|  | //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the PHITransAddr class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/PHITransAddr.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | static bool CanPHITrans(Instruction *Inst) { | 
|  | if (isa<PHINode>(Inst) || | 
|  | isa<GetElementPtrInst>(Inst)) | 
|  | return true; | 
|  |  | 
|  | if (isa<CastInst>(Inst) && | 
|  | isSafeToSpeculativelyExecute(Inst)) | 
|  | return true; | 
|  |  | 
|  | if (Inst->getOpcode() == Instruction::Add && | 
|  | isa<ConstantInt>(Inst->getOperand(1))) | 
|  | return true; | 
|  |  | 
|  | //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer; | 
|  | //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst)) | 
|  | //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void PHITransAddr::dump() const { | 
|  | if (!Addr) { | 
|  | dbgs() << "PHITransAddr: null\n"; | 
|  | return; | 
|  | } | 
|  | dbgs() << "PHITransAddr: " << *Addr << "\n"; | 
|  | for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) | 
|  | dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static bool VerifySubExpr(Value *Expr, | 
|  | SmallVectorImpl<Instruction*> &InstInputs) { | 
|  | // If this is a non-instruction value, there is nothing to do. | 
|  | Instruction *I = dyn_cast<Instruction>(Expr); | 
|  | if (!I) return true; | 
|  |  | 
|  | // If it's an instruction, it is either in Tmp or its operands recursively | 
|  | // are. | 
|  | SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I); | 
|  | if (Entry != InstInputs.end()) { | 
|  | InstInputs.erase(Entry); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If it isn't in the InstInputs list it is a subexpr incorporated into the | 
|  | // address.  Sanity check that it is phi translatable. | 
|  | if (!CanPHITrans(I)) { | 
|  | errs() << "Instruction in PHITransAddr is not phi-translatable:\n"; | 
|  | errs() << *I << '\n'; | 
|  | llvm_unreachable("Either something is missing from InstInputs or " | 
|  | "CanPHITrans is wrong."); | 
|  | } | 
|  |  | 
|  | // Validate the operands of the instruction. | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | 
|  | if (!VerifySubExpr(I->getOperand(i), InstInputs)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Verify - Check internal consistency of this data structure.  If the | 
|  | /// structure is valid, it returns true.  If invalid, it prints errors and | 
|  | /// returns false. | 
|  | bool PHITransAddr::Verify() const { | 
|  | if (!Addr) return true; | 
|  |  | 
|  | SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end()); | 
|  |  | 
|  | if (!VerifySubExpr(Addr, Tmp)) | 
|  | return false; | 
|  |  | 
|  | if (!Tmp.empty()) { | 
|  | errs() << "PHITransAddr contains extra instructions:\n"; | 
|  | for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) | 
|  | errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n"; | 
|  | llvm_unreachable("This is unexpected."); | 
|  | } | 
|  |  | 
|  | // a-ok. | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true | 
|  | /// if we have some hope of doing it.  This should be used as a filter to | 
|  | /// avoid calling PHITranslateValue in hopeless situations. | 
|  | bool PHITransAddr::IsPotentiallyPHITranslatable() const { | 
|  | // If the input value is not an instruction, or if it is not defined in CurBB, | 
|  | // then we don't need to phi translate it. | 
|  | Instruction *Inst = dyn_cast<Instruction>(Addr); | 
|  | return !Inst || CanPHITrans(Inst); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void RemoveInstInputs(Value *V, | 
|  | SmallVectorImpl<Instruction*> &InstInputs) { | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return; | 
|  |  | 
|  | // If the instruction is in the InstInputs list, remove it. | 
|  | SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I); | 
|  | if (Entry != InstInputs.end()) { | 
|  | InstInputs.erase(Entry); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(!isa<PHINode>(I) && "Error, removing something that isn't an input"); | 
|  |  | 
|  | // Otherwise, it must have instruction inputs itself.  Zap them recursively. | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { | 
|  | if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i))) | 
|  | RemoveInstInputs(Op, InstInputs); | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB, | 
|  | BasicBlock *PredBB, | 
|  | const DominatorTree *DT) { | 
|  | // If this is a non-instruction value, it can't require PHI translation. | 
|  | Instruction *Inst = dyn_cast<Instruction>(V); | 
|  | if (!Inst) return V; | 
|  |  | 
|  | // Determine whether 'Inst' is an input to our PHI translatable expression. | 
|  | bool isInput = is_contained(InstInputs, Inst); | 
|  |  | 
|  | // Handle inputs instructions if needed. | 
|  | if (isInput) { | 
|  | if (Inst->getParent() != CurBB) { | 
|  | // If it is an input defined in a different block, then it remains an | 
|  | // input. | 
|  | return Inst; | 
|  | } | 
|  |  | 
|  | // If 'Inst' is defined in this block and is an input that needs to be phi | 
|  | // translated, we need to incorporate the value into the expression or fail. | 
|  |  | 
|  | // In either case, the instruction itself isn't an input any longer. | 
|  | InstInputs.erase(find(InstInputs, Inst)); | 
|  |  | 
|  | // If this is a PHI, go ahead and translate it. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(Inst)) | 
|  | return AddAsInput(PN->getIncomingValueForBlock(PredBB)); | 
|  |  | 
|  | // If this is a non-phi value, and it is analyzable, we can incorporate it | 
|  | // into the expression by making all instruction operands be inputs. | 
|  | if (!CanPHITrans(Inst)) | 
|  | return nullptr; | 
|  |  | 
|  | // All instruction operands are now inputs (and of course, they may also be | 
|  | // defined in this block, so they may need to be phi translated themselves. | 
|  | for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) | 
|  | if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i))) | 
|  | InstInputs.push_back(Op); | 
|  | } | 
|  |  | 
|  | // Ok, it must be an intermediate result (either because it started that way | 
|  | // or because we just incorporated it into the expression).  See if its | 
|  | // operands need to be phi translated, and if so, reconstruct it. | 
|  |  | 
|  | if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { | 
|  | if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; | 
|  | Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT); | 
|  | if (!PHIIn) return nullptr; | 
|  | if (PHIIn == Cast->getOperand(0)) | 
|  | return Cast; | 
|  |  | 
|  | // Find an available version of this cast. | 
|  |  | 
|  | // Constants are trivial to find. | 
|  | if (Constant *C = dyn_cast<Constant>(PHIIn)) | 
|  | return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(), | 
|  | C, Cast->getType())); | 
|  |  | 
|  | // Otherwise we have to see if a casted version of the incoming pointer | 
|  | // is available.  If so, we can use it, otherwise we have to fail. | 
|  | for (User *U : PHIIn->users()) { | 
|  | if (CastInst *CastI = dyn_cast<CastInst>(U)) | 
|  | if (CastI->getOpcode() == Cast->getOpcode() && | 
|  | CastI->getType() == Cast->getType() && | 
|  | (!DT || DT->dominates(CastI->getParent(), PredBB))) | 
|  | return CastI; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Handle getelementptr with at least one PHI translatable operand. | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { | 
|  | SmallVector<Value*, 8> GEPOps; | 
|  | bool AnyChanged = false; | 
|  | for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { | 
|  | Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT); | 
|  | if (!GEPOp) return nullptr; | 
|  |  | 
|  | AnyChanged |= GEPOp != GEP->getOperand(i); | 
|  | GEPOps.push_back(GEPOp); | 
|  | } | 
|  |  | 
|  | if (!AnyChanged) | 
|  | return GEP; | 
|  |  | 
|  | // Simplify the GEP to handle 'gep x, 0' -> x etc. | 
|  | if (Value *V = SimplifyGEPInst(GEP->getSourceElementType(), | 
|  | GEPOps, {DL, TLI, DT, AC})) { | 
|  | for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) | 
|  | RemoveInstInputs(GEPOps[i], InstInputs); | 
|  |  | 
|  | return AddAsInput(V); | 
|  | } | 
|  |  | 
|  | // Scan to see if we have this GEP available. | 
|  | Value *APHIOp = GEPOps[0]; | 
|  | for (User *U : APHIOp->users()) { | 
|  | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) | 
|  | if (GEPI->getType() == GEP->getType() && | 
|  | GEPI->getNumOperands() == GEPOps.size() && | 
|  | GEPI->getParent()->getParent() == CurBB->getParent() && | 
|  | (!DT || DT->dominates(GEPI->getParent(), PredBB))) { | 
|  | if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin())) | 
|  | return GEPI; | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Handle add with a constant RHS. | 
|  | if (Inst->getOpcode() == Instruction::Add && | 
|  | isa<ConstantInt>(Inst->getOperand(1))) { | 
|  | // PHI translate the LHS. | 
|  | Constant *RHS = cast<ConstantInt>(Inst->getOperand(1)); | 
|  | bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap(); | 
|  | bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap(); | 
|  |  | 
|  | Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT); | 
|  | if (!LHS) return nullptr; | 
|  |  | 
|  | // If the PHI translated LHS is an add of a constant, fold the immediates. | 
|  | if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS)) | 
|  | if (BOp->getOpcode() == Instruction::Add) | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) { | 
|  | LHS = BOp->getOperand(0); | 
|  | RHS = ConstantExpr::getAdd(RHS, CI); | 
|  | isNSW = isNUW = false; | 
|  |  | 
|  | // If the old 'LHS' was an input, add the new 'LHS' as an input. | 
|  | if (is_contained(InstInputs, BOp)) { | 
|  | RemoveInstInputs(BOp, InstInputs); | 
|  | AddAsInput(LHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if the add simplifies away. | 
|  | if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) { | 
|  | // If we simplified the operands, the LHS is no longer an input, but Res | 
|  | // is. | 
|  | RemoveInstInputs(LHS, InstInputs); | 
|  | return AddAsInput(Res); | 
|  | } | 
|  |  | 
|  | // If we didn't modify the add, just return it. | 
|  | if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1)) | 
|  | return Inst; | 
|  |  | 
|  | // Otherwise, see if we have this add available somewhere. | 
|  | for (User *U : LHS->users()) { | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) | 
|  | if (BO->getOpcode() == Instruction::Add && | 
|  | BO->getOperand(0) == LHS && BO->getOperand(1) == RHS && | 
|  | BO->getParent()->getParent() == CurBB->getParent() && | 
|  | (!DT || DT->dominates(BO->getParent(), PredBB))) | 
|  | return BO; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Otherwise, we failed. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// PHITranslateValue - PHI translate the current address up the CFG from | 
|  | /// CurBB to Pred, updating our state to reflect any needed changes.  If | 
|  | /// 'MustDominate' is true, the translated value must dominate | 
|  | /// PredBB.  This returns true on failure and sets Addr to null. | 
|  | bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB, | 
|  | const DominatorTree *DT, | 
|  | bool MustDominate) { | 
|  | assert(DT || !MustDominate); | 
|  | assert(Verify() && "Invalid PHITransAddr!"); | 
|  | if (DT && DT->isReachableFromEntry(PredBB)) | 
|  | Addr = | 
|  | PHITranslateSubExpr(Addr, CurBB, PredBB, MustDominate ? DT : nullptr); | 
|  | else | 
|  | Addr = nullptr; | 
|  | assert(Verify() && "Invalid PHITransAddr!"); | 
|  |  | 
|  | if (MustDominate) | 
|  | // Make sure the value is live in the predecessor. | 
|  | if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr)) | 
|  | if (!DT->dominates(Inst->getParent(), PredBB)) | 
|  | Addr = nullptr; | 
|  |  | 
|  | return Addr == nullptr; | 
|  | } | 
|  |  | 
|  | /// PHITranslateWithInsertion - PHI translate this value into the specified | 
|  | /// predecessor block, inserting a computation of the value if it is | 
|  | /// unavailable. | 
|  | /// | 
|  | /// All newly created instructions are added to the NewInsts list.  This | 
|  | /// returns null on failure. | 
|  | /// | 
|  | Value *PHITransAddr:: | 
|  | PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, | 
|  | const DominatorTree &DT, | 
|  | SmallVectorImpl<Instruction*> &NewInsts) { | 
|  | unsigned NISize = NewInsts.size(); | 
|  |  | 
|  | // Attempt to PHI translate with insertion. | 
|  | Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts); | 
|  |  | 
|  | // If successful, return the new value. | 
|  | if (Addr) return Addr; | 
|  |  | 
|  | // If not, destroy any intermediate instructions inserted. | 
|  | while (NewInsts.size() != NISize) | 
|  | NewInsts.pop_back_val()->eraseFromParent(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// InsertPHITranslatedPointer - Insert a computation of the PHI translated | 
|  | /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB | 
|  | /// block.  All newly created instructions are added to the NewInsts list. | 
|  | /// This returns null on failure. | 
|  | /// | 
|  | Value *PHITransAddr:: | 
|  | InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB, | 
|  | BasicBlock *PredBB, const DominatorTree &DT, | 
|  | SmallVectorImpl<Instruction*> &NewInsts) { | 
|  | // See if we have a version of this value already available and dominating | 
|  | // PredBB.  If so, there is no need to insert a new instance of it. | 
|  | PHITransAddr Tmp(InVal, DL, AC); | 
|  | if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT, /*MustDominate=*/true)) | 
|  | return Tmp.getAddr(); | 
|  |  | 
|  | // We don't need to PHI translate values which aren't instructions. | 
|  | auto *Inst = dyn_cast<Instruction>(InVal); | 
|  | if (!Inst) | 
|  | return nullptr; | 
|  |  | 
|  | // Handle cast of PHI translatable value. | 
|  | if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { | 
|  | if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; | 
|  | Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0), | 
|  | CurBB, PredBB, DT, NewInsts); | 
|  | if (!OpVal) return nullptr; | 
|  |  | 
|  | // Otherwise insert a cast at the end of PredBB. | 
|  | CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(), | 
|  | InVal->getName() + ".phi.trans.insert", | 
|  | PredBB->getTerminator()); | 
|  | New->setDebugLoc(Inst->getDebugLoc()); | 
|  | NewInsts.push_back(New); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | // Handle getelementptr with at least one PHI operand. | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { | 
|  | SmallVector<Value*, 8> GEPOps; | 
|  | BasicBlock *CurBB = GEP->getParent(); | 
|  | for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { | 
|  | Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i), | 
|  | CurBB, PredBB, DT, NewInsts); | 
|  | if (!OpVal) return nullptr; | 
|  | GEPOps.push_back(OpVal); | 
|  | } | 
|  |  | 
|  | GetElementPtrInst *Result = GetElementPtrInst::Create( | 
|  | GEP->getSourceElementType(), GEPOps[0], makeArrayRef(GEPOps).slice(1), | 
|  | InVal->getName() + ".phi.trans.insert", PredBB->getTerminator()); | 
|  | Result->setDebugLoc(Inst->getDebugLoc()); | 
|  | Result->setIsInBounds(GEP->isInBounds()); | 
|  | NewInsts.push_back(Result); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | // FIXME: This code works, but it is unclear that we actually want to insert | 
|  | // a big chain of computation in order to make a value available in a block. | 
|  | // This needs to be evaluated carefully to consider its cost trade offs. | 
|  |  | 
|  | // Handle add with a constant RHS. | 
|  | if (Inst->getOpcode() == Instruction::Add && | 
|  | isa<ConstantInt>(Inst->getOperand(1))) { | 
|  | // PHI translate the LHS. | 
|  | Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0), | 
|  | CurBB, PredBB, DT, NewInsts); | 
|  | if (OpVal == 0) return 0; | 
|  |  | 
|  | BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1), | 
|  | InVal->getName()+".phi.trans.insert", | 
|  | PredBB->getTerminator()); | 
|  | Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap()); | 
|  | Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap()); | 
|  | NewInsts.push_back(Res); | 
|  | return Res; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return nullptr; | 
|  | } |