|  | //===- InstCombineMulDivRem.cpp -------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv, | 
|  | // srem, urem, frem. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombineInternal.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" | 
|  | #include "llvm/Transforms/Utils/BuildLibCalls.h" | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "instcombine" | 
|  |  | 
|  | /// The specific integer value is used in a context where it is known to be | 
|  | /// non-zero.  If this allows us to simplify the computation, do so and return | 
|  | /// the new operand, otherwise return null. | 
|  | static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC, | 
|  | Instruction &CxtI) { | 
|  | // If V has multiple uses, then we would have to do more analysis to determine | 
|  | // if this is safe.  For example, the use could be in dynamically unreached | 
|  | // code. | 
|  | if (!V->hasOneUse()) return nullptr; | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // ((1 << A) >>u B) --> (1 << (A-B)) | 
|  | // Because V cannot be zero, we know that B is less than A. | 
|  | Value *A = nullptr, *B = nullptr, *One = nullptr; | 
|  | if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) && | 
|  | match(One, m_One())) { | 
|  | A = IC.Builder.CreateSub(A, B); | 
|  | return IC.Builder.CreateShl(One, A); | 
|  | } | 
|  |  | 
|  | // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it | 
|  | // inexact.  Similarly for <<. | 
|  | BinaryOperator *I = dyn_cast<BinaryOperator>(V); | 
|  | if (I && I->isLogicalShift() && | 
|  | IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) { | 
|  | // We know that this is an exact/nuw shift and that the input is a | 
|  | // non-zero context as well. | 
|  | if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) { | 
|  | I->setOperand(0, V2); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | if (I->getOpcode() == Instruction::LShr && !I->isExact()) { | 
|  | I->setIsExact(); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { | 
|  | I->setHasNoUnsignedWrap(); | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: Lots more we could do here: | 
|  | //    If V is a phi node, we can call this on each of its operands. | 
|  | //    "select cond, X, 0" can simplify to "X". | 
|  |  | 
|  | return MadeChange ? V : nullptr; | 
|  | } | 
|  |  | 
|  | /// A helper routine of InstCombiner::visitMul(). | 
|  | /// | 
|  | /// If C is a scalar/vector of known powers of 2, then this function returns | 
|  | /// a new scalar/vector obtained from logBase2 of C. | 
|  | /// Return a null pointer otherwise. | 
|  | static Constant *getLogBase2(Type *Ty, Constant *C) { | 
|  | const APInt *IVal; | 
|  | if (match(C, m_APInt(IVal)) && IVal->isPowerOf2()) | 
|  | return ConstantInt::get(Ty, IVal->logBase2()); | 
|  |  | 
|  | if (!Ty->isVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | SmallVector<Constant *, 4> Elts; | 
|  | for (unsigned I = 0, E = Ty->getVectorNumElements(); I != E; ++I) { | 
|  | Constant *Elt = C->getAggregateElement(I); | 
|  | if (!Elt) | 
|  | return nullptr; | 
|  | if (isa<UndefValue>(Elt)) { | 
|  | Elts.push_back(UndefValue::get(Ty->getScalarType())); | 
|  | continue; | 
|  | } | 
|  | if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) | 
|  | return nullptr; | 
|  | Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2())); | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(Elts); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitMul(BinaryOperator &I) { | 
|  | if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1), | 
|  | SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (SimplifyAssociativeOrCommutative(I)) | 
|  | return &I; | 
|  |  | 
|  | if (Instruction *X = foldVectorBinop(I)) | 
|  | return X; | 
|  |  | 
|  | if (Value *V = SimplifyUsingDistributiveLaws(I)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | // X * -1 == 0 - X | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | if (match(Op1, m_AllOnes())) { | 
|  | BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName()); | 
|  | if (I.hasNoSignedWrap()) | 
|  | BO->setHasNoSignedWrap(); | 
|  | return BO; | 
|  | } | 
|  |  | 
|  | // Also allow combining multiply instructions on vectors. | 
|  | { | 
|  | Value *NewOp; | 
|  | Constant *C1, *C2; | 
|  | const APInt *IVal; | 
|  | if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)), | 
|  | m_Constant(C1))) && | 
|  | match(C1, m_APInt(IVal))) { | 
|  | // ((X << C2)*C1) == (X * (C1 << C2)) | 
|  | Constant *Shl = ConstantExpr::getShl(C1, C2); | 
|  | BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0)); | 
|  | BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl); | 
|  | if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap()) | 
|  | BO->setHasNoUnsignedWrap(); | 
|  | if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() && | 
|  | Shl->isNotMinSignedValue()) | 
|  | BO->setHasNoSignedWrap(); | 
|  | return BO; | 
|  | } | 
|  |  | 
|  | if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) { | 
|  | // Replace X*(2^C) with X << C, where C is either a scalar or a vector. | 
|  | if (Constant *NewCst = getLogBase2(NewOp->getType(), C1)) { | 
|  | BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst); | 
|  |  | 
|  | if (I.hasNoUnsignedWrap()) | 
|  | Shl->setHasNoUnsignedWrap(); | 
|  | if (I.hasNoSignedWrap()) { | 
|  | const APInt *V; | 
|  | if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1) | 
|  | Shl->setHasNoSignedWrap(); | 
|  | } | 
|  |  | 
|  | return Shl; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n | 
|  | // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n | 
|  | // The "* (2**n)" thus becomes a potential shifting opportunity. | 
|  | { | 
|  | const APInt &   Val = CI->getValue(); | 
|  | const APInt &PosVal = Val.abs(); | 
|  | if (Val.isNegative() && PosVal.isPowerOf2()) { | 
|  | Value *X = nullptr, *Y = nullptr; | 
|  | if (Op0->hasOneUse()) { | 
|  | ConstantInt *C1; | 
|  | Value *Sub = nullptr; | 
|  | if (match(Op0, m_Sub(m_Value(Y), m_Value(X)))) | 
|  | Sub = Builder.CreateSub(X, Y, "suba"); | 
|  | else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1)))) | 
|  | Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc"); | 
|  | if (Sub) | 
|  | return | 
|  | BinaryOperator::CreateMul(Sub, | 
|  | ConstantInt::get(Y->getType(), PosVal)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) | 
|  | return FoldedMul; | 
|  |  | 
|  | // Simplify mul instructions with a constant RHS. | 
|  | if (isa<Constant>(Op1)) { | 
|  | // Canonicalize (X+C1)*CI -> X*CI+C1*CI. | 
|  | Value *X; | 
|  | Constant *C1; | 
|  | if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) { | 
|  | Value *Mul = Builder.CreateMul(C1, Op1); | 
|  | // Only go forward with the transform if C1*CI simplifies to a tidier | 
|  | // constant. | 
|  | if (!match(Mul, m_Mul(m_Value(), m_Value()))) | 
|  | return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul); | 
|  | } | 
|  | } | 
|  |  | 
|  | // -X * C --> X * -C | 
|  | Value *X, *Y; | 
|  | Constant *Op1C; | 
|  | if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C))) | 
|  | return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C)); | 
|  |  | 
|  | // -X * -Y --> X * Y | 
|  | if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) { | 
|  | auto *NewMul = BinaryOperator::CreateMul(X, Y); | 
|  | if (I.hasNoSignedWrap() && | 
|  | cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() && | 
|  | cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap()) | 
|  | NewMul->setHasNoSignedWrap(); | 
|  | return NewMul; | 
|  | } | 
|  |  | 
|  | // -X * Y --> -(X * Y) | 
|  | // X * -Y --> -(X * Y) | 
|  | if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y)))) | 
|  | return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y)); | 
|  |  | 
|  | // (X / Y) *  Y = X - (X % Y) | 
|  | // (X / Y) * -Y = (X % Y) - X | 
|  | { | 
|  | Value *Y = Op1; | 
|  | BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0); | 
|  | if (!Div || (Div->getOpcode() != Instruction::UDiv && | 
|  | Div->getOpcode() != Instruction::SDiv)) { | 
|  | Y = Op0; | 
|  | Div = dyn_cast<BinaryOperator>(Op1); | 
|  | } | 
|  | Value *Neg = dyn_castNegVal(Y); | 
|  | if (Div && Div->hasOneUse() && | 
|  | (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) && | 
|  | (Div->getOpcode() == Instruction::UDiv || | 
|  | Div->getOpcode() == Instruction::SDiv)) { | 
|  | Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1); | 
|  |  | 
|  | // If the division is exact, X % Y is zero, so we end up with X or -X. | 
|  | if (Div->isExact()) { | 
|  | if (DivOp1 == Y) | 
|  | return replaceInstUsesWith(I, X); | 
|  | return BinaryOperator::CreateNeg(X); | 
|  | } | 
|  |  | 
|  | auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem | 
|  | : Instruction::SRem; | 
|  | Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1); | 
|  | if (DivOp1 == Y) | 
|  | return BinaryOperator::CreateSub(X, Rem); | 
|  | return BinaryOperator::CreateSub(Rem, X); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// i1 mul -> i1 and. | 
|  | if (I.getType()->isIntOrIntVectorTy(1)) | 
|  | return BinaryOperator::CreateAnd(Op0, Op1); | 
|  |  | 
|  | // X*(1 << Y) --> X << Y | 
|  | // (1 << Y)*X --> X << Y | 
|  | { | 
|  | Value *Y; | 
|  | BinaryOperator *BO = nullptr; | 
|  | bool ShlNSW = false; | 
|  | if (match(Op0, m_Shl(m_One(), m_Value(Y)))) { | 
|  | BO = BinaryOperator::CreateShl(Op1, Y); | 
|  | ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap(); | 
|  | } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) { | 
|  | BO = BinaryOperator::CreateShl(Op0, Y); | 
|  | ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap(); | 
|  | } | 
|  | if (BO) { | 
|  | if (I.hasNoUnsignedWrap()) | 
|  | BO->setHasNoUnsignedWrap(); | 
|  | if (I.hasNoSignedWrap() && ShlNSW) | 
|  | BO->setHasNoSignedWrap(); | 
|  | return BO; | 
|  | } | 
|  | } | 
|  |  | 
|  | // (bool X) * Y --> X ? Y : 0 | 
|  | // Y * (bool X) --> X ? Y : 0 | 
|  | if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) | 
|  | return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0)); | 
|  | if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) | 
|  | return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0)); | 
|  |  | 
|  | // (lshr X, 31) * Y --> (ashr X, 31) & Y | 
|  | // Y * (lshr X, 31) --> (ashr X, 31) & Y | 
|  | // TODO: We are not checking one-use because the elimination of the multiply | 
|  | //       is better for analysis? | 
|  | // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be | 
|  | //       more similar to what we're doing above. | 
|  | const APInt *C; | 
|  | if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1) | 
|  | return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1); | 
|  | if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1) | 
|  | return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0); | 
|  |  | 
|  | if (Instruction *Ext = narrowMathIfNoOverflow(I)) | 
|  | return Ext; | 
|  |  | 
|  | bool Changed = false; | 
|  | if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) { | 
|  | Changed = true; | 
|  | I.setHasNoSignedWrap(true); | 
|  | } | 
|  |  | 
|  | if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) { | 
|  | Changed = true; | 
|  | I.setHasNoUnsignedWrap(true); | 
|  | } | 
|  |  | 
|  | return Changed ? &I : nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFMul(BinaryOperator &I) { | 
|  | if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1), | 
|  | I.getFastMathFlags(), | 
|  | SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (SimplifyAssociativeOrCommutative(I)) | 
|  | return &I; | 
|  |  | 
|  | if (Instruction *X = foldVectorBinop(I)) | 
|  | return X; | 
|  |  | 
|  | if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) | 
|  | return FoldedMul; | 
|  |  | 
|  | // X * -1.0 --> -X | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | if (match(Op1, m_SpecificFP(-1.0))) | 
|  | return BinaryOperator::CreateFNegFMF(Op0, &I); | 
|  |  | 
|  | // -X * -Y --> X * Y | 
|  | Value *X, *Y; | 
|  | if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) | 
|  | return BinaryOperator::CreateFMulFMF(X, Y, &I); | 
|  |  | 
|  | // -X * C --> X * -C | 
|  | Constant *C; | 
|  | if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C))) | 
|  | return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); | 
|  |  | 
|  | // Sink negation: -X * Y --> -(X * Y) | 
|  | if (match(Op0, m_OneUse(m_FNeg(m_Value(X))))) | 
|  | return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op1, &I), &I); | 
|  |  | 
|  | // Sink negation: Y * -X --> -(X * Y) | 
|  | if (match(Op1, m_OneUse(m_FNeg(m_Value(X))))) | 
|  | return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op0, &I), &I); | 
|  |  | 
|  | // fabs(X) * fabs(X) -> X * X | 
|  | if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X)))) | 
|  | return BinaryOperator::CreateFMulFMF(X, X, &I); | 
|  |  | 
|  | // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E) | 
|  | if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (I.hasAllowReassoc()) { | 
|  | // Reassociate constant RHS with another constant to form constant | 
|  | // expression. | 
|  | if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) { | 
|  | Constant *C1; | 
|  | if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) { | 
|  | // (C1 / X) * C --> (C * C1) / X | 
|  | Constant *CC1 = ConstantExpr::getFMul(C, C1); | 
|  | if (CC1->isNormalFP()) | 
|  | return BinaryOperator::CreateFDivFMF(CC1, X, &I); | 
|  | } | 
|  | if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) { | 
|  | // (X / C1) * C --> X * (C / C1) | 
|  | Constant *CDivC1 = ConstantExpr::getFDiv(C, C1); | 
|  | if (CDivC1->isNormalFP()) | 
|  | return BinaryOperator::CreateFMulFMF(X, CDivC1, &I); | 
|  |  | 
|  | // If the constant was a denormal, try reassociating differently. | 
|  | // (X / C1) * C --> X / (C1 / C) | 
|  | Constant *C1DivC = ConstantExpr::getFDiv(C1, C); | 
|  | if (Op0->hasOneUse() && C1DivC->isNormalFP()) | 
|  | return BinaryOperator::CreateFDivFMF(X, C1DivC, &I); | 
|  | } | 
|  |  | 
|  | // We do not need to match 'fadd C, X' and 'fsub X, C' because they are | 
|  | // canonicalized to 'fadd X, C'. Distributing the multiply may allow | 
|  | // further folds and (X * C) + C2 is 'fma'. | 
|  | if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) { | 
|  | // (X + C1) * C --> (X * C) + (C * C1) | 
|  | Constant *CC1 = ConstantExpr::getFMul(C, C1); | 
|  | Value *XC = Builder.CreateFMulFMF(X, C, &I); | 
|  | return BinaryOperator::CreateFAddFMF(XC, CC1, &I); | 
|  | } | 
|  | if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) { | 
|  | // (C1 - X) * C --> (C * C1) - (X * C) | 
|  | Constant *CC1 = ConstantExpr::getFMul(C, C1); | 
|  | Value *XC = Builder.CreateFMulFMF(X, C, &I); | 
|  | return BinaryOperator::CreateFSubFMF(CC1, XC, &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // sqrt(X) * sqrt(Y) -> sqrt(X * Y) | 
|  | // nnan disallows the possibility of returning a number if both operands are | 
|  | // negative (in that case, we should return NaN). | 
|  | if (I.hasNoNaNs() && | 
|  | match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) && | 
|  | match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) { | 
|  | Value *XY = Builder.CreateFMulFMF(X, Y, &I); | 
|  | Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I); | 
|  | return replaceInstUsesWith(I, Sqrt); | 
|  | } | 
|  |  | 
|  | // Like the similar transform in instsimplify, this requires 'nsz' because | 
|  | // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0. | 
|  | if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && | 
|  | Op0->hasNUses(2)) { | 
|  | // Peek through fdiv to find squaring of square root: | 
|  | // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y | 
|  | if (match(Op0, m_FDiv(m_Value(X), | 
|  | m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) { | 
|  | Value *XX = Builder.CreateFMulFMF(X, X, &I); | 
|  | return BinaryOperator::CreateFDivFMF(XX, Y, &I); | 
|  | } | 
|  | // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X) | 
|  | if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)), | 
|  | m_Value(X)))) { | 
|  | Value *XX = Builder.CreateFMulFMF(X, X, &I); | 
|  | return BinaryOperator::CreateFDivFMF(Y, XX, &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // exp(X) * exp(Y) -> exp(X + Y) | 
|  | // Match as long as at least one of exp has only one use. | 
|  | if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) && | 
|  | match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y))) && | 
|  | (Op0->hasOneUse() || Op1->hasOneUse())) { | 
|  | Value *XY = Builder.CreateFAddFMF(X, Y, &I); | 
|  | Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I); | 
|  | return replaceInstUsesWith(I, Exp); | 
|  | } | 
|  |  | 
|  | // exp2(X) * exp2(Y) -> exp2(X + Y) | 
|  | // Match as long as at least one of exp2 has only one use. | 
|  | if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) && | 
|  | match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y))) && | 
|  | (Op0->hasOneUse() || Op1->hasOneUse())) { | 
|  | Value *XY = Builder.CreateFAddFMF(X, Y, &I); | 
|  | Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I); | 
|  | return replaceInstUsesWith(I, Exp2); | 
|  | } | 
|  |  | 
|  | // (X*Y) * X => (X*X) * Y where Y != X | 
|  | //  The purpose is two-fold: | 
|  | //   1) to form a power expression (of X). | 
|  | //   2) potentially shorten the critical path: After transformation, the | 
|  | //  latency of the instruction Y is amortized by the expression of X*X, | 
|  | //  and therefore Y is in a "less critical" position compared to what it | 
|  | //  was before the transformation. | 
|  | if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && | 
|  | Op1 != Y) { | 
|  | Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I); | 
|  | return BinaryOperator::CreateFMulFMF(XX, Y, &I); | 
|  | } | 
|  | if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && | 
|  | Op0 != Y) { | 
|  | Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I); | 
|  | return BinaryOperator::CreateFMulFMF(XX, Y, &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // log2(X * 0.5) * Y = log2(X) * Y - Y | 
|  | if (I.isFast()) { | 
|  | IntrinsicInst *Log2 = nullptr; | 
|  | if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>( | 
|  | m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { | 
|  | Log2 = cast<IntrinsicInst>(Op0); | 
|  | Y = Op1; | 
|  | } | 
|  | if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>( | 
|  | m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { | 
|  | Log2 = cast<IntrinsicInst>(Op1); | 
|  | Y = Op0; | 
|  | } | 
|  | if (Log2) { | 
|  | Log2->setArgOperand(0, X); | 
|  | Log2->copyFastMathFlags(&I); | 
|  | Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I); | 
|  | return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold a divide or remainder with a select instruction divisor when one of the | 
|  | /// select operands is zero. In that case, we can use the other select operand | 
|  | /// because div/rem by zero is undefined. | 
|  | bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) { | 
|  | SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1)); | 
|  | if (!SI) | 
|  | return false; | 
|  |  | 
|  | int NonNullOperand; | 
|  | if (match(SI->getTrueValue(), m_Zero())) | 
|  | // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y | 
|  | NonNullOperand = 2; | 
|  | else if (match(SI->getFalseValue(), m_Zero())) | 
|  | // div/rem X, (Cond ? Y : 0) -> div/rem X, Y | 
|  | NonNullOperand = 1; | 
|  | else | 
|  | return false; | 
|  |  | 
|  | // Change the div/rem to use 'Y' instead of the select. | 
|  | I.setOperand(1, SI->getOperand(NonNullOperand)); | 
|  |  | 
|  | // Okay, we know we replace the operand of the div/rem with 'Y' with no | 
|  | // problem.  However, the select, or the condition of the select may have | 
|  | // multiple uses.  Based on our knowledge that the operand must be non-zero, | 
|  | // propagate the known value for the select into other uses of it, and | 
|  | // propagate a known value of the condition into its other users. | 
|  |  | 
|  | // If the select and condition only have a single use, don't bother with this, | 
|  | // early exit. | 
|  | Value *SelectCond = SI->getCondition(); | 
|  | if (SI->use_empty() && SelectCond->hasOneUse()) | 
|  | return true; | 
|  |  | 
|  | // Scan the current block backward, looking for other uses of SI. | 
|  | BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin(); | 
|  | Type *CondTy = SelectCond->getType(); | 
|  | while (BBI != BBFront) { | 
|  | --BBI; | 
|  | // If we found an instruction that we can't assume will return, so | 
|  | // information from below it cannot be propagated above it. | 
|  | if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) | 
|  | break; | 
|  |  | 
|  | // Replace uses of the select or its condition with the known values. | 
|  | for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end(); | 
|  | I != E; ++I) { | 
|  | if (*I == SI) { | 
|  | *I = SI->getOperand(NonNullOperand); | 
|  | Worklist.Add(&*BBI); | 
|  | } else if (*I == SelectCond) { | 
|  | *I = NonNullOperand == 1 ? ConstantInt::getTrue(CondTy) | 
|  | : ConstantInt::getFalse(CondTy); | 
|  | Worklist.Add(&*BBI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we past the instruction, quit looking for it. | 
|  | if (&*BBI == SI) | 
|  | SI = nullptr; | 
|  | if (&*BBI == SelectCond) | 
|  | SelectCond = nullptr; | 
|  |  | 
|  | // If we ran out of things to eliminate, break out of the loop. | 
|  | if (!SelectCond && !SI) | 
|  | break; | 
|  |  | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// True if the multiply can not be expressed in an int this size. | 
|  | static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product, | 
|  | bool IsSigned) { | 
|  | bool Overflow; | 
|  | Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow); | 
|  | return Overflow; | 
|  | } | 
|  |  | 
|  | /// True if C1 is a multiple of C2. Quotient contains C1/C2. | 
|  | static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient, | 
|  | bool IsSigned) { | 
|  | assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal"); | 
|  |  | 
|  | // Bail if we will divide by zero. | 
|  | if (C2.isNullValue()) | 
|  | return false; | 
|  |  | 
|  | // Bail if we would divide INT_MIN by -1. | 
|  | if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue()) | 
|  | return false; | 
|  |  | 
|  | APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned); | 
|  | if (IsSigned) | 
|  | APInt::sdivrem(C1, C2, Quotient, Remainder); | 
|  | else | 
|  | APInt::udivrem(C1, C2, Quotient, Remainder); | 
|  |  | 
|  | return Remainder.isMinValue(); | 
|  | } | 
|  |  | 
|  | /// This function implements the transforms common to both integer division | 
|  | /// instructions (udiv and sdiv). It is called by the visitors to those integer | 
|  | /// division instructions. | 
|  | /// Common integer divide transforms | 
|  | Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | bool IsSigned = I.getOpcode() == Instruction::SDiv; | 
|  | Type *Ty = I.getType(); | 
|  |  | 
|  | // The RHS is known non-zero. | 
|  | if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) { | 
|  | I.setOperand(1, V); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // Handle cases involving: [su]div X, (select Cond, Y, Z) | 
|  | // This does not apply for fdiv. | 
|  | if (simplifyDivRemOfSelectWithZeroOp(I)) | 
|  | return &I; | 
|  |  | 
|  | const APInt *C2; | 
|  | if (match(Op1, m_APInt(C2))) { | 
|  | Value *X; | 
|  | const APInt *C1; | 
|  |  | 
|  | // (X / C1) / C2  -> X / (C1*C2) | 
|  | if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) || | 
|  | (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) { | 
|  | APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned); | 
|  | if (!multiplyOverflows(*C1, *C2, Product, IsSigned)) | 
|  | return BinaryOperator::Create(I.getOpcode(), X, | 
|  | ConstantInt::get(Ty, Product)); | 
|  | } | 
|  |  | 
|  | if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) || | 
|  | (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) { | 
|  | APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned); | 
|  |  | 
|  | // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1. | 
|  | if (isMultiple(*C2, *C1, Quotient, IsSigned)) { | 
|  | auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X, | 
|  | ConstantInt::get(Ty, Quotient)); | 
|  | NewDiv->setIsExact(I.isExact()); | 
|  | return NewDiv; | 
|  | } | 
|  |  | 
|  | // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2. | 
|  | if (isMultiple(*C1, *C2, Quotient, IsSigned)) { | 
|  | auto *Mul = BinaryOperator::Create(Instruction::Mul, X, | 
|  | ConstantInt::get(Ty, Quotient)); | 
|  | auto *OBO = cast<OverflowingBinaryOperator>(Op0); | 
|  | Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); | 
|  | Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); | 
|  | return Mul; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) && | 
|  | *C1 != C1->getBitWidth() - 1) || | 
|  | (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) { | 
|  | APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned); | 
|  | APInt C1Shifted = APInt::getOneBitSet( | 
|  | C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue())); | 
|  |  | 
|  | // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1. | 
|  | if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) { | 
|  | auto *BO = BinaryOperator::Create(I.getOpcode(), X, | 
|  | ConstantInt::get(Ty, Quotient)); | 
|  | BO->setIsExact(I.isExact()); | 
|  | return BO; | 
|  | } | 
|  |  | 
|  | // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2. | 
|  | if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) { | 
|  | auto *Mul = BinaryOperator::Create(Instruction::Mul, X, | 
|  | ConstantInt::get(Ty, Quotient)); | 
|  | auto *OBO = cast<OverflowingBinaryOperator>(Op0); | 
|  | Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); | 
|  | Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); | 
|  | return Mul; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!C2->isNullValue()) // avoid X udiv 0 | 
|  | if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I)) | 
|  | return FoldedDiv; | 
|  | } | 
|  |  | 
|  | if (match(Op0, m_One())) { | 
|  | assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?"); | 
|  | if (IsSigned) { | 
|  | // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the | 
|  | // result is one, if Op1 is -1 then the result is minus one, otherwise | 
|  | // it's zero. | 
|  | Value *Inc = Builder.CreateAdd(Op1, Op0); | 
|  | Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3)); | 
|  | return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0)); | 
|  | } else { | 
|  | // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the | 
|  | // result is one, otherwise it's zero. | 
|  | return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty); | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we can fold away this div instruction. | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  |  | 
|  | // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y | 
|  | Value *X, *Z; | 
|  | if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1 | 
|  | if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || | 
|  | (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1))))) | 
|  | return BinaryOperator::Create(I.getOpcode(), X, Op1); | 
|  |  | 
|  | // (X << Y) / X -> 1 << Y | 
|  | Value *Y; | 
|  | if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y)))) | 
|  | return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y); | 
|  | if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y)))) | 
|  | return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y); | 
|  |  | 
|  | // X / (X * Y) -> 1 / Y if the multiplication does not overflow. | 
|  | if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) { | 
|  | bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap(); | 
|  | bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap(); | 
|  | if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) { | 
|  | I.setOperand(0, ConstantInt::get(Ty, 1)); | 
|  | I.setOperand(1, Y); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static const unsigned MaxDepth = 6; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1, | 
|  | const BinaryOperator &I, | 
|  | InstCombiner &IC); | 
|  |  | 
|  | /// Used to maintain state for visitUDivOperand(). | 
|  | struct UDivFoldAction { | 
|  | /// Informs visitUDiv() how to fold this operand.  This can be zero if this | 
|  | /// action joins two actions together. | 
|  | FoldUDivOperandCb FoldAction; | 
|  |  | 
|  | /// Which operand to fold. | 
|  | Value *OperandToFold; | 
|  |  | 
|  | union { | 
|  | /// The instruction returned when FoldAction is invoked. | 
|  | Instruction *FoldResult; | 
|  |  | 
|  | /// Stores the LHS action index if this action joins two actions together. | 
|  | size_t SelectLHSIdx; | 
|  | }; | 
|  |  | 
|  | UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand) | 
|  | : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {} | 
|  | UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS) | 
|  | : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {} | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // X udiv 2^C -> X >> C | 
|  | static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1, | 
|  | const BinaryOperator &I, InstCombiner &IC) { | 
|  | Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1)); | 
|  | if (!C1) | 
|  | llvm_unreachable("Failed to constant fold udiv -> logbase2"); | 
|  | BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1); | 
|  | if (I.isExact()) | 
|  | LShr->setIsExact(); | 
|  | return LShr; | 
|  | } | 
|  |  | 
|  | // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2) | 
|  | // X udiv (zext (C1 << N)), where C1 is "1<<C2"  -->  X >> (N+C2) | 
|  | static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I, | 
|  | InstCombiner &IC) { | 
|  | Value *ShiftLeft; | 
|  | if (!match(Op1, m_ZExt(m_Value(ShiftLeft)))) | 
|  | ShiftLeft = Op1; | 
|  |  | 
|  | Constant *CI; | 
|  | Value *N; | 
|  | if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N)))) | 
|  | llvm_unreachable("match should never fail here!"); | 
|  | Constant *Log2Base = getLogBase2(N->getType(), CI); | 
|  | if (!Log2Base) | 
|  | llvm_unreachable("getLogBase2 should never fail here!"); | 
|  | N = IC.Builder.CreateAdd(N, Log2Base); | 
|  | if (Op1 != ShiftLeft) | 
|  | N = IC.Builder.CreateZExt(N, Op1->getType()); | 
|  | BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N); | 
|  | if (I.isExact()) | 
|  | LShr->setIsExact(); | 
|  | return LShr; | 
|  | } | 
|  |  | 
|  | // Recursively visits the possible right hand operands of a udiv | 
|  | // instruction, seeing through select instructions, to determine if we can | 
|  | // replace the udiv with something simpler.  If we find that an operand is not | 
|  | // able to simplify the udiv, we abort the entire transformation. | 
|  | static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I, | 
|  | SmallVectorImpl<UDivFoldAction> &Actions, | 
|  | unsigned Depth = 0) { | 
|  | // Check to see if this is an unsigned division with an exact power of 2, | 
|  | // if so, convert to a right shift. | 
|  | if (match(Op1, m_Power2())) { | 
|  | Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1)); | 
|  | return Actions.size(); | 
|  | } | 
|  |  | 
|  | // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2) | 
|  | if (match(Op1, m_Shl(m_Power2(), m_Value())) || | 
|  | match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) { | 
|  | Actions.push_back(UDivFoldAction(foldUDivShl, Op1)); | 
|  | return Actions.size(); | 
|  | } | 
|  |  | 
|  | // The remaining tests are all recursive, so bail out if we hit the limit. | 
|  | if (Depth++ == MaxDepth) | 
|  | return 0; | 
|  |  | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) | 
|  | if (size_t LHSIdx = | 
|  | visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth)) | 
|  | if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) { | 
|  | Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1)); | 
|  | return Actions.size(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// If we have zero-extended operands of an unsigned div or rem, we may be able | 
|  | /// to narrow the operation (sink the zext below the math). | 
|  | static Instruction *narrowUDivURem(BinaryOperator &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Instruction::BinaryOps Opcode = I.getOpcode(); | 
|  | Value *N = I.getOperand(0); | 
|  | Value *D = I.getOperand(1); | 
|  | Type *Ty = I.getType(); | 
|  | Value *X, *Y; | 
|  | if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) && | 
|  | X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) { | 
|  | // udiv (zext X), (zext Y) --> zext (udiv X, Y) | 
|  | // urem (zext X), (zext Y) --> zext (urem X, Y) | 
|  | Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y); | 
|  | return new ZExtInst(NarrowOp, Ty); | 
|  | } | 
|  |  | 
|  | Constant *C; | 
|  | if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) || | 
|  | (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) { | 
|  | // If the constant is the same in the smaller type, use the narrow version. | 
|  | Constant *TruncC = ConstantExpr::getTrunc(C, X->getType()); | 
|  | if (ConstantExpr::getZExt(TruncC, Ty) != C) | 
|  | return nullptr; | 
|  |  | 
|  | // udiv (zext X), C --> zext (udiv X, C') | 
|  | // urem (zext X), C --> zext (urem X, C') | 
|  | // udiv C, (zext X) --> zext (udiv C', X) | 
|  | // urem C, (zext X) --> zext (urem C', X) | 
|  | Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC) | 
|  | : Builder.CreateBinOp(Opcode, TruncC, X); | 
|  | return new ZExtInst(NarrowOp, Ty); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { | 
|  | if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1), | 
|  | SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *X = foldVectorBinop(I)) | 
|  | return X; | 
|  |  | 
|  | // Handle the integer div common cases | 
|  | if (Instruction *Common = commonIDivTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | Value *X; | 
|  | const APInt *C1, *C2; | 
|  | if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) { | 
|  | // (X lshr C1) udiv C2 --> X udiv (C2 << C1) | 
|  | bool Overflow; | 
|  | APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow); | 
|  | if (!Overflow) { | 
|  | bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value())); | 
|  | BinaryOperator *BO = BinaryOperator::CreateUDiv( | 
|  | X, ConstantInt::get(X->getType(), C2ShlC1)); | 
|  | if (IsExact) | 
|  | BO->setIsExact(); | 
|  | return BO; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Op0 / C where C is large (negative) --> zext (Op0 >= C) | 
|  | // TODO: Could use isKnownNegative() to handle non-constant values. | 
|  | Type *Ty = I.getType(); | 
|  | if (match(Op1, m_Negative())) { | 
|  | Value *Cmp = Builder.CreateICmpUGE(Op0, Op1); | 
|  | return CastInst::CreateZExtOrBitCast(Cmp, Ty); | 
|  | } | 
|  | // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined) | 
|  | if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { | 
|  | Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); | 
|  | return CastInst::CreateZExtOrBitCast(Cmp, Ty); | 
|  | } | 
|  |  | 
|  | if (Instruction *NarrowDiv = narrowUDivURem(I, Builder)) | 
|  | return NarrowDiv; | 
|  |  | 
|  | // If the udiv operands are non-overflowing multiplies with a common operand, | 
|  | // then eliminate the common factor: | 
|  | // (A * B) / (A * X) --> B / X (and commuted variants) | 
|  | // TODO: The code would be reduced if we had m_c_NUWMul pattern matching. | 
|  | // TODO: If -reassociation handled this generally, we could remove this. | 
|  | Value *A, *B; | 
|  | if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) { | 
|  | if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) || | 
|  | match(Op1, m_NUWMul(m_Value(X), m_Specific(A)))) | 
|  | return BinaryOperator::CreateUDiv(B, X); | 
|  | if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) || | 
|  | match(Op1, m_NUWMul(m_Value(X), m_Specific(B)))) | 
|  | return BinaryOperator::CreateUDiv(A, X); | 
|  | } | 
|  |  | 
|  | // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...)))) | 
|  | SmallVector<UDivFoldAction, 6> UDivActions; | 
|  | if (visitUDivOperand(Op0, Op1, I, UDivActions)) | 
|  | for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) { | 
|  | FoldUDivOperandCb Action = UDivActions[i].FoldAction; | 
|  | Value *ActionOp1 = UDivActions[i].OperandToFold; | 
|  | Instruction *Inst; | 
|  | if (Action) | 
|  | Inst = Action(Op0, ActionOp1, I, *this); | 
|  | else { | 
|  | // This action joins two actions together.  The RHS of this action is | 
|  | // simply the last action we processed, we saved the LHS action index in | 
|  | // the joining action. | 
|  | size_t SelectRHSIdx = i - 1; | 
|  | Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult; | 
|  | size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx; | 
|  | Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult; | 
|  | Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(), | 
|  | SelectLHS, SelectRHS); | 
|  | } | 
|  |  | 
|  | // If this is the last action to process, return it to the InstCombiner. | 
|  | // Otherwise, we insert it before the UDiv and record it so that we may | 
|  | // use it as part of a joining action (i.e., a SelectInst). | 
|  | if (e - i != 1) { | 
|  | Inst->insertBefore(&I); | 
|  | UDivActions[i].FoldResult = Inst; | 
|  | } else | 
|  | return Inst; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { | 
|  | if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1), | 
|  | SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *X = foldVectorBinop(I)) | 
|  | return X; | 
|  |  | 
|  | // Handle the integer div common cases | 
|  | if (Instruction *Common = commonIDivTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | Value *X; | 
|  | // sdiv Op0, -1 --> -Op0 | 
|  | // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined) | 
|  | if (match(Op1, m_AllOnes()) || | 
|  | (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) | 
|  | return BinaryOperator::CreateNeg(Op0); | 
|  |  | 
|  | const APInt *Op1C; | 
|  | if (match(Op1, m_APInt(Op1C))) { | 
|  | // sdiv exact X, C  -->  ashr exact X, log2(C) | 
|  | if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) { | 
|  | Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2()); | 
|  | return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName()); | 
|  | } | 
|  |  | 
|  | // If the dividend is sign-extended and the constant divisor is small enough | 
|  | // to fit in the source type, shrink the division to the narrower type: | 
|  | // (sext X) sdiv C --> sext (X sdiv C) | 
|  | Value *Op0Src; | 
|  | if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) && | 
|  | Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) { | 
|  |  | 
|  | // In the general case, we need to make sure that the dividend is not the | 
|  | // minimum signed value because dividing that by -1 is UB. But here, we | 
|  | // know that the -1 divisor case is already handled above. | 
|  |  | 
|  | Constant *NarrowDivisor = | 
|  | ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType()); | 
|  | Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor); | 
|  | return new SExtInst(NarrowOp, Op0->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Constant *RHS = dyn_cast<Constant>(Op1)) { | 
|  | // X/INT_MIN -> X == INT_MIN | 
|  | if (RHS->isMinSignedValue()) | 
|  | return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType()); | 
|  |  | 
|  | // -X/C  -->  X/-C  provided the negation doesn't overflow. | 
|  | Value *X; | 
|  | if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) { | 
|  | auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS)); | 
|  | BO->setIsExact(I.isExact()); | 
|  | return BO; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the sign bits of both operands are zero (i.e. we can prove they are | 
|  | // unsigned inputs), turn this into a udiv. | 
|  | APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits())); | 
|  | if (MaskedValueIsZero(Op0, Mask, 0, &I)) { | 
|  | if (MaskedValueIsZero(Op1, Mask, 0, &I)) { | 
|  | // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set | 
|  | auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); | 
|  | BO->setIsExact(I.isExact()); | 
|  | return BO; | 
|  | } | 
|  |  | 
|  | if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) { | 
|  | // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) | 
|  | // Safe because the only negative value (1 << Y) can take on is | 
|  | // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have | 
|  | // the sign bit set. | 
|  | auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); | 
|  | BO->setIsExact(I.isExact()); | 
|  | return BO; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Remove negation and try to convert division into multiplication. | 
|  | static Instruction *foldFDivConstantDivisor(BinaryOperator &I) { | 
|  | Constant *C; | 
|  | if (!match(I.getOperand(1), m_Constant(C))) | 
|  | return nullptr; | 
|  |  | 
|  | // -X / C --> X / -C | 
|  | Value *X; | 
|  | if (match(I.getOperand(0), m_FNeg(m_Value(X)))) | 
|  | return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); | 
|  |  | 
|  | // If the constant divisor has an exact inverse, this is always safe. If not, | 
|  | // then we can still create a reciprocal if fast-math-flags allow it and the | 
|  | // constant is a regular number (not zero, infinite, or denormal). | 
|  | if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP()))) | 
|  | return nullptr; | 
|  |  | 
|  | // Disallow denormal constants because we don't know what would happen | 
|  | // on all targets. | 
|  | // TODO: Use Intrinsic::canonicalize or let function attributes tell us that | 
|  | // denorms are flushed? | 
|  | auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C); | 
|  | if (!RecipC->isNormalFP()) | 
|  | return nullptr; | 
|  |  | 
|  | // X / C --> X * (1 / C) | 
|  | return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I); | 
|  | } | 
|  |  | 
|  | /// Remove negation and try to reassociate constant math. | 
|  | static Instruction *foldFDivConstantDividend(BinaryOperator &I) { | 
|  | Constant *C; | 
|  | if (!match(I.getOperand(0), m_Constant(C))) | 
|  | return nullptr; | 
|  |  | 
|  | // C / -X --> -C / X | 
|  | Value *X; | 
|  | if (match(I.getOperand(1), m_FNeg(m_Value(X)))) | 
|  | return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); | 
|  |  | 
|  | if (!I.hasAllowReassoc() || !I.hasAllowReciprocal()) | 
|  | return nullptr; | 
|  |  | 
|  | // Try to reassociate C / X expressions where X includes another constant. | 
|  | Constant *C2, *NewC = nullptr; | 
|  | if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) { | 
|  | // C / (X * C2) --> (C / C2) / X | 
|  | NewC = ConstantExpr::getFDiv(C, C2); | 
|  | } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) { | 
|  | // C / (X / C2) --> (C * C2) / X | 
|  | NewC = ConstantExpr::getFMul(C, C2); | 
|  | } | 
|  | // Disallow denormal constants because we don't know what would happen | 
|  | // on all targets. | 
|  | // TODO: Use Intrinsic::canonicalize or let function attributes tell us that | 
|  | // denorms are flushed? | 
|  | if (!NewC || !NewC->isNormalFP()) | 
|  | return nullptr; | 
|  |  | 
|  | return BinaryOperator::CreateFDivFMF(NewC, X, &I); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { | 
|  | if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1), | 
|  | I.getFastMathFlags(), | 
|  | SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *X = foldVectorBinop(I)) | 
|  | return X; | 
|  |  | 
|  | if (Instruction *R = foldFDivConstantDivisor(I)) | 
|  | return R; | 
|  |  | 
|  | if (Instruction *R = foldFDivConstantDividend(I)) | 
|  | return R; | 
|  |  | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | if (isa<Constant>(Op0)) | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI)) | 
|  | return R; | 
|  |  | 
|  | if (isa<Constant>(Op1)) | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI)) | 
|  | return R; | 
|  |  | 
|  | if (I.hasAllowReassoc() && I.hasAllowReciprocal()) { | 
|  | Value *X, *Y; | 
|  | if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && | 
|  | (!isa<Constant>(Y) || !isa<Constant>(Op1))) { | 
|  | // (X / Y) / Z => X / (Y * Z) | 
|  | Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I); | 
|  | return BinaryOperator::CreateFDivFMF(X, YZ, &I); | 
|  | } | 
|  | if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && | 
|  | (!isa<Constant>(Y) || !isa<Constant>(Op0))) { | 
|  | // Z / (X / Y) => (Y * Z) / X | 
|  | Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I); | 
|  | return BinaryOperator::CreateFDivFMF(YZ, X, &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) { | 
|  | // sin(X) / cos(X) -> tan(X) | 
|  | // cos(X) / sin(X) -> 1/tan(X) (cotangent) | 
|  | Value *X; | 
|  | bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) && | 
|  | match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X))); | 
|  | bool IsCot = | 
|  | !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) && | 
|  | match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X))); | 
|  |  | 
|  | if ((IsTan || IsCot) && hasUnaryFloatFn(&TLI, I.getType(), LibFunc_tan, | 
|  | LibFunc_tanf, LibFunc_tanl)) { | 
|  | IRBuilder<> B(&I); | 
|  | IRBuilder<>::FastMathFlagGuard FMFGuard(B); | 
|  | B.setFastMathFlags(I.getFastMathFlags()); | 
|  | AttributeList Attrs = | 
|  | cast<CallBase>(Op0)->getCalledFunction()->getAttributes(); | 
|  | Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf, | 
|  | LibFunc_tanl, B, Attrs); | 
|  | if (IsCot) | 
|  | Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res); | 
|  | return replaceInstUsesWith(I, Res); | 
|  | } | 
|  | } | 
|  |  | 
|  | // -X / -Y -> X / Y | 
|  | Value *X, *Y; | 
|  | if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) { | 
|  | I.setOperand(0, X); | 
|  | I.setOperand(1, Y); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // X / (X * Y) --> 1.0 / Y | 
|  | // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed. | 
|  | // We can ignore the possibility that X is infinity because INF/INF is NaN. | 
|  | if (I.hasNoNaNs() && I.hasAllowReassoc() && | 
|  | match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) { | 
|  | I.setOperand(0, ConstantFP::get(I.getType(), 1.0)); | 
|  | I.setOperand(1, Y); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// This function implements the transforms common to both integer remainder | 
|  | /// instructions (urem and srem). It is called by the visitors to those integer | 
|  | /// remainder instructions. | 
|  | /// Common integer remainder transforms | 
|  | Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // The RHS is known non-zero. | 
|  | if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) { | 
|  | I.setOperand(1, V); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // Handle cases involving: rem X, (select Cond, Y, Z) | 
|  | if (simplifyDivRemOfSelectWithZeroOp(I)) | 
|  | return &I; | 
|  |  | 
|  | if (isa<Constant>(Op1)) { | 
|  | if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI)) | 
|  | return R; | 
|  | } else if (auto *PN = dyn_cast<PHINode>(Op0I)) { | 
|  | const APInt *Op1Int; | 
|  | if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() && | 
|  | (I.getOpcode() == Instruction::URem || | 
|  | !Op1Int->isMinSignedValue())) { | 
|  | // foldOpIntoPhi will speculate instructions to the end of the PHI's | 
|  | // predecessor blocks, so do this only if we know the srem or urem | 
|  | // will not fault. | 
|  | if (Instruction *NV = foldOpIntoPhi(I, PN)) | 
|  | return NV; | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we can fold away this rem instruction. | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitURem(BinaryOperator &I) { | 
|  | if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1), | 
|  | SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *X = foldVectorBinop(I)) | 
|  | return X; | 
|  |  | 
|  | if (Instruction *common = commonIRemTransforms(I)) | 
|  | return common; | 
|  |  | 
|  | if (Instruction *NarrowRem = narrowUDivURem(I, Builder)) | 
|  | return NarrowRem; | 
|  |  | 
|  | // X urem Y -> X and Y-1, where Y is a power of 2, | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | Type *Ty = I.getType(); | 
|  | if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) { | 
|  | Constant *N1 = Constant::getAllOnesValue(Ty); | 
|  | Value *Add = Builder.CreateAdd(Op1, N1); | 
|  | return BinaryOperator::CreateAnd(Op0, Add); | 
|  | } | 
|  |  | 
|  | // 1 urem X -> zext(X != 1) | 
|  | if (match(Op0, m_One())) | 
|  | return CastInst::CreateZExtOrBitCast(Builder.CreateICmpNE(Op1, Op0), Ty); | 
|  |  | 
|  | // X urem C -> X < C ? X : X - C, where C >= signbit. | 
|  | if (match(Op1, m_Negative())) { | 
|  | Value *Cmp = Builder.CreateICmpULT(Op0, Op1); | 
|  | Value *Sub = Builder.CreateSub(Op0, Op1); | 
|  | return SelectInst::Create(Cmp, Op0, Sub); | 
|  | } | 
|  |  | 
|  | // If the divisor is a sext of a boolean, then the divisor must be max | 
|  | // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also | 
|  | // max unsigned value. In that case, the remainder is 0: | 
|  | // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0 | 
|  | Value *X; | 
|  | if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { | 
|  | Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); | 
|  | return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSRem(BinaryOperator &I) { | 
|  | if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1), | 
|  | SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *X = foldVectorBinop(I)) | 
|  | return X; | 
|  |  | 
|  | // Handle the integer rem common cases | 
|  | if (Instruction *Common = commonIRemTransforms(I)) | 
|  | return Common; | 
|  |  | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | { | 
|  | const APInt *Y; | 
|  | // X % -Y -> X % Y | 
|  | if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) { | 
|  | Worklist.AddValue(I.getOperand(1)); | 
|  | I.setOperand(1, ConstantInt::get(I.getType(), -*Y)); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the sign bits of both operands are zero (i.e. we can prove they are | 
|  | // unsigned inputs), turn this into a urem. | 
|  | APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits())); | 
|  | if (MaskedValueIsZero(Op1, Mask, 0, &I) && | 
|  | MaskedValueIsZero(Op0, Mask, 0, &I)) { | 
|  | // X srem Y -> X urem Y, iff X and Y don't have sign bit set | 
|  | return BinaryOperator::CreateURem(Op0, Op1, I.getName()); | 
|  | } | 
|  |  | 
|  | // If it's a constant vector, flip any negative values positive. | 
|  | if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) { | 
|  | Constant *C = cast<Constant>(Op1); | 
|  | unsigned VWidth = C->getType()->getVectorNumElements(); | 
|  |  | 
|  | bool hasNegative = false; | 
|  | bool hasMissing = false; | 
|  | for (unsigned i = 0; i != VWidth; ++i) { | 
|  | Constant *Elt = C->getAggregateElement(i); | 
|  | if (!Elt) { | 
|  | hasMissing = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt)) | 
|  | if (RHS->isNegative()) | 
|  | hasNegative = true; | 
|  | } | 
|  |  | 
|  | if (hasNegative && !hasMissing) { | 
|  | SmallVector<Constant *, 16> Elts(VWidth); | 
|  | for (unsigned i = 0; i != VWidth; ++i) { | 
|  | Elts[i] = C->getAggregateElement(i);  // Handle undef, etc. | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) { | 
|  | if (RHS->isNegative()) | 
|  | Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *NewRHSV = ConstantVector::get(Elts); | 
|  | if (NewRHSV != C) {  // Don't loop on -MININT | 
|  | Worklist.AddValue(I.getOperand(1)); | 
|  | I.setOperand(1, NewRHSV); | 
|  | return &I; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFRem(BinaryOperator &I) { | 
|  | if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1), | 
|  | I.getFastMathFlags(), | 
|  | SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *X = foldVectorBinop(I)) | 
|  | return X; | 
|  |  | 
|  | return nullptr; | 
|  | } |