | 
|  | Op.getOperand(7), // src3 | 
|  | DAG.getTargetConstant(0, DL, MVT::i1), // compr | 
|  | DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1) | 
|  | }; | 
|  |  | 
|  | unsigned Opc = Done->isNullValue() ? | 
|  | AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE; | 
|  | return DAG.getNode(Opc, DL, Op->getVTList(), Ops); | 
|  | } | 
|  | case Intrinsic::amdgcn_exp_compr: { | 
|  | const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2)); | 
|  | const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3)); | 
|  | SDValue Src0 = Op.getOperand(4); | 
|  | SDValue Src1 = Op.getOperand(5); | 
|  | const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); | 
|  | const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7)); | 
|  |  | 
|  | SDValue Undef = DAG.getUNDEF(MVT::f32); | 
|  | const SDValue Ops[] = { | 
|  | Chain, | 
|  | DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt | 
|  | DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en | 
|  | DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), | 
|  | DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), | 
|  | Undef, // src2 | 
|  | Undef, // src3 | 
|  | DAG.getTargetConstant(1, DL, MVT::i1), // compr | 
|  | DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1) | 
|  | }; | 
|  |  | 
|  | unsigned Opc = Done->isNullValue() ? | 
|  | AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE; | 
|  | return DAG.getNode(Opc, DL, Op->getVTList(), Ops); | 
|  | } | 
|  | case Intrinsic::amdgcn_s_sendmsg: | 
|  | case Intrinsic::amdgcn_s_sendmsghalt: { | 
|  | unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ? | 
|  | AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT; | 
|  | Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3)); | 
|  | SDValue Glue = Chain.getValue(1); | 
|  | return DAG.getNode(NodeOp, DL, MVT::Other, Chain, | 
|  | Op.getOperand(2), Glue); | 
|  | } | 
|  | case Intrinsic::amdgcn_init_exec: { | 
|  | return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain, | 
|  | Op.getOperand(2)); | 
|  | } | 
|  | case Intrinsic::amdgcn_init_exec_from_input: { | 
|  | return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain, | 
|  | Op.getOperand(2), Op.getOperand(3)); | 
|  | } | 
|  | case Intrinsic::amdgcn_s_barrier: { | 
|  | if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { | 
|  | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); | 
|  | unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; | 
|  | if (WGSize <= ST.getWavefrontSize()) | 
|  | return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, | 
|  | Op.getOperand(0)), 0); | 
|  | } | 
|  | return SDValue(); | 
|  | }; | 
|  | case Intrinsic::amdgcn_tbuffer_store: { | 
|  | SDValue VData = Op.getOperand(2); | 
|  | bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); | 
|  | if (IsD16) | 
|  | VData = handleD16VData(VData, DAG); | 
|  | unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); | 
|  | unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); | 
|  | unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); | 
|  | unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); | 
|  | unsigned IdxEn = 1; | 
|  | if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) | 
|  | IdxEn = Idx->getZExtValue() != 0; | 
|  | SDValue Ops[] = { | 
|  | Chain, | 
|  | VData,             // vdata | 
|  | Op.getOperand(3),  // rsrc | 
|  | Op.getOperand(4),  // vindex | 
|  | Op.getOperand(5),  // voffset | 
|  | Op.getOperand(6),  // soffset | 
|  | Op.getOperand(7),  // offset | 
|  | DAG.getConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format | 
|  | DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy | 
|  | DAG.getConstant(IdxEn, DL, MVT::i1), // idexen | 
|  | }; | 
|  | unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : | 
|  | AMDGPUISD::TBUFFER_STORE_FORMAT; | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | 
|  | M->getMemoryVT(), M->getMemOperand()); | 
|  | } | 
|  |  | 
|  | case Intrinsic::amdgcn_struct_tbuffer_store: { | 
|  | SDValue VData = Op.getOperand(2); | 
|  | bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); | 
|  | if (IsD16) | 
|  | VData = handleD16VData(VData, DAG); | 
|  | auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); | 
|  | SDValue Ops[] = { | 
|  | Chain, | 
|  | VData,             // vdata | 
|  | Op.getOperand(3),  // rsrc | 
|  | Op.getOperand(4),  // vindex | 
|  | Offsets.first,     // voffset | 
|  | Op.getOperand(6),  // soffset | 
|  | Offsets.second,    // offset | 
|  | Op.getOperand(7),  // format | 
|  | Op.getOperand(8),  // cachepolicy | 
|  | DAG.getConstant(1, DL, MVT::i1), // idexen | 
|  | }; | 
|  | unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : | 
|  | AMDGPUISD::TBUFFER_STORE_FORMAT; | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | 
|  | M->getMemoryVT(), M->getMemOperand()); | 
|  | } | 
|  |  | 
|  | case Intrinsic::amdgcn_raw_tbuffer_store: { | 
|  | SDValue VData = Op.getOperand(2); | 
|  | bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); | 
|  | if (IsD16) | 
|  | VData = handleD16VData(VData, DAG); | 
|  | auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); | 
|  | SDValue Ops[] = { | 
|  | Chain, | 
|  | VData,             // vdata | 
|  | Op.getOperand(3),  // rsrc | 
|  | DAG.getConstant(0, DL, MVT::i32), // vindex | 
|  | Offsets.first,     // voffset | 
|  | Op.getOperand(5),  // soffset | 
|  | Offsets.second,    // offset | 
|  | Op.getOperand(6),  // format | 
|  | Op.getOperand(7),  // cachepolicy | 
|  | DAG.getConstant(0, DL, MVT::i1), // idexen | 
|  | }; | 
|  | unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : | 
|  | AMDGPUISD::TBUFFER_STORE_FORMAT; | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | 
|  | M->getMemoryVT(), M->getMemOperand()); | 
|  | } | 
|  |  | 
|  | case Intrinsic::amdgcn_buffer_store: | 
|  | case Intrinsic::amdgcn_buffer_store_format: { | 
|  | SDValue VData = Op.getOperand(2); | 
|  | bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); | 
|  | if (IsD16) | 
|  | VData = handleD16VData(VData, DAG); | 
|  | unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); | 
|  | unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); | 
|  | unsigned IdxEn = 1; | 
|  | if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) | 
|  | IdxEn = Idx->getZExtValue() != 0; | 
|  | SDValue Ops[] = { | 
|  | Chain, | 
|  | VData, | 
|  | Op.getOperand(3), // rsrc | 
|  | Op.getOperand(4), // vindex | 
|  | SDValue(), // voffset -- will be set by setBufferOffsets | 
|  | SDValue(), // soffset -- will be set by setBufferOffsets | 
|  | SDValue(), // offset -- will be set by setBufferOffsets | 
|  | DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy | 
|  | DAG.getConstant(IdxEn, DL, MVT::i1), // idxen | 
|  | }; | 
|  | setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); | 
|  | unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? | 
|  | AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; | 
|  | Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  |  | 
|  | // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics | 
|  | EVT VDataType = VData.getValueType().getScalarType(); | 
|  | if (VDataType == MVT::i8 || VDataType == MVT::i16) | 
|  | return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | 
|  | M->getMemoryVT(), M->getMemOperand()); | 
|  | } | 
|  |  | 
|  | case Intrinsic::amdgcn_raw_buffer_store: | 
|  | case Intrinsic::amdgcn_raw_buffer_store_format: { | 
|  | SDValue VData = Op.getOperand(2); | 
|  | bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); | 
|  | if (IsD16) | 
|  | VData = handleD16VData(VData, DAG); | 
|  | auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); | 
|  | SDValue Ops[] = { | 
|  | Chain, | 
|  | VData, | 
|  | Op.getOperand(3), // rsrc | 
|  | DAG.getConstant(0, DL, MVT::i32), // vindex | 
|  | Offsets.first,    // voffset | 
|  | Op.getOperand(5), // soffset | 
|  | Offsets.second,   // offset | 
|  | Op.getOperand(6), // cachepolicy | 
|  | DAG.getConstant(0, DL, MVT::i1), // idxen | 
|  | }; | 
|  | unsigned Opc = IntrinsicID == Intrinsic::amdgcn_raw_buffer_store ? | 
|  | AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; | 
|  | Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  |  | 
|  | // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics | 
|  | EVT VDataType = VData.getValueType().getScalarType(); | 
|  | if (VDataType == MVT::i8 || VDataType == MVT::i16) | 
|  | return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | 
|  | M->getMemoryVT(), M->getMemOperand()); | 
|  | } | 
|  |  | 
|  | case Intrinsic::amdgcn_struct_buffer_store: | 
|  | case Intrinsic::amdgcn_struct_buffer_store_format: { | 
|  | SDValue VData = Op.getOperand(2); | 
|  | bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); | 
|  | if (IsD16) | 
|  | VData = handleD16VData(VData, DAG); | 
|  | auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); | 
|  | SDValue Ops[] = { | 
|  | Chain, | 
|  | VData, | 
|  | Op.getOperand(3), // rsrc | 
|  | Op.getOperand(4), // vindex | 
|  | Offsets.first,    // voffset | 
|  | Op.getOperand(6), // soffset | 
|  | Offsets.second,   // offset | 
|  | Op.getOperand(7), // cachepolicy | 
|  | DAG.getConstant(1, DL, MVT::i1), // idxen | 
|  | }; | 
|  | unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? | 
|  | AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; | 
|  | Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; | 
|  | MemSDNode *M = cast<MemSDNode>(Op); | 
|  |  | 
|  | // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics | 
|  | EVT VDataType = VData.getValueType().getScalarType(); | 
|  | if (VDataType == MVT::i8 || VDataType == MVT::i16) | 
|  | return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, | 
|  | M->getMemoryVT(), M->getMemOperand()); | 
|  | } | 
|  |  | 
|  | case Intrinsic::amdgcn_end_cf: | 
|  | return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, | 
|  | Op->getOperand(2), Chain), 0); | 
|  |  | 
|  | default: { | 
|  | if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = | 
|  | AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) | 
|  | return lowerImage(Op, ImageDimIntr, DAG); | 
|  |  | 
|  | return Op; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: | 
|  | // offset (the offset that is included in bounds checking and swizzling, to be | 
|  | // split between the instruction's voffset and immoffset fields) and soffset | 
|  | // (the offset that is excluded from bounds checking and swizzling, to go in | 
|  | // the instruction's soffset field).  This function takes the first kind of | 
|  | // offset and figures out how to split it between voffset and immoffset. | 
|  | std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( | 
|  | SDValue Offset, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Offset); | 
|  | const unsigned MaxImm = 4095; | 
|  | SDValue N0 = Offset; | 
|  | ConstantSDNode *C1 = nullptr; | 
|  |  | 
|  | if ((C1 = dyn_cast<ConstantSDNode>(N0))) | 
|  | N0 = SDValue(); | 
|  | else if (DAG.isBaseWithConstantOffset(N0)) { | 
|  | C1 = cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | N0 = N0.getOperand(0); | 
|  | } | 
|  |  | 
|  | if (C1) { | 
|  | unsigned ImmOffset = C1->getZExtValue(); | 
|  | // If the immediate value is too big for the immoffset field, put the value | 
|  | // and -4096 into the immoffset field so that the value that is copied/added | 
|  | // for the voffset field is a multiple of 4096, and it stands more chance | 
|  | // of being CSEd with the copy/add for another similar load/store. | 
|  | // However, do not do that rounding down to a multiple of 4096 if that is a | 
|  | // negative number, as it appears to be illegal to have a negative offset | 
|  | // in the vgpr, even if adding the immediate offset makes it positive. | 
|  | unsigned Overflow = ImmOffset & ~MaxImm; | 
|  | ImmOffset -= Overflow; | 
|  | if ((int32_t)Overflow < 0) { | 
|  | Overflow += ImmOffset; | 
|  | ImmOffset = 0; | 
|  | } | 
|  | C1 = cast<ConstantSDNode>(DAG.getConstant(ImmOffset, DL, MVT::i32)); | 
|  | if (Overflow) { | 
|  | auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); | 
|  | if (!N0) | 
|  | N0 = OverflowVal; | 
|  | else { | 
|  | SDValue Ops[] = { N0, OverflowVal }; | 
|  | N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!N0) | 
|  | N0 = DAG.getConstant(0, DL, MVT::i32); | 
|  | if (!C1) | 
|  | C1 = cast<ConstantSDNode>(DAG.getConstant(0, DL, MVT::i32)); | 
|  | return {N0, SDValue(C1, 0)}; | 
|  | } | 
|  |  | 
|  | // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the | 
|  | // three offsets (voffset, soffset and instoffset) into the SDValue[3] array | 
|  | // pointed to by Offsets. | 
|  | void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, | 
|  | SelectionDAG &DAG, SDValue *Offsets, | 
|  | unsigned Align) const { | 
|  | SDLoc DL(CombinedOffset); | 
|  | if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { | 
|  | uint32_t Imm = C->getZExtValue(); | 
|  | uint32_t SOffset, ImmOffset; | 
|  | if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) { | 
|  | Offsets[0] = DAG.getConstant(0, DL, MVT::i32); | 
|  | Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); | 
|  | Offsets[2] = DAG.getConstant(ImmOffset, DL, MVT::i32); | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (DAG.isBaseWithConstantOffset(CombinedOffset)) { | 
|  | SDValue N0 = CombinedOffset.getOperand(0); | 
|  | SDValue N1 = CombinedOffset.getOperand(1); | 
|  | uint32_t SOffset, ImmOffset; | 
|  | int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); | 
|  | if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, | 
|  | Subtarget, Align)) { | 
|  | Offsets[0] = N0; | 
|  | Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); | 
|  | Offsets[2] = DAG.getConstant(ImmOffset, DL, MVT::i32); | 
|  | return; | 
|  | } | 
|  | } | 
|  | Offsets[0] = CombinedOffset; | 
|  | Offsets[1] = DAG.getConstant(0, DL, MVT::i32); | 
|  | Offsets[2] = DAG.getConstant(0, DL, MVT::i32); | 
|  | } | 
|  |  | 
|  | // Handle 8 bit and 16 bit buffer loads | 
|  | SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, | 
|  | EVT LoadVT, SDLoc DL, | 
|  | ArrayRef<SDValue> Ops, | 
|  | MemSDNode *M) const { | 
|  | EVT IntVT = LoadVT.changeTypeToInteger(); | 
|  | unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? | 
|  | AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; | 
|  |  | 
|  | SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); | 
|  | SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, | 
|  | Ops, IntVT, | 
|  | M->getMemOperand()); | 
|  | SDValue BufferLoadTrunc = DAG.getNode(ISD::TRUNCATE, DL, | 
|  | LoadVT.getScalarType(), BufferLoad); | 
|  | return DAG.getMergeValues({BufferLoadTrunc, BufferLoad.getValue(1)}, DL); | 
|  | } | 
|  |  | 
|  | // Handle 8 bit and 16 bit buffer stores | 
|  | SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, | 
|  | EVT VDataType, SDLoc DL, | 
|  | SDValue Ops[], | 
|  | MemSDNode *M) const { | 
|  | SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); | 
|  | Ops[1] = BufferStoreExt; | 
|  | unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : | 
|  | AMDGPUISD::BUFFER_STORE_SHORT; | 
|  | ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9); | 
|  | return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, | 
|  | M->getMemOperand()); | 
|  | } | 
|  |  | 
|  | static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, | 
|  | ISD::LoadExtType ExtType, SDValue Op, | 
|  | const SDLoc &SL, EVT VT) { | 
|  | if (VT.bitsLT(Op.getValueType())) | 
|  | return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); | 
|  |  | 
|  | switch (ExtType) { | 
|  | case ISD::SEXTLOAD: | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); | 
|  | case ISD::ZEXTLOAD: | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); | 
|  | case ISD::EXTLOAD: | 
|  | return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); | 
|  | case ISD::NON_EXTLOAD: | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("invalid ext type"); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | if (Ld->getAlignment() < 4 || Ld->isDivergent()) | 
|  | return SDValue(); | 
|  |  | 
|  | // FIXME: Constant loads should all be marked invariant. | 
|  | unsigned AS = Ld->getAddressSpace(); | 
|  | if (AS != AMDGPUAS::CONSTANT_ADDRESS && | 
|  | AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && | 
|  | (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) | 
|  | return SDValue(); | 
|  |  | 
|  | // Don't do this early, since it may interfere with adjacent load merging for | 
|  | // illegal types. We can avoid losing alignment information for exotic types | 
|  | // pre-legalize. | 
|  | EVT MemVT = Ld->getMemoryVT(); | 
|  | if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || | 
|  | MemVT.getSizeInBits() >= 32) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc SL(Ld); | 
|  |  | 
|  | assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && | 
|  | "unexpected vector extload"); | 
|  |  | 
|  | // TODO: Drop only high part of range. | 
|  | SDValue Ptr = Ld->getBasePtr(); | 
|  | SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, | 
|  | MVT::i32, SL, Ld->getChain(), Ptr, | 
|  | Ld->getOffset(), | 
|  | Ld->getPointerInfo(), MVT::i32, | 
|  | Ld->getAlignment(), | 
|  | Ld->getMemOperand()->getFlags(), | 
|  | Ld->getAAInfo(), | 
|  | nullptr); // Drop ranges | 
|  |  | 
|  | EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); | 
|  | if (MemVT.isFloatingPoint()) { | 
|  | assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && | 
|  | "unexpected fp extload"); | 
|  | TruncVT = MemVT.changeTypeToInteger(); | 
|  | } | 
|  |  | 
|  | SDValue Cvt = NewLoad; | 
|  | if (Ld->getExtensionType() == ISD::SEXTLOAD) { | 
|  | Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, | 
|  | DAG.getValueType(TruncVT)); | 
|  | } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || | 
|  | Ld->getExtensionType() == ISD::NON_EXTLOAD) { | 
|  | Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); | 
|  | } else { | 
|  | assert(Ld->getExtensionType() == ISD::EXTLOAD); | 
|  | } | 
|  |  | 
|  | EVT VT = Ld->getValueType(0); | 
|  | EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); | 
|  |  | 
|  | DCI.AddToWorklist(Cvt.getNode()); | 
|  |  | 
|  | // We may need to handle exotic cases, such as i16->i64 extloads, so insert | 
|  | // the appropriate extension from the 32-bit load. | 
|  | Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); | 
|  | DCI.AddToWorklist(Cvt.getNode()); | 
|  |  | 
|  | // Handle conversion back to floating point if necessary. | 
|  | Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); | 
|  |  | 
|  | return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | LoadSDNode *Load = cast<LoadSDNode>(Op); | 
|  | ISD::LoadExtType ExtType = Load->getExtensionType(); | 
|  | EVT MemVT = Load->getMemoryVT(); | 
|  |  | 
|  | if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { | 
|  | if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) | 
|  | return SDValue(); | 
|  |  | 
|  | // FIXME: Copied from PPC | 
|  | // First, load into 32 bits, then truncate to 1 bit. | 
|  |  | 
|  | SDValue Chain = Load->getChain(); | 
|  | SDValue BasePtr = Load->getBasePtr(); | 
|  | MachineMemOperand *MMO = Load->getMemOperand(); | 
|  |  | 
|  | EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; | 
|  |  | 
|  | SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, | 
|  | BasePtr, RealMemVT, MMO); | 
|  |  | 
|  | if (!MemVT.isVector()) { | 
|  | SDValue Ops[] = { | 
|  | DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), | 
|  | NewLD.getValue(1) | 
|  | }; | 
|  |  | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 3> Elts; | 
|  | for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { | 
|  | SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, | 
|  | DAG.getConstant(I, DL, MVT::i32)); | 
|  |  | 
|  | Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); | 
|  | } | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | DAG.getBuildVector(MemVT, DL, Elts), | 
|  | NewLD.getValue(1) | 
|  | }; | 
|  |  | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | if (!MemVT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | assert(Op.getValueType().getVectorElementType() == MVT::i32 && | 
|  | "Custom lowering for non-i32 vectors hasn't been implemented."); | 
|  |  | 
|  | if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, | 
|  | *Load->getMemOperand())) { | 
|  | SDValue Ops[2]; | 
|  | std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | unsigned Alignment = Load->getAlignment(); | 
|  | unsigned AS = Load->getAddressSpace(); | 
|  | if (Subtarget->hasLDSMisalignedBug() && | 
|  | AS == AMDGPUAS::FLAT_ADDRESS && | 
|  | Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { | 
|  | return SplitVectorLoad(Op, DAG); | 
|  | } | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | // If there is a possibilty that flat instruction access scratch memory | 
|  | // then we need to use the same legalization rules we use for private. | 
|  | if (AS == AMDGPUAS::FLAT_ADDRESS) | 
|  | AS = MFI->hasFlatScratchInit() ? | 
|  | AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; | 
|  |  | 
|  | unsigned NumElements = MemVT.getVectorNumElements(); | 
|  |  | 
|  | if (AS == AMDGPUAS::CONSTANT_ADDRESS || | 
|  | AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { | 
|  | if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) { | 
|  | if (MemVT.isPow2VectorType()) | 
|  | return SDValue(); | 
|  | if (NumElements == 3) | 
|  | return WidenVectorLoad(Op, DAG); | 
|  | return SplitVectorLoad(Op, DAG); | 
|  | } | 
|  | // Non-uniform loads will be selected to MUBUF instructions, so they | 
|  | // have the same legalization requirements as global and private | 
|  | // loads. | 
|  | // | 
|  | } | 
|  |  | 
|  | if (AS == AMDGPUAS::CONSTANT_ADDRESS || | 
|  | AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || | 
|  | AS == AMDGPUAS::GLOBAL_ADDRESS) { | 
|  | if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && | 
|  | !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) && | 
|  | Alignment >= 4 && NumElements < 32) { | 
|  | if (MemVT.isPow2VectorType()) | 
|  | return SDValue(); | 
|  | if (NumElements == 3) | 
|  | return WidenVectorLoad(Op, DAG); | 
|  | return SplitVectorLoad(Op, DAG); | 
|  | } | 
|  | // Non-uniform loads will be selected to MUBUF instructions, so they | 
|  | // have the same legalization requirements as global and private | 
|  | // loads. | 
|  | // | 
|  | } | 
|  | if (AS == AMDGPUAS::CONSTANT_ADDRESS || | 
|  | AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || | 
|  | AS == AMDGPUAS::GLOBAL_ADDRESS || | 
|  | AS == AMDGPUAS::FLAT_ADDRESS) { | 
|  | if (NumElements > 4) | 
|  | return SplitVectorLoad(Op, DAG); | 
|  | // v3 loads not supported on SI. | 
|  | if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) | 
|  | return WidenVectorLoad(Op, DAG); | 
|  | // v3 and v4 loads are supported for private and global memory. | 
|  | return SDValue(); | 
|  | } | 
|  | if (AS == AMDGPUAS::PRIVATE_ADDRESS) { | 
|  | // Depending on the setting of the private_element_size field in the | 
|  | // resource descriptor, we can only make private accesses up to a certain | 
|  | // size. | 
|  | switch (Subtarget->getMaxPrivateElementSize()) { | 
|  | case 4: | 
|  | return scalarizeVectorLoad(Load, DAG); | 
|  | case 8: | 
|  | if (NumElements > 2) | 
|  | return SplitVectorLoad(Op, DAG); | 
|  | return SDValue(); | 
|  | case 16: | 
|  | // Same as global/flat | 
|  | if (NumElements > 4) | 
|  | return SplitVectorLoad(Op, DAG); | 
|  | // v3 loads not supported on SI. | 
|  | if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) | 
|  | return WidenVectorLoad(Op, DAG); | 
|  | return SDValue(); | 
|  | default: | 
|  | llvm_unreachable("unsupported private_element_size"); | 
|  | } | 
|  | } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { | 
|  | // Use ds_read_b128 if possible. | 
|  | if (Subtarget->useDS128() && Load->getAlignment() >= 16 && | 
|  | MemVT.getStoreSize() == 16) | 
|  | return SDValue(); | 
|  |  | 
|  | if (NumElements > 2) | 
|  | return SplitVectorLoad(Op, DAG); | 
|  |  | 
|  | // SI has a hardware bug in the LDS / GDS boounds checking: if the base | 
|  | // address is negative, then the instruction is incorrectly treated as | 
|  | // out-of-bounds even if base + offsets is in bounds. Split vectorized | 
|  | // loads here to avoid emitting ds_read2_b32. We may re-combine the | 
|  | // load later in the SILoadStoreOptimizer. | 
|  | if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && | 
|  | NumElements == 2 && MemVT.getStoreSize() == 8 && | 
|  | Load->getAlignment() < 8) { | 
|  | return SplitVectorLoad(Op, DAG); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | assert(VT.getSizeInBits() == 64); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | SDValue Cond = Op.getOperand(0); | 
|  |  | 
|  | SDValue Zero = DAG.getConstant(0, DL, MVT::i32); | 
|  | SDValue One = DAG.getConstant(1, DL, MVT::i32); | 
|  |  | 
|  | SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); | 
|  | SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); | 
|  |  | 
|  | SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); | 
|  | SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); | 
|  |  | 
|  | SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); | 
|  |  | 
|  | SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); | 
|  | SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); | 
|  |  | 
|  | SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); | 
|  |  | 
|  | SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Res); | 
|  | } | 
|  |  | 
|  | // Catch division cases where we can use shortcuts with rcp and rsq | 
|  | // instructions. | 
|  | SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | EVT VT = Op.getValueType(); | 
|  | const SDNodeFlags Flags = Op->getFlags(); | 
|  | bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal(); | 
|  |  | 
|  | if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { | 
|  | if (Unsafe || VT == MVT::f32 || VT == MVT::f16) { | 
|  | if (CLHS->isExactlyValue(1.0)) { | 
|  | // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to | 
|  | // the CI documentation has a worst case error of 1 ulp. | 
|  | // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to | 
|  | // use it as long as we aren't trying to use denormals. | 
|  | // | 
|  | // v_rcp_f16 and v_rsq_f16 DO support denormals. | 
|  |  | 
|  | // 1.0 / sqrt(x) -> rsq(x) | 
|  |  | 
|  | // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP | 
|  | // error seems really high at 2^29 ULP. | 
|  | if (RHS.getOpcode() == ISD::FSQRT) | 
|  | return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); | 
|  |  | 
|  | // 1.0 / x -> rcp(x) | 
|  | return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); | 
|  | } | 
|  |  | 
|  | // Same as for 1.0, but expand the sign out of the constant. | 
|  | if (CLHS->isExactlyValue(-1.0)) { | 
|  | // -1.0 / x -> rcp (fneg x) | 
|  | SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | 
|  | return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Unsafe) { | 
|  | // Turn into multiply by the reciprocal. | 
|  | // x / y -> x * (1.0 / y) | 
|  | SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); | 
|  | return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, | 
|  | EVT VT, SDValue A, SDValue B, SDValue GlueChain) { | 
|  | if (GlueChain->getNumValues() <= 1) { | 
|  | return DAG.getNode(Opcode, SL, VT, A, B); | 
|  | } | 
|  |  | 
|  | assert(GlueChain->getNumValues() == 3); | 
|  |  | 
|  | SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("no chain equivalent for opcode"); | 
|  | case ISD::FMUL: | 
|  | Opcode = AMDGPUISD::FMUL_W_CHAIN; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, | 
|  | GlueChain.getValue(2)); | 
|  | } | 
|  |  | 
|  | static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, | 
|  | EVT VT, SDValue A, SDValue B, SDValue C, | 
|  | SDValue GlueChain) { | 
|  | if (GlueChain->getNumValues() <= 1) { | 
|  | return DAG.getNode(Opcode, SL, VT, A, B, C); | 
|  | } | 
|  |  | 
|  | assert(GlueChain->getNumValues() == 3); | 
|  |  | 
|  | SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("no chain equivalent for opcode"); | 
|  | case ISD::FMA: | 
|  | Opcode = AMDGPUISD::FMA_W_CHAIN; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C, | 
|  | GlueChain.getValue(2)); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) | 
|  | return FastLowered; | 
|  |  | 
|  | SDLoc SL(Op); | 
|  | SDValue Src0 = Op.getOperand(0); | 
|  | SDValue Src1 = Op.getOperand(1); | 
|  |  | 
|  | SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); | 
|  | SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); | 
|  |  | 
|  | SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); | 
|  | SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); | 
|  |  | 
|  | SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); | 
|  | SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); | 
|  | } | 
|  |  | 
|  | // Faster 2.5 ULP division that does not support denormals. | 
|  | SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue LHS = Op.getOperand(1); | 
|  | SDValue RHS = Op.getOperand(2); | 
|  |  | 
|  | SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); | 
|  |  | 
|  | const APFloat K0Val(BitsToFloat(0x6f800000)); | 
|  | const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); | 
|  |  | 
|  | const APFloat K1Val(BitsToFloat(0x2f800000)); | 
|  | const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); | 
|  |  | 
|  | const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); | 
|  |  | 
|  | EVT SetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); | 
|  |  | 
|  | SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); | 
|  |  | 
|  | SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); | 
|  |  | 
|  | // TODO: Should this propagate fast-math-flags? | 
|  | r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); | 
|  |  | 
|  | // rcp does not support denormals. | 
|  | SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); | 
|  |  | 
|  | SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); | 
|  |  | 
|  | return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) | 
|  | return FastLowered; | 
|  |  | 
|  | SDLoc SL(Op); | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  |  | 
|  | const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); | 
|  |  | 
|  | SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); | 
|  |  | 
|  | SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, | 
|  | RHS, RHS, LHS); | 
|  | SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, | 
|  | LHS, RHS, LHS); | 
|  |  | 
|  | // Denominator is scaled to not be denormal, so using rcp is ok. | 
|  | SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, | 
|  | DenominatorScaled); | 
|  | SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, | 
|  | DenominatorScaled); | 
|  |  | 
|  | const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | | 
|  | (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | | 
|  | (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); | 
|  |  | 
|  | const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16); | 
|  |  | 
|  | if (!Subtarget->hasFP32Denormals()) { | 
|  | SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, | 
|  | SL, MVT::i32); | 
|  | SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs, | 
|  | DAG.getEntryNode(), | 
|  | EnableDenormValue, BitField); | 
|  | SDValue Ops[3] = { | 
|  | NegDivScale0, | 
|  | EnableDenorm.getValue(0), | 
|  | EnableDenorm.getValue(1) | 
|  | }; | 
|  |  | 
|  | NegDivScale0 = DAG.getMergeValues(Ops, SL); | 
|  | } | 
|  |  | 
|  | SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, | 
|  | ApproxRcp, One, NegDivScale0); | 
|  |  | 
|  | SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, | 
|  | ApproxRcp, Fma0); | 
|  |  | 
|  | SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, | 
|  | Fma1, Fma1); | 
|  |  | 
|  | SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, | 
|  | NumeratorScaled, Mul); | 
|  |  | 
|  | SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2); | 
|  |  | 
|  | SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, | 
|  | NumeratorScaled, Fma3); | 
|  |  | 
|  | if (!Subtarget->hasFP32Denormals()) { | 
|  | const SDValue DisableDenormValue = | 
|  | DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); | 
|  | SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other, | 
|  | Fma4.getValue(1), | 
|  | DisableDenormValue, | 
|  | BitField, | 
|  | Fma4.getValue(2)); | 
|  |  | 
|  | SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, | 
|  | DisableDenorm, DAG.getRoot()); | 
|  | DAG.setRoot(OutputChain); | 
|  | } | 
|  |  | 
|  | SDValue Scale = NumeratorScaled.getValue(1); | 
|  | SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, | 
|  | Fma4, Fma1, Fma3, Scale); | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (DAG.getTarget().Options.UnsafeFPMath) | 
|  | return lowerFastUnsafeFDIV(Op, DAG); | 
|  |  | 
|  | SDLoc SL(Op); | 
|  | SDValue X = Op.getOperand(0); | 
|  | SDValue Y = Op.getOperand(1); | 
|  |  | 
|  | const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); | 
|  |  | 
|  | SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); | 
|  |  | 
|  | SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); | 
|  |  | 
|  | SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); | 
|  |  | 
|  | SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); | 
|  |  | 
|  | SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); | 
|  |  | 
|  | SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); | 
|  |  | 
|  | SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); | 
|  |  | 
|  | SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); | 
|  |  | 
|  | SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); | 
|  | SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); | 
|  |  | 
|  | SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, | 
|  | NegDivScale0, Mul, DivScale1); | 
|  |  | 
|  | SDValue Scale; | 
|  |  | 
|  | if (!Subtarget->hasUsableDivScaleConditionOutput()) { | 
|  | // Workaround a hardware bug on SI where the condition output from div_scale | 
|  | // is not usable. | 
|  |  | 
|  | const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); | 
|  |  | 
|  | // Figure out if the scale to use for div_fmas. | 
|  | SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); | 
|  | SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); | 
|  | SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); | 
|  | SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); | 
|  |  | 
|  | SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); | 
|  | SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); | 
|  |  | 
|  | SDValue Scale0Hi | 
|  | = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); | 
|  | SDValue Scale1Hi | 
|  | = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); | 
|  |  | 
|  | SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); | 
|  | SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); | 
|  | Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); | 
|  | } else { | 
|  | Scale = DivScale1.getValue(1); | 
|  | } | 
|  |  | 
|  | SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, | 
|  | Fma4, Fma3, Mul, Scale); | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | if (VT == MVT::f32) | 
|  | return LowerFDIV32(Op, DAG); | 
|  |  | 
|  | if (VT == MVT::f64) | 
|  | return LowerFDIV64(Op, DAG); | 
|  |  | 
|  | if (VT == MVT::f16) | 
|  | return LowerFDIV16(Op, DAG); | 
|  |  | 
|  | llvm_unreachable("Unexpected type for fdiv"); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | StoreSDNode *Store = cast<StoreSDNode>(Op); | 
|  | EVT VT = Store->getMemoryVT(); | 
|  |  | 
|  | if (VT == MVT::i1) { | 
|  | return DAG.getTruncStore(Store->getChain(), DL, | 
|  | DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), | 
|  | Store->getBasePtr(), MVT::i1, Store->getMemOperand()); | 
|  | } | 
|  |  | 
|  | assert(VT.isVector() && | 
|  | Store->getValue().getValueType().getScalarType() == MVT::i32); | 
|  |  | 
|  | if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, | 
|  | *Store->getMemOperand())) { | 
|  | return expandUnalignedStore(Store, DAG); | 
|  | } | 
|  |  | 
|  | unsigned AS = Store->getAddressSpace(); | 
|  | if (Subtarget->hasLDSMisalignedBug() && | 
|  | AS == AMDGPUAS::FLAT_ADDRESS && | 
|  | Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) { | 
|  | return SplitVectorStore(Op, DAG); | 
|  | } | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | // If there is a possibilty that flat instruction access scratch memory | 
|  | // then we need to use the same legalization rules we use for private. | 
|  | if (AS == AMDGPUAS::FLAT_ADDRESS) | 
|  | AS = MFI->hasFlatScratchInit() ? | 
|  | AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; | 
|  |  | 
|  | unsigned NumElements = VT.getVectorNumElements(); | 
|  | if (AS == AMDGPUAS::GLOBAL_ADDRESS || | 
|  | AS == AMDGPUAS::FLAT_ADDRESS) { | 
|  | if (NumElements > 4) | 
|  | return SplitVectorStore(Op, DAG); | 
|  | // v3 stores not supported on SI. | 
|  | if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) | 
|  | return SplitVectorStore(Op, DAG); | 
|  | return SDValue(); | 
|  | } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { | 
|  | switch (Subtarget->getMaxPrivateElementSize()) { | 
|  | case 4: | 
|  | return scalarizeVectorStore(Store, DAG); | 
|  | case 8: | 
|  | if (NumElements > 2) | 
|  | return SplitVectorStore(Op, DAG); | 
|  | return SDValue(); | 
|  | case 16: | 
|  | if (NumElements > 4 || NumElements == 3) | 
|  | return SplitVectorStore(Op, DAG); | 
|  | return SDValue(); | 
|  | default: | 
|  | llvm_unreachable("unsupported private_element_size"); | 
|  | } | 
|  | } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { | 
|  | // Use ds_write_b128 if possible. | 
|  | if (Subtarget->useDS128() && Store->getAlignment() >= 16 && | 
|  | VT.getStoreSize() == 16 && NumElements != 3) | 
|  | return SDValue(); | 
|  |  | 
|  | if (NumElements > 2) | 
|  | return SplitVectorStore(Op, DAG); | 
|  |  | 
|  | // SI has a hardware bug in the LDS / GDS boounds checking: if the base | 
|  | // address is negative, then the instruction is incorrectly treated as | 
|  | // out-of-bounds even if base + offsets is in bounds. Split vectorized | 
|  | // stores here to avoid emitting ds_write2_b32. We may re-combine the | 
|  | // store later in the SILoadStoreOptimizer. | 
|  | if (!Subtarget->hasUsableDSOffset() && | 
|  | NumElements == 2 && VT.getStoreSize() == 8 && | 
|  | Store->getAlignment() < 8) { | 
|  | return SplitVectorStore(Op, DAG); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } else { | 
|  | llvm_unreachable("unhandled address space"); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue Arg = Op.getOperand(0); | 
|  | SDValue TrigVal; | 
|  |  | 
|  | // TODO: Should this propagate fast-math-flags? | 
|  |  | 
|  | SDValue OneOver2Pi = DAG.getConstantFP(0.5 / M_PI, DL, VT); | 
|  |  | 
|  | if (Subtarget->hasTrigReducedRange()) { | 
|  | SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi); | 
|  | TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal); | 
|  | } else { | 
|  | TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi); | 
|  | } | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::FCOS: | 
|  | return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal); | 
|  | case ISD::FSIN: | 
|  | return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal); | 
|  | default: | 
|  | llvm_unreachable("Wrong trig opcode"); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { | 
|  | AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); | 
|  | assert(AtomicNode->isCompareAndSwap()); | 
|  | unsigned AS = AtomicNode->getAddressSpace(); | 
|  |  | 
|  | // No custom lowering required for local address space | 
|  | if (!isFlatGlobalAddrSpace(AS)) | 
|  | return Op; | 
|  |  | 
|  | // Non-local address space requires custom lowering for atomic compare | 
|  | // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 | 
|  | SDLoc DL(Op); | 
|  | SDValue ChainIn = Op.getOperand(0); | 
|  | SDValue Addr = Op.getOperand(1); | 
|  | SDValue Old = Op.getOperand(2); | 
|  | SDValue New = Op.getOperand(3); | 
|  | EVT VT = Op.getValueType(); | 
|  | MVT SimpleVT = VT.getSimpleVT(); | 
|  | MVT VecType = MVT::getVectorVT(SimpleVT, 2); | 
|  |  | 
|  | SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); | 
|  | SDValue Ops[] = { ChainIn, Addr, NewOld }; | 
|  |  | 
|  | return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), | 
|  | Ops, VT, AtomicNode->getMemOperand()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Custom DAG optimizations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT ScalarVT = VT.getScalarType(); | 
|  | if (ScalarVT != MVT::f32) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc DL(N); | 
|  |  | 
|  | SDValue Src = N->getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  |  | 
|  | // TODO: We could try to match extracting the higher bytes, which would be | 
|  | // easier if i8 vectors weren't promoted to i32 vectors, particularly after | 
|  | // types are legalized. v4i8 -> v4f32 is probably the only case to worry | 
|  | // about in practice. | 
|  | if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { | 
|  | if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { | 
|  | SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src); | 
|  | DCI.AddToWorklist(Cvt.getNode()); | 
|  | return Cvt; | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) | 
|  |  | 
|  | // This is a variant of | 
|  | // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), | 
|  | // | 
|  | // The normal DAG combiner will do this, but only if the add has one use since | 
|  | // that would increase the number of instructions. | 
|  | // | 
|  | // This prevents us from seeing a constant offset that can be folded into a | 
|  | // memory instruction's addressing mode. If we know the resulting add offset of | 
|  | // a pointer can be folded into an addressing offset, we can replace the pointer | 
|  | // operand with the add of new constant offset. This eliminates one of the uses, | 
|  | // and may allow the remaining use to also be simplified. | 
|  | // | 
|  | SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, | 
|  | unsigned AddrSpace, | 
|  | EVT MemVT, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | // We only do this to handle cases where it's profitable when there are | 
|  | // multiple uses of the add, so defer to the standard combine. | 
|  | if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || | 
|  | N0->hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); | 
|  | if (!CN1) | 
|  | return SDValue(); | 
|  |  | 
|  | const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!CAdd) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the resulting offset is too large, we can't fold it into the addressing | 
|  | // mode offset. | 
|  | APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); | 
|  | Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); | 
|  |  | 
|  | AddrMode AM; | 
|  | AM.HasBaseReg = true; | 
|  | AM.BaseOffs = Offset.getSExtValue(); | 
|  | if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); | 
|  | SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32); | 
|  |  | 
|  | SDNodeFlags Flags; | 
|  | Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && | 
|  | (N0.getOpcode() == ISD::OR || | 
|  | N0->getFlags().hasNoUnsignedWrap())); | 
|  |  | 
|  | return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SDValue Ptr = N->getBasePtr(); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  |  | 
|  | // TODO: We could also do this for multiplies. | 
|  | if (Ptr.getOpcode() == ISD::SHL) { | 
|  | SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(), | 
|  | N->getMemoryVT(), DCI); | 
|  | if (NewPtr) { | 
|  | SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); | 
|  |  | 
|  | NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; | 
|  | return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { | 
|  | return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || | 
|  | (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || | 
|  | (Opc == ISD::XOR && Val == 0); | 
|  | } | 
|  |  | 
|  | // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This | 
|  | // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit | 
|  | // integer combine opportunities since most 64-bit operations are decomposed | 
|  | // this way.  TODO: We won't want this for SALU especially if it is an inline | 
|  | // immediate. | 
|  | SDValue SITargetLowering::splitBinaryBitConstantOp( | 
|  | DAGCombinerInfo &DCI, | 
|  | const SDLoc &SL, | 
|  | unsigned Opc, SDValue LHS, | 
|  | const ConstantSDNode *CRHS) const { | 
|  | uint64_t Val = CRHS->getZExtValue(); | 
|  | uint32_t ValLo = Lo_32(Val); | 
|  | uint32_t ValHi = Hi_32(Val); | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  |  | 
|  | if ((bitOpWithConstantIsReducible(Opc, ValLo) || | 
|  | bitOpWithConstantIsReducible(Opc, ValHi)) || | 
|  | (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { | 
|  | // If we need to materialize a 64-bit immediate, it will be split up later | 
|  | // anyway. Avoid creating the harder to understand 64-bit immediate | 
|  | // materialization. | 
|  | return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Returns true if argument is a boolean value which is not serialized into | 
|  | // memory or argument and does not require v_cmdmask_b32 to be deserialized. | 
|  | static bool isBoolSGPR(SDValue V) { | 
|  | if (V.getValueType() != MVT::i1) | 
|  | return false; | 
|  | switch (V.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::SETCC: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case AMDGPUISD::FP_CLASS: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If a constant has all zeroes or all ones within each byte return it. | 
|  | // Otherwise return 0. | 
|  | static uint32_t getConstantPermuteMask(uint32_t C) { | 
|  | // 0xff for any zero byte in the mask | 
|  | uint32_t ZeroByteMask = 0; | 
|  | if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; | 
|  | if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; | 
|  | if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; | 
|  | if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; | 
|  | uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte | 
|  | if ((NonZeroByteMask & C) != NonZeroByteMask) | 
|  | return 0; // Partial bytes selected. | 
|  | return C; | 
|  | } | 
|  |  | 
|  | // Check if a node selects whole bytes from its operand 0 starting at a byte | 
|  | // boundary while masking the rest. Returns select mask as in the v_perm_b32 | 
|  | // or -1 if not succeeded. | 
|  | // Note byte select encoding: | 
|  | // value 0-3 selects corresponding source byte; | 
|  | // value 0xc selects zero; | 
|  | // value 0xff selects 0xff. | 
|  | static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { | 
|  | assert(V.getValueSizeInBits() == 32); | 
|  |  | 
|  | if (V.getNumOperands() != 2) | 
|  | return ~0; | 
|  |  | 
|  | ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); | 
|  | if (!N1) | 
|  | return ~0; | 
|  |  | 
|  | uint32_t C = N1->getZExtValue(); | 
|  |  | 
|  | switch (V.getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case ISD::AND: | 
|  | if (uint32_t ConstMask = getConstantPermuteMask(C)) { | 
|  | return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::OR: | 
|  | if (uint32_t ConstMask = getConstantPermuteMask(C)) { | 
|  | return (0x03020100 & ~ConstMask) | ConstMask; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SHL: | 
|  | if (C % 8) | 
|  | return ~0; | 
|  |  | 
|  | return uint32_t((0x030201000c0c0c0cull << C) >> 32); | 
|  |  | 
|  | case ISD::SRL: | 
|  | if (C % 8) | 
|  | return ~0; | 
|  |  | 
|  | return uint32_t(0x0c0c0c0c03020100ull >> C); | 
|  | } | 
|  |  | 
|  | return ~0; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performAndCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (DCI.isBeforeLegalize()) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  |  | 
|  | const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); | 
|  | if (VT == MVT::i64 && CRHS) { | 
|  | if (SDValue Split | 
|  | = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) | 
|  | return Split; | 
|  | } | 
|  |  | 
|  | if (CRHS && VT == MVT::i32) { | 
|  | // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb | 
|  | // nb = number of trailing zeroes in mask | 
|  | // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, | 
|  | // given that we are selecting 8 or 16 bit fields starting at byte boundary. | 
|  | uint64_t Mask = CRHS->getZExtValue(); | 
|  | unsigned Bits = countPopulation(Mask); | 
|  | if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && | 
|  | (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { | 
|  | if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { | 
|  | unsigned Shift = CShift->getZExtValue(); | 
|  | unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); | 
|  | unsigned Offset = NB + Shift; | 
|  | if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. | 
|  | SDLoc SL(N); | 
|  | SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, | 
|  | LHS->getOperand(0), | 
|  | DAG.getConstant(Offset, SL, MVT::i32), | 
|  | DAG.getConstant(Bits, SL, MVT::i32)); | 
|  | EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); | 
|  | SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, | 
|  | DAG.getValueType(NarrowVT)); | 
|  | SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, | 
|  | DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); | 
|  | return Shl; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) | 
|  | if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && | 
|  | isa<ConstantSDNode>(LHS.getOperand(2))) { | 
|  | uint32_t Sel = getConstantPermuteMask(Mask); | 
|  | if (!Sel) | 
|  | return SDValue(); | 
|  |  | 
|  | // Select 0xc for all zero bytes | 
|  | Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), | 
|  | LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> | 
|  | // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) | 
|  | if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { | 
|  | ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); | 
|  | ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); | 
|  |  | 
|  | SDValue X = LHS.getOperand(0); | 
|  | SDValue Y = RHS.getOperand(0); | 
|  | if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) | 
|  | return SDValue(); | 
|  |  | 
|  | if (LCC == ISD::SETO) { | 
|  | if (X != LHS.getOperand(1)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (RCC == ISD::SETUNE) { | 
|  | const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); | 
|  | if (!C1 || !C1->isInfinity() || C1->isNegative()) | 
|  | return SDValue(); | 
|  |  | 
|  | const uint32_t Mask = SIInstrFlags::N_NORMAL | | 
|  | SIInstrFlags::N_SUBNORMAL | | 
|  | SIInstrFlags::N_ZERO | | 
|  | SIInstrFlags::P_ZERO | | 
|  | SIInstrFlags::P_SUBNORMAL | | 
|  | SIInstrFlags::P_NORMAL; | 
|  |  | 
|  | static_assert(((~(SIInstrFlags::S_NAN | | 
|  | SIInstrFlags::Q_NAN | | 
|  | SIInstrFlags::N_INFINITY | | 
|  | SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, | 
|  | "mask not equal"); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, | 
|  | X, DAG.getConstant(Mask, DL, MVT::i32)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && | 
|  | RHS.hasOneUse()) { | 
|  | ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); | 
|  | // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) | 
|  | // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) | 
|  | const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); | 
|  | if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && | 
|  | (RHS.getOperand(0) == LHS.getOperand(0) && | 
|  | LHS.getOperand(0) == LHS.getOperand(1))) { | 
|  | const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; | 
|  | unsigned NewMask = LCC == ISD::SETO ? | 
|  | Mask->getZExtValue() & ~OrdMask : | 
|  | Mask->getZExtValue() & OrdMask; | 
|  |  | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), | 
|  | DAG.getConstant(NewMask, DL, MVT::i32)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VT == MVT::i32 && | 
|  | (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { | 
|  | // and x, (sext cc from i1) => select cc, x, 0 | 
|  | if (RHS.getOpcode() != ISD::SIGN_EXTEND) | 
|  | std::swap(LHS, RHS); | 
|  | if (isBoolSGPR(RHS.getOperand(0))) | 
|  | return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), | 
|  | LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); | 
|  | } | 
|  |  | 
|  | // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  | if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && | 
|  | N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) { | 
|  | uint32_t LHSMask = getPermuteMask(DAG, LHS); | 
|  | uint32_t RHSMask = getPermuteMask(DAG, RHS); | 
|  | if (LHSMask != ~0u && RHSMask != ~0u) { | 
|  | // Canonicalize the expression in an attempt to have fewer unique masks | 
|  | // and therefore fewer registers used to hold the masks. | 
|  | if (LHSMask > RHSMask) { | 
|  | std::swap(LHSMask, RHSMask); | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  |  | 
|  | // Select 0xc for each lane used from source operand. Zero has 0xc mask | 
|  | // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. | 
|  | uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; | 
|  | uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; | 
|  |  | 
|  | // Check of we need to combine values from two sources within a byte. | 
|  | if (!(LHSUsedLanes & RHSUsedLanes) && | 
|  | // If we select high and lower word keep it for SDWA. | 
|  | // TODO: teach SDWA to work with v_perm_b32 and remove the check. | 
|  | !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { | 
|  | // Each byte in each mask is either selector mask 0-3, or has higher | 
|  | // bits set in either of masks, which can be 0xff for 0xff or 0x0c for | 
|  | // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise | 
|  | // mask which is not 0xff wins. By anding both masks we have a correct | 
|  | // result except that 0x0c shall be corrected to give 0x0c only. | 
|  | uint32_t Mask = LHSMask & RHSMask; | 
|  | for (unsigned I = 0; I < 32; I += 8) { | 
|  | uint32_t ByteSel = 0xff << I; | 
|  | if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) | 
|  | Mask &= (0x0c << I) & 0xffffffff; | 
|  | } | 
|  |  | 
|  | // Add 4 to each active LHS lane. It will not affect any existing 0xff | 
|  | // or 0x0c. | 
|  | uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, | 
|  | LHS.getOperand(0), RHS.getOperand(0), | 
|  | DAG.getConstant(Sel, DL, MVT::i32)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performOrCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT == MVT::i1) { | 
|  | // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) | 
|  | if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && | 
|  | RHS.getOpcode() == AMDGPUISD::FP_CLASS) { | 
|  | SDValue Src = LHS.getOperand(0); | 
|  | if (Src != RHS.getOperand(0)) | 
|  | return SDValue(); | 
|  |  | 
|  | const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); | 
|  | const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); | 
|  | if (!CLHS || !CRHS) | 
|  | return SDValue(); | 
|  |  | 
|  | // Only 10 bits are used. | 
|  | static const uint32_t MaxMask = 0x3ff; | 
|  |  | 
|  | uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, | 
|  | Src, DAG.getConstant(NewMask, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) | 
|  | if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && | 
|  | LHS.getOpcode() == AMDGPUISD::PERM && | 
|  | isa<ConstantSDNode>(LHS.getOperand(2))) { | 
|  | uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); | 
|  | if (!Sel) | 
|  | return SDValue(); | 
|  |  | 
|  | Sel |= LHS.getConstantOperandVal(2); | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), | 
|  | LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  | if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && | 
|  | N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) { | 
|  | uint32_t LHSMask = getPermuteMask(DAG, LHS); | 
|  | uint32_t RHSMask = getPermuteMask(DAG, RHS); | 
|  | if (LHSMask != ~0u && RHSMask != ~0u) { | 
|  | // Canonicalize the expression in an attempt to have fewer unique masks | 
|  | // and therefore fewer registers used to hold the masks. | 
|  | if (LHSMask > RHSMask) { | 
|  | std::swap(LHSMask, RHSMask); | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  |  | 
|  | // Select 0xc for each lane used from source operand. Zero has 0xc mask | 
|  | // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. | 
|  | uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; | 
|  | uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; | 
|  |  | 
|  | // Check of we need to combine values from two sources within a byte. | 
|  | if (!(LHSUsedLanes & RHSUsedLanes) && | 
|  | // If we select high and lower word keep it for SDWA. | 
|  | // TODO: teach SDWA to work with v_perm_b32 and remove the check. | 
|  | !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { | 
|  | // Kill zero bytes selected by other mask. Zero value is 0xc. | 
|  | LHSMask &= ~RHSUsedLanes; | 
|  | RHSMask &= ~LHSUsedLanes; | 
|  | // Add 4 to each active LHS lane | 
|  | LHSMask |= LHSUsedLanes & 0x04040404; | 
|  | // Combine masks | 
|  | uint32_t Sel = LHSMask | RHSMask; | 
|  | SDLoc DL(N); | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, | 
|  | LHS.getOperand(0), RHS.getOperand(0), | 
|  | DAG.getConstant(Sel, DL, MVT::i32)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | // TODO: This could be a generic combine with a predicate for extracting the | 
|  | // high half of an integer being free. | 
|  |  | 
|  | // (or i64:x, (zero_extend i32:y)) -> | 
|  | //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) | 
|  | if (LHS.getOpcode() == ISD::ZERO_EXTEND && | 
|  | RHS.getOpcode() != ISD::ZERO_EXTEND) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | if (RHS.getOpcode() == ISD::ZERO_EXTEND) { | 
|  | SDValue ExtSrc = RHS.getOperand(0); | 
|  | EVT SrcVT = ExtSrc.getValueType(); | 
|  | if (SrcVT == MVT::i32) { | 
|  | SDLoc SL(N); | 
|  | SDValue LowLHS, HiBits; | 
|  | std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); | 
|  | SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); | 
|  |  | 
|  | DCI.AddToWorklist(LowOr.getNode()); | 
|  | DCI.AddToWorklist(HiBits.getNode()); | 
|  |  | 
|  | SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, | 
|  | LowOr, HiBits); | 
|  | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); | 
|  | } | 
|  | } | 
|  |  | 
|  | const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (CRHS) { | 
|  | if (SDValue Split | 
|  | = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS)) | 
|  | return Split; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performXorCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); | 
|  | if (CRHS) { | 
|  | if (SDValue Split | 
|  | = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) | 
|  | return Split; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Instructions that will be lowered with a final instruction that zeros the | 
|  | // high result bits. | 
|  | // XXX - probably only need to list legal operations. | 
|  | static bool fp16SrcZerosHighBits(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | case ISD::FMA: | 
|  | case ISD::FMAD: | 
|  | case ISD::FCANONICALIZE: | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::FABS: | 
|  | // Fabs is lowered to a bit operation, but it's an and which will clear the | 
|  | // high bits anyway. | 
|  | case ISD::FSQRT: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FPOWI: | 
|  | case ISD::FPOW: | 
|  | case ISD::FLOG: | 
|  | case ISD::FLOG2: | 
|  | case ISD::FLOG10: | 
|  | case ISD::FEXP: | 
|  | case ISD::FEXP2: | 
|  | case ISD::FCEIL: | 
|  | case ISD::FTRUNC: | 
|  | case ISD::FRINT: | 
|  | case ISD::FNEARBYINT: | 
|  | case ISD::FROUND: | 
|  | case ISD::FFLOOR: | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM: | 
|  | case AMDGPUISD::FRACT: | 
|  | case AMDGPUISD::CLAMP: | 
|  | case AMDGPUISD::COS_HW: | 
|  | case AMDGPUISD::SIN_HW: | 
|  | case AMDGPUISD::FMIN3: | 
|  | case AMDGPUISD::FMAX3: | 
|  | case AMDGPUISD::FMED3: | 
|  | case AMDGPUISD::FMAD_FTZ: | 
|  | case AMDGPUISD::RCP: | 
|  | case AMDGPUISD::RSQ: | 
|  | case AMDGPUISD::RCP_IFLAG: | 
|  | case AMDGPUISD::LDEXP: | 
|  | return true; | 
|  | default: | 
|  | // fcopysign, select and others may be lowered to 32-bit bit operations | 
|  | // which don't zero the high bits. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (!Subtarget->has16BitInsts() || | 
|  | DCI.getDAGCombineLevel() < AfterLegalizeDAG) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i32) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Src = N->getOperand(0); | 
|  | if (Src.getValueType() != MVT::i16) | 
|  | return SDValue(); | 
|  |  | 
|  | // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src | 
|  | // FIXME: It is not universally true that the high bits are zeroed on gfx9. | 
|  | if (Src.getOpcode() == ISD::BITCAST) { | 
|  | SDValue BCSrc = Src.getOperand(0); | 
|  | if (BCSrc.getValueType() == MVT::f16 && | 
|  | fp16SrcZerosHighBits(BCSrc.getOpcode())) | 
|  | return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) | 
|  | const { | 
|  | SDValue Src = N->getOperand(0); | 
|  | auto *VTSign = cast<VTSDNode>(N->getOperand(1)); | 
|  |  | 
|  | if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && | 
|  | VTSign->getVT() == MVT::i8) || | 
|  | (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && | 
|  | VTSign->getVT() == MVT::i16)) && | 
|  | Src.hasOneUse()) { | 
|  | auto *M = cast<MemSDNode>(Src); | 
|  | SDValue Ops[] = { | 
|  | Src.getOperand(0), // Chain | 
|  | Src.getOperand(1), // rsrc | 
|  | Src.getOperand(2), // vindex | 
|  | Src.getOperand(3), // voffset | 
|  | Src.getOperand(4), // soffset | 
|  | Src.getOperand(5), // offset | 
|  | Src.getOperand(6), | 
|  | Src.getOperand(7) | 
|  | }; | 
|  | // replace with BUFFER_LOAD_BYTE/SHORT | 
|  | SDVTList ResList = DCI.DAG.getVTList(MVT::i32, | 
|  | Src.getOperand(0).getValueType()); | 
|  | unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? | 
|  | AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; | 
|  | SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), | 
|  | ResList, | 
|  | Ops, M->getMemoryVT(), | 
|  | M->getMemOperand()); | 
|  | return DCI.DAG.getMergeValues({BufferLoadSignExt, | 
|  | BufferLoadSignExt.getValue(1)}, SDLoc(N)); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performClassCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue Mask = N->getOperand(1); | 
|  |  | 
|  | // fp_class x, 0 -> false | 
|  | if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { | 
|  | if (CMask->isNullValue()) | 
|  | return DAG.getConstant(0, SDLoc(N), MVT::i1); | 
|  | } | 
|  |  | 
|  | if (N->getOperand(0).isUndef()) | 
|  | return DAG.getUNDEF(MVT::i1); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performRcpCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue N0 = N->getOperand(0); | 
|  |  | 
|  | if (N0.isUndef()) | 
|  | return N0; | 
|  |  | 
|  | if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || | 
|  | N0.getOpcode() == ISD::SINT_TO_FP)) { | 
|  | return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, | 
|  | N->getFlags()); | 
|  | } | 
|  |  | 
|  | return AMDGPUTargetLowering::performRcpCombine(N, DCI); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, | 
|  | unsigned MaxDepth) const { | 
|  | unsigned Opcode = Op.getOpcode(); | 
|  | if (Opcode == ISD::FCANONICALIZE) | 
|  | return true; | 
|  |  | 
|  | if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { | 
|  | auto F = CFP->getValueAPF(); | 
|  | if (F.isNaN() && F.isSignaling()) | 
|  | return false; | 
|  | return !F.isDenormal() || denormalsEnabledForType(Op.getValueType()); | 
|  | } | 
|  |  | 
|  | // If source is a result of another standard FP operation it is already in | 
|  | // canonical form. | 
|  | if (MaxDepth == 0) | 
|  | return false; | 
|  |  | 
|  | switch (Opcode) { | 
|  | // These will flush denorms if required. | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::FCEIL: | 
|  | case ISD::FFLOOR: | 
|  | case ISD::FMA: | 
|  | case ISD::FMAD: | 
|  | case ISD::FSQRT: | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::FP_EXTEND: | 
|  | case AMDGPUISD::FMUL_LEGACY: | 
|  | case AMDGPUISD::FMAD_FTZ: | 
|  | case AMDGPUISD::RCP: | 
|  | case AMDGPUISD::RSQ: | 
|  | case AMDGPUISD::RSQ_CLAMP: | 
|  | case AMDGPUISD::RCP_LEGACY: | 
|  | case AMDGPUISD::RSQ_LEGACY: | 
|  | case AMDGPUISD::RCP_IFLAG: | 
|  | case AMDGPUISD::TRIG_PREOP: | 
|  | case AMDGPUISD::DIV_SCALE: | 
|  | case AMDGPUISD::DIV_FMAS: | 
|  | case AMDGPUISD::DIV_FIXUP: | 
|  | case AMDGPUISD::FRACT: | 
|  | case AMDGPUISD::LDEXP: | 
|  | case AMDGPUISD::CVT_PKRTZ_F16_F32: | 
|  | case AMDGPUISD::CVT_F32_UBYTE0: | 
|  | case AMDGPUISD::CVT_F32_UBYTE1: | 
|  | case AMDGPUISD::CVT_F32_UBYTE2: | 
|  | case AMDGPUISD::CVT_F32_UBYTE3: | 
|  | return true; | 
|  |  | 
|  | // It can/will be lowered or combined as a bit operation. | 
|  | // Need to check their input recursively to handle. | 
|  | case ISD::FNEG: | 
|  | case ISD::FABS: | 
|  | case ISD::FCOPYSIGN: | 
|  | return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); | 
|  |  | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FSINCOS: | 
|  | return Op.getValueType().getScalarType() != MVT::f16; | 
|  |  | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM: | 
|  | case ISD::FMINNUM_IEEE: | 
|  | case ISD::FMAXNUM_IEEE: | 
|  | case AMDGPUISD::CLAMP: | 
|  | case AMDGPUISD::FMED3: | 
|  | case AMDGPUISD::FMAX3: | 
|  | case AMDGPUISD::FMIN3: { | 
|  | // FIXME: Shouldn't treat the generic operations different based these. | 
|  | // However, we aren't really required to flush the result from | 
|  | // minnum/maxnum.. | 
|  |  | 
|  | // snans will be quieted, so we only need to worry about denormals. | 
|  | if (Subtarget->supportsMinMaxDenormModes() || | 
|  | denormalsEnabledForType(Op.getValueType())) | 
|  | return true; | 
|  |  | 
|  | // Flushing may be required. | 
|  | // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such | 
|  | // targets need to check their input recursively. | 
|  |  | 
|  | // FIXME: Does this apply with clamp? It's implemented with max. | 
|  | for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { | 
|  | if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | case ISD::SELECT: { | 
|  | return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && | 
|  | isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); | 
|  | } | 
|  | case ISD::BUILD_VECTOR: { | 
|  | for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { | 
|  | SDValue SrcOp = Op.getOperand(i); | 
|  | if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | case ISD::EXTRACT_SUBVECTOR: { | 
|  | return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); | 
|  | } | 
|  | case ISD::INSERT_VECTOR_ELT: { | 
|  | return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && | 
|  | isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); | 
|  | } | 
|  | case ISD::UNDEF: | 
|  | // Could be anything. | 
|  | return false; | 
|  |  | 
|  | case ISD::BITCAST: { | 
|  | // Hack round the mess we make when legalizing extract_vector_elt | 
|  | SDValue Src = Op.getOperand(0); | 
|  | if (Src.getValueType() == MVT::i16 && | 
|  | Src.getOpcode() == ISD::TRUNCATE) { | 
|  | SDValue TruncSrc = Src.getOperand(0); | 
|  | if (TruncSrc.getValueType() == MVT::i32 && | 
|  | TruncSrc.getOpcode() == ISD::BITCAST && | 
|  | TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { | 
|  | return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | unsigned IntrinsicID | 
|  | = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | // TODO: Handle more intrinsics | 
|  | switch (IntrinsicID) { | 
|  | case Intrinsic::amdgcn_cvt_pkrtz: | 
|  | case Intrinsic::amdgcn_cubeid: | 
|  | case Intrinsic::amdgcn_frexp_mant: | 
|  | case Intrinsic::amdgcn_fdot2: | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | default: | 
|  | return denormalsEnabledForType(Op.getValueType()) && | 
|  | DAG.isKnownNeverSNaN(Op); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("invalid operation"); | 
|  | } | 
|  |  | 
|  | // Constant fold canonicalize. | 
|  | SDValue SITargetLowering::getCanonicalConstantFP( | 
|  | SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { | 
|  | // Flush denormals to 0 if not enabled. | 
|  | if (C.isDenormal() && !denormalsEnabledForType(VT)) | 
|  | return DAG.getConstantFP(0.0, SL, VT); | 
|  |  | 
|  | if (C.isNaN()) { | 
|  | APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); | 
|  | if (C.isSignaling()) { | 
|  | // Quiet a signaling NaN. | 
|  | // FIXME: Is this supposed to preserve payload bits? | 
|  | return DAG.getConstantFP(CanonicalQNaN, SL, VT); | 
|  | } | 
|  |  | 
|  | // Make sure it is the canonical NaN bitpattern. | 
|  | // | 
|  | // TODO: Can we use -1 as the canonical NaN value since it's an inline | 
|  | // immediate? | 
|  | if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) | 
|  | return DAG.getConstantFP(CanonicalQNaN, SL, VT); | 
|  | } | 
|  |  | 
|  | // Already canonical. | 
|  | return DAG.getConstantFP(C, SL, VT); | 
|  | } | 
|  |  | 
|  | static bool vectorEltWillFoldAway(SDValue Op) { | 
|  | return Op.isUndef() || isa<ConstantFPSDNode>(Op); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performFCanonicalizeCombine( | 
|  | SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // fcanonicalize undef -> qnan | 
|  | if (N0.isUndef()) { | 
|  | APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); | 
|  | return DAG.getConstantFP(QNaN, SDLoc(N), VT); | 
|  | } | 
|  |  | 
|  | if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { | 
|  | EVT VT = N->getValueType(0); | 
|  | return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); | 
|  | } | 
|  |  | 
|  | // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), | 
|  | //                                                   (fcanonicalize k) | 
|  | // | 
|  | // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 | 
|  |  | 
|  | // TODO: This could be better with wider vectors that will be split to v2f16, | 
|  | // and to consider uses since there aren't that many packed operations. | 
|  | if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && | 
|  | isTypeLegal(MVT::v2f16)) { | 
|  | SDLoc SL(N); | 
|  | SDValue NewElts[2]; | 
|  | SDValue Lo = N0.getOperand(0); | 
|  | SDValue Hi = N0.getOperand(1); | 
|  | EVT EltVT = Lo.getValueType(); | 
|  |  | 
|  | if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { | 
|  | for (unsigned I = 0; I != 2; ++I) { | 
|  | SDValue Op = N0.getOperand(I); | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { | 
|  | NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, | 
|  | CFP->getValueAPF()); | 
|  | } else if (Op.isUndef()) { | 
|  | // Handled below based on what the other operand is. | 
|  | NewElts[I] = Op; | 
|  | } else { | 
|  | NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If one half is undef, and one is constant, perfer a splat vector rather | 
|  | // than the normal qNaN. If it's a register, prefer 0.0 since that's | 
|  | // cheaper to use and may be free with a packed operation. | 
|  | if (NewElts[0].isUndef()) { | 
|  | if (isa<ConstantFPSDNode>(NewElts[1])) | 
|  | NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? | 
|  | NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); | 
|  | } | 
|  |  | 
|  | if (NewElts[1].isUndef()) { | 
|  | NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? | 
|  | NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); | 
|  | } | 
|  |  | 
|  | return DAG.getBuildVector(VT, SL, NewElts); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned SrcOpc = N0.getOpcode(); | 
|  |  | 
|  | // If it's free to do so, push canonicalizes further up the source, which may | 
|  | // find a canonical source. | 
|  | // | 
|  | // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for | 
|  | // sNaNs. | 
|  | if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { | 
|  | auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); | 
|  | if (CRHS && N0.hasOneUse()) { | 
|  | SDLoc SL(N); | 
|  | SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, | 
|  | N0.getOperand(0)); | 
|  | SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); | 
|  | DCI.AddToWorklist(Canon0.getNode()); | 
|  |  | 
|  | return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return isCanonicalized(DAG, N0) ? N0 : SDValue(); | 
|  | } | 
|  |  | 
|  | static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | case ISD::FMAXNUM: | 
|  | case ISD::FMAXNUM_IEEE: | 
|  | return AMDGPUISD::FMAX3; | 
|  | case ISD::SMAX: | 
|  | return AMDGPUISD::SMAX3; | 
|  | case ISD::UMAX: | 
|  | return AMDGPUISD::UMAX3; | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMINNUM_IEEE: | 
|  | return AMDGPUISD::FMIN3; | 
|  | case ISD::SMIN: | 
|  | return AMDGPUISD::SMIN3; | 
|  | case ISD::UMIN: | 
|  | return AMDGPUISD::UMIN3; | 
|  | default: | 
|  | llvm_unreachable("Not a min/max opcode"); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performIntMed3ImmCombine( | 
|  | SelectionDAG &DAG, const SDLoc &SL, | 
|  | SDValue Op0, SDValue Op1, bool Signed) const { | 
|  | ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); | 
|  | if (!K1) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); | 
|  | if (!K0) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Signed) { | 
|  | if (K0->getAPIntValue().sge(K1->getAPIntValue())) | 
|  | return SDValue(); | 
|  | } else { | 
|  | if (K0->getAPIntValue().uge(K1->getAPIntValue())) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | EVT VT = K0->getValueType(0); | 
|  | unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; | 
|  | if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { | 
|  | return DAG.getNode(Med3Opc, SL, VT, | 
|  | Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); | 
|  | } | 
|  |  | 
|  | // If there isn't a 16-bit med3 operation, convert to 32-bit. | 
|  | MVT NVT = MVT::i32; | 
|  | unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  |  | 
|  | SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); | 
|  | SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); | 
|  | SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); | 
|  |  | 
|  | SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); | 
|  | return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); | 
|  | } | 
|  |  | 
|  | static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) | 
|  | return C; | 
|  |  | 
|  | if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { | 
|  | if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) | 
|  | return C; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, | 
|  | const SDLoc &SL, | 
|  | SDValue Op0, | 
|  | SDValue Op1) const { | 
|  | ConstantFPSDNode *K1 = getSplatConstantFP(Op1); | 
|  | if (!K1) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); | 
|  | if (!K0) | 
|  | return SDValue(); | 
|  |  | 
|  | // Ordered >= (although NaN inputs should have folded away by now). | 
|  | APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF()); | 
|  | if (Cmp == APFloat::cmpGreaterThan) | 
|  | return SDValue(); | 
|  |  | 
|  | const MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | // TODO: Check IEEE bit enabled? | 
|  | EVT VT = Op0.getValueType(); | 
|  | if (Info->getMode().DX10Clamp) { | 
|  | // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the | 
|  | // hardware fmed3 behavior converting to a min. | 
|  | // FIXME: Should this be allowing -0.0? | 
|  | if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) | 
|  | return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); | 
|  | } | 
|  |  | 
|  | // med3 for f16 is only available on gfx9+, and not available for v2f16. | 
|  | if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { | 
|  | // This isn't safe with signaling NaNs because in IEEE mode, min/max on a | 
|  | // signaling NaN gives a quiet NaN. The quiet NaN input to the min would | 
|  | // then give the other result, which is different from med3 with a NaN | 
|  | // input. | 
|  | SDValue Var = Op0.getOperand(0); | 
|  | if (!DAG.isKnownNeverSNaN(Var)) | 
|  | return SDValue(); | 
|  |  | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  |  | 
|  | if ((!K0->hasOneUse() || | 
|  | TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && | 
|  | (!K1->hasOneUse() || | 
|  | TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { | 
|  | return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), | 
|  | Var, SDValue(K0, 0), SDValue(K1, 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performMinMaxCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | unsigned Opc = N->getOpcode(); | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  |  | 
|  | // Only do this if the inner op has one use since this will just increases | 
|  | // register pressure for no benefit. | 
|  |  | 
|  | if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && | 
|  | !VT.isVector() && | 
|  | (VT == MVT::i32 || VT == MVT::f32 || | 
|  | ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { | 
|  | // max(max(a, b), c) -> max3(a, b, c) | 
|  | // min(min(a, b), c) -> min3(a, b, c) | 
|  | if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), | 
|  | DL, | 
|  | N->getValueType(0), | 
|  | Op0.getOperand(0), | 
|  | Op0.getOperand(1), | 
|  | Op1); | 
|  | } | 
|  |  | 
|  | // Try commuted. | 
|  | // max(a, max(b, c)) -> max3(a, b, c) | 
|  | // min(a, min(b, c)) -> min3(a, b, c) | 
|  | if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), | 
|  | DL, | 
|  | N->getValueType(0), | 
|  | Op0, | 
|  | Op1.getOperand(0), | 
|  | Op1.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) | 
|  | if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { | 
|  | if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) | 
|  | return Med3; | 
|  | } | 
|  |  | 
|  | if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { | 
|  | if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) | 
|  | return Med3; | 
|  | } | 
|  |  | 
|  | // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) | 
|  | if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || | 
|  | (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || | 
|  | (Opc == AMDGPUISD::FMIN_LEGACY && | 
|  | Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && | 
|  | (VT == MVT::f32 || VT == MVT::f64 || | 
|  | (VT == MVT::f16 && Subtarget->has16BitInsts()) || | 
|  | (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && | 
|  | Op0.hasOneUse()) { | 
|  | if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static bool isClampZeroToOne(SDValue A, SDValue B) { | 
|  | if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { | 
|  | if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { | 
|  | // FIXME: Should this be allowing -0.0? | 
|  | return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || | 
|  | (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FIXME: Should only worry about snans for version with chain. | 
|  | SDValue SITargetLowering::performFMed3Combine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | EVT VT = N->getValueType(0); | 
|  | // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and | 
|  | // NaNs. With a NaN input, the order of the operands may change the result. | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  |  | 
|  | SDValue Src0 = N->getOperand(0); | 
|  | SDValue Src1 = N->getOperand(1); | 
|  | SDValue Src2 = N->getOperand(2); | 
|  |  | 
|  | if (isClampZeroToOne(Src0, Src1)) { | 
|  | // const_a, const_b, x -> clamp is safe in all cases including signaling | 
|  | // nans. | 
|  | // FIXME: Should this be allowing -0.0? | 
|  | return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); | 
|  | } | 
|  |  | 
|  | const MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother | 
|  | // handling no dx10-clamp? | 
|  | if (Info->getMode().DX10Clamp) { | 
|  | // If NaNs is clamped to 0, we are free to reorder the inputs. | 
|  |  | 
|  | if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) | 
|  | std::swap(Src0, Src1); | 
|  |  | 
|  | if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) | 
|  | std::swap(Src1, Src2); | 
|  |  | 
|  | if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) | 
|  | std::swap(Src0, Src1); | 
|  |  | 
|  | if (isClampZeroToOne(Src1, Src2)) | 
|  | return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SDValue Src0 = N->getOperand(0); | 
|  | SDValue Src1 = N->getOperand(1); | 
|  | if (Src0.isUndef() && Src1.isUndef()) | 
|  | return DCI.DAG.getUNDEF(N->getValueType(0)); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performExtractVectorEltCombine( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SDValue Vec = N->getOperand(0); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | EVT VecVT = Vec.getValueType(); | 
|  | EVT EltVT = VecVT.getVectorElementType(); | 
|  |  | 
|  | if ((Vec.getOpcode() == ISD::FNEG || | 
|  | Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { | 
|  | SDLoc SL(N); | 
|  | EVT EltVT = N->getValueType(0); | 
|  | SDValue Idx = N->getOperand(1); | 
|  | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, | 
|  | Vec.getOperand(0), Idx); | 
|  | return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt); | 
|  | } | 
|  |  | 
|  | // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) | 
|  | //    => | 
|  | // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) | 
|  | // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) | 
|  | // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt | 
|  | if (Vec.hasOneUse() && DCI.isBeforeLegalize()) { | 
|  | SDLoc SL(N); | 
|  | EVT EltVT = N->getValueType(0); | 
|  | SDValue Idx = N->getOperand(1); | 
|  | unsigned Opc = Vec.getOpcode(); | 
|  |  | 
|  | switch(Opc) { | 
|  | default: | 
|  | break; | 
|  | // TODO: Support other binary operations. | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::ADD: | 
|  | case ISD::UMIN: | 
|  | case ISD::UMAX: | 
|  | case ISD::SMIN: | 
|  | case ISD::SMAX: | 
|  | case ISD::FMAXNUM: | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM_IEEE: | 
|  | case ISD::FMINNUM_IEEE: { | 
|  | SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, | 
|  | Vec.getOperand(0), Idx); | 
|  | SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, | 
|  | Vec.getOperand(1), Idx); | 
|  |  | 
|  | DCI.AddToWorklist(Elt0.getNode()); | 
|  | DCI.AddToWorklist(Elt1.getNode()); | 
|  | return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned VecSize = VecVT.getSizeInBits(); | 
|  | unsigned EltSize = EltVT.getSizeInBits(); | 
|  |  | 
|  | // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) | 
|  | // This elminates non-constant index and subsequent movrel or scratch access. | 
|  | // Sub-dword vectors of size 2 dword or less have better implementation. | 
|  | // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32 | 
|  | // instructions. | 
|  | if (VecSize <= 256 && (VecSize > 64 || EltSize >= 32) && | 
|  | !isa<ConstantSDNode>(N->getOperand(1))) { | 
|  | SDLoc SL(N); | 
|  | SDValue Idx = N->getOperand(1); | 
|  | EVT IdxVT = Idx.getValueType(); | 
|  | SDValue V; | 
|  | for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { | 
|  | SDValue IC = DAG.getConstant(I, SL, IdxVT); | 
|  | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); | 
|  | if (I == 0) | 
|  | V = Elt; | 
|  | else | 
|  | V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | if (!DCI.isBeforeLegalize()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit | 
|  | // elements. This exposes more load reduction opportunities by replacing | 
|  | // multiple small extract_vector_elements with a single 32-bit extract. | 
|  | auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (isa<MemSDNode>(Vec) && | 
|  | EltSize <= 16 && | 
|  | EltVT.isByteSized() && | 
|  | VecSize > 32 && | 
|  | VecSize % 32 == 0 && | 
|  | Idx) { | 
|  | EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); | 
|  |  | 
|  | unsigned BitIndex = Idx->getZExtValue() * EltSize; | 
|  | unsigned EltIdx = BitIndex / 32; | 
|  | unsigned LeftoverBitIdx = BitIndex % 32; | 
|  | SDLoc SL(N); | 
|  |  | 
|  | SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); | 
|  | DCI.AddToWorklist(Cast.getNode()); | 
|  |  | 
|  | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, | 
|  | DAG.getConstant(EltIdx, SL, MVT::i32)); | 
|  | DCI.AddToWorklist(Elt.getNode()); | 
|  | SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, | 
|  | DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); | 
|  | DCI.AddToWorklist(Srl.getNode()); | 
|  |  | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl); | 
|  | DCI.AddToWorklist(Trunc.getNode()); | 
|  | return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | SITargetLowering::performInsertVectorEltCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SDValue Vec = N->getOperand(0); | 
|  | SDValue Idx = N->getOperand(2); | 
|  | EVT VecVT = Vec.getValueType(); | 
|  | EVT EltVT = VecVT.getVectorElementType(); | 
|  | unsigned VecSize = VecVT.getSizeInBits(); | 
|  | unsigned EltSize = EltVT.getSizeInBits(); | 
|  |  | 
|  | // INSERT_VECTOR_ELT (<n x e>, var-idx) | 
|  | // => BUILD_VECTOR n x select (e, const-idx) | 
|  | // This elminates non-constant index and subsequent movrel or scratch access. | 
|  | // Sub-dword vectors of size 2 dword or less have better implementation. | 
|  | // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32 | 
|  | // instructions. | 
|  | if (isa<ConstantSDNode>(Idx) || | 
|  | VecSize > 256 || (VecSize <= 64 && EltSize < 32)) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  | SDValue Ins = N->getOperand(1); | 
|  | EVT IdxVT = Idx.getValueType(); | 
|  |  | 
|  | SmallVector<SDValue, 16> Ops; | 
|  | for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { | 
|  | SDValue IC = DAG.getConstant(I, SL, IdxVT); | 
|  | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); | 
|  | SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); | 
|  | Ops.push_back(V); | 
|  | } | 
|  |  | 
|  | return DAG.getBuildVector(VecVT, SL, Ops); | 
|  | } | 
|  |  | 
|  | unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, | 
|  | const SDNode *N0, | 
|  | const SDNode *N1) const { | 
|  | EVT VT = N0->getValueType(0); | 
|  |  | 
|  | // Only do this if we are not trying to support denormals. v_mad_f32 does not | 
|  | // support denormals ever. | 
|  | if (((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) || | 
|  | (VT == MVT::f16 && !Subtarget->hasFP16Denormals() && | 
|  | getSubtarget()->hasMadF16())) && | 
|  | isOperationLegal(ISD::FMAD, VT)) | 
|  | return ISD::FMAD; | 
|  |  | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || | 
|  | (N0->getFlags().hasAllowContract() && | 
|  | N1->getFlags().hasAllowContract())) && | 
|  | isFMAFasterThanFMulAndFAdd(VT)) { | 
|  | return ISD::FMA; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // For a reassociatable opcode perform: | 
|  | // op x, (op y, z) -> op (op x, z), y, if x and z are uniform | 
|  | SDValue SITargetLowering::reassociateScalarOps(SDNode *N, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i32 && VT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned Opc = N->getOpcode(); | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  |  | 
|  | if (!(Op0->isDivergent() ^ Op1->isDivergent())) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Op0->isDivergent()) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Op2 = Op1.getOperand(1); | 
|  | Op1 = Op1.getOperand(0); | 
|  | if (!(Op1->isDivergent() ^ Op2->isDivergent())) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Op1->isDivergent()) | 
|  | std::swap(Op1, Op2); | 
|  |  | 
|  | // If either operand is constant this will conflict with | 
|  | // DAGCombiner::ReassociateOps(). | 
|  | if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || | 
|  | DAG.isConstantIntBuildVectorOrConstantInt(Op1)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc SL(N); | 
|  | SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); | 
|  | return DAG.getNode(Opc, SL, VT, Add1, Op2); | 
|  | } | 
|  |  | 
|  | static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, | 
|  | EVT VT, | 
|  | SDValue N0, SDValue N1, SDValue N2, | 
|  | bool Signed) { | 
|  | unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; | 
|  | SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); | 
|  | SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); | 
|  | return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performAddCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc SL(N); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) | 
|  | && Subtarget->hasMad64_32() && | 
|  | !VT.isVector() && VT.getScalarSizeInBits() > 32 && | 
|  | VT.getScalarSizeInBits() <= 64) { | 
|  | if (LHS.getOpcode() != ISD::MUL) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | SDValue MulLHS = LHS.getOperand(0); | 
|  | SDValue MulRHS = LHS.getOperand(1); | 
|  | SDValue AddRHS = RHS; | 
|  |  | 
|  | // TODO: Maybe restrict if SGPR inputs. | 
|  | if (numBitsUnsigned(MulLHS, DAG) <= 32 && | 
|  | numBitsUnsigned(MulRHS, DAG) <= 32) { | 
|  | MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32); | 
|  | MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32); | 
|  | AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64); | 
|  | return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false); | 
|  | } | 
|  |  | 
|  | if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) { | 
|  | MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32); | 
|  | MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32); | 
|  | AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64); | 
|  | return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (SDValue V = reassociateScalarOps(N, DAG)) { | 
|  | return V; | 
|  | } | 
|  |  | 
|  | if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) | 
|  | return SDValue(); | 
|  |  | 
|  | // add x, zext (setcc) => addcarry x, 0, setcc | 
|  | // add x, sext (setcc) => subcarry x, 0, setcc | 
|  | unsigned Opc = LHS.getOpcode(); | 
|  | if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || | 
|  | Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) | 
|  | std::swap(RHS, LHS); | 
|  |  | 
|  | Opc = RHS.getOpcode(); | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ANY_EXTEND: { | 
|  | auto Cond = RHS.getOperand(0); | 
|  | if (!isBoolSGPR(Cond)) | 
|  | break; | 
|  | SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); | 
|  | SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; | 
|  | Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; | 
|  | return DAG.getNode(Opc, SL, VTList, Args); | 
|  | } | 
|  | case ISD::ADDCARRY: { | 
|  | // add x, (addcarry y, 0, cc) => addcarry x, y, cc | 
|  | auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 0) break; | 
|  | SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; | 
|  | return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performSubCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (VT != MVT::i32) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc SL(N); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | if (LHS.getOpcode() == ISD::SUBCARRY) { | 
|  | // sub (subcarry x, 0, cc), y => subcarry x, y, cc | 
|  | auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); | 
|  | if (!C || !C->isNullValue()) | 
|  | return SDValue(); | 
|  | SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; | 
|  | return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  |  | 
|  | if (N->getValueType(0) != MVT::i32) | 
|  | return SDValue(); | 
|  |  | 
|  | auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 0) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue LHS = N->getOperand(0); | 
|  |  | 
|  | // addcarry (add x, y), 0, cc => addcarry x, y, cc | 
|  | // subcarry (sub x, y), 0, cc => subcarry x, y, cc | 
|  | unsigned LHSOpc = LHS.getOpcode(); | 
|  | unsigned Opc = N->getOpcode(); | 
|  | if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || | 
|  | (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { | 
|  | SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; | 
|  | return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performFAddCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | SDLoc SL(N); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | // These should really be instruction patterns, but writing patterns with | 
|  | // source modiifiers is a pain. | 
|  |  | 
|  | // fadd (fadd (a, a), b) -> mad 2.0, a, b | 
|  | if (LHS.getOpcode() == ISD::FADD) { | 
|  | SDValue A = LHS.getOperand(0); | 
|  | if (A == LHS.getOperand(1)) { | 
|  | unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); | 
|  | if (FusedOp != 0) { | 
|  | const SDValue Two = DAG.getConstantFP(2.0, SL, VT); | 
|  | return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fadd (b, fadd (a, a)) -> mad 2.0, a, b | 
|  | if (RHS.getOpcode() == ISD::FADD) { | 
|  | SDValue A = RHS.getOperand(0); | 
|  | if (A == RHS.getOperand(1)) { | 
|  | unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); | 
|  | if (FusedOp != 0) { | 
|  | const SDValue Two = DAG.getConstantFP(2.0, SL, VT); | 
|  | return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performFSubCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | assert(!VT.isVector()); | 
|  |  | 
|  | // Try to get the fneg to fold into the source modifier. This undoes generic | 
|  | // DAG combines and folds them into the mad. | 
|  | // | 
|  | // Only do this if we are not trying to support denormals. v_mad_f32 does | 
|  | // not support denormals ever. | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | if (LHS.getOpcode() == ISD::FADD) { | 
|  | // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) | 
|  | SDValue A = LHS.getOperand(0); | 
|  | if (A == LHS.getOperand(1)) { | 
|  | unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); | 
|  | if (FusedOp != 0){ | 
|  | const SDValue Two = DAG.getConstantFP(2.0, SL, VT); | 
|  | SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | 
|  |  | 
|  | return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RHS.getOpcode() == ISD::FADD) { | 
|  | // (fsub c, (fadd a, a)) -> mad -2.0, a, c | 
|  |  | 
|  | SDValue A = RHS.getOperand(0); | 
|  | if (A == RHS.getOperand(1)) { | 
|  | unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); | 
|  | if (FusedOp != 0){ | 
|  | const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); | 
|  | return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performFMACombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc SL(N); | 
|  |  | 
|  | if (!Subtarget->hasDot2Insts() || VT != MVT::f32) | 
|  | return SDValue(); | 
|  |  | 
|  | // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> | 
|  | //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) | 
|  | SDValue Op1 = N->getOperand(0); | 
|  | SDValue Op2 = N->getOperand(1); | 
|  | SDValue FMA = N->getOperand(2); | 
|  |  | 
|  | if (FMA.getOpcode() != ISD::FMA || | 
|  | Op1.getOpcode() != ISD::FP_EXTEND || | 
|  | Op2.getOpcode() != ISD::FP_EXTEND) | 
|  | return SDValue(); | 
|  |  | 
|  | // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, | 
|  | // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract | 
|  | // is sufficient to allow generaing fdot2. | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || | 
|  | (N->getFlags().hasAllowContract() && | 
|  | FMA->getFlags().hasAllowContract())) { | 
|  | Op1 = Op1.getOperand(0); | 
|  | Op2 = Op2.getOperand(0); | 
|  | if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
|  | Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Vec1 = Op1.getOperand(0); | 
|  | SDValue Idx1 = Op1.getOperand(1); | 
|  | SDValue Vec2 = Op2.getOperand(0); | 
|  |  | 
|  | SDValue FMAOp1 = FMA.getOperand(0); | 
|  | SDValue FMAOp2 = FMA.getOperand(1); | 
|  | SDValue FMAAcc = FMA.getOperand(2); | 
|  |  | 
|  | if (FMAOp1.getOpcode() != ISD::FP_EXTEND || | 
|  | FMAOp2.getOpcode() != ISD::FP_EXTEND) | 
|  | return SDValue(); | 
|  |  | 
|  | FMAOp1 = FMAOp1.getOperand(0); | 
|  | FMAOp2 = FMAOp2.getOperand(0); | 
|  | if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
|  | FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Vec3 = FMAOp1.getOperand(0); | 
|  | SDValue Vec4 = FMAOp2.getOperand(0); | 
|  | SDValue Idx2 = FMAOp1.getOperand(1); | 
|  |  | 
|  | if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || | 
|  | // Idx1 and Idx2 cannot be the same. | 
|  | Idx1 == Idx2) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Vec1 == Vec2 || Vec3 == Vec4) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) | 
|  | return SDValue(); | 
|  |  | 
|  | if ((Vec1 == Vec3 && Vec2 == Vec4) || | 
|  | (Vec1 == Vec4 && Vec2 == Vec3)) { | 
|  | return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, | 
|  | DAG.getTargetConstant(0, SL, MVT::i1)); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performSetCCCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  |  | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | EVT VT = LHS.getValueType(); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); | 
|  |  | 
|  | auto CRHS = dyn_cast<ConstantSDNode>(RHS); | 
|  | if (!CRHS) { | 
|  | CRHS = dyn_cast<ConstantSDNode>(LHS); | 
|  | if (CRHS) { | 
|  | std::swap(LHS, RHS); | 
|  | CC = getSetCCSwappedOperands(CC); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CRHS) { | 
|  | if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && | 
|  | isBoolSGPR(LHS.getOperand(0))) { | 
|  | // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 | 
|  | // setcc (sext from i1 cc), -1, eq|sle|uge) => cc | 
|  | // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1 | 
|  | // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc | 
|  | if ((CRHS->isAllOnesValue() && | 
|  | (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || | 
|  | (CRHS->isNullValue() && | 
|  | (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) | 
|  | return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), | 
|  | DAG.getConstant(-1, SL, MVT::i1)); | 
|  | if ((CRHS->isAllOnesValue() && | 
|  | (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || | 
|  | (CRHS->isNullValue() && | 
|  | (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) | 
|  | return LHS.getOperand(0); | 
|  | } | 
|  |  | 
|  | uint64_t CRHSVal = CRHS->getZExtValue(); | 
|  | if ((CC == ISD::SETEQ || CC == ISD::SETNE) && | 
|  | LHS.getOpcode() == ISD::SELECT && | 
|  | isa<ConstantSDNode>(LHS.getOperand(1)) && | 
|  | isa<ConstantSDNode>(LHS.getOperand(2)) && | 
|  | LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && | 
|  | isBoolSGPR(LHS.getOperand(0))) { | 
|  | // Given CT != FT: | 
|  | // setcc (select cc, CT, CF), CF, eq => xor cc, -1 | 
|  | // setcc (select cc, CT, CF), CF, ne => cc | 
|  | // setcc (select cc, CT, CF), CT, ne => xor cc, -1 | 
|  | // setcc (select cc, CT, CF), CT, eq => cc | 
|  | uint64_t CT = LHS.getConstantOperandVal(1); | 
|  | uint64_t CF = LHS.getConstantOperandVal(2); | 
|  |  | 
|  | if ((CF == CRHSVal && CC == ISD::SETEQ) || | 
|  | (CT == CRHSVal && CC == ISD::SETNE)) | 
|  | return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), | 
|  | DAG.getConstant(-1, SL, MVT::i1)); | 
|  | if ((CF == CRHSVal && CC == ISD::SETNE) || | 
|  | (CT == CRHSVal && CC == ISD::SETEQ)) | 
|  | return LHS.getOperand(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && | 
|  | VT != MVT::f16)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Match isinf/isfinite pattern | 
|  | // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) | 
|  | // (fcmp one (fabs x), inf) -> (fp_class x, | 
|  | // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) | 
|  | if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { | 
|  | const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); | 
|  | if (!CRHS) | 
|  | return SDValue(); | 
|  |  | 
|  | const APFloat &APF = CRHS->getValueAPF(); | 
|  | if (APF.isInfinity() && !APF.isNegative()) { | 
|  | const unsigned IsInfMask = SIInstrFlags::P_INFINITY | | 
|  | SIInstrFlags::N_INFINITY; | 
|  | const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | | 
|  | SIInstrFlags::P_ZERO | | 
|  | SIInstrFlags::N_NORMAL | | 
|  | SIInstrFlags::P_NORMAL | | 
|  | SIInstrFlags::N_SUBNORMAL | | 
|  | SIInstrFlags::P_SUBNORMAL; | 
|  | unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; | 
|  | return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), | 
|  | DAG.getConstant(Mask, SL, MVT::i32)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  | unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; | 
|  |  | 
|  | SDValue Src = N->getOperand(0); | 
|  | SDValue Srl = N->getOperand(0); | 
|  | if (Srl.getOpcode() == ISD::ZERO_EXTEND) | 
|  | Srl = Srl.getOperand(0); | 
|  |  | 
|  | // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero. | 
|  | if (Srl.getOpcode() == ISD::SRL) { | 
|  | // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x | 
|  | // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x | 
|  | // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x | 
|  |  | 
|  | if (const ConstantSDNode *C = | 
|  | dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { | 
|  | Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)), | 
|  | EVT(MVT::i32)); | 
|  |  | 
|  | unsigned SrcOffset = C->getZExtValue() + 8 * Offset; | 
|  | if (SrcOffset < 32 && SrcOffset % 8 == 0) { | 
|  | return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL, | 
|  | MVT::f32, Srl); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); | 
|  |  | 
|  | KnownBits Known; | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), | 
|  | !DCI.isBeforeLegalizeOps()); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) { | 
|  | DCI.CommitTargetLoweringOpt(TLO); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performClampCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); | 
|  | if (!CSrc) | 
|  | return SDValue(); | 
|  |  | 
|  | const MachineFunction &MF = DCI.DAG.getMachineFunction(); | 
|  | const APFloat &F = CSrc->getValueAPF(); | 
|  | APFloat Zero = APFloat::getZero(F.getSemantics()); | 
|  | APFloat::cmpResult Cmp0 = F.compare(Zero); | 
|  | if (Cmp0 == APFloat::cmpLessThan || | 
|  | (Cmp0 == APFloat::cmpUnordered && | 
|  | MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { | 
|  | return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | APFloat One(F.getSemantics(), "1.0"); | 
|  | APFloat::cmpResult Cmp1 = F.compare(One); | 
|  | if (Cmp1 == APFloat::cmpGreaterThan) | 
|  | return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); | 
|  |  | 
|  | return SDValue(CSrc, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue SITargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (getTargetMachine().getOptLevel() == CodeGenOpt::None) | 
|  | return SDValue(); | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); | 
|  | case ISD::ADD: | 
|  | return performAddCombine(N, DCI); | 
|  | case ISD::SUB: | 
|  | return performSubCombine(N, DCI); | 
|  | case ISD::ADDCARRY: | 
|  | case ISD::SUBCARRY: | 
|  | return performAddCarrySubCarryCombine(N, DCI); | 
|  | case ISD::FADD: | 
|  | return performFAddCombine(N, DCI); | 
|  | case ISD::FSUB: | 
|  | return performFSubCombine(N, DCI); | 
|  | case ISD::SETCC: | 
|  | return performSetCCCombine(N, DCI); | 
|  | case ISD::FMAXNUM: | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM_IEEE: | 
|  | case ISD::FMINNUM_IEEE: | 
|  | case ISD::SMAX: | 
|  | case ISD::SMIN: | 
|  | case ISD::UMAX: | 
|  | case ISD::UMIN: | 
|  | case AMDGPUISD::FMIN_LEGACY: | 
|  | case AMDGPUISD::FMAX_LEGACY: | 
|  | return performMinMaxCombine(N, DCI); | 
|  | case ISD::FMA: | 
|  | return performFMACombine(N, DCI); | 
|  | case ISD::LOAD: { | 
|  | if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) | 
|  | return Widended; | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case ISD::STORE: | 
|  | case ISD::ATOMIC_LOAD: | 
|  | case ISD::ATOMIC_STORE: | 
|  | case ISD::ATOMIC_CMP_SWAP: | 
|  | case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: | 
|  | case ISD::ATOMIC_SWAP: | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | case ISD::ATOMIC_LOAD_FADD: | 
|  | case AMDGPUISD::ATOMIC_INC: | 
|  | case AMDGPUISD::ATOMIC_DEC: | 
|  | case AMDGPUISD::ATOMIC_LOAD_FMIN: | 
|  | case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics. | 
|  | if (DCI.isBeforeLegalize()) | 
|  | break; | 
|  | return performMemSDNodeCombine(cast<MemSDNode>(N), DCI); | 
|  | case ISD::AND: | 
|  | return performAndCombine(N, DCI); | 
|  | case ISD::OR: | 
|  | return performOrCombine(N, DCI); | 
|  | case ISD::XOR: | 
|  | return performXorCombine(N, DCI); | 
|  | case ISD::ZERO_EXTEND: | 
|  | return performZeroExtendCombine(N, DCI); | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | return performSignExtendInRegCombine(N , DCI); | 
|  | case AMDGPUISD::FP_CLASS: | 
|  | return performClassCombine(N, DCI); | 
|  | case ISD::FCANONICALIZE: | 
|  | return performFCanonicalizeCombine(N, DCI); | 
|  | case AMDGPUISD::RCP: | 
|  | return performRcpCombine(N, DCI); | 
|  | case AMDGPUISD::FRACT: | 
|  | case AMDGPUISD::RSQ: | 
|  | case AMDGPUISD::RCP_LEGACY: | 
|  | case AMDGPUISD::RSQ_LEGACY: | 
|  | case AMDGPUISD::RCP_IFLAG: | 
|  | case AMDGPUISD::RSQ_CLAMP: | 
|  | case AMDGPUISD::LDEXP: { | 
|  | SDValue Src = N->getOperand(0); | 
|  | if (Src.isUndef()) | 
|  | return Src; | 
|  | break; | 
|  | } | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | return performUCharToFloatCombine(N, DCI); | 
|  | case AMDGPUISD::CVT_F32_UBYTE0: | 
|  | case AMDGPUISD::CVT_F32_UBYTE1: | 
|  | case AMDGPUISD::CVT_F32_UBYTE2: | 
|  | case AMDGPUISD::CVT_F32_UBYTE3: | 
|  | return performCvtF32UByteNCombine(N, DCI); | 
|  | case AMDGPUISD::FMED3: | 
|  | return performFMed3Combine(N, DCI); | 
|  | case AMDGPUISD::CVT_PKRTZ_F16_F32: | 
|  | return performCvtPkRTZCombine(N, DCI); | 
|  | case AMDGPUISD::CLAMP: | 
|  | return performClampCombine(N, DCI); | 
|  | case ISD::SCALAR_TO_VECTOR: { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) | 
|  | if (VT == MVT::v2i16 || VT == MVT::v2f16) { | 
|  | SDLoc SL(N); | 
|  | SDValue Src = N->getOperand(0); | 
|  | EVT EltVT = Src.getValueType(); | 
|  | if (EltVT == MVT::f16) | 
|  | Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); | 
|  |  | 
|  | SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); | 
|  | return DAG.getNode(ISD::BITCAST, SL, VT, Ext); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | return performExtractVectorEltCombine(N, DCI); | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | return performInsertVectorEltCombine(N, DCI); | 
|  | } | 
|  | return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); | 
|  | } | 
|  |  | 
|  | /// Helper function for adjustWritemask | 
|  | static unsigned SubIdx2Lane(unsigned Idx) { | 
|  | switch (Idx) { | 
|  | default: return 0; | 
|  | case AMDGPU::sub0: return 0; | 
|  | case AMDGPU::sub1: return 1; | 
|  | case AMDGPU::sub2: return 2; | 
|  | case AMDGPU::sub3: return 3; | 
|  | case AMDGPU::sub4: return 4; // Possible with TFE/LWE | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Adjust the writemask of MIMG instructions | 
|  | SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned Opcode = Node->getMachineOpcode(); | 
|  |  | 
|  | // Subtract 1 because the vdata output is not a MachineSDNode operand. | 
|  | int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; | 
|  | if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) | 
|  | return Node; // not implemented for D16 | 
|  |  | 
|  | SDNode *Users[5] = { nullptr }; | 
|  | unsigned Lane = 0; | 
|  | unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; | 
|  | unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); | 
|  | unsigned NewDmask = 0; | 
|  | unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; | 
|  | unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; | 
|  | bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) || | 
|  | Node->getConstantOperandVal(LWEIdx)) ? 1 : 0; | 
|  | unsigned TFCLane = 0; | 
|  | bool HasChain = Node->getNumValues() > 1; | 
|  |  | 
|  | if (OldDmask == 0) { | 
|  | // These are folded out, but on the chance it happens don't assert. | 
|  | return Node; | 
|  | } | 
|  |  | 
|  | unsigned OldBitsSet = countPopulation(OldDmask); | 
|  | // Work out which is the TFE/LWE lane if that is enabled. | 
|  | if (UsesTFC) { | 
|  | TFCLane = OldBitsSet; | 
|  | } | 
|  |  | 
|  | // Try to figure out the used register components | 
|  | for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); | 
|  | I != E; ++I) { | 
|  |  | 
|  | // Don't look at users of the chain. | 
|  | if (I.getUse().getResNo() != 0) | 
|  | continue; | 
|  |  | 
|  | // Abort if we can't understand the usage | 
|  | if (!I->isMachineOpcode() || | 
|  | I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) | 
|  | return Node; | 
|  |  | 
|  | // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. | 
|  | // Note that subregs are packed, i.e. Lane==0 is the first bit set | 
|  | // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit | 
|  | // set, etc. | 
|  | Lane = SubIdx2Lane(I->getConstantOperandVal(1)); | 
|  |  | 
|  | // Check if the use is for the TFE/LWE generated result at VGPRn+1. | 
|  | if (UsesTFC && Lane == TFCLane) { | 
|  | Users[Lane] = *I; | 
|  | } else { | 
|  | // Set which texture component corresponds to the lane. | 
|  | unsigned Comp; | 
|  | for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { | 
|  | Comp = countTrailingZeros(Dmask); | 
|  | Dmask &= ~(1 << Comp); | 
|  | } | 
|  |  | 
|  | // Abort if we have more than one user per component. | 
|  | if (Users[Lane]) | 
|  | return Node; | 
|  |  | 
|  | Users[Lane] = *I; | 
|  | NewDmask |= 1 << Comp; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't allow 0 dmask, as hardware assumes one channel enabled. | 
|  | bool NoChannels = !NewDmask; | 
|  | if (NoChannels) { | 
|  | if (!UsesTFC) { | 
|  | // No uses of the result and not using TFC. Then do nothing. | 
|  | return Node; | 
|  | } | 
|  | // If the original dmask has one channel - then nothing to do | 
|  | if (OldBitsSet == 1) | 
|  | return Node; | 
|  | // Use an arbitrary dmask - required for the instruction to work | 
|  | NewDmask = 1; | 
|  | } | 
|  | // Abort if there's no change | 
|  | if (NewDmask == OldDmask) | 
|  | return Node; | 
|  |  | 
|  | unsigned BitsSet = countPopulation(NewDmask); | 
|  |  | 
|  | // Check for TFE or LWE - increase the number of channels by one to account | 
|  | // for the extra return value | 
|  | // This will need adjustment for D16 if this is also included in | 
|  | // adjustWriteMask (this function) but at present D16 are excluded. | 
|  | unsigned NewChannels = BitsSet + UsesTFC; | 
|  |  | 
|  | int NewOpcode = | 
|  | AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); | 
|  | assert(NewOpcode != -1 && | 
|  | NewOpcode != static_cast<int>(Node->getMachineOpcode()) && | 
|  | "failed to find equivalent MIMG op"); | 
|  |  | 
|  | // Adjust the writemask in the node | 
|  | SmallVector<SDValue, 12> Ops; | 
|  | Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); | 
|  | Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); | 
|  | Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); | 
|  |  | 
|  | MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); | 
|  |  | 
|  | MVT ResultVT = NewChannels == 1 ? | 
|  | SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : | 
|  | NewChannels == 5 ? 8 : NewChannels); | 
|  | SDVTList NewVTList = HasChain ? | 
|  | DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); | 
|  |  | 
|  |  | 
|  | MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), | 
|  | NewVTList, Ops); | 
|  |  | 
|  | if (HasChain) { | 
|  | // Update chain. | 
|  | DAG.setNodeMemRefs(NewNode, Node->memoperands()); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); | 
|  | } | 
|  |  | 
|  | if (NewChannels == 1) { | 
|  | assert(Node->hasNUsesOfValue(1, 0)); | 
|  | SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, | 
|  | SDLoc(Node), Users[Lane]->getValueType(0), | 
|  | SDValue(NewNode, 0)); | 
|  | DAG.ReplaceAllUsesWith(Users[Lane], Copy); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Update the users of the node with the new indices | 
|  | for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { | 
|  | SDNode *User = Users[i]; | 
|  | if (!User) { | 
|  | // Handle the special case of NoChannels. We set NewDmask to 1 above, but | 
|  | // Users[0] is still nullptr because channel 0 doesn't really have a use. | 
|  | if (i || !NoChannels) | 
|  | continue; | 
|  | } else { | 
|  | SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); | 
|  | DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); | 
|  | } | 
|  |  | 
|  | switch (Idx) { | 
|  | default: break; | 
|  | case AMDGPU::sub0: Idx = AMDGPU::sub1; break; | 
|  | case AMDGPU::sub1: Idx = AMDGPU::sub2; break; | 
|  | case AMDGPU::sub2: Idx = AMDGPU::sub3; break; | 
|  | case AMDGPU::sub3: Idx = AMDGPU::sub4; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | DAG.RemoveDeadNode(Node); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool isFrameIndexOp(SDValue Op) { | 
|  | if (Op.getOpcode() == ISD::AssertZext) | 
|  | Op = Op.getOperand(0); | 
|  |  | 
|  | return isa<FrameIndexSDNode>(Op); | 
|  | } | 
|  |  | 
|  | /// Legalize target independent instructions (e.g. INSERT_SUBREG) | 
|  | /// with frame index operands. | 
|  | /// LLVM assumes that inputs are to these instructions are registers. | 
|  | SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, | 
|  | SelectionDAG &DAG) const { | 
|  | if (Node->getOpcode() == ISD::CopyToReg) { | 
|  | RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); | 
|  | SDValue SrcVal = Node->getOperand(2); | 
|  |  | 
|  | // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have | 
|  | // to try understanding copies to physical registers. | 
|  | if (SrcVal.getValueType() == MVT::i1 && | 
|  | TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) { | 
|  | SDLoc SL(Node); | 
|  | MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); | 
|  | SDValue VReg = DAG.getRegister( | 
|  | MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); | 
|  |  | 
|  | SDNode *Glued = Node->getGluedNode(); | 
|  | SDValue ToVReg | 
|  | = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, | 
|  | SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); | 
|  | SDValue ToResultReg | 
|  | = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), | 
|  | VReg, ToVReg.getValue(1)); | 
|  | DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); | 
|  | DAG.RemoveDeadNode(Node); | 
|  | return ToResultReg.getNode(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0; i < Node->getNumOperands(); ++i) { | 
|  | if (!isFrameIndexOp(Node->getOperand(i))) { | 
|  | Ops.push_back(Node->getOperand(i)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDLoc DL(Node); | 
|  | Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, | 
|  | Node->getOperand(i).getValueType(), | 
|  | Node->getOperand(i)), 0)); | 
|  | } | 
|  |  | 
|  | return DAG.UpdateNodeOperands(Node, Ops); | 
|  | } | 
|  |  | 
|  | /// Fold the instructions after selecting them. | 
|  | /// Returns null if users were already updated. | 
|  | SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, | 
|  | SelectionDAG &DAG) const { | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  | unsigned Opcode = Node->getMachineOpcode(); | 
|  |  | 
|  | if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && | 
|  | !TII->isGather4(Opcode)) { | 
|  | return adjustWritemask(Node, DAG); | 
|  | } | 
|  |  | 
|  | if (Opcode == AMDGPU::INSERT_SUBREG || | 
|  | Opcode == AMDGPU::REG_SEQUENCE) { | 
|  | legalizeTargetIndependentNode(Node, DAG); | 
|  | return Node; | 
|  | } | 
|  |  | 
|  | switch (Opcode) { | 
|  | case AMDGPU::V_DIV_SCALE_F32: | 
|  | case AMDGPU::V_DIV_SCALE_F64: { | 
|  | // Satisfy the operand register constraint when one of the inputs is | 
|  | // undefined. Ordinarily each undef value will have its own implicit_def of | 
|  | // a vreg, so force these to use a single register. | 
|  | SDValue Src0 = Node->getOperand(0); | 
|  | SDValue Src1 = Node->getOperand(1); | 
|  | SDValue Src2 = Node->getOperand(2); | 
|  |  | 
|  | if ((Src0.isMachineOpcode() && | 
|  | Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && | 
|  | (Src0 == Src1 || Src0 == Src2)) | 
|  | break; | 
|  |  | 
|  | MVT VT = Src0.getValueType().getSimpleVT(); | 
|  | const TargetRegisterClass *RC = | 
|  | getRegClassFor(VT, Src0.getNode()->isDivergent()); | 
|  |  | 
|  | MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); | 
|  | SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); | 
|  |  | 
|  | SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), | 
|  | UndefReg, Src0, SDValue()); | 
|  |  | 
|  | // src0 must be the same register as src1 or src2, even if the value is | 
|  | // undefined, so make sure we don't violate this constraint. | 
|  | if (Src0.isMachineOpcode() && | 
|  | Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { | 
|  | if (Src1.isMachineOpcode() && | 
|  | Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) | 
|  | Src0 = Src1; | 
|  | else if (Src2.isMachineOpcode() && | 
|  | Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) | 
|  | Src0 = Src2; | 
|  | else { | 
|  | assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); | 
|  | Src0 = UndefReg; | 
|  | Src1 = UndefReg; | 
|  | } | 
|  | } else | 
|  | break; | 
|  |  | 
|  | SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 }; | 
|  | for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I) | 
|  | Ops.push_back(Node->getOperand(I)); | 
|  |  | 
|  | Ops.push_back(ImpDef.getValue(1)); | 
|  | return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); | 
|  | } | 
|  | case AMDGPU::V_PERMLANE16_B32: | 
|  | case AMDGPU::V_PERMLANEX16_B32: { | 
|  | ConstantSDNode *FI = cast<ConstantSDNode>(Node->getOperand(0)); | 
|  | ConstantSDNode *BC = cast<ConstantSDNode>(Node->getOperand(2)); | 
|  | if (!FI->getZExtValue() && !BC->getZExtValue()) | 
|  | break; | 
|  | SDValue VDstIn = Node->getOperand(6); | 
|  | if (VDstIn.isMachineOpcode() | 
|  | && VDstIn.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) | 
|  | break; | 
|  | MachineSDNode *ImpDef = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, | 
|  | SDLoc(Node), MVT::i32); | 
|  | SmallVector<SDValue, 8> Ops = { SDValue(FI, 0), Node->getOperand(1), | 
|  | SDValue(BC, 0), Node->getOperand(3), | 
|  | Node->getOperand(4), Node->getOperand(5), | 
|  | SDValue(ImpDef, 0), Node->getOperand(7) }; | 
|  | return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Node; | 
|  | } | 
|  |  | 
|  | /// Assign the register class depending on the number of | 
|  | /// bits set in the writemask | 
|  | void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, | 
|  | SDNode *Node) const { | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  |  | 
|  | MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); | 
|  |  | 
|  | if (TII->isVOP3(MI.getOpcode())) { | 
|  | // Make sure constant bus requirements are respected. | 
|  | TII->legalizeOperandsVOP3(MRI, MI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Replace unused atomics with the no return version. | 
|  | int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode()); | 
|  | if (NoRetAtomicOp != -1) { | 
|  | if (!Node->hasAnyUseOfValue(0)) { | 
|  | MI.setDesc(TII->get(NoRetAtomicOp)); | 
|  | MI.RemoveOperand(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg | 
|  | // instruction, because the return type of these instructions is a vec2 of | 
|  | // the memory type, so it can be tied to the input operand. | 
|  | // This means these instructions always have a use, so we need to add a | 
|  | // special case to check if the atomic has only one extract_subreg use, | 
|  | // which itself has no uses. | 
|  | if ((Node->hasNUsesOfValue(1, 0) && | 
|  | Node->use_begin()->isMachineOpcode() && | 
|  | Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG && | 
|  | !Node->use_begin()->hasAnyUseOfValue(0))) { | 
|  | unsigned Def = MI.getOperand(0).getReg(); | 
|  |  | 
|  | // Change this into a noret atomic. | 
|  | MI.setDesc(TII->get(NoRetAtomicOp)); | 
|  | MI.RemoveOperand(0); | 
|  |  | 
|  | // If we only remove the def operand from the atomic instruction, the | 
|  | // extract_subreg will be left with a use of a vreg without a def. | 
|  | // So we need to insert an implicit_def to avoid machine verifier | 
|  | // errors. | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), | 
|  | TII->get(AMDGPU::IMPLICIT_DEF), Def); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, | 
|  | uint64_t Val) { | 
|  | SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); | 
|  | return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); | 
|  | } | 
|  |  | 
|  | MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, | 
|  | const SDLoc &DL, | 
|  | SDValue Ptr) const { | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  |  | 
|  | // Build the half of the subregister with the constants before building the | 
|  | // full 128-bit register. If we are building multiple resource descriptors, | 
|  | // this will allow CSEing of the 2-component register. | 
|  | const SDValue Ops0[] = { | 
|  | DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), | 
|  | buildSMovImm32(DAG, DL, 0), | 
|  | DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), | 
|  | buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), | 
|  | DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) | 
|  | }; | 
|  |  | 
|  | SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, | 
|  | MVT::v2i32, Ops0), 0); | 
|  |  | 
|  | // Combine the constants and the pointer. | 
|  | const SDValue Ops1[] = { | 
|  | DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), | 
|  | Ptr, | 
|  | DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), | 
|  | SubRegHi, | 
|  | DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) | 
|  | }; | 
|  |  | 
|  | return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); | 
|  | } | 
|  |  | 
|  | /// Return a resource descriptor with the 'Add TID' bit enabled | 
|  | ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48] | 
|  | ///        of the resource descriptor) to create an offset, which is added to | 
|  | ///        the resource pointer. | 
|  | MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, | 
|  | SDValue Ptr, uint32_t RsrcDword1, | 
|  | uint64_t RsrcDword2And3) const { | 
|  | SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); | 
|  | SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); | 
|  | if (RsrcDword1) { | 
|  | PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, | 
|  | DAG.getConstant(RsrcDword1, DL, MVT::i32)), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | SDValue DataLo = buildSMovImm32(DAG, DL, | 
|  | RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); | 
|  | SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); | 
|  |  | 
|  | const SDValue Ops[] = { | 
|  | DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), | 
|  | PtrLo, | 
|  | DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), | 
|  | PtrHi, | 
|  | DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), | 
|  | DataLo, | 
|  | DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), | 
|  | DataHi, | 
|  | DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) | 
|  | }; | 
|  |  | 
|  | return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         SI Inline Assembly Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> | 
|  | SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, | 
|  | StringRef Constraint, | 
|  | MVT VT) const { | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | default: | 
|  | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | 
|  | case 's': | 
|  | case 'r': | 
|  | switch (VT.getSizeInBits()) { | 
|  | default: | 
|  | return std::make_pair(0U, nullptr); | 
|  | case 32: | 
|  | case 16: | 
|  | RC = &AMDGPU::SReg_32_XM0RegClass; | 
|  | break; | 
|  | case 64: | 
|  | RC = &AMDGPU::SGPR_64RegClass; | 
|  | break; | 
|  | case 96: | 
|  | RC = &AMDGPU::SReg_96RegClass; | 
|  | break; | 
|  | case 128: | 
|  | RC = &AMDGPU::SReg_128RegClass; | 
|  | break; | 
|  | case 160: | 
|  | RC = &AMDGPU::SReg_160RegClass; | 
|  | break; | 
|  | case 256: | 
|  | RC = &AMDGPU::SReg_256RegClass; | 
|  | break; | 
|  | case 512: | 
|  | RC = &AMDGPU::SReg_512RegClass; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 'v': | 
|  | switch (VT.getSizeInBits()) { | 
|  | default: | 
|  | return std::make_pair(0U, nullptr); | 
|  | case 32: | 
|  | case 16: | 
|  | RC = &AMDGPU::VGPR_32RegClass; | 
|  | break; | 
|  | case 64: | 
|  | RC = &AMDGPU::VReg_64RegClass; | 
|  | break; | 
|  | case 96: | 
|  | RC = &AMDGPU::VReg_96RegClass; | 
|  | break; | 
|  | case 128: | 
|  | RC = &AMDGPU::VReg_128RegClass; | 
|  | break; | 
|  | case 160: | 
|  | RC = &AMDGPU::VReg_160RegClass; | 
|  | break; | 
|  | case 256: | 
|  | RC = &AMDGPU::VReg_256RegClass; | 
|  | break; | 
|  | case 512: | 
|  | RC = &AMDGPU::VReg_512RegClass; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | // We actually support i128, i16 and f16 as inline parameters | 
|  | // even if they are not reported as legal | 
|  | if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || | 
|  | VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) | 
|  | return std::make_pair(0U, RC); | 
|  | } | 
|  |  | 
|  | if (Constraint.size() > 1) { | 
|  | if (Constraint[1] == 'v') { | 
|  | RC = &AMDGPU::VGPR_32RegClass; | 
|  | } else if (Constraint[1] == 's') { | 
|  | RC = &AMDGPU::SGPR_32RegClass; | 
|  | } | 
|  |  | 
|  | if (RC) { | 
|  | uint32_t Idx; | 
|  | bool Failed = Constraint.substr(2).getAsInteger(10, Idx); | 
|  | if (!Failed && Idx < RC->getNumRegs()) | 
|  | return std::make_pair(RC->getRegister(Idx), RC); | 
|  | } | 
|  | } | 
|  | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | 
|  | } | 
|  |  | 
|  | SITargetLowering::ConstraintType | 
|  | SITargetLowering::getConstraintType(StringRef Constraint) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | default: break; | 
|  | case 's': | 
|  | case 'v': | 
|  | return C_RegisterClass; | 
|  | } | 
|  | } | 
|  | return TargetLowering::getConstraintType(Constraint); | 
|  | } | 
|  |  | 
|  | // Figure out which registers should be reserved for stack access. Only after | 
|  | // the function is legalized do we know all of the non-spill stack objects or if | 
|  | // calls are present. | 
|  | void SITargetLowering::finalizeLowering(MachineFunction &MF) const { | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); | 
|  | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); | 
|  |  | 
|  | if (Info->isEntryFunction()) { | 
|  | // Callable functions have fixed registers used for stack access. | 
|  | reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); | 
|  | } | 
|  |  | 
|  | assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), | 
|  | Info->getStackPtrOffsetReg())); | 
|  | if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) | 
|  | MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); | 
|  |  | 
|  | // We need to worry about replacing the default register with itself in case | 
|  | // of MIR testcases missing the MFI. | 
|  | if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) | 
|  | MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); | 
|  |  | 
|  | if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) | 
|  | MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); | 
|  |  | 
|  | if (Info->getScratchWaveOffsetReg() != AMDGPU::SCRATCH_WAVE_OFFSET_REG) { | 
|  | MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG, | 
|  | Info->getScratchWaveOffsetReg()); | 
|  | } | 
|  |  | 
|  | Info->limitOccupancy(MF); | 
|  |  | 
|  | if (ST.isWave32() && !MF.empty()) { | 
|  | // Add VCC_HI def because many instructions marked as imp-use VCC where | 
|  | // we may only define VCC_LO. If nothing defines VCC_HI we may end up | 
|  | // having a use of undef. | 
|  |  | 
|  | const SIInstrInfo *TII = ST.getInstrInfo(); | 
|  | DebugLoc DL; | 
|  |  | 
|  | MachineBasicBlock &MBB = MF.front(); | 
|  | MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr(); | 
|  | BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI); | 
|  |  | 
|  | for (auto &MBB : MF) { | 
|  | for (auto &MI : MBB) { | 
|  | TII->fixImplicitOperands(MI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TargetLoweringBase::finalizeLowering(MF); | 
|  | } | 
|  |  | 
|  | void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, | 
|  | KnownBits &Known, | 
|  | const APInt &DemandedElts, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts, | 
|  | DAG, Depth); | 
|  |  | 
|  | // Set the high bits to zero based on the maximum allowed scratch size per | 
|  | // wave. We can't use vaddr in MUBUF instructions if we don't know the address | 
|  | // calculation won't overflow, so assume the sign bit is never set. | 
|  | Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); | 
|  | } | 
|  |  | 
|  | unsigned SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { | 
|  | const unsigned PrefAlign = TargetLowering::getPrefLoopAlignment(ML); | 
|  | const unsigned CacheLineAlign = 6; // log2(64) | 
|  |  | 
|  | // Pre-GFX10 target did not benefit from loop alignment | 
|  | if (!ML || DisableLoopAlignment || | 
|  | (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) || | 
|  | getSubtarget()->hasInstFwdPrefetchBug()) | 
|  | return PrefAlign; | 
|  |  | 
|  | // On GFX10 I$ is 4 x 64 bytes cache lines. | 
|  | // By default prefetcher keeps one cache line behind and reads two ahead. | 
|  | // We can modify it with S_INST_PREFETCH for larger loops to have two lines | 
|  | // behind and one ahead. | 
|  | // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. | 
|  | // If loop fits 64 bytes it always spans no more than two cache lines and | 
|  | // does not need an alignment. | 
|  | // Else if loop is less or equal 128 bytes we do not need to modify prefetch, | 
|  | // Else if loop is less or equal 192 bytes we need two lines behind. | 
|  |  | 
|  | const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); | 
|  | const MachineBasicBlock *Header = ML->getHeader(); | 
|  | if (Header->getAlignment() != PrefAlign) | 
|  | return Header->getAlignment(); // Already processed. | 
|  |  | 
|  | unsigned LoopSize = 0; | 
|  | for (const MachineBasicBlock *MBB : ML->blocks()) { | 
|  | // If inner loop block is aligned assume in average half of the alignment | 
|  | // size to be added as nops. | 
|  | if (MBB != Header) | 
|  | LoopSize += (1 << MBB->getAlignment()) / 2; | 
|  |  | 
|  | for (const MachineInstr &MI : *MBB) { | 
|  | LoopSize += TII->getInstSizeInBytes(MI); | 
|  | if (LoopSize > 192) | 
|  | return PrefAlign; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LoopSize <= 64) | 
|  | return PrefAlign; | 
|  |  | 
|  | if (LoopSize <= 128) | 
|  | return CacheLineAlign; | 
|  |  | 
|  | // If any of parent loops is surrounded by prefetch instructions do not | 
|  | // insert new for inner loop, which would reset parent's settings. | 
|  | for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { | 
|  | if (MachineBasicBlock *Exit = P->getExitBlock()) { | 
|  | auto I = Exit->getFirstNonDebugInstr(); | 
|  | if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) | 
|  | return CacheLineAlign; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *Pre = ML->getLoopPreheader(); | 
|  | MachineBasicBlock *Exit = ML->getExitBlock(); | 
|  |  | 
|  | if (Pre && Exit) { | 
|  | BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(), | 
|  | TII->get(AMDGPU::S_INST_PREFETCH)) | 
|  | .addImm(1); // prefetch 2 lines behind PC | 
|  |  | 
|  | BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(), | 
|  | TII->get(AMDGPU::S_INST_PREFETCH)) | 
|  | .addImm(2); // prefetch 1 line behind PC | 
|  | } | 
|  |  | 
|  | return CacheLineAlign; | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_UNUSED | 
|  | static bool isCopyFromRegOfInlineAsm(const SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::CopyFromReg); | 
|  | do { | 
|  | // Follow the chain until we find an INLINEASM node. | 
|  | N = N->getOperand(0).getNode(); | 
|  | if (N->getOpcode() == ISD::INLINEASM || | 
|  | N->getOpcode() == ISD::INLINEASM_BR) | 
|  | return true; | 
|  | } while (N->getOpcode() == ISD::CopyFromReg); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N, | 
|  | FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const | 
|  | { | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::CopyFromReg: | 
|  | { | 
|  | const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); | 
|  | const MachineFunction * MF = FLI->MF; | 
|  | const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); | 
|  | const MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo(); | 
|  | unsigned Reg = R->getReg(); | 
|  | if (TRI.isPhysicalRegister(Reg)) | 
|  | return !TRI.isSGPRReg(MRI, Reg); | 
|  |  | 
|  | if (MRI.isLiveIn(Reg)) { | 
|  | // workitem.id.x workitem.id.y workitem.id.z | 
|  | // Any VGPR formal argument is also considered divergent | 
|  | if (!TRI.isSGPRReg(MRI, Reg)) | 
|  | return true; | 
|  | // Formal arguments of non-entry functions | 
|  | // are conservatively considered divergent | 
|  | else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv())) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | const Value *V = FLI->getValueFromVirtualReg(Reg); | 
|  | if (V) | 
|  | return KDA->isDivergent(V); | 
|  | assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); | 
|  | return !TRI.isSGPRReg(MRI, Reg); | 
|  | } | 
|  | break; | 
|  | case ISD::LOAD: { | 
|  | const LoadSDNode *L = cast<LoadSDNode>(N); | 
|  | unsigned AS = L->getAddressSpace(); | 
|  | // A flat load may access private memory. | 
|  | return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; | 
|  | } break; | 
|  | case ISD::CALLSEQ_END: | 
|  | return true; | 
|  | break; | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | { | 
|  |  | 
|  | } | 
|  | return AMDGPU::isIntrinsicSourceOfDivergence( | 
|  | cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); | 
|  | case ISD::INTRINSIC_W_CHAIN: | 
|  | return AMDGPU::isIntrinsicSourceOfDivergence( | 
|  | cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); | 
|  | // In some cases intrinsics that are a source of divergence have been | 
|  | // lowered to AMDGPUISD so we also need to check those too. | 
|  | case AMDGPUISD::INTERP_MOV: | 
|  | case AMDGPUISD::INTERP_P1: | 
|  | case AMDGPUISD::INTERP_P2: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::denormalsEnabledForType(EVT VT) const { | 
|  | switch (VT.getScalarType().getSimpleVT().SimpleTy) { | 
|  | case MVT::f32: | 
|  | return Subtarget->hasFP32Denormals(); | 
|  | case MVT::f64: | 
|  | return Subtarget->hasFP64Denormals(); | 
|  | case MVT::f16: | 
|  | return Subtarget->hasFP16Denormals(); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, | 
|  | const SelectionDAG &DAG, | 
|  | bool SNaN, | 
|  | unsigned Depth) const { | 
|  | if (Op.getOpcode() == AMDGPUISD::CLAMP) { | 
|  | const MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | if (Info->getMode().DX10Clamp) | 
|  | return true; // Clamped to 0. | 
|  | return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); | 
|  | } | 
|  |  | 
|  | return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, | 
|  | SNaN, Depth); | 
|  | } | 
|  |  | 
|  | TargetLowering::AtomicExpansionKind | 
|  | SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { | 
|  | switch (RMW->getOperation()) { | 
|  | case AtomicRMWInst::FAdd: { | 
|  | Type *Ty = RMW->getType(); | 
|  |  | 
|  | // We don't have a way to support 16-bit atomics now, so just leave them | 
|  | // as-is. | 
|  | if (Ty->isHalfTy()) | 
|  | return AtomicExpansionKind::None; | 
|  |  | 
|  | if (!Ty->isFloatTy()) | 
|  | return AtomicExpansionKind::CmpXChg; | 
|  |  | 
|  | // TODO: Do have these for flat. Older targets also had them for buffers. | 
|  | unsigned AS = RMW->getPointerAddressSpace(); | 
|  | return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ? | 
|  | AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); | 
|  | } |