|  | //===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass transforms loops that contain branches on loop-invariant conditions | 
|  | // to multiple loops.  For example, it turns the left into the right code: | 
|  | // | 
|  | //  for (...)                  if (lic) | 
|  | //    A                          for (...) | 
|  | //    if (lic)                     A; B; C | 
|  | //      B                      else | 
|  | //    C                          for (...) | 
|  | //                                 A; C | 
|  | // | 
|  | // This can increase the size of the code exponentially (doubling it every time | 
|  | // a loop is unswitched) so we only unswitch if the resultant code will be | 
|  | // smaller than a threshold. | 
|  | // | 
|  | // This pass expects LICM to be run before it to hoist invariant conditions out | 
|  | // of the loop, to make the unswitching opportunity obvious. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/CodeMetrics.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LegacyDivergenceAnalysis.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopIterator.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/MemorySSA.h" | 
|  | #include "llvm/Analysis/MemorySSAUpdater.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Scalar/LoopPassManager.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Transforms/Utils/ValueMapper.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <map> | 
|  | #include <set> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "loop-unswitch" | 
|  |  | 
|  | STATISTIC(NumBranches, "Number of branches unswitched"); | 
|  | STATISTIC(NumSwitches, "Number of switches unswitched"); | 
|  | STATISTIC(NumGuards,   "Number of guards unswitched"); | 
|  | STATISTIC(NumSelects , "Number of selects unswitched"); | 
|  | STATISTIC(NumTrivial , "Number of unswitches that are trivial"); | 
|  | STATISTIC(NumSimplify, "Number of simplifications of unswitched code"); | 
|  | STATISTIC(TotalInsts,  "Total number of instructions analyzed"); | 
|  |  | 
|  | // The specific value of 100 here was chosen based only on intuition and a | 
|  | // few specific examples. | 
|  | static cl::opt<unsigned> | 
|  | Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), | 
|  | cl::init(100), cl::Hidden); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class LUAnalysisCache { | 
|  | using UnswitchedValsMap = | 
|  | DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>; | 
|  | using UnswitchedValsIt = UnswitchedValsMap::iterator; | 
|  |  | 
|  | struct LoopProperties { | 
|  | unsigned CanBeUnswitchedCount; | 
|  | unsigned WasUnswitchedCount; | 
|  | unsigned SizeEstimation; | 
|  | UnswitchedValsMap UnswitchedVals; | 
|  | }; | 
|  |  | 
|  | // Here we use std::map instead of DenseMap, since we need to keep valid | 
|  | // LoopProperties pointer for current loop for better performance. | 
|  | using LoopPropsMap = std::map<const Loop *, LoopProperties>; | 
|  | using LoopPropsMapIt = LoopPropsMap::iterator; | 
|  |  | 
|  | LoopPropsMap LoopsProperties; | 
|  | UnswitchedValsMap *CurLoopInstructions = nullptr; | 
|  | LoopProperties *CurrentLoopProperties = nullptr; | 
|  |  | 
|  | // A loop unswitching with an estimated cost above this threshold | 
|  | // is not performed. MaxSize is turned into unswitching quota for | 
|  | // the current loop, and reduced correspondingly, though note that | 
|  | // the quota is returned by releaseMemory() when the loop has been | 
|  | // processed, so that MaxSize will return to its previous | 
|  | // value. So in most cases MaxSize will equal the Threshold flag | 
|  | // when a new loop is processed. An exception to that is that | 
|  | // MaxSize will have a smaller value while processing nested loops | 
|  | // that were introduced due to loop unswitching of an outer loop. | 
|  | // | 
|  | // FIXME: The way that MaxSize works is subtle and depends on the | 
|  | // pass manager processing loops and calling releaseMemory() in a | 
|  | // specific order. It would be good to find a more straightforward | 
|  | // way of doing what MaxSize does. | 
|  | unsigned MaxSize; | 
|  |  | 
|  | public: | 
|  | LUAnalysisCache() : MaxSize(Threshold) {} | 
|  |  | 
|  | // Analyze loop. Check its size, calculate is it possible to unswitch | 
|  | // it. Returns true if we can unswitch this loop. | 
|  | bool countLoop(const Loop *L, const TargetTransformInfo &TTI, | 
|  | AssumptionCache *AC); | 
|  |  | 
|  | // Clean all data related to given loop. | 
|  | void forgetLoop(const Loop *L); | 
|  |  | 
|  | // Mark case value as unswitched. | 
|  | // Since SI instruction can be partly unswitched, in order to avoid | 
|  | // extra unswitching in cloned loops keep track all unswitched values. | 
|  | void setUnswitched(const SwitchInst *SI, const Value *V); | 
|  |  | 
|  | // Check was this case value unswitched before or not. | 
|  | bool isUnswitched(const SwitchInst *SI, const Value *V); | 
|  |  | 
|  | // Returns true if another unswitching could be done within the cost | 
|  | // threshold. | 
|  | bool CostAllowsUnswitching(); | 
|  |  | 
|  | // Clone all loop-unswitch related loop properties. | 
|  | // Redistribute unswitching quotas. | 
|  | // Note, that new loop data is stored inside the VMap. | 
|  | void cloneData(const Loop *NewLoop, const Loop *OldLoop, | 
|  | const ValueToValueMapTy &VMap); | 
|  | }; | 
|  |  | 
|  | class LoopUnswitch : public LoopPass { | 
|  | LoopInfo *LI;  // Loop information | 
|  | LPPassManager *LPM; | 
|  | AssumptionCache *AC; | 
|  |  | 
|  | // Used to check if second loop needs processing after | 
|  | // RewriteLoopBodyWithConditionConstant rewrites first loop. | 
|  | std::vector<Loop*> LoopProcessWorklist; | 
|  |  | 
|  | LUAnalysisCache BranchesInfo; | 
|  |  | 
|  | bool OptimizeForSize; | 
|  | bool redoLoop = false; | 
|  |  | 
|  | Loop *currentLoop = nullptr; | 
|  | DominatorTree *DT = nullptr; | 
|  | MemorySSA *MSSA = nullptr; | 
|  | std::unique_ptr<MemorySSAUpdater> MSSAU; | 
|  | BasicBlock *loopHeader = nullptr; | 
|  | BasicBlock *loopPreheader = nullptr; | 
|  |  | 
|  | bool SanitizeMemory; | 
|  | SimpleLoopSafetyInfo SafetyInfo; | 
|  |  | 
|  | // LoopBlocks contains all of the basic blocks of the loop, including the | 
|  | // preheader of the loop, the body of the loop, and the exit blocks of the | 
|  | // loop, in that order. | 
|  | std::vector<BasicBlock*> LoopBlocks; | 
|  | // NewBlocks contained cloned copy of basic blocks from LoopBlocks. | 
|  | std::vector<BasicBlock*> NewBlocks; | 
|  |  | 
|  | bool hasBranchDivergence; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass ID, replacement for typeid | 
|  |  | 
|  | explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false) | 
|  | : LoopPass(ID), OptimizeForSize(Os), | 
|  | hasBranchDivergence(hasBranchDivergence) { | 
|  | initializeLoopUnswitchPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnLoop(Loop *L, LPPassManager &LPM) override; | 
|  | bool processCurrentLoop(); | 
|  | bool isUnreachableDueToPreviousUnswitching(BasicBlock *); | 
|  |  | 
|  | /// This transformation requires natural loop information & requires that | 
|  | /// loop preheaders be inserted into the CFG. | 
|  | /// | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | if (EnableMSSALoopDependency) { | 
|  | AU.addRequired<MemorySSAWrapperPass>(); | 
|  | AU.addPreserved<MemorySSAWrapperPass>(); | 
|  | } | 
|  | if (hasBranchDivergence) | 
|  | AU.addRequired<LegacyDivergenceAnalysis>(); | 
|  | getLoopAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void releaseMemory() override { | 
|  | BranchesInfo.forgetLoop(currentLoop); | 
|  | } | 
|  |  | 
|  | void initLoopData() { | 
|  | loopHeader = currentLoop->getHeader(); | 
|  | loopPreheader = currentLoop->getLoopPreheader(); | 
|  | } | 
|  |  | 
|  | /// Split all of the edges from inside the loop to their exit blocks. | 
|  | /// Update the appropriate Phi nodes as we do so. | 
|  | void SplitExitEdges(Loop *L, | 
|  | const SmallVectorImpl<BasicBlock *> &ExitBlocks); | 
|  |  | 
|  | bool TryTrivialLoopUnswitch(bool &Changed); | 
|  |  | 
|  | bool UnswitchIfProfitable(Value *LoopCond, Constant *Val, | 
|  | Instruction *TI = nullptr); | 
|  | void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, | 
|  | BasicBlock *ExitBlock, Instruction *TI); | 
|  | void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L, | 
|  | Instruction *TI); | 
|  |  | 
|  | void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, | 
|  | Constant *Val, bool isEqual); | 
|  |  | 
|  | void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, | 
|  | BasicBlock *TrueDest, | 
|  | BasicBlock *FalseDest, | 
|  | BranchInst *OldBranch, Instruction *TI); | 
|  |  | 
|  | void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L); | 
|  |  | 
|  | /// Given that the Invariant is not equal to Val. Simplify instructions | 
|  | /// in the loop. | 
|  | Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant, | 
|  | Constant *Val); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // Analyze loop. Check its size, calculate is it possible to unswitch | 
|  | // it. Returns true if we can unswitch this loop. | 
|  | bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI, | 
|  | AssumptionCache *AC) { | 
|  | LoopPropsMapIt PropsIt; | 
|  | bool Inserted; | 
|  | std::tie(PropsIt, Inserted) = | 
|  | LoopsProperties.insert(std::make_pair(L, LoopProperties())); | 
|  |  | 
|  | LoopProperties &Props = PropsIt->second; | 
|  |  | 
|  | if (Inserted) { | 
|  | // New loop. | 
|  |  | 
|  | // Limit the number of instructions to avoid causing significant code | 
|  | // expansion, and the number of basic blocks, to avoid loops with | 
|  | // large numbers of branches which cause loop unswitching to go crazy. | 
|  | // This is a very ad-hoc heuristic. | 
|  |  | 
|  | SmallPtrSet<const Value *, 32> EphValues; | 
|  | CodeMetrics::collectEphemeralValues(L, AC, EphValues); | 
|  |  | 
|  | // FIXME: This is overly conservative because it does not take into | 
|  | // consideration code simplification opportunities and code that can | 
|  | // be shared by the resultant unswitched loops. | 
|  | CodeMetrics Metrics; | 
|  | for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; | 
|  | ++I) | 
|  | Metrics.analyzeBasicBlock(*I, TTI, EphValues); | 
|  |  | 
|  | Props.SizeEstimation = Metrics.NumInsts; | 
|  | Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation); | 
|  | Props.WasUnswitchedCount = 0; | 
|  | MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount; | 
|  |  | 
|  | if (Metrics.notDuplicatable) { | 
|  | LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName() | 
|  | << ", contents cannot be " | 
|  | << "duplicated!\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Be careful. This links are good only before new loop addition. | 
|  | CurrentLoopProperties = &Props; | 
|  | CurLoopInstructions = &Props.UnswitchedVals; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Clean all data related to given loop. | 
|  | void LUAnalysisCache::forgetLoop(const Loop *L) { | 
|  | LoopPropsMapIt LIt = LoopsProperties.find(L); | 
|  |  | 
|  | if (LIt != LoopsProperties.end()) { | 
|  | LoopProperties &Props = LIt->second; | 
|  | MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) * | 
|  | Props.SizeEstimation; | 
|  | LoopsProperties.erase(LIt); | 
|  | } | 
|  |  | 
|  | CurrentLoopProperties = nullptr; | 
|  | CurLoopInstructions = nullptr; | 
|  | } | 
|  |  | 
|  | // Mark case value as unswitched. | 
|  | // Since SI instruction can be partly unswitched, in order to avoid | 
|  | // extra unswitching in cloned loops keep track all unswitched values. | 
|  | void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) { | 
|  | (*CurLoopInstructions)[SI].insert(V); | 
|  | } | 
|  |  | 
|  | // Check was this case value unswitched before or not. | 
|  | bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) { | 
|  | return (*CurLoopInstructions)[SI].count(V); | 
|  | } | 
|  |  | 
|  | bool LUAnalysisCache::CostAllowsUnswitching() { | 
|  | return CurrentLoopProperties->CanBeUnswitchedCount > 0; | 
|  | } | 
|  |  | 
|  | // Clone all loop-unswitch related loop properties. | 
|  | // Redistribute unswitching quotas. | 
|  | // Note, that new loop data is stored inside the VMap. | 
|  | void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop, | 
|  | const ValueToValueMapTy &VMap) { | 
|  | LoopProperties &NewLoopProps = LoopsProperties[NewLoop]; | 
|  | LoopProperties &OldLoopProps = *CurrentLoopProperties; | 
|  | UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals; | 
|  |  | 
|  | // Reallocate "can-be-unswitched quota" | 
|  |  | 
|  | --OldLoopProps.CanBeUnswitchedCount; | 
|  | ++OldLoopProps.WasUnswitchedCount; | 
|  | NewLoopProps.WasUnswitchedCount = 0; | 
|  | unsigned Quota = OldLoopProps.CanBeUnswitchedCount; | 
|  | NewLoopProps.CanBeUnswitchedCount = Quota / 2; | 
|  | OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2; | 
|  |  | 
|  | NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation; | 
|  |  | 
|  | // Clone unswitched values info: | 
|  | // for new loop switches we clone info about values that was | 
|  | // already unswitched and has redundant successors. | 
|  | for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) { | 
|  | const SwitchInst *OldInst = I->first; | 
|  | Value *NewI = VMap.lookup(OldInst); | 
|  | const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI); | 
|  | assert(NewInst && "All instructions that are in SrcBB must be in VMap."); | 
|  |  | 
|  | NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst]; | 
|  | } | 
|  | } | 
|  |  | 
|  | char LoopUnswitch::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) | 
|  | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) | 
|  | INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops", | 
|  | false, false) | 
|  |  | 
|  | Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) { | 
|  | return new LoopUnswitch(Os, hasBranchDivergence); | 
|  | } | 
|  |  | 
|  | /// Operator chain lattice. | 
|  | enum OperatorChain { | 
|  | OC_OpChainNone,    ///< There is no operator. | 
|  | OC_OpChainOr,      ///< There are only ORs. | 
|  | OC_OpChainAnd,     ///< There are only ANDs. | 
|  | OC_OpChainMixed    ///< There are ANDs and ORs. | 
|  | }; | 
|  |  | 
|  | /// Cond is a condition that occurs in L. If it is invariant in the loop, or has | 
|  | /// an invariant piece, return the invariant. Otherwise, return null. | 
|  | // | 
|  | /// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a | 
|  | /// mixed operator chain, as we can not reliably find a value which will simplify | 
|  | /// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0 | 
|  | /// to simplify the chain. | 
|  | /// | 
|  | /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to | 
|  | /// simplify the condition itself to a loop variant condition, but at the | 
|  | /// cost of creating an entirely new loop. | 
|  | static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed, | 
|  | OperatorChain &ParentChain, | 
|  | DenseMap<Value *, Value *> &Cache) { | 
|  | auto CacheIt = Cache.find(Cond); | 
|  | if (CacheIt != Cache.end()) | 
|  | return CacheIt->second; | 
|  |  | 
|  | // We started analyze new instruction, increment scanned instructions counter. | 
|  | ++TotalInsts; | 
|  |  | 
|  | // We can never unswitch on vector conditions. | 
|  | if (Cond->getType()->isVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | // Constants should be folded, not unswitched on! | 
|  | if (isa<Constant>(Cond)) return nullptr; | 
|  |  | 
|  | // TODO: Handle: br (VARIANT|INVARIANT). | 
|  |  | 
|  | // Hoist simple values out. | 
|  | if (L->makeLoopInvariant(Cond, Changed)) { | 
|  | Cache[Cond] = Cond; | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | // Walk up the operator chain to find partial invariant conditions. | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond)) | 
|  | if (BO->getOpcode() == Instruction::And || | 
|  | BO->getOpcode() == Instruction::Or) { | 
|  | // Given the previous operator, compute the current operator chain status. | 
|  | OperatorChain NewChain; | 
|  | switch (ParentChain) { | 
|  | case OC_OpChainNone: | 
|  | NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd : | 
|  | OC_OpChainOr; | 
|  | break; | 
|  | case OC_OpChainOr: | 
|  | NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr : | 
|  | OC_OpChainMixed; | 
|  | break; | 
|  | case OC_OpChainAnd: | 
|  | NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd : | 
|  | OC_OpChainMixed; | 
|  | break; | 
|  | case OC_OpChainMixed: | 
|  | NewChain = OC_OpChainMixed; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we reach a Mixed state, we do not want to keep walking up as we can not | 
|  | // reliably find a value that will simplify the chain. With this check, we | 
|  | // will return null on the first sight of mixed chain and the caller will | 
|  | // either backtrack to find partial LIV in other operand or return null. | 
|  | if (NewChain != OC_OpChainMixed) { | 
|  | // Update the current operator chain type before we search up the chain. | 
|  | ParentChain = NewChain; | 
|  | // If either the left or right side is invariant, we can unswitch on this, | 
|  | // which will cause the branch to go away in one loop and the condition to | 
|  | // simplify in the other one. | 
|  | if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed, | 
|  | ParentChain, Cache)) { | 
|  | Cache[Cond] = LHS; | 
|  | return LHS; | 
|  | } | 
|  | // We did not manage to find a partial LIV in operand(0). Backtrack and try | 
|  | // operand(1). | 
|  | ParentChain = NewChain; | 
|  | if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed, | 
|  | ParentChain, Cache)) { | 
|  | Cache[Cond] = RHS; | 
|  | return RHS; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Cache[Cond] = nullptr; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Cond is a condition that occurs in L. If it is invariant in the loop, or has | 
|  | /// an invariant piece, return the invariant along with the operator chain type. | 
|  | /// Otherwise, return null. | 
|  | static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond, | 
|  | Loop *L, | 
|  | bool &Changed) { | 
|  | DenseMap<Value *, Value *> Cache; | 
|  | OperatorChain OpChain = OC_OpChainNone; | 
|  | Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache); | 
|  |  | 
|  | // In case we do find a LIV, it can not be obtained by walking up a mixed | 
|  | // operator chain. | 
|  | assert((!FCond || OpChain != OC_OpChainMixed) && | 
|  | "Do not expect a partial LIV with mixed operator chain"); | 
|  | return {FCond, OpChain}; | 
|  | } | 
|  |  | 
|  | bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) { | 
|  | if (skipLoop(L)) | 
|  | return false; | 
|  |  | 
|  | AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( | 
|  | *L->getHeader()->getParent()); | 
|  | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | LPM = &LPM_Ref; | 
|  | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | if (EnableMSSALoopDependency) { | 
|  | MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); | 
|  | MSSAU = make_unique<MemorySSAUpdater>(MSSA); | 
|  | assert(DT && "Cannot update MemorySSA without a valid DomTree."); | 
|  | } | 
|  | currentLoop = L; | 
|  | Function *F = currentLoop->getHeader()->getParent(); | 
|  |  | 
|  | SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory); | 
|  | if (SanitizeMemory) | 
|  | SafetyInfo.computeLoopSafetyInfo(L); | 
|  |  | 
|  | if (MSSA && VerifyMemorySSA) | 
|  | MSSA->verifyMemorySSA(); | 
|  |  | 
|  | bool Changed = false; | 
|  | do { | 
|  | assert(currentLoop->isLCSSAForm(*DT)); | 
|  | if (MSSA && VerifyMemorySSA) | 
|  | MSSA->verifyMemorySSA(); | 
|  | redoLoop = false; | 
|  | Changed |= processCurrentLoop(); | 
|  | } while(redoLoop); | 
|  |  | 
|  | if (MSSA && VerifyMemorySSA) | 
|  | MSSA->verifyMemorySSA(); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // Return true if the BasicBlock BB is unreachable from the loop header. | 
|  | // Return false, otherwise. | 
|  | bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) { | 
|  | auto *Node = DT->getNode(BB)->getIDom(); | 
|  | BasicBlock *DomBB = Node->getBlock(); | 
|  | while (currentLoop->contains(DomBB)) { | 
|  | BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator()); | 
|  |  | 
|  | Node = DT->getNode(DomBB)->getIDom(); | 
|  | DomBB = Node->getBlock(); | 
|  |  | 
|  | if (!BInst || !BInst->isConditional()) | 
|  | continue; | 
|  |  | 
|  | Value *Cond = BInst->getCondition(); | 
|  | if (!isa<ConstantInt>(Cond)) | 
|  | continue; | 
|  |  | 
|  | BasicBlock *UnreachableSucc = | 
|  | Cond == ConstantInt::getTrue(Cond->getContext()) | 
|  | ? BInst->getSuccessor(1) | 
|  | : BInst->getSuccessor(0); | 
|  |  | 
|  | if (DT->dominates(UnreachableSucc, BB)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// FIXME: Remove this workaround when freeze related patches are done. | 
|  | /// LoopUnswitch and Equality propagation in GVN have discrepancy about | 
|  | /// whether branch on undef/poison has undefine behavior. Here it is to | 
|  | /// rule out some common cases that we found such discrepancy already | 
|  | /// causing problems. Detail could be found in PR31652. Note if the | 
|  | /// func returns true, it is unsafe. But if it is false, it doesn't mean | 
|  | /// it is necessarily safe. | 
|  | static bool EqualityPropUnSafe(Value &LoopCond) { | 
|  | ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond); | 
|  | if (!CI || !CI->isEquality()) | 
|  | return false; | 
|  |  | 
|  | Value *LHS = CI->getOperand(0); | 
|  | Value *RHS = CI->getOperand(1); | 
|  | if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) | 
|  | return true; | 
|  |  | 
|  | auto hasUndefInPHI = [](PHINode &PN) { | 
|  | for (Value *Opd : PN.incoming_values()) { | 
|  | if (isa<UndefValue>(Opd)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  | PHINode *LPHI = dyn_cast<PHINode>(LHS); | 
|  | PHINode *RPHI = dyn_cast<PHINode>(RHS); | 
|  | if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI))) | 
|  | return true; | 
|  |  | 
|  | auto hasUndefInSelect = [](SelectInst &SI) { | 
|  | if (isa<UndefValue>(SI.getTrueValue()) || | 
|  | isa<UndefValue>(SI.getFalseValue())) | 
|  | return true; | 
|  | return false; | 
|  | }; | 
|  | SelectInst *LSI = dyn_cast<SelectInst>(LHS); | 
|  | SelectInst *RSI = dyn_cast<SelectInst>(RHS); | 
|  | if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI))) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Do actual work and unswitch loop if possible and profitable. | 
|  | bool LoopUnswitch::processCurrentLoop() { | 
|  | bool Changed = false; | 
|  |  | 
|  | initLoopData(); | 
|  |  | 
|  | // If LoopSimplify was unable to form a preheader, don't do any unswitching. | 
|  | if (!loopPreheader) | 
|  | return false; | 
|  |  | 
|  | // Loops with indirectbr cannot be cloned. | 
|  | if (!currentLoop->isSafeToClone()) | 
|  | return false; | 
|  |  | 
|  | // Without dedicated exits, splitting the exit edge may fail. | 
|  | if (!currentLoop->hasDedicatedExits()) | 
|  | return false; | 
|  |  | 
|  | LLVMContext &Context = loopHeader->getContext(); | 
|  |  | 
|  | // Analyze loop cost, and stop unswitching if loop content can not be duplicated. | 
|  | if (!BranchesInfo.countLoop( | 
|  | currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI( | 
|  | *currentLoop->getHeader()->getParent()), | 
|  | AC)) | 
|  | return false; | 
|  |  | 
|  | // Try trivial unswitch first before loop over other basic blocks in the loop. | 
|  | if (TryTrivialLoopUnswitch(Changed)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Do not do non-trivial unswitch while optimizing for size. | 
|  | // FIXME: Use Function::optForSize(). | 
|  | if (OptimizeForSize || | 
|  | loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize)) | 
|  | return false; | 
|  |  | 
|  | // Run through the instructions in the loop, keeping track of three things: | 
|  | // | 
|  | //  - That we do not unswitch loops containing convergent operations, as we | 
|  | //    might be making them control dependent on the unswitch value when they | 
|  | //    were not before. | 
|  | //    FIXME: This could be refined to only bail if the convergent operation is | 
|  | //    not already control-dependent on the unswitch value. | 
|  | // | 
|  | //  - That basic blocks in the loop contain invokes whose predecessor edges we | 
|  | //    cannot split. | 
|  | // | 
|  | //  - The set of guard intrinsics encountered (these are non terminator | 
|  | //    instructions that are also profitable to be unswitched). | 
|  |  | 
|  | SmallVector<IntrinsicInst *, 4> Guards; | 
|  |  | 
|  | for (const auto BB : currentLoop->blocks()) { | 
|  | for (auto &I : *BB) { | 
|  | auto CS = CallSite(&I); | 
|  | if (!CS) continue; | 
|  | if (CS.hasFnAttr(Attribute::Convergent)) | 
|  | return false; | 
|  | if (auto *II = dyn_cast<InvokeInst>(&I)) | 
|  | if (!II->getUnwindDest()->canSplitPredecessors()) | 
|  | return false; | 
|  | if (auto *II = dyn_cast<IntrinsicInst>(&I)) | 
|  | if (II->getIntrinsicID() == Intrinsic::experimental_guard) | 
|  | Guards.push_back(II); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (IntrinsicInst *Guard : Guards) { | 
|  | Value *LoopCond = | 
|  | FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first; | 
|  | if (LoopCond && | 
|  | UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) { | 
|  | // NB! Unswitching (if successful) could have erased some of the | 
|  | // instructions in Guards leaving dangling pointers there.  This is fine | 
|  | // because we're returning now, and won't look at Guards again. | 
|  | ++NumGuards; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loop over all of the basic blocks in the loop.  If we find an interior | 
|  | // block that is branching on a loop-invariant condition, we can unswitch this | 
|  | // loop. | 
|  | for (Loop::block_iterator I = currentLoop->block_begin(), | 
|  | E = currentLoop->block_end(); I != E; ++I) { | 
|  | Instruction *TI = (*I)->getTerminator(); | 
|  |  | 
|  | // Unswitching on a potentially uninitialized predicate is not | 
|  | // MSan-friendly. Limit this to the cases when the original predicate is | 
|  | // guaranteed to execute, to avoid creating a use-of-uninitialized-value | 
|  | // in the code that did not have one. | 
|  | // This is a workaround for the discrepancy between LLVM IR and MSan | 
|  | // semantics. See PR28054 for more details. | 
|  | if (SanitizeMemory && | 
|  | !SafetyInfo.isGuaranteedToExecute(*TI, DT, currentLoop)) | 
|  | continue; | 
|  |  | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
|  | // Some branches may be rendered unreachable because of previous | 
|  | // unswitching. | 
|  | // Unswitch only those branches that are reachable. | 
|  | if (isUnreachableDueToPreviousUnswitching(*I)) | 
|  | continue; | 
|  |  | 
|  | // If this isn't branching on an invariant condition, we can't unswitch | 
|  | // it. | 
|  | if (BI->isConditional()) { | 
|  | // See if this, or some part of it, is loop invariant.  If so, we can | 
|  | // unswitch on it if we desire. | 
|  | Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), | 
|  | currentLoop, Changed).first; | 
|  | if (LoopCond && !EqualityPropUnSafe(*LoopCond) && | 
|  | UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) { | 
|  | ++NumBranches; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | Value *SC = SI->getCondition(); | 
|  | Value *LoopCond; | 
|  | OperatorChain OpChain; | 
|  | std::tie(LoopCond, OpChain) = | 
|  | FindLIVLoopCondition(SC, currentLoop, Changed); | 
|  |  | 
|  | unsigned NumCases = SI->getNumCases(); | 
|  | if (LoopCond && NumCases) { | 
|  | // Find a value to unswitch on: | 
|  | // FIXME: this should chose the most expensive case! | 
|  | // FIXME: scan for a case with a non-critical edge? | 
|  | Constant *UnswitchVal = nullptr; | 
|  | // Find a case value such that at least one case value is unswitched | 
|  | // out. | 
|  | if (OpChain == OC_OpChainAnd) { | 
|  | // If the chain only has ANDs and the switch has a case value of 0. | 
|  | // Dropping in a 0 to the chain will unswitch out the 0-casevalue. | 
|  | auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType())); | 
|  | if (BranchesInfo.isUnswitched(SI, AllZero)) | 
|  | continue; | 
|  | // We are unswitching 0 out. | 
|  | UnswitchVal = AllZero; | 
|  | } else if (OpChain == OC_OpChainOr) { | 
|  | // If the chain only has ORs and the switch has a case value of ~0. | 
|  | // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue. | 
|  | auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType())); | 
|  | if (BranchesInfo.isUnswitched(SI, AllOne)) | 
|  | continue; | 
|  | // We are unswitching ~0 out. | 
|  | UnswitchVal = AllOne; | 
|  | } else { | 
|  | assert(OpChain == OC_OpChainNone && | 
|  | "Expect to unswitch on trivial chain"); | 
|  | // Do not process same value again and again. | 
|  | // At this point we have some cases already unswitched and | 
|  | // some not yet unswitched. Let's find the first not yet unswitched one. | 
|  | for (auto Case : SI->cases()) { | 
|  | Constant *UnswitchValCandidate = Case.getCaseValue(); | 
|  | if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) { | 
|  | UnswitchVal = UnswitchValCandidate; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!UnswitchVal) | 
|  | continue; | 
|  |  | 
|  | if (UnswitchIfProfitable(LoopCond, UnswitchVal)) { | 
|  | ++NumSwitches; | 
|  | // In case of a full LIV, UnswitchVal is the value we unswitched out. | 
|  | // In case of a partial LIV, we only unswitch when its an AND-chain | 
|  | // or OR-chain. In both cases switch input value simplifies to | 
|  | // UnswitchVal. | 
|  | BranchesInfo.setUnswitched(SI, UnswitchVal); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Scan the instructions to check for unswitchable values. | 
|  | for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); | 
|  | BBI != E; ++BBI) | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) { | 
|  | Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), | 
|  | currentLoop, Changed).first; | 
|  | if (LoopCond && UnswitchIfProfitable(LoopCond, | 
|  | ConstantInt::getTrue(Context))) { | 
|  | ++NumSelects; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Check to see if all paths from BB exit the loop with no side effects | 
|  | /// (including infinite loops). | 
|  | /// | 
|  | /// If true, we return true and set ExitBB to the block we | 
|  | /// exit through. | 
|  | /// | 
|  | static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, | 
|  | BasicBlock *&ExitBB, | 
|  | std::set<BasicBlock*> &Visited) { | 
|  | if (!Visited.insert(BB).second) { | 
|  | // Already visited. Without more analysis, this could indicate an infinite | 
|  | // loop. | 
|  | return false; | 
|  | } | 
|  | if (!L->contains(BB)) { | 
|  | // Otherwise, this is a loop exit, this is fine so long as this is the | 
|  | // first exit. | 
|  | if (ExitBB) return false; | 
|  | ExitBB = BB; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, this is an unvisited intra-loop node.  Check all successors. | 
|  | for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { | 
|  | // Check to see if the successor is a trivial loop exit. | 
|  | if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Okay, everything after this looks good, check to make sure that this block | 
|  | // doesn't include any side effects. | 
|  | for (Instruction &I : *BB) | 
|  | if (I.mayHaveSideEffects()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the specified block unconditionally leads to an exit from | 
|  | /// the specified loop, and has no side-effects in the process. If so, return | 
|  | /// the block that is exited to, otherwise return null. | 
|  | static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) { | 
|  | std::set<BasicBlock*> Visited; | 
|  | Visited.insert(L->getHeader());  // Branches to header make infinite loops. | 
|  | BasicBlock *ExitBB = nullptr; | 
|  | if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited)) | 
|  | return ExitBB; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// We have found that we can unswitch currentLoop when LoopCond == Val to | 
|  | /// simplify the loop.  If we decide that this is profitable, | 
|  | /// unswitch the loop, reprocess the pieces, then return true. | 
|  | bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val, | 
|  | Instruction *TI) { | 
|  | // Check to see if it would be profitable to unswitch current loop. | 
|  | if (!BranchesInfo.CostAllowsUnswitching()) { | 
|  | LLVM_DEBUG(dbgs() << "NOT unswitching loop %" | 
|  | << currentLoop->getHeader()->getName() | 
|  | << " at non-trivial condition '" << *Val | 
|  | << "' == " << *LoopCond << "\n" | 
|  | << ". Cost too high.\n"); | 
|  | return false; | 
|  | } | 
|  | if (hasBranchDivergence && | 
|  | getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) { | 
|  | LLVM_DEBUG(dbgs() << "NOT unswitching loop %" | 
|  | << currentLoop->getHeader()->getName() | 
|  | << " at non-trivial condition '" << *Val | 
|  | << "' == " << *LoopCond << "\n" | 
|  | << ". Condition is divergent.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Recursively clone the specified loop and all of its children, | 
|  | /// mapping the blocks with the specified map. | 
|  | static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, | 
|  | LoopInfo *LI, LPPassManager *LPM) { | 
|  | Loop &New = *LI->AllocateLoop(); | 
|  | if (PL) | 
|  | PL->addChildLoop(&New); | 
|  | else | 
|  | LI->addTopLevelLoop(&New); | 
|  | LPM->addLoop(New); | 
|  |  | 
|  | // Add all of the blocks in L to the new loop. | 
|  | for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); | 
|  | I != E; ++I) | 
|  | if (LI->getLoopFor(*I) == L) | 
|  | New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI); | 
|  |  | 
|  | // Add all of the subloops to the new loop. | 
|  | for (Loop *I : *L) | 
|  | CloneLoop(I, &New, VM, LI, LPM); | 
|  |  | 
|  | return &New; | 
|  | } | 
|  |  | 
|  | /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst, | 
|  | /// otherwise branch to FalseDest. Insert the code immediately before OldBranch | 
|  | /// and remove (but not erase!) it from the function. | 
|  | void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, | 
|  | BasicBlock *TrueDest, | 
|  | BasicBlock *FalseDest, | 
|  | BranchInst *OldBranch, | 
|  | Instruction *TI) { | 
|  | assert(OldBranch->isUnconditional() && "Preheader is not split correctly"); | 
|  | assert(TrueDest != FalseDest && "Branch targets should be different"); | 
|  | // Insert a conditional branch on LIC to the two preheaders.  The original | 
|  | // code is the true version and the new code is the false version. | 
|  | Value *BranchVal = LIC; | 
|  | bool Swapped = false; | 
|  | if (!isa<ConstantInt>(Val) || | 
|  | Val->getType() != Type::getInt1Ty(LIC->getContext())) | 
|  | BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val); | 
|  | else if (Val != ConstantInt::getTrue(Val->getContext())) { | 
|  | // We want to enter the new loop when the condition is true. | 
|  | std::swap(TrueDest, FalseDest); | 
|  | Swapped = true; | 
|  | } | 
|  |  | 
|  | // Old branch will be removed, so save its parent and successor to update the | 
|  | // DomTree. | 
|  | auto *OldBranchSucc = OldBranch->getSuccessor(0); | 
|  | auto *OldBranchParent = OldBranch->getParent(); | 
|  |  | 
|  | // Insert the new branch. | 
|  | BranchInst *BI = | 
|  | IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI); | 
|  | if (Swapped) | 
|  | BI->swapProfMetadata(); | 
|  |  | 
|  | // Remove the old branch so there is only one branch at the end. This is | 
|  | // needed to perform DomTree's internal DFS walk on the function's CFG. | 
|  | OldBranch->removeFromParent(); | 
|  |  | 
|  | // Inform the DT about the new branch. | 
|  | if (DT) { | 
|  | // First, add both successors. | 
|  | SmallVector<DominatorTree::UpdateType, 3> Updates; | 
|  | if (TrueDest != OldBranchSucc) | 
|  | Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest}); | 
|  | if (FalseDest != OldBranchSucc) | 
|  | Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest}); | 
|  | // If both of the new successors are different from the old one, inform the | 
|  | // DT that the edge was deleted. | 
|  | if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) { | 
|  | Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc}); | 
|  | } | 
|  | DT->applyUpdates(Updates); | 
|  |  | 
|  | if (MSSAU) | 
|  | MSSAU->applyUpdates(Updates, *DT); | 
|  | } | 
|  |  | 
|  | // If either edge is critical, split it. This helps preserve LoopSimplify | 
|  | // form for enclosing loops. | 
|  | auto Options = | 
|  | CriticalEdgeSplittingOptions(DT, LI, MSSAU.get()).setPreserveLCSSA(); | 
|  | SplitCriticalEdge(BI, 0, Options); | 
|  | SplitCriticalEdge(BI, 1, Options); | 
|  | } | 
|  |  | 
|  | /// Given a loop that has a trivial unswitchable condition in it (a cond branch | 
|  | /// from its header block to its latch block, where the path through the loop | 
|  | /// that doesn't execute its body has no side-effects), unswitch it. This | 
|  | /// doesn't involve any code duplication, just moving the conditional branch | 
|  | /// outside of the loop and updating loop info. | 
|  | void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, | 
|  | BasicBlock *ExitBlock, | 
|  | Instruction *TI) { | 
|  | LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %" | 
|  | << loopHeader->getName() << " [" << L->getBlocks().size() | 
|  | << " blocks] in Function " | 
|  | << L->getHeader()->getParent()->getName() | 
|  | << " on cond: " << *Val << " == " << *Cond << "\n"); | 
|  | // We are going to make essential changes to CFG. This may invalidate cached | 
|  | // information for L or one of its parent loops in SCEV. | 
|  | if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>()) | 
|  | SEWP->getSE().forgetTopmostLoop(L); | 
|  |  | 
|  | // First step, split the preheader, so that we know that there is a safe place | 
|  | // to insert the conditional branch.  We will change loopPreheader to have a | 
|  | // conditional branch on Cond. | 
|  | BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get()); | 
|  |  | 
|  | // Now that we have a place to insert the conditional branch, create a place | 
|  | // to branch to: this is the exit block out of the loop that we should | 
|  | // short-circuit to. | 
|  |  | 
|  | // Split this block now, so that the loop maintains its exit block, and so | 
|  | // that the jump from the preheader can execute the contents of the exit block | 
|  | // without actually branching to it (the exit block should be dominated by the | 
|  | // loop header, not the preheader). | 
|  | assert(!L->contains(ExitBlock) && "Exit block is in the loop?"); | 
|  | BasicBlock *NewExit = | 
|  | SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI, MSSAU.get()); | 
|  |  | 
|  | // Okay, now we have a position to branch from and a position to branch to, | 
|  | // insert the new conditional branch. | 
|  | auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator()); | 
|  | assert(OldBranch && "Failed to split the preheader"); | 
|  | EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI); | 
|  | LPM->deleteSimpleAnalysisValue(OldBranch, L); | 
|  |  | 
|  | // EmitPreheaderBranchOnCondition removed the OldBranch from the function. | 
|  | // Delete it, as it is no longer needed. | 
|  | delete OldBranch; | 
|  |  | 
|  | // We need to reprocess this loop, it could be unswitched again. | 
|  | redoLoop = true; | 
|  |  | 
|  | // Now that we know that the loop is never entered when this condition is a | 
|  | // particular value, rewrite the loop with this info.  We know that this will | 
|  | // at least eliminate the old branch. | 
|  | RewriteLoopBodyWithConditionConstant(L, Cond, Val, false); | 
|  |  | 
|  | ++NumTrivial; | 
|  | } | 
|  |  | 
|  | /// Check if the first non-constant condition starting from the loop header is | 
|  | /// a trivial unswitch condition: that is, a condition controls whether or not | 
|  | /// the loop does anything at all. If it is a trivial condition, unswitching | 
|  | /// produces no code duplications (equivalently, it produces a simpler loop and | 
|  | /// a new empty loop, which gets deleted). Therefore always unswitch trivial | 
|  | /// condition. | 
|  | bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) { | 
|  | BasicBlock *CurrentBB = currentLoop->getHeader(); | 
|  | Instruction *CurrentTerm = CurrentBB->getTerminator(); | 
|  | LLVMContext &Context = CurrentBB->getContext(); | 
|  |  | 
|  | // If loop header has only one reachable successor (currently via an | 
|  | // unconditional branch or constant foldable conditional branch, but | 
|  | // should also consider adding constant foldable switch instruction in | 
|  | // future), we should keep looking for trivial condition candidates in | 
|  | // the successor as well. An alternative is to constant fold conditions | 
|  | // and merge successors into loop header (then we only need to check header's | 
|  | // terminator). The reason for not doing this in LoopUnswitch pass is that | 
|  | // it could potentially break LoopPassManager's invariants. Folding dead | 
|  | // branches could either eliminate the current loop or make other loops | 
|  | // unreachable. LCSSA form might also not be preserved after deleting | 
|  | // branches. The following code keeps traversing loop header's successors | 
|  | // until it finds the trivial condition candidate (condition that is not a | 
|  | // constant). Since unswitching generates branches with constant conditions, | 
|  | // this scenario could be very common in practice. | 
|  | SmallPtrSet<BasicBlock*, 8> Visited; | 
|  |  | 
|  | while (true) { | 
|  | // If we exit loop or reach a previous visited block, then | 
|  | // we can not reach any trivial condition candidates (unfoldable | 
|  | // branch instructions or switch instructions) and no unswitch | 
|  | // can happen. Exit and return false. | 
|  | if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second) | 
|  | return false; | 
|  |  | 
|  | // Check if this loop will execute any side-effecting instructions (e.g. | 
|  | // stores, calls, volatile loads) in the part of the loop that the code | 
|  | // *would* execute. Check the header first. | 
|  | for (Instruction &I : *CurrentBB) | 
|  | if (I.mayHaveSideEffects()) | 
|  | return false; | 
|  |  | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) { | 
|  | if (BI->isUnconditional()) { | 
|  | CurrentBB = BI->getSuccessor(0); | 
|  | } else if (BI->getCondition() == ConstantInt::getTrue(Context)) { | 
|  | CurrentBB = BI->getSuccessor(0); | 
|  | } else if (BI->getCondition() == ConstantInt::getFalse(Context)) { | 
|  | CurrentBB = BI->getSuccessor(1); | 
|  | } else { | 
|  | // Found a trivial condition candidate: non-foldable conditional branch. | 
|  | break; | 
|  | } | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) { | 
|  | // At this point, any constant-foldable instructions should have probably | 
|  | // been folded. | 
|  | ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); | 
|  | if (!Cond) | 
|  | break; | 
|  | // Find the target block we are definitely going to. | 
|  | CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor(); | 
|  | } else { | 
|  | // We do not understand these terminator instructions. | 
|  | break; | 
|  | } | 
|  |  | 
|  | CurrentTerm = CurrentBB->getTerminator(); | 
|  | } | 
|  |  | 
|  | // CondVal is the condition that controls the trivial condition. | 
|  | // LoopExitBB is the BasicBlock that loop exits when meets trivial condition. | 
|  | Constant *CondVal = nullptr; | 
|  | BasicBlock *LoopExitBB = nullptr; | 
|  |  | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) { | 
|  | // If this isn't branching on an invariant condition, we can't unswitch it. | 
|  | if (!BI->isConditional()) | 
|  | return false; | 
|  |  | 
|  | Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), | 
|  | currentLoop, Changed).first; | 
|  |  | 
|  | // Unswitch only if the trivial condition itself is an LIV (not | 
|  | // partial LIV which could occur in and/or) | 
|  | if (!LoopCond || LoopCond != BI->getCondition()) | 
|  | return false; | 
|  |  | 
|  | // Check to see if a successor of the branch is guaranteed to | 
|  | // exit through a unique exit block without having any | 
|  | // side-effects.  If so, determine the value of Cond that causes | 
|  | // it to do this. | 
|  | if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, | 
|  | BI->getSuccessor(0)))) { | 
|  | CondVal = ConstantInt::getTrue(Context); | 
|  | } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, | 
|  | BI->getSuccessor(1)))) { | 
|  | CondVal = ConstantInt::getFalse(Context); | 
|  | } | 
|  |  | 
|  | // If we didn't find a single unique LoopExit block, or if the loop exit | 
|  | // block contains phi nodes, this isn't trivial. | 
|  | if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) | 
|  | return false;   // Can't handle this. | 
|  |  | 
|  | if (EqualityPropUnSafe(*LoopCond)) | 
|  | return false; | 
|  |  | 
|  | UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB, | 
|  | CurrentTerm); | 
|  | ++NumBranches; | 
|  | return true; | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) { | 
|  | // If this isn't switching on an invariant condition, we can't unswitch it. | 
|  | Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), | 
|  | currentLoop, Changed).first; | 
|  |  | 
|  | // Unswitch only if the trivial condition itself is an LIV (not | 
|  | // partial LIV which could occur in and/or) | 
|  | if (!LoopCond || LoopCond != SI->getCondition()) | 
|  | return false; | 
|  |  | 
|  | // Check to see if a successor of the switch is guaranteed to go to the | 
|  | // latch block or exit through a one exit block without having any | 
|  | // side-effects.  If so, determine the value of Cond that causes it to do | 
|  | // this. | 
|  | // Note that we can't trivially unswitch on the default case or | 
|  | // on already unswitched cases. | 
|  | for (auto Case : SI->cases()) { | 
|  | BasicBlock *LoopExitCandidate; | 
|  | if ((LoopExitCandidate = | 
|  | isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) { | 
|  | // Okay, we found a trivial case, remember the value that is trivial. | 
|  | ConstantInt *CaseVal = Case.getCaseValue(); | 
|  |  | 
|  | // Check that it was not unswitched before, since already unswitched | 
|  | // trivial vals are looks trivial too. | 
|  | if (BranchesInfo.isUnswitched(SI, CaseVal)) | 
|  | continue; | 
|  | LoopExitBB = LoopExitCandidate; | 
|  | CondVal = CaseVal; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we didn't find a single unique LoopExit block, or if the loop exit | 
|  | // block contains phi nodes, this isn't trivial. | 
|  | if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) | 
|  | return false;   // Can't handle this. | 
|  |  | 
|  | UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB, | 
|  | nullptr); | 
|  |  | 
|  | // We are only unswitching full LIV. | 
|  | BranchesInfo.setUnswitched(SI, CondVal); | 
|  | ++NumSwitches; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Split all of the edges from inside the loop to their exit blocks. | 
|  | /// Update the appropriate Phi nodes as we do so. | 
|  | void LoopUnswitch::SplitExitEdges(Loop *L, | 
|  | const SmallVectorImpl<BasicBlock *> &ExitBlocks){ | 
|  |  | 
|  | for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { | 
|  | BasicBlock *ExitBlock = ExitBlocks[i]; | 
|  | SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock), | 
|  | pred_end(ExitBlock)); | 
|  |  | 
|  | // Although SplitBlockPredecessors doesn't preserve loop-simplify in | 
|  | // general, if we call it on all predecessors of all exits then it does. | 
|  | SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, MSSAU.get(), | 
|  | /*PreserveLCSSA*/ true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// We determined that the loop is profitable to unswitch when LIC equal Val. | 
|  | /// Split it into loop versions and test the condition outside of either loop. | 
|  | /// Return the loops created as Out1/Out2. | 
|  | void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, | 
|  | Loop *L, Instruction *TI) { | 
|  | Function *F = loopHeader->getParent(); | 
|  | LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %" | 
|  | << loopHeader->getName() << " [" << L->getBlocks().size() | 
|  | << " blocks] in Function " << F->getName() << " when '" | 
|  | << *Val << "' == " << *LIC << "\n"); | 
|  |  | 
|  | // We are going to make essential changes to CFG. This may invalidate cached | 
|  | // information for L or one of its parent loops in SCEV. | 
|  | if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>()) | 
|  | SEWP->getSE().forgetTopmostLoop(L); | 
|  |  | 
|  | LoopBlocks.clear(); | 
|  | NewBlocks.clear(); | 
|  |  | 
|  | // First step, split the preheader and exit blocks, and add these blocks to | 
|  | // the LoopBlocks list. | 
|  | BasicBlock *NewPreheader = | 
|  | SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get()); | 
|  | LoopBlocks.push_back(NewPreheader); | 
|  |  | 
|  | // We want the loop to come after the preheader, but before the exit blocks. | 
|  | LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); | 
|  |  | 
|  | SmallVector<BasicBlock*, 8> ExitBlocks; | 
|  | L->getUniqueExitBlocks(ExitBlocks); | 
|  |  | 
|  | // Split all of the edges from inside the loop to their exit blocks.  Update | 
|  | // the appropriate Phi nodes as we do so. | 
|  | SplitExitEdges(L, ExitBlocks); | 
|  |  | 
|  | // The exit blocks may have been changed due to edge splitting, recompute. | 
|  | ExitBlocks.clear(); | 
|  | L->getUniqueExitBlocks(ExitBlocks); | 
|  |  | 
|  | // Add exit blocks to the loop blocks. | 
|  | LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end()); | 
|  |  | 
|  | // Next step, clone all of the basic blocks that make up the loop (including | 
|  | // the loop preheader and exit blocks), keeping track of the mapping between | 
|  | // the instructions and blocks. | 
|  | NewBlocks.reserve(LoopBlocks.size()); | 
|  | ValueToValueMapTy VMap; | 
|  | for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) { | 
|  | BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F); | 
|  |  | 
|  | NewBlocks.push_back(NewBB); | 
|  | VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping. | 
|  | LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L); | 
|  | } | 
|  |  | 
|  | // Splice the newly inserted blocks into the function right before the | 
|  | // original preheader. | 
|  | F->getBasicBlockList().splice(NewPreheader->getIterator(), | 
|  | F->getBasicBlockList(), | 
|  | NewBlocks[0]->getIterator(), F->end()); | 
|  |  | 
|  | // Now we create the new Loop object for the versioned loop. | 
|  | Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM); | 
|  |  | 
|  | // Recalculate unswitching quota, inherit simplified switches info for NewBB, | 
|  | // Probably clone more loop-unswitch related loop properties. | 
|  | BranchesInfo.cloneData(NewLoop, L, VMap); | 
|  |  | 
|  | Loop *ParentLoop = L->getParentLoop(); | 
|  | if (ParentLoop) { | 
|  | // Make sure to add the cloned preheader and exit blocks to the parent loop | 
|  | // as well. | 
|  | ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { | 
|  | BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]); | 
|  | // The new exit block should be in the same loop as the old one. | 
|  | if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i])) | 
|  | ExitBBLoop->addBasicBlockToLoop(NewExit, *LI); | 
|  |  | 
|  | assert(NewExit->getTerminator()->getNumSuccessors() == 1 && | 
|  | "Exit block should have been split to have one successor!"); | 
|  | BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); | 
|  |  | 
|  | // If the successor of the exit block had PHI nodes, add an entry for | 
|  | // NewExit. | 
|  | for (PHINode &PN : ExitSucc->phis()) { | 
|  | Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]); | 
|  | ValueToValueMapTy::iterator It = VMap.find(V); | 
|  | if (It != VMap.end()) V = It->second; | 
|  | PN.addIncoming(V, NewExit); | 
|  | } | 
|  |  | 
|  | if (LandingPadInst *LPad = NewExit->getLandingPadInst()) { | 
|  | PHINode *PN = PHINode::Create(LPad->getType(), 0, "", | 
|  | &*ExitSucc->getFirstInsertionPt()); | 
|  |  | 
|  | for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc); | 
|  | I != E; ++I) { | 
|  | BasicBlock *BB = *I; | 
|  | LandingPadInst *LPI = BB->getLandingPadInst(); | 
|  | LPI->replaceAllUsesWith(PN); | 
|  | PN->addIncoming(LPI, BB); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rewrite the code to refer to itself. | 
|  | for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) { | 
|  | for (Instruction &I : *NewBlocks[i]) { | 
|  | RemapInstruction(&I, VMap, | 
|  | RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); | 
|  | if (auto *II = dyn_cast<IntrinsicInst>(&I)) | 
|  | if (II->getIntrinsicID() == Intrinsic::assume) | 
|  | AC->registerAssumption(II); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rewrite the original preheader to select between versions of the loop. | 
|  | BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator()); | 
|  | assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] && | 
|  | "Preheader splitting did not work correctly!"); | 
|  |  | 
|  | if (MSSAU) { | 
|  | // Update MemorySSA after cloning, and before splitting to unreachables, | 
|  | // since that invalidates the 1:1 mapping of clones in VMap. | 
|  | LoopBlocksRPO LBRPO(L); | 
|  | LBRPO.perform(LI); | 
|  | MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, VMap); | 
|  | } | 
|  |  | 
|  | // Emit the new branch that selects between the two versions of this loop. | 
|  | EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR, | 
|  | TI); | 
|  | LPM->deleteSimpleAnalysisValue(OldBR, L); | 
|  | if (MSSAU) { | 
|  | // Update MemoryPhis in Exit blocks. | 
|  | MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMap, *DT); | 
|  | if (VerifyMemorySSA) | 
|  | MSSA->verifyMemorySSA(); | 
|  | } | 
|  |  | 
|  | // The OldBr was replaced by a new one and removed (but not erased) by | 
|  | // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it. | 
|  | delete OldBR; | 
|  |  | 
|  | LoopProcessWorklist.push_back(NewLoop); | 
|  | redoLoop = true; | 
|  |  | 
|  | // Keep a WeakTrackingVH holding onto LIC.  If the first call to | 
|  | // RewriteLoopBody | 
|  | // deletes the instruction (for example by simplifying a PHI that feeds into | 
|  | // the condition that we're unswitching on), we don't rewrite the second | 
|  | // iteration. | 
|  | WeakTrackingVH LICHandle(LIC); | 
|  |  | 
|  | // Now we rewrite the original code to know that the condition is true and the | 
|  | // new code to know that the condition is false. | 
|  | RewriteLoopBodyWithConditionConstant(L, LIC, Val, false); | 
|  |  | 
|  | // It's possible that simplifying one loop could cause the other to be | 
|  | // changed to another value or a constant.  If its a constant, don't simplify | 
|  | // it. | 
|  | if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop && | 
|  | LICHandle && !isa<Constant>(LICHandle)) | 
|  | RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true); | 
|  |  | 
|  | if (MSSA && VerifyMemorySSA) | 
|  | MSSA->verifyMemorySSA(); | 
|  | } | 
|  |  | 
|  | /// Remove all instances of I from the worklist vector specified. | 
|  | static void RemoveFromWorklist(Instruction *I, | 
|  | std::vector<Instruction*> &Worklist) { | 
|  |  | 
|  | Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I), | 
|  | Worklist.end()); | 
|  | } | 
|  |  | 
|  | /// When we find that I really equals V, remove I from the | 
|  | /// program, replacing all uses with V and update the worklist. | 
|  | static void ReplaceUsesOfWith(Instruction *I, Value *V, | 
|  | std::vector<Instruction*> &Worklist, | 
|  | Loop *L, LPPassManager *LPM) { | 
|  | LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n"); | 
|  |  | 
|  | // Add uses to the worklist, which may be dead now. | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | 
|  | if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) | 
|  | Worklist.push_back(Use); | 
|  |  | 
|  | // Add users to the worklist which may be simplified now. | 
|  | for (User *U : I->users()) | 
|  | Worklist.push_back(cast<Instruction>(U)); | 
|  | LPM->deleteSimpleAnalysisValue(I, L); | 
|  | RemoveFromWorklist(I, Worklist); | 
|  | I->replaceAllUsesWith(V); | 
|  | if (!I->mayHaveSideEffects()) | 
|  | I->eraseFromParent(); | 
|  | ++NumSimplify; | 
|  | } | 
|  |  | 
|  | /// We know either that the value LIC has the value specified by Val in the | 
|  | /// specified loop, or we know it does NOT have that value. | 
|  | /// Rewrite any uses of LIC or of properties correlated to it. | 
|  | void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, | 
|  | Constant *Val, | 
|  | bool IsEqual) { | 
|  | assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?"); | 
|  |  | 
|  | // FIXME: Support correlated properties, like: | 
|  | //  for (...) | 
|  | //    if (li1 < li2) | 
|  | //      ... | 
|  | //    if (li1 > li2) | 
|  | //      ... | 
|  |  | 
|  | // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches, | 
|  | // selects, switches. | 
|  | std::vector<Instruction*> Worklist; | 
|  | LLVMContext &Context = Val->getContext(); | 
|  |  | 
|  | // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC | 
|  | // in the loop with the appropriate one directly. | 
|  | if (IsEqual || (isa<ConstantInt>(Val) && | 
|  | Val->getType()->isIntegerTy(1))) { | 
|  | Value *Replacement; | 
|  | if (IsEqual) | 
|  | Replacement = Val; | 
|  | else | 
|  | Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()), | 
|  | !cast<ConstantInt>(Val)->getZExtValue()); | 
|  |  | 
|  | for (User *U : LIC->users()) { | 
|  | Instruction *UI = dyn_cast<Instruction>(U); | 
|  | if (!UI || !L->contains(UI)) | 
|  | continue; | 
|  | Worklist.push_back(UI); | 
|  | } | 
|  |  | 
|  | for (Instruction *UI : Worklist) | 
|  | UI->replaceUsesOfWith(LIC, Replacement); | 
|  |  | 
|  | SimplifyCode(Worklist, L); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, we don't know the precise value of LIC, but we do know that it | 
|  | // is certainly NOT "Val".  As such, simplify any uses in the loop that we | 
|  | // can.  This case occurs when we unswitch switch statements. | 
|  | for (User *U : LIC->users()) { | 
|  | Instruction *UI = dyn_cast<Instruction>(U); | 
|  | if (!UI || !L->contains(UI)) | 
|  | continue; | 
|  |  | 
|  | // At this point, we know LIC is definitely not Val. Try to use some simple | 
|  | // logic to simplify the user w.r.t. to the context. | 
|  | if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) { | 
|  | if (LI->replacementPreservesLCSSAForm(UI, Replacement)) { | 
|  | // This in-loop instruction has been simplified w.r.t. its context, | 
|  | // i.e. LIC != Val, make sure we propagate its replacement value to | 
|  | // all its users. | 
|  | // | 
|  | // We can not yet delete UI, the LIC user, yet, because that would invalidate | 
|  | // the LIC->users() iterator !. However, we can make this instruction | 
|  | // dead by replacing all its users and push it onto the worklist so that | 
|  | // it can be properly deleted and its operands simplified. | 
|  | UI->replaceAllUsesWith(Replacement); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is a LIC user, push it into the worklist so that SimplifyCode can | 
|  | // attempt to simplify it. | 
|  | Worklist.push_back(UI); | 
|  |  | 
|  | // If we know that LIC is not Val, use this info to simplify code. | 
|  | SwitchInst *SI = dyn_cast<SwitchInst>(UI); | 
|  | if (!SI || !isa<ConstantInt>(Val)) continue; | 
|  |  | 
|  | // NOTE: if a case value for the switch is unswitched out, we record it | 
|  | // after the unswitch finishes. We can not record it here as the switch | 
|  | // is not a direct user of the partial LIV. | 
|  | SwitchInst::CaseHandle DeadCase = | 
|  | *SI->findCaseValue(cast<ConstantInt>(Val)); | 
|  | // Default case is live for multiple values. | 
|  | if (DeadCase == *SI->case_default()) | 
|  | continue; | 
|  |  | 
|  | // Found a dead case value.  Don't remove PHI nodes in the | 
|  | // successor if they become single-entry, those PHI nodes may | 
|  | // be in the Users list. | 
|  |  | 
|  | BasicBlock *Switch = SI->getParent(); | 
|  | BasicBlock *SISucc = DeadCase.getCaseSuccessor(); | 
|  | BasicBlock *Latch = L->getLoopLatch(); | 
|  |  | 
|  | if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical. | 
|  | // If the DeadCase successor dominates the loop latch, then the | 
|  | // transformation isn't safe since it will delete the sole predecessor edge | 
|  | // to the latch. | 
|  | if (Latch && DT->dominates(SISucc, Latch)) | 
|  | continue; | 
|  |  | 
|  | // FIXME: This is a hack.  We need to keep the successor around | 
|  | // and hooked up so as to preserve the loop structure, because | 
|  | // trying to update it is complicated.  So instead we preserve the | 
|  | // loop structure and put the block on a dead code path. | 
|  | SplitEdge(Switch, SISucc, DT, LI, MSSAU.get()); | 
|  | // Compute the successors instead of relying on the return value | 
|  | // of SplitEdge, since it may have split the switch successor | 
|  | // after PHI nodes. | 
|  | BasicBlock *NewSISucc = DeadCase.getCaseSuccessor(); | 
|  | BasicBlock *OldSISucc = *succ_begin(NewSISucc); | 
|  | // Create an "unreachable" destination. | 
|  | BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable", | 
|  | Switch->getParent(), | 
|  | OldSISucc); | 
|  | new UnreachableInst(Context, Abort); | 
|  | // Force the new case destination to branch to the "unreachable" | 
|  | // block while maintaining a (dead) CFG edge to the old block. | 
|  | NewSISucc->getTerminator()->eraseFromParent(); | 
|  | BranchInst::Create(Abort, OldSISucc, | 
|  | ConstantInt::getTrue(Context), NewSISucc); | 
|  | // Release the PHI operands for this edge. | 
|  | for (PHINode &PN : NewSISucc->phis()) | 
|  | PN.setIncomingValue(PN.getBasicBlockIndex(Switch), | 
|  | UndefValue::get(PN.getType())); | 
|  | // Tell the domtree about the new block. We don't fully update the | 
|  | // domtree here -- instead we force it to do a full recomputation | 
|  | // after the pass is complete -- but we do need to inform it of | 
|  | // new blocks. | 
|  | DT->addNewBlock(Abort, NewSISucc); | 
|  | } | 
|  |  | 
|  | SimplifyCode(Worklist, L); | 
|  | } | 
|  |  | 
|  | /// Now that we have simplified some instructions in the loop, walk over it and | 
|  | /// constant prop, dce, and fold control flow where possible. Note that this is | 
|  | /// effectively a very simple loop-structure-aware optimizer. During processing | 
|  | /// of this loop, L could very well be deleted, so it must not be used. | 
|  | /// | 
|  | /// FIXME: When the loop optimizer is more mature, separate this out to a new | 
|  | /// pass. | 
|  | /// | 
|  | void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) { | 
|  | const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); | 
|  | while (!Worklist.empty()) { | 
|  | Instruction *I = Worklist.back(); | 
|  | Worklist.pop_back(); | 
|  |  | 
|  | // Simple DCE. | 
|  | if (isInstructionTriviallyDead(I)) { | 
|  | LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n"); | 
|  |  | 
|  | // Add uses to the worklist, which may be dead now. | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | 
|  | if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) | 
|  | Worklist.push_back(Use); | 
|  | LPM->deleteSimpleAnalysisValue(I, L); | 
|  | RemoveFromWorklist(I, Worklist); | 
|  | if (MSSAU) | 
|  | MSSAU->removeMemoryAccess(I); | 
|  | I->eraseFromParent(); | 
|  | ++NumSimplify; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // See if instruction simplification can hack this up.  This is common for | 
|  | // things like "select false, X, Y" after unswitching made the condition be | 
|  | // 'false'.  TODO: update the domtree properly so we can pass it here. | 
|  | if (Value *V = SimplifyInstruction(I, DL)) | 
|  | if (LI->replacementPreservesLCSSAForm(I, V)) { | 
|  | ReplaceUsesOfWith(I, V, Worklist, L, LPM); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Special case hacks that appear commonly in unswitched code. | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(I)) { | 
|  | if (BI->isUnconditional()) { | 
|  | // If BI's parent is the only pred of the successor, fold the two blocks | 
|  | // together. | 
|  | BasicBlock *Pred = BI->getParent(); | 
|  | BasicBlock *Succ = BI->getSuccessor(0); | 
|  | BasicBlock *SinglePred = Succ->getSinglePredecessor(); | 
|  | if (!SinglePred) continue;  // Nothing to do. | 
|  | assert(SinglePred == Pred && "CFG broken"); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- " | 
|  | << Succ->getName() << "\n"); | 
|  |  | 
|  | // Resolve any single entry PHI nodes in Succ. | 
|  | while (PHINode *PN = dyn_cast<PHINode>(Succ->begin())) | 
|  | ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM); | 
|  |  | 
|  | // If Succ has any successors with PHI nodes, update them to have | 
|  | // entries coming from Pred instead of Succ. | 
|  | Succ->replaceAllUsesWith(Pred); | 
|  |  | 
|  | // Move all of the successor contents from Succ to Pred. | 
|  | Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(), | 
|  | Succ->begin(), Succ->end()); | 
|  | if (MSSAU) | 
|  | MSSAU->moveAllAfterMergeBlocks(Succ, Pred, BI); | 
|  | LPM->deleteSimpleAnalysisValue(BI, L); | 
|  | RemoveFromWorklist(BI, Worklist); | 
|  | BI->eraseFromParent(); | 
|  |  | 
|  | // Remove Succ from the loop tree. | 
|  | LI->removeBlock(Succ); | 
|  | LPM->deleteSimpleAnalysisValue(Succ, L); | 
|  | Succ->eraseFromParent(); | 
|  | ++NumSimplify; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Simple simplifications we can do given the information that Cond is | 
|  | /// definitely not equal to Val. | 
|  | Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst, | 
|  | Value *Invariant, | 
|  | Constant *Val) { | 
|  | // icmp eq cond, val -> false | 
|  | ICmpInst *CI = dyn_cast<ICmpInst>(Inst); | 
|  | if (CI && CI->isEquality()) { | 
|  | Value *Op0 = CI->getOperand(0); | 
|  | Value *Op1 = CI->getOperand(1); | 
|  | if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) { | 
|  | LLVMContext &Ctx = Inst->getContext(); | 
|  | if (CI->getPredicate() == CmpInst::ICMP_EQ) | 
|  | return ConstantInt::getFalse(Ctx); | 
|  | else | 
|  | return ConstantInt::getTrue(Ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: there may be other opportunities, e.g. comparison with floating | 
|  | // point, or Invariant - Val != 0, etc. | 
|  | return nullptr; | 
|  | } |