| //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------===// |
| // |
| // This file implements the MemorySSAUpdater class. |
| // |
| //===----------------------------------------------------------------===// |
| #include "llvm/Transforms/Utils/MemorySSAUpdater.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/FormattedStream.h" |
| #include "llvm/Transforms/Utils/MemorySSA.h" |
| #include <algorithm> |
| |
| #define DEBUG_TYPE "memoryssa" |
| using namespace llvm; |
| namespace llvm { |
| // This is the marker algorithm from "Simple and Efficient Construction of |
| // Static Single Assignment Form" |
| // The simple, non-marker algorithm places phi nodes at any join |
| // Here, we place markers, and only place phi nodes if they end up necessary. |
| // They are only necessary if they break a cycle (IE we recursively visit |
| // ourselves again), or we discover, while getting the value of the operands, |
| // that there are two or more definitions needing to be merged. |
| // This still will leave non-minimal form in the case of irreducible control |
| // flow, where phi nodes may be in cycles with themselves, but unnecessary. |
| MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) { |
| // Single predecessor case, just recurse, we can only have one definition. |
| if (BasicBlock *Pred = BB->getSinglePredecessor()) { |
| return getPreviousDefFromEnd(Pred); |
| } else if (VisitedBlocks.count(BB)) { |
| // We hit our node again, meaning we had a cycle, we must insert a phi |
| // node to break it so we have an operand. The only case this will |
| // insert useless phis is if we have irreducible control flow. |
| return MSSA->createMemoryPhi(BB); |
| } else if (VisitedBlocks.insert(BB).second) { |
| // Mark us visited so we can detect a cycle |
| SmallVector<MemoryAccess *, 8> PhiOps; |
| |
| // Recurse to get the values in our predecessors for placement of a |
| // potential phi node. This will insert phi nodes if we cycle in order to |
| // break the cycle and have an operand. |
| for (auto *Pred : predecessors(BB)) |
| PhiOps.push_back(getPreviousDefFromEnd(Pred)); |
| |
| // Now try to simplify the ops to avoid placing a phi. |
| // This may return null if we never created a phi yet, that's okay |
| MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); |
| bool PHIExistsButNeedsUpdate = false; |
| // See if the existing phi operands match what we need. |
| // Unlike normal SSA, we only allow one phi node per block, so we can't just |
| // create a new one. |
| if (Phi && Phi->getNumOperands() != 0) |
| if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { |
| PHIExistsButNeedsUpdate = true; |
| } |
| |
| // See if we can avoid the phi by simplifying it. |
| auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); |
| // If we couldn't simplify, we may have to create a phi |
| if (Result == Phi) { |
| if (!Phi) |
| Phi = MSSA->createMemoryPhi(BB); |
| |
| // These will have been filled in by the recursive read we did above. |
| if (PHIExistsButNeedsUpdate) { |
| std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin()); |
| std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); |
| } else { |
| unsigned i = 0; |
| for (auto *Pred : predecessors(BB)) |
| Phi->addIncoming(PhiOps[i++], Pred); |
| } |
| |
| Result = Phi; |
| } |
| if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Result)) |
| InsertedPHIs.push_back(MP); |
| // Set ourselves up for the next variable by resetting visited state. |
| VisitedBlocks.erase(BB); |
| return Result; |
| } |
| llvm_unreachable("Should have hit one of the three cases above"); |
| } |
| |
| // This starts at the memory access, and goes backwards in the block to find the |
| // previous definition. If a definition is not found the block of the access, |
| // it continues globally, creating phi nodes to ensure we have a single |
| // definition. |
| MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { |
| auto *LocalResult = getPreviousDefInBlock(MA); |
| |
| return LocalResult ? LocalResult : getPreviousDefRecursive(MA->getBlock()); |
| } |
| |
| // This starts at the memory access, and goes backwards in the block to the find |
| // the previous definition. If the definition is not found in the block of the |
| // access, it returns nullptr. |
| MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { |
| auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); |
| |
| // It's possible there are no defs, or we got handed the first def to start. |
| if (Defs) { |
| // If this is a def, we can just use the def iterators. |
| if (!isa<MemoryUse>(MA)) { |
| auto Iter = MA->getReverseDefsIterator(); |
| ++Iter; |
| if (Iter != Defs->rend()) |
| return &*Iter; |
| } else { |
| // Otherwise, have to walk the all access iterator. |
| auto Iter = MA->getReverseIterator(); |
| ++Iter; |
| while (&*Iter != &*Defs->begin()) { |
| if (!isa<MemoryUse>(*Iter)) |
| return &*Iter; |
| --Iter; |
| } |
| // At this point it must be pointing at firstdef |
| assert(&*Iter == &*Defs->begin() && |
| "Should have hit first def walking backwards"); |
| return &*Iter; |
| } |
| } |
| return nullptr; |
| } |
| |
| // This starts at the end of block |
| MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(BasicBlock *BB) { |
| auto *Defs = MSSA->getWritableBlockDefs(BB); |
| |
| if (Defs) |
| return &*Defs->rbegin(); |
| |
| return getPreviousDefRecursive(BB); |
| } |
| // Recurse over a set of phi uses to eliminate the trivial ones |
| MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { |
| if (!Phi) |
| return nullptr; |
| TrackingVH<MemoryAccess> Res(Phi); |
| SmallVector<TrackingVH<Value>, 8> Uses; |
| std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); |
| for (auto &U : Uses) { |
| if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) { |
| auto OperRange = UsePhi->operands(); |
| tryRemoveTrivialPhi(UsePhi, OperRange); |
| } |
| } |
| return Res; |
| } |
| |
| // Eliminate trivial phis |
| // Phis are trivial if they are defined either by themselves, or all the same |
| // argument. |
| // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) |
| // We recursively try to remove them. |
| template <class RangeType> |
| MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, |
| RangeType &Operands) { |
| // Detect equal or self arguments |
| MemoryAccess *Same = nullptr; |
| for (auto &Op : Operands) { |
| // If the same or self, good so far |
| if (Op == Phi || Op == Same) |
| continue; |
| // not the same, return the phi since it's not eliminatable by us |
| if (Same) |
| return Phi; |
| Same = cast<MemoryAccess>(Op); |
| } |
| // Never found a non-self reference, the phi is undef |
| if (Same == nullptr) |
| return MSSA->getLiveOnEntryDef(); |
| if (Phi) { |
| Phi->replaceAllUsesWith(Same); |
| MSSA->removeMemoryAccess(Phi); |
| } |
| |
| // We should only end up recursing in case we replaced something, in which |
| // case, we may have made other Phis trivial. |
| return recursePhi(Same); |
| } |
| |
| void MemorySSAUpdater::insertUse(MemoryUse *MU) { |
| InsertedPHIs.clear(); |
| MU->setDefiningAccess(getPreviousDef(MU)); |
| // Unlike for defs, there is no extra work to do. Because uses do not create |
| // new may-defs, there are only two cases: |
| // |
| // 1. There was a def already below us, and therefore, we should not have |
| // created a phi node because it was already needed for the def. |
| // |
| // 2. There is no def below us, and therefore, there is no extra renaming work |
| // to do. |
| } |
| |
| // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. |
| void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, |
| MemoryAccess *NewDef) { |
| // Replace any operand with us an incoming block with the new defining |
| // access. |
| int i = MP->getBasicBlockIndex(BB); |
| assert(i != -1 && "Should have found the basic block in the phi"); |
| // We can't just compare i against getNumOperands since one is signed and the |
| // other not. So use it to index into the block iterator. |
| for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); |
| ++BBIter) { |
| if (*BBIter != BB) |
| break; |
| MP->setIncomingValue(i, NewDef); |
| ++i; |
| } |
| } |
| |
| // A brief description of the algorithm: |
| // First, we compute what should define the new def, using the SSA |
| // construction algorithm. |
| // Then, we update the defs below us (and any new phi nodes) in the graph to |
| // point to the correct new defs, to ensure we only have one variable, and no |
| // disconnected stores. |
| void MemorySSAUpdater::insertDef(MemoryDef *MD) { |
| InsertedPHIs.clear(); |
| |
| // See if we had a local def, and if not, go hunting. |
| MemoryAccess *DefBefore = getPreviousDefInBlock(MD); |
| bool DefBeforeSameBlock = DefBefore != nullptr; |
| if (!DefBefore) |
| DefBefore = getPreviousDefRecursive(MD->getBlock()); |
| |
| // There is a def before us, which means we can replace any store/phi uses |
| // of that thing with us, since we are in the way of whatever was there |
| // before. |
| // We now define that def's memorydefs and memoryphis |
| if (DefBeforeSameBlock) { |
| for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); |
| UI != UE;) { |
| Use &U = *UI++; |
| // Leave the uses alone |
| if (isa<MemoryUse>(U.getUser())) |
| continue; |
| U.set(MD); |
| } |
| } |
| |
| // and that def is now our defining access. |
| // We change them in this order otherwise we will appear in the use list |
| // above and reset ourselves. |
| MD->setDefiningAccess(DefBefore); |
| |
| SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(), |
| InsertedPHIs.end()); |
| if (!DefBeforeSameBlock) { |
| // If there was a local def before us, we must have the same effect it |
| // did. Because every may-def is the same, any phis/etc we would create, it |
| // would also have created. If there was no local def before us, we |
| // performed a global update, and have to search all successors and make |
| // sure we update the first def in each of them (following all paths until |
| // we hit the first def along each path). This may also insert phi nodes. |
| // TODO: There are other cases we can skip this work, such as when we have a |
| // single successor, and only used a straight line of single pred blocks |
| // backwards to find the def. To make that work, we'd have to track whether |
| // getDefRecursive only ever used the single predecessor case. These types |
| // of paths also only exist in between CFG simplifications. |
| FixupList.push_back(MD); |
| } |
| |
| while (!FixupList.empty()) { |
| unsigned StartingPHISize = InsertedPHIs.size(); |
| fixupDefs(FixupList); |
| FixupList.clear(); |
| // Put any new phis on the fixup list, and process them |
| FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end()); |
| } |
| } |
| |
| void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) { |
| SmallPtrSet<const BasicBlock *, 8> Seen; |
| SmallVector<const BasicBlock *, 16> Worklist; |
| for (auto *NewDef : Vars) { |
| // First, see if there is a local def after the operand. |
| auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); |
| auto DefIter = NewDef->getDefsIterator(); |
| |
| // If there is a local def after us, we only have to rename that. |
| if (++DefIter != Defs->end()) { |
| cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); |
| continue; |
| } |
| |
| // Otherwise, we need to search down through the CFG. |
| // For each of our successors, handle it directly if their is a phi, or |
| // place on the fixup worklist. |
| for (const auto *S : successors(NewDef->getBlock())) { |
| if (auto *MP = MSSA->getMemoryAccess(S)) |
| setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); |
| else |
| Worklist.push_back(S); |
| } |
| |
| while (!Worklist.empty()) { |
| const BasicBlock *FixupBlock = Worklist.back(); |
| Worklist.pop_back(); |
| |
| // Get the first def in the block that isn't a phi node. |
| if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { |
| auto *FirstDef = &*Defs->begin(); |
| // The loop above and below should have taken care of phi nodes |
| assert(!isa<MemoryPhi>(FirstDef) && |
| "Should have already handled phi nodes!"); |
| // We are now this def's defining access, make sure we actually dominate |
| // it |
| assert(MSSA->dominates(NewDef, FirstDef) && |
| "Should have dominated the new access"); |
| |
| // This may insert new phi nodes, because we are not guaranteed the |
| // block we are processing has a single pred, and depending where the |
| // store was inserted, it may require phi nodes below it. |
| cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); |
| return; |
| } |
| // We didn't find a def, so we must continue. |
| for (const auto *S : successors(FixupBlock)) { |
| // If there is a phi node, handle it. |
| // Otherwise, put the block on the worklist |
| if (auto *MP = MSSA->getMemoryAccess(S)) |
| setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); |
| else { |
| // If we cycle, we should have ended up at a phi node that we already |
| // processed. FIXME: Double check this |
| if (!Seen.insert(S).second) |
| continue; |
| Worklist.push_back(S); |
| } |
| } |
| } |
| } |
| } |
| |
| // Move What before Where in the MemorySSA IR. |
| template <class WhereType> |
| void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, |
| WhereType Where) { |
| // Replace all our users with our defining access. |
| What->replaceAllUsesWith(What->getDefiningAccess()); |
| |
| // Let MemorySSA take care of moving it around in the lists. |
| MSSA->moveTo(What, BB, Where); |
| |
| // Now reinsert it into the IR and do whatever fixups needed. |
| if (auto *MD = dyn_cast<MemoryDef>(What)) |
| insertDef(MD); |
| else |
| insertUse(cast<MemoryUse>(What)); |
| } |
| |
| // Move What before Where in the MemorySSA IR. |
| void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { |
| moveTo(What, Where->getBlock(), Where->getIterator()); |
| } |
| |
| // Move What after Where in the MemorySSA IR. |
| void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { |
| moveTo(What, Where->getBlock(), ++Where->getIterator()); |
| } |
| |
| void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, |
| MemorySSA::InsertionPlace Where) { |
| return moveTo(What, BB, Where); |
| } |
| } // namespace llvm |