|  | //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the DAG Matcher optimizer. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "DAGISelMatcher.h" | 
|  | #include "CodeGenDAGPatterns.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/StringSet.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "isel-opt" | 
|  |  | 
|  | /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record' | 
|  | /// into single compound nodes like RecordChild. | 
|  | static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr, | 
|  | const CodeGenDAGPatterns &CGP) { | 
|  | // If we reached the end of the chain, we're done. | 
|  | Matcher *N = MatcherPtr.get(); | 
|  | if (!N) return; | 
|  |  | 
|  | // If we have a scope node, walk down all of the children. | 
|  | if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) { | 
|  | for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { | 
|  | std::unique_ptr<Matcher> Child(Scope->takeChild(i)); | 
|  | ContractNodes(Child, CGP); | 
|  | Scope->resetChild(i, Child.release()); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If we found a movechild node with a node that comes in a 'foochild' form, | 
|  | // transform it. | 
|  | if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) { | 
|  | Matcher *New = nullptr; | 
|  | if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext())) | 
|  | if (MC->getChildNo() < 8)  // Only have RecordChild0...7 | 
|  | New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(), | 
|  | RM->getResultNo()); | 
|  |  | 
|  | if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext())) | 
|  | if (MC->getChildNo() < 8 &&  // Only have CheckChildType0...7 | 
|  | CT->getResNo() == 0)     // CheckChildType checks res #0 | 
|  | New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType()); | 
|  |  | 
|  | if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext())) | 
|  | if (MC->getChildNo() < 4)  // Only have CheckChildSame0...3 | 
|  | New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber()); | 
|  |  | 
|  | if (CheckIntegerMatcher *CS = dyn_cast<CheckIntegerMatcher>(MC->getNext())) | 
|  | if (MC->getChildNo() < 5)  // Only have CheckChildInteger0...4 | 
|  | New = new CheckChildIntegerMatcher(MC->getChildNo(), CS->getValue()); | 
|  |  | 
|  | if (New) { | 
|  | // Insert the new node. | 
|  | New->setNext(MatcherPtr.release()); | 
|  | MatcherPtr.reset(New); | 
|  | // Remove the old one. | 
|  | MC->setNext(MC->getNext()->takeNext()); | 
|  | return ContractNodes(MatcherPtr, CGP); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Zap movechild -> moveparent. | 
|  | if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) | 
|  | if (MoveParentMatcher *MP = | 
|  | dyn_cast<MoveParentMatcher>(MC->getNext())) { | 
|  | MatcherPtr.reset(MP->takeNext()); | 
|  | return ContractNodes(MatcherPtr, CGP); | 
|  | } | 
|  |  | 
|  | // Turn EmitNode->MarkFlagResults->CompleteMatch into | 
|  | // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage | 
|  | // MorphNodeTo formation.  This is safe because MarkFlagResults never refers | 
|  | // to the root of the pattern. | 
|  | if (isa<EmitNodeMatcher>(N) && isa<MarkGlueResultsMatcher>(N->getNext()) && | 
|  | isa<CompleteMatchMatcher>(N->getNext()->getNext())) { | 
|  | // Unlink the two nodes from the list. | 
|  | Matcher *EmitNode = MatcherPtr.release(); | 
|  | Matcher *MFR = EmitNode->takeNext(); | 
|  | Matcher *Tail = MFR->takeNext(); | 
|  |  | 
|  | // Relink them. | 
|  | MatcherPtr.reset(MFR); | 
|  | MFR->setNext(EmitNode); | 
|  | EmitNode->setNext(Tail); | 
|  | return ContractNodes(MatcherPtr, CGP); | 
|  | } | 
|  |  | 
|  | // Turn EmitNode->CompleteMatch into MorphNodeTo if we can. | 
|  | if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N)) | 
|  | if (CompleteMatchMatcher *CM = | 
|  | dyn_cast<CompleteMatchMatcher>(EN->getNext())) { | 
|  | // We can only use MorphNodeTo if the result values match up. | 
|  | unsigned RootResultFirst = EN->getFirstResultSlot(); | 
|  | bool ResultsMatch = true; | 
|  | for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i) | 
|  | if (CM->getResult(i) != RootResultFirst+i) | 
|  | ResultsMatch = false; | 
|  |  | 
|  | // If the selected node defines a subset of the glue/chain results, we | 
|  | // can't use MorphNodeTo.  For example, we can't use MorphNodeTo if the | 
|  | // matched pattern has a chain but the root node doesn't. | 
|  | const PatternToMatch &Pattern = CM->getPattern(); | 
|  |  | 
|  | if (!EN->hasChain() && | 
|  | Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP)) | 
|  | ResultsMatch = false; | 
|  |  | 
|  | // If the matched node has glue and the output root doesn't, we can't | 
|  | // use MorphNodeTo. | 
|  | // | 
|  | // NOTE: Strictly speaking, we don't have to check for glue here | 
|  | // because the code in the pattern generator doesn't handle it right.  We | 
|  | // do it anyway for thoroughness. | 
|  | if (!EN->hasOutFlag() && | 
|  | Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP)) | 
|  | ResultsMatch = false; | 
|  |  | 
|  |  | 
|  | // If the root result node defines more results than the source root node | 
|  | // *and* has a chain or glue input, then we can't match it because it | 
|  | // would end up replacing the extra result with the chain/glue. | 
|  | #if 0 | 
|  | if ((EN->hasGlue() || EN->hasChain()) && | 
|  | EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...) | 
|  | ResultMatch = false; | 
|  | #endif | 
|  |  | 
|  | if (ResultsMatch) { | 
|  | const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList(); | 
|  | const SmallVectorImpl<unsigned> &Operands = EN->getOperandList(); | 
|  | MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(), | 
|  | VTs, Operands, | 
|  | EN->hasChain(), EN->hasInFlag(), | 
|  | EN->hasOutFlag(), | 
|  | EN->hasMemRefs(), | 
|  | EN->getNumFixedArityOperands(), | 
|  | Pattern)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode | 
|  | // variants. | 
|  | } | 
|  |  | 
|  | ContractNodes(N->getNextPtr(), CGP); | 
|  |  | 
|  |  | 
|  | // If we have a CheckType/CheckChildType/Record node followed by a | 
|  | // CheckOpcode, invert the two nodes.  We prefer to do structural checks | 
|  | // before type checks, as this opens opportunities for factoring on targets | 
|  | // like X86 where many operations are valid on multiple types. | 
|  | if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) || | 
|  | isa<RecordMatcher>(N)) && | 
|  | isa<CheckOpcodeMatcher>(N->getNext())) { | 
|  | // Unlink the two nodes from the list. | 
|  | Matcher *CheckType = MatcherPtr.release(); | 
|  | Matcher *CheckOpcode = CheckType->takeNext(); | 
|  | Matcher *Tail = CheckOpcode->takeNext(); | 
|  |  | 
|  | // Relink them. | 
|  | MatcherPtr.reset(CheckOpcode); | 
|  | CheckOpcode->setNext(CheckType); | 
|  | CheckType->setNext(Tail); | 
|  | return ContractNodes(MatcherPtr, CGP); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// SinkPatternPredicates - Pattern predicates can be checked at any level of | 
|  | /// the matching tree.  The generator dumps them at the top level of the pattern | 
|  | /// though, which prevents factoring from being able to see past them.  This | 
|  | /// optimization sinks them as far down into the pattern as possible. | 
|  | /// | 
|  | /// Conceptually, we'd like to sink these predicates all the way to the last | 
|  | /// matcher predicate in the series.  However, it turns out that some | 
|  | /// ComplexPatterns have side effects on the graph, so we really don't want to | 
|  | /// run a complex pattern if the pattern predicate will fail.  For this | 
|  | /// reason, we refuse to sink the pattern predicate past a ComplexPattern. | 
|  | /// | 
|  | static void SinkPatternPredicates(std::unique_ptr<Matcher> &MatcherPtr) { | 
|  | // Recursively scan for a PatternPredicate. | 
|  | // If we reached the end of the chain, we're done. | 
|  | Matcher *N = MatcherPtr.get(); | 
|  | if (!N) return; | 
|  |  | 
|  | // Walk down all members of a scope node. | 
|  | if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) { | 
|  | for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { | 
|  | std::unique_ptr<Matcher> Child(Scope->takeChild(i)); | 
|  | SinkPatternPredicates(Child); | 
|  | Scope->resetChild(i, Child.release()); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this node isn't a CheckPatternPredicateMatcher we keep scanning until | 
|  | // we find one. | 
|  | CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N); | 
|  | if (!CPPM) | 
|  | return SinkPatternPredicates(N->getNextPtr()); | 
|  |  | 
|  | // Ok, we found one, lets try to sink it. Check if we can sink it past the | 
|  | // next node in the chain.  If not, we won't be able to change anything and | 
|  | // might as well bail. | 
|  | if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate()) | 
|  | return; | 
|  |  | 
|  | // Okay, we know we can sink it past at least one node.  Unlink it from the | 
|  | // chain and scan for the new insertion point. | 
|  | MatcherPtr.release();  // Don't delete CPPM. | 
|  | MatcherPtr.reset(CPPM->takeNext()); | 
|  |  | 
|  | N = MatcherPtr.get(); | 
|  | while (N->getNext()->isSafeToReorderWithPatternPredicate()) | 
|  | N = N->getNext(); | 
|  |  | 
|  | // At this point, we want to insert CPPM after N. | 
|  | CPPM->setNext(N->takeNext()); | 
|  | N->setNext(CPPM); | 
|  | } | 
|  |  | 
|  | /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a | 
|  | /// specified kind.  Return null if we didn't find one otherwise return the | 
|  | /// matcher. | 
|  | static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) { | 
|  | for (; M; M = M->getNext()) | 
|  | if (M->getKind() == Kind) | 
|  | return M; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// FactorNodes - Turn matches like this: | 
|  | ///   Scope | 
|  | ///     OPC_CheckType i32 | 
|  | ///       ABC | 
|  | ///     OPC_CheckType i32 | 
|  | ///       XYZ | 
|  | /// into: | 
|  | ///   OPC_CheckType i32 | 
|  | ///     Scope | 
|  | ///       ABC | 
|  | ///       XYZ | 
|  | /// | 
|  | static void FactorNodes(std::unique_ptr<Matcher> &MatcherPtr) { | 
|  | // If we reached the end of the chain, we're done. | 
|  | Matcher *N = MatcherPtr.get(); | 
|  | if (!N) return; | 
|  |  | 
|  | // If this is not a push node, just scan for one. | 
|  | ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N); | 
|  | if (!Scope) | 
|  | return FactorNodes(N->getNextPtr()); | 
|  |  | 
|  | // Okay, pull together the children of the scope node into a vector so we can | 
|  | // inspect it more easily.  While we're at it, bucket them up by the hash | 
|  | // code of their first predicate. | 
|  | SmallVector<Matcher*, 32> OptionsToMatch; | 
|  |  | 
|  | for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { | 
|  | // Factor the subexpression. | 
|  | std::unique_ptr<Matcher> Child(Scope->takeChild(i)); | 
|  | FactorNodes(Child); | 
|  |  | 
|  | if (Matcher *N = Child.release()) | 
|  | OptionsToMatch.push_back(N); | 
|  | } | 
|  |  | 
|  | SmallVector<Matcher*, 32> NewOptionsToMatch; | 
|  |  | 
|  | // Loop over options to match, merging neighboring patterns with identical | 
|  | // starting nodes into a shared matcher. | 
|  | for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) { | 
|  | // Find the set of matchers that start with this node. | 
|  | Matcher *Optn = OptionsToMatch[OptionIdx++]; | 
|  |  | 
|  | if (OptionIdx == e) { | 
|  | NewOptionsToMatch.push_back(Optn); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // See if the next option starts with the same matcher.  If the two | 
|  | // neighbors *do* start with the same matcher, we can factor the matcher out | 
|  | // of at least these two patterns.  See what the maximal set we can merge | 
|  | // together is. | 
|  | SmallVector<Matcher*, 8> EqualMatchers; | 
|  | EqualMatchers.push_back(Optn); | 
|  |  | 
|  | // Factor all of the known-equal matchers after this one into the same | 
|  | // group. | 
|  | while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn)) | 
|  | EqualMatchers.push_back(OptionsToMatch[OptionIdx++]); | 
|  |  | 
|  | // If we found a non-equal matcher, see if it is contradictory with the | 
|  | // current node.  If so, we know that the ordering relation between the | 
|  | // current sets of nodes and this node don't matter.  Look past it to see if | 
|  | // we can merge anything else into this matching group. | 
|  | unsigned Scan = OptionIdx; | 
|  | while (1) { | 
|  | // If we ran out of stuff to scan, we're done. | 
|  | if (Scan == e) break; | 
|  |  | 
|  | Matcher *ScanMatcher = OptionsToMatch[Scan]; | 
|  |  | 
|  | // If we found an entry that matches out matcher, merge it into the set to | 
|  | // handle. | 
|  | if (Optn->isEqual(ScanMatcher)) { | 
|  | // If is equal after all, add the option to EqualMatchers and remove it | 
|  | // from OptionsToMatch. | 
|  | EqualMatchers.push_back(ScanMatcher); | 
|  | OptionsToMatch.erase(OptionsToMatch.begin()+Scan); | 
|  | --e; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the option we're checking for contradicts the start of the list, | 
|  | // skip over it. | 
|  | if (Optn->isContradictory(ScanMatcher)) { | 
|  | ++Scan; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we're scanning for a simple node, see if it occurs later in the | 
|  | // sequence.  If so, and if we can move it up, it might be contradictory | 
|  | // or the same as what we're looking for.  If so, reorder it. | 
|  | if (Optn->isSimplePredicateOrRecordNode()) { | 
|  | Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind()); | 
|  | if (M2 && M2 != ScanMatcher && | 
|  | M2->canMoveBefore(ScanMatcher) && | 
|  | (M2->isEqual(Optn) || M2->isContradictory(Optn))) { | 
|  | Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2); | 
|  | M2->setNext(MatcherWithoutM2); | 
|  | OptionsToMatch[Scan] = M2; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we don't know how to handle this entry, we have to bail. | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Scan != e && | 
|  | // Don't print it's obvious nothing extra could be merged anyway. | 
|  | Scan+1 != e) { | 
|  | DEBUG(errs() << "Couldn't merge this:\n"; | 
|  | Optn->print(errs(), 4); | 
|  | errs() << "into this:\n"; | 
|  | OptionsToMatch[Scan]->print(errs(), 4); | 
|  | if (Scan+1 != e) | 
|  | OptionsToMatch[Scan+1]->printOne(errs()); | 
|  | if (Scan+2 < e) | 
|  | OptionsToMatch[Scan+2]->printOne(errs()); | 
|  | errs() << "\n"); | 
|  | } | 
|  |  | 
|  | // If we only found one option starting with this matcher, no factoring is | 
|  | // possible. | 
|  | if (EqualMatchers.size() == 1) { | 
|  | NewOptionsToMatch.push_back(EqualMatchers[0]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Factor these checks by pulling the first node off each entry and | 
|  | // discarding it.  Take the first one off the first entry to reuse. | 
|  | Matcher *Shared = Optn; | 
|  | Optn = Optn->takeNext(); | 
|  | EqualMatchers[0] = Optn; | 
|  |  | 
|  | // Remove and delete the first node from the other matchers we're factoring. | 
|  | for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) { | 
|  | Matcher *Tmp = EqualMatchers[i]->takeNext(); | 
|  | delete EqualMatchers[i]; | 
|  | EqualMatchers[i] = Tmp; | 
|  | } | 
|  |  | 
|  | Shared->setNext(new ScopeMatcher(EqualMatchers)); | 
|  |  | 
|  | // Recursively factor the newly created node. | 
|  | FactorNodes(Shared->getNextPtr()); | 
|  |  | 
|  | NewOptionsToMatch.push_back(Shared); | 
|  | } | 
|  |  | 
|  | // If we're down to a single pattern to match, then we don't need this scope | 
|  | // anymore. | 
|  | if (NewOptionsToMatch.size() == 1) { | 
|  | MatcherPtr.reset(NewOptionsToMatch[0]); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (NewOptionsToMatch.empty()) { | 
|  | MatcherPtr.reset(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If our factoring failed (didn't achieve anything) see if we can simplify in | 
|  | // other ways. | 
|  |  | 
|  | // Check to see if all of the leading entries are now opcode checks.  If so, | 
|  | // we can convert this Scope to be a OpcodeSwitch instead. | 
|  | bool AllOpcodeChecks = true, AllTypeChecks = true; | 
|  | for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { | 
|  | // Check to see if this breaks a series of CheckOpcodeMatchers. | 
|  | if (AllOpcodeChecks && | 
|  | !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) { | 
|  | #if 0 | 
|  | if (i > 3) { | 
|  | errs() << "FAILING OPC #" << i << "\n"; | 
|  | NewOptionsToMatch[i]->dump(); | 
|  | } | 
|  | #endif | 
|  | AllOpcodeChecks = false; | 
|  | } | 
|  |  | 
|  | // Check to see if this breaks a series of CheckTypeMatcher's. | 
|  | if (AllTypeChecks) { | 
|  | CheckTypeMatcher *CTM = | 
|  | cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i], | 
|  | Matcher::CheckType)); | 
|  | if (!CTM || | 
|  | // iPTR checks could alias any other case without us knowing, don't | 
|  | // bother with them. | 
|  | CTM->getType() == MVT::iPTR || | 
|  | // SwitchType only works for result #0. | 
|  | CTM->getResNo() != 0 || | 
|  | // If the CheckType isn't at the start of the list, see if we can move | 
|  | // it there. | 
|  | !CTM->canMoveBefore(NewOptionsToMatch[i])) { | 
|  | #if 0 | 
|  | if (i > 3 && AllTypeChecks) { | 
|  | errs() << "FAILING TYPE #" << i << "\n"; | 
|  | NewOptionsToMatch[i]->dump(); | 
|  | } | 
|  | #endif | 
|  | AllTypeChecks = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot. | 
|  | if (AllOpcodeChecks) { | 
|  | StringSet<> Opcodes; | 
|  | SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases; | 
|  | for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { | 
|  | CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]); | 
|  | assert(Opcodes.insert(COM->getOpcode().getEnumName()).second && | 
|  | "Duplicate opcodes not factored?"); | 
|  | Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext())); | 
|  | } | 
|  |  | 
|  | MatcherPtr.reset(new SwitchOpcodeMatcher(Cases)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If all the options are CheckType's, we can form the SwitchType, woot. | 
|  | if (AllTypeChecks) { | 
|  | DenseMap<unsigned, unsigned> TypeEntry; | 
|  | SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases; | 
|  | for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { | 
|  | CheckTypeMatcher *CTM = | 
|  | cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i], | 
|  | Matcher::CheckType)); | 
|  | Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM); | 
|  | MVT::SimpleValueType CTMTy = CTM->getType(); | 
|  | delete CTM; | 
|  |  | 
|  | unsigned &Entry = TypeEntry[CTMTy]; | 
|  | if (Entry != 0) { | 
|  | // If we have unfactored duplicate types, then we should factor them. | 
|  | Matcher *PrevMatcher = Cases[Entry-1].second; | 
|  | if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) { | 
|  | SM->setNumChildren(SM->getNumChildren()+1); | 
|  | SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM }; | 
|  | Cases[Entry-1].second = new ScopeMatcher(Entries); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Entry = Cases.size()+1; | 
|  | Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM)); | 
|  | } | 
|  |  | 
|  | if (Cases.size() != 1) { | 
|  | MatcherPtr.reset(new SwitchTypeMatcher(Cases)); | 
|  | } else { | 
|  | // If we factored and ended up with one case, create it now. | 
|  | MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0)); | 
|  | MatcherPtr->setNext(Cases[0].second); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Reassemble the Scope node with the adjusted children. | 
|  | Scope->setNumChildren(NewOptionsToMatch.size()); | 
|  | for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) | 
|  | Scope->resetChild(i, NewOptionsToMatch[i]); | 
|  | } | 
|  |  | 
|  | Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher, | 
|  | const CodeGenDAGPatterns &CGP) { | 
|  | std::unique_ptr<Matcher> MatcherPtr(TheMatcher); | 
|  | ContractNodes(MatcherPtr, CGP); | 
|  | SinkPatternPredicates(MatcherPtr); | 
|  | FactorNodes(MatcherPtr); | 
|  | return MatcherPtr.release(); | 
|  | } |